Title
 Source
 Agenda Item
 CRs (Rel-4 and Rel-5 Category A) to TS 25.105 TSG RAN WG4 7.4.4

RAN4 Tdoc	Spec	$\begin{aligned} & \text { Curr } \\ & \text { Ver } \end{aligned}$	New Ver	CR	R	Cat	Ph	Title	Acronym
R4-020655	25.105	4.4.0	4.5.0	109		F	Rel-4	The amendment for BS Category B spurious emission band adjacent to allocated bands for LCR-TDD	LCRTDDRF
R4-020656	25.105	5.0.0	5.1 .0	110		A	Rel-5	The amendment for BS Category B spurious emission band adjacent to allocated bands for LCR-TDD	LCRTDDRF
R4-020698	25.105	4.4.0	4.5.0	114		F	Rel-4	Correction of power terms and definitions	LCRTDDRF
R4-020699	25.105	5.0.0	5.1 .0	115		A	Rel-5	Correction of power terms and definitions	LCRTDDRF

3GPP TSG RAN WG4 Meeting \#23
R4-020655
Gyeongju, Korea 13th -17th May, 2002
CR-Form-v5.1

CHANGE REQUEST

\& 25.105 CR 109 \& rev - \& Current version: 4.4.0 H $^{\text {H }}$

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathscr{H} symbols.
Proposed change affects: \% (U)SIM \square ME/UE \square Radio Access Network \mathbf{X} Core Network \square

Title: $\mathscr{}$	H The amendment for BS Category B spurious emission band adjacent to allocated bands for LCR-TDD		
Source: \&	RAN WG4		
Work item code: $\&$	LCRTDD-RF	Date: \& 17/5/2002	
Category: \&	F R	Release: \& Rel-4 Use one of the following releases:	
	Use one of the following categories:		
	A (corresponds to a correction in an earlier release)	$R 96$	(Release 1996)
	\boldsymbol{B} (addition of feature),	$R 97$	(Release 1997)
	C (functional modification of feature)	$R 98$	(Release 1998)
	D (editorial modification)	R99	(Release 1999)
	Detailed explanations of the above categories can	REL-4	(Release 4)
	be found in 3GPP TR 21.900.	REL-5	(Release 5)

Reason for change: \&	Category B BS spurious emission band adjacent to allocated bands of LCR-TDD is unnecessary stringent.	
Summary of change: \&	Category B BS spurious emission band adjacent to allocated bands of LCR-TDD is changed.	
Consequences if		
not approved:	\&	Unnecessary hard requirement for the BS spurious emission Category B requirement which can cause difficulties in HW implementation. Isolated Impact Analysis: Would not affect implementations behaving like
indicated in the CR, would affect implementations that do not behave like indicated in the CR.		

Clauses affected: \&f 6.6.3.1.2.1.2					
Other specs affected:	\&		Other core specifications	\mathscr{H}	
		X	Test specifications		25.142
			O\&M Specifications		

Other comments: \mathscr{H}
Equivalent CRs in other Releases: CR110 cat. A to 25.105 v5.0.0

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.6.3.1.2.1.2 1,28 Mcps TDD Option

The power of any spurious emission shall not exceed:
Table 6.11A: BS Mandatory spurious emissions limits, Category B

Band	Maximum Level	Measurement Bandwidth	Note
$9 \mathrm{kHz}-150 \mathrm{kHz}$	-36 dBm	1 kHz	$\begin{gathered} \hline \text { Bandwidth as in ITU } \\ \text { SM.329-8, s4.1 } \end{gathered}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$	- 36 dBm	10 kHz	$\begin{gathered} \hline \text { Bandwidth as in ITU } \\ \text { SM.329-8, s4.1 } \end{gathered}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$	-36 dBm	100 kHz	$\begin{gathered} \hline \text { Bandwidth as in ITU } \\ \text { SM.329-8, s4.1 } \end{gathered}$
$\stackrel{1 \mathrm{GHz}}{\stackrel{\leftrightarrow}{\leftrightarrow}}$ Fc1-19.2 MHz or FI $-3.2 \underline{10}$ MHz whichever is the higher	-30 dBm	1 MHz	$\begin{aligned} & \text { Bandwidth as in ITU } \\ & \text { SM.329-8, s4.1 } \end{aligned}$
$\begin{gathered} \mathrm{Fc} 1-19.2 \mathrm{MHz} \text { or } \mathrm{FI}- \\ 3.210 \mathrm{MHz} \\ \text { whichever is the higher } \\ \overleftrightarrow{\leftrightarrow} \\ \text { Fc1-16 } \mathrm{MHz} \text { or FI }-3.210 \\ \mathrm{MHz} \\ \text { whichever is the higher } \end{gathered}$	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
$\begin{gathered} \text { Fc1-16 MHz or FI -3.210 } \\ \mathrm{MHz} \\ \text { whichever is the higher } \\ \leftrightarrow \\ \text { Fc2 + } 16 \mathrm{MHz} \text { or Fu }+3.2 \underline{10} \mathrm{MHz} \\ \text { whichever is the lower } \\ \hline \end{gathered}$	-15 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
$\mathrm{Fc} 2+16 \mathrm{MHz}$ or $\mathrm{Fu}+$ 3.210 MHz whichever is the lower \leftrightarrow Fc2 +19.2 MHz or Fu + 3.210 MHz whichever is the lower	$-25 \mathrm{dBm}$	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
$\begin{gathered} \mathrm{Fc} 2+19.2 \mathrm{MHz} \text { or } \mathrm{Fu}+3.2 \underline{10} \\ \mathrm{MHz} \end{gathered}$ whichever is the lower $12,5 \mathrm{GHz}$	$-30 \mathrm{dBm}$	1 MHz	Bandwidth as in ITU-R SM.329-8, s4.1. Upper frequency as in ITU-R SM.329-8, s2.5 table 1

Fc 1: Center frequency of emission of the first carrier transmitted by the BS
Fc2: Center frequency of emission of the last carrier transmitted by the BS
Fl : Lower frequency of the band in which TDD operates
Fu : Upper frequency of the band in which TDD operates

3GPP TSG RAN WG4 Meeting \#23

CHANGE REQUEST

\&
25.105 CR 110 \& rev - \& Current version: 5.0.0 H $^{\text {H }}$

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathscr{H} symbols.
Proposed change affects: \% (U)SIM \square ME/UE \square Radio Access Network \mathbf{X} Core Network \square

Title: \&	\& The amendment for BS Category B spurious emission band adjacent to allocated bands for LCR-TDD		
Source: \&	RAN WG4		
Work item code: $\&$	LCRTDD-RF	Date: \&	17/5/2002
Category: \&	A	Release: fo	Rel-5
	Use one of the following categories:	Use one of	the following releases:
	F (correction)	2	(GSM Phase 2)
	\boldsymbol{A} (corresponds to a correction in an earlier release)	R96	(Release 1996)
	B (addition of feature),	$R 97$	(Release 1997)
	C (functional modification of feature)	$R 98$	(Release 1998)
	D (editorial modification)	$R 99$	(Release 1999)
	Detailed explanations of the above categories can	REL-4	(Release 4)
	be found in 3GPP TR 21.900.	REL-5	(Release 5)

| Reason for change: \& | Category B BS spurious emission band adjacent to allocated bands of LCR-TDD
 is unnecessary stringent. |
| :--- | :--- | :--- |
| Summary of change: \& | Category B BS spurious emission band adjacent to allocated bands of LCR-TDD
 is changed. |
| Consequences if
 not approved: \& | Unnecessary hard requirement for the BS spurious emission Category B
 requirement which can cause difficulties in HW implementation.
 Isolated Impact Analysis: Would not affect implementations behaving like |
| | indicated in the CR, would affect implementations that do not behave like
 indicated in the CR. |

Clauses affected: \mathscr{H} 6.6.3.1.2.1.2					
Other specs affected:	\mathscr{H}		Other core specifications	\mathscr{H}	
		X	Test specifications		25.142
			O\&M Specifications		

Other comments: \mathscr{H}
Equivalent CRs in other Releases: CR109 cat. F to 25.105 v4.4.0

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.6.3.1.2.1.2 1,28 Mcps TDD Option

The power of any spurious emission shall not exceed:
Table 6.11A: BS Mandatory spurious emissions limits, Category B

Band	Maximum Level	Measurement Bandwidth	Note
$9 \mathrm{kHz}-150 \mathrm{kHz}$	-36 dBm	1 kHz	$\begin{gathered} \hline \text { Bandwidth as in ITU } \\ \text { SM.329-8, s4.1 } \end{gathered}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$	- 36 dBm	10 kHz	$\begin{gathered} \text { Bandwidth as in ITU } \\ \text { SM.329-8, s4.1 } \end{gathered}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$	-36 dBm	100 kHz	$\begin{gathered} \hline \text { Bandwidth as in ITU } \\ \text { SM.329-8, s4.1 } \end{gathered}$
1 GHz $\stackrel{\leftrightarrow}{\leftrightarrow}$ Fc1-19.2 MHz or FI-3.210 MHz whicherer is the higher	-30 dBm	1 MHz	$\begin{aligned} & \hline \text { Bandwidth as in ITU } \\ & \text { SM.329-8, s4.1 } \end{aligned}$
$\begin{gathered} \mathrm{Fc} 1-19.2 \mathrm{MHz} \text { or } \mathrm{FI}- \\ 3.210 \mathrm{MHz} \\ \text { whichever is the higher } \\ \leftrightarrow \\ \text { Fc1-16 } \mathrm{MHz} \text { or } \mathrm{FI}-3.210 \\ \mathrm{MHz} \\ \text { whichever is the higher } \end{gathered}$	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
Fc1-16 MHz or FI-3.210 MHz whichever is the higher \leftrightarrow $\mathrm{Fc} 2+16 \mathrm{MHz}$ or $\mathrm{Fu}+3.2 \underline{10}$ MHz whichever is the lower	$-15 \mathrm{dBm}$	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
$\mathrm{Fc} 2+16 \mathrm{MHz}$ or $\mathrm{Fu}+$ 3.210 MHz whichever is the lower \leftrightarrow $\mathrm{Fc} 2+19.2 \mathrm{MHz}$ or $\mathrm{Fu}+$ 3.210 MHz whichever is the lower	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
$\begin{gathered} \mathrm{Fc} 2+19.2 \mathrm{MHz} \text { or } \mathrm{Fu}+3.2 \underline{10} \\ \mathrm{MHz} \end{gathered}$ whichever is the lower $\stackrel{\leftrightarrow}{12,5 \mathrm{GHz}}$	$-30 \mathrm{dBm}$	1 MHz	Bandwidth as in ITU-R SM.329-8, s4.1. Upper frequency as in ITU-R SM.329-8, s2.5 table 1

Fc 1: Center frequency of emission of the first carrier transmitted by the BS
Fc2: Center frequency of emission of the last carrier transmitted by the BS
Fl : Lower frequency of the band in which TDD operates
Fu : Upper frequency of the band in which TDD operates

3GPP TSG RAN WG4 Meeting \#23

CHANGE REQUEST

\&
25.105 CR 114 H ev - $\mathscr{H}^{\text {C }}$ Current version: 4.4.0 ${ }^{\text {H }}$

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathfrak{H} symbols.
Proposed change affects: \& (U)SIM \square ME/UE \square Radio Access Network \mathbf{X} Core Network \square

Reason for change: $\mathscr{}$	The existing requirements relating to power are incomplete, inconsistent and ambiguous. The proposed changes remove the possibility of misinterpreting the specification.
Summary of change: \&	6.5.1.1.2 Transmit OFF power - requirement corrected
	7.2.1.2 Reference sensitivity level - defined as mean power, FER removed
	7.3.1.2 Receiver dynamic range - Wanted signal defined as mean power, wanted signal level given as -80 dBm (according formula: REFSENS +30 dB :- $110 \mathrm{dBm}+30 \mathrm{~dB})$
	7.4.1.2 Adiacent Channel Selectivity (ACS) - Missing "offset" added to Fuw definition. wanted signal level given as -104 dBm (according formula: REFSENS $+6 \mathrm{~dB}:-110 \mathrm{dBm}+6 \mathrm{~dB})$
	7.5.0.2, 7.5.1.2 Blocking characteristics - Wanted and interfering signals defined as mean power, wanted signal level given as -104 dBm (according formula: REFSENS + $6 \mathrm{~dB}:-110 \mathrm{dBm}+6 \mathrm{~dB})$
	7.6.1.2 Intermodulation characteristics - Interfering signals defined as mean power
	Annex B.2.2: Average power replaced by relative mean power
Consequences if \& not approved:	Existing power specifications are incomplete, inconsistent and ambiquous which will lead to different interpretation of power quantities (e.g. ACLR, P-CCPCH power, Interferer levels etc.). This will lead to inconsistent performance measurement results.

Isolated impact statement: Correction of requirements. Correct interpretation of the existing specification will not affect implementations or system performance. However, incorrect interpretation may impact conformance test implementation and conformance test results.

Clauses affected: Hi 6.5.1.1.2,7.2.1.2, 7.3.1.2, 7.4.1.2, 7.5.0.2, 7.5.1.2, 7.6.1.2

Other specs
भ
Other core specifications
Test specifications O\&M Specifications
\% affected:

Other comments: \&
Equivalent CRs in other Releases: CR115 cat. A to 25.105 v5.0.0
How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.5 Transmit ON/OFF power

6.5.1 Transmit OFF power

Transmit OFF power is defined as the average power measured over one chip when the transmitter is off. The transmit OFF power state is when the BS does not transmit.

6.5.1.1 Minimum Requirement

6.5.1.1.1 3,84 Mcps TDD Option

The requirement of transmit OFF power shall be less than -79 dBm measured with a filter that has a Root Raised Cosine (RRC) filter response with a roll off $\alpha=0.22$ and a bandwidth equal to the chip rate.

6.5.1.1.2 1,28 Mcps TDD Option

The requirement of transmit OFF power shall be less than -82 dBm -measured with a filter that has a Root Raised Cosine (RRC) filter response with a roll off $\alpha=0.22$ and a bandwidth equal to the chip rate.

--- next changed section ---

7.2 Reference sensitivity level

The reference sensitivity is the minimum receiver input power measured at the antenna connector at which the FER/BER does not exceed the specific value indicated in section 7.2.1.

7.2.1 Minimum Requirement

7.2.1.1 3,84 Mcps TDD Option

For the measurement channel specified in Annex A, the reference sensitivity level and performance of the BS shall be as specified in table 7.1 below.

Table 7.1: BS reference sensitivity levels

Data rate	BS reference sensitivity level (dBm)	FER/BER
12.2 kbps	-109 dBm	BER shall not exceed 0.001

7.2.1.2 1,28 Mcps TDD Option

For Using the reference measurement channel specified in Annex A, the reference sensitivity level and performance of the BS shall be as specified in table7.1A

Table7.1A: BS reference sensitivity levels

$\frac{\text { Reference }}{\text { masurement }}$ channel Ddata	BS reference sensitivity level(dBm)	FER/BER		
rate			\quad	
:---:				
12.2 kbps				

7.3 Dynamic range

Receiver dynamic range is the receiver ability to handle a rise of interference in the reception frequency channel. The receiver shall fulfil a specified BER requirement for a specified sensitivity degradation of the wanted signal in the presence of an interfering AWGN signal in the same reception frequency channel.

7.3.1 Minimum requirement

7.3.1.1 3,84 Mcps TDD Option

The BER shall not exceed 0.001 for the parameters specified in Table 7.2.
Table 7.2: Dynamic Range

Parameter	Level	Unit
Data rate	12.2	kbps
Wanted signal	<REFSENS $>+30 \mathrm{~dB}$	dBm
Interfering AWGN signal	-73	$\mathrm{dBm} / 3.84 \mathrm{MHz}$

7.3.1.2 1,28 Mcps TDD Option:

The BER shall not exceed 0.001 for the parameters specified in Table7.2A
Table 7.2A: Dynamic Range

Parameter	Level	Unit
$\frac{\text { Reference measurement }}{\text { channel Qdata rate }}$	12.2	kbps
Wanted signal mean power	<REFSENS $>+30 \mathrm{~dB}-80$	dBm
Interfering AWGN signal	-76 dBm	$\mathrm{dBm} / 1.28 \mathrm{MHz}$

7.4 Adjacent Channel Selectivity (ACS)

Adjacent channel selectivity (ACS) is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the center frequency of the assigned channel.ACS is the ratio of the receiver filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.4.1 Minimum Requirement

7.4.1.1 3,84 Mcps TDD Option

The BER shall not exceed 0.001 for the parameters specified in table 7.3.
Table 7.3: Adjacent channel selectivity

Parameter	Level	Unit
Data rate	12.2	kbps
Wanted signal	Reference sensitivity level +6 dB	dBm
Interfering signal	-52	dBm
Fuw (Modulated)	5	MHz

7.4.1.2 1,28 Mcps TDD Option

The BER shall not exceed 0.001 for the parameters specified in table7.3A
Table 7.3A: Adjacent channel selectivity

Parameter	Level	Unit
$\frac{\text { Reference measurement }}{\text { channel Ddata rate }}$	12.2	kbps
$\underline{$ Wanted signal mean power $}$	Reference sensitivity level $+6 \mathrm{~dB}-104$	dBm
Interfering signal mean power	-55	dBm
Fuw offset (Modulated)	1.6	MHz

7.5 Blocking characteristics

The blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the adjacent channels. The blocking performance requirement applies to interfering signals with center frequency within the ranges specified in the tables below, using a 1 MHz step size.

7.5.0 Minimum requirement

The static reference performance as specified in clause 7.2 . 1 shall be met with a wanted and an interfering signal coupled to BS antenna input using the following parameters.

7.5.0.1 3,84 Mcps TDD Option

Table 7.4 (a): Blocking requirements for operating bands defined in 5.2(a)

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1900-1920 \mathrm{MHz}$,	-40 dBm	<REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$2010-2025 \mathrm{MHz}$				
$1880-1900 \mathrm{MHz}$,	-40 dBm	$<$ REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$1990-2010 \mathrm{MHz}$,				
$2025-2045 \mathrm{MHz}$				
$1920-1980 \mathrm{MHz}$	-40 dBm	$<$ REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$1980-1880 \mathrm{MHz}$, 1980 MHz, $2045-12750 \mathrm{MHz}$	-15 dBm	<REFSENS +6 dB	-	CW carrier

Table 7.4(b) : Blocking requirements for operating bands defined in 5.2(b)

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1850-1990 \mathrm{MHz}$	-40 dBm	<REFSENS $>+6$ dB	10 MHz	WCDMA signal with one code
$1830-1850 \mathrm{MHz}$,	-40 dBm	<REFSENS> dB	10 MHz	WCDMA signal with one code
$1990-2010 \mathrm{MHz}$	-15 dBm	<REFSENS $>+6$ dB	-	CW carrier
$1-1830 \mathrm{MHz}$, $2010-12750 \mathrm{MHz}$	-			

Table 7.4(c) : Blocking requirements for operating bands defined in 5.2(c)

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1910-1930 \mathrm{MHz}$	-40 dBm	<REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$1890-1910 \mathrm{MHz}$,	-40 dBm	<REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$1930-1950 \mathrm{MHz}$			-	CW carrier
$1-1890 \mathrm{MHz}$, $1950-12750 \mathrm{MHz}$	-15 dBm	<REFSENS> +6 dB	-	

7.5.0.2 1,28 Mcps TDD Option

Table 7.4A(a): Blocking requirements for operating bands defined in 5.2(a)

Center Frequency of Interfering Signal	Interfering SignalLevel Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$\begin{aligned} & 1900-1920 \mathrm{MHz}, \\ & 2010-2025 \mathrm{MHz} \end{aligned}$	$-40 \mathrm{dBm}$	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ \underline{-104 \mathrm{dBm}} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{aligned} & 1880-1900 \mathrm{MHz}, \\ & 1990-2010 \mathrm{MHz}, \\ & 2025-2045 \mathrm{MHz} \end{aligned}$	-40dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ \underline{-104 \mathrm{dBm}} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
1920 - 1980 MHz	-40dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{gathered} 1-1880 \mathrm{MHz}, \\ 1980-1990 \mathrm{MHz}, \\ 2045-12750 \mathrm{MHz} \end{gathered}$	-15dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	-	CW carrier

Table 7.4A(b): Blocking requirements for operating bands defined in 5.2(b)

Center Frequency of Interfering Signal	Interfering Signal Level Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1850-1990$ MHz	-40dBm	$\begin{gathered} \text { \&REFSENS }>6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{aligned} & 1830-1850 \mathrm{MHz}, \\ & 1990-2010 \mathrm{MHz} \end{aligned}$	-40 dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{gathered} 1-1830 \mathrm{MHz}, \\ 2010-12750 \mathrm{MHz} \end{gathered}$	-15 dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	-	CW carrier

Table 7.4A(c): Blocking requirements for operating bands defined in 5.2(c)

Center Frequency of Interfering Signal	Interfering SignalLevel Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
1910 - 1930 MHz	-40dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{aligned} & 1890-1910 \mathrm{MHz}, \\ & 1930-1950 \mathrm{MHz} \end{aligned}$	-40dBm	$\begin{gathered} \text { \&REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{gathered} 1-1890 \mathrm{MHz}, \\ 1950-12750 \mathrm{MHz} \\ \hline \end{gathered}$	-15 dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	-	CW carrier

7.5.1 Co-location with GSM900 and/or DCS 1800

This additional blocking requirement may be applied for the protection of TDD BS receivers when GSM900 and/or DCS1800 BTS are co-located with UTRA TDD BS.

The blocking performance requirement applies to interfering signals with center frequency within the ranges specified in the tables below, using a 1 MHz step size.

In case this additional blocking requirement is applied, the static reference performance as specified in clause 7.2 .1 shall be met with a wanted and an interfering signal coupled to BS antenna input using the following parameters.

7.5.1.1 $\quad 3,84$ Mcps TDD Option

Table 7.4 (d): Additional blocking requirements for operating bands defined in 5.2(a) when co-located with GSM900

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$921-960 \mathrm{MHz}$	+16 dBm	$<$ REFSENS $>+6 \mathrm{~dB}$	-	CW carrier

Table 7.4 (e): Additional blocking requirements for operating bands defined in 5.2(a) when co-located with DCS1800

Center Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1805-1880$	+16 dBm	$<$ REFSENS $>+6 \mathrm{~dB}$	-	CW carrier

7.5.1.2 1,28 Mcps TDD Option

Table 7.4A (d): Additional blocking requirements for operating bands defined in 5.2(a) when colocated with GSM900

Centre Frequency of Interfering Signal	Interfering SignalLevel Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$921-960 \mathrm{MHz}$	+16 dBm	<REFSENS>+6dB	-	CW carrier

Table 7.4A (e): Additional blocking requirements for operating bands defined in 5.2(a) when colocated with DCS1800

Center Frequency of Interfering Signal	Interfering Signal Level Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1805=-1880 \mathrm{MHz}$	+16 dBm	\&REFSENS $>+6 \mathrm{~dB}$	-	CW carrier

7.6 Intermodulation characteristics

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.6.1 Minimum requirement

The static reference performance as specified in clause 7.2 .1 should be met when the following signals are coupled to BS antenna input.

- A wanted signal at the assigned channel frequency, 6 dB above the static reference level.
- Two interfering signals with the following parameters.

7.6.1.1 3,84 Mcps TDD Option

Table 7.5 : Intermodulation requirement

Interfering Signal Level	Offset	Type of Interfering Signal
-48 dBm	10 MHz	CW signal
-48 dBm	20 MHz	WCDMA signal with one code

7.6.1.2 1,28 Mcps TDD Option

Table7.5A: Intermodulation requirement

Interfering SignalLevel Mean Power	Offset	Type of Interfering Signal
-48 dBm	3.2 MHz	CW signal
-48 dBm	6.4 MHz	$1,28 \mathrm{Mcps}$ TDD Option signal with
one code		

--- next changed section ---

B.2.2 1,28 Mcps TDD Option

TableB2 shows propagation conditions that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum, defined as:

$$
\begin{equation*}
S(f) \propto 1 /\left(1-\left(f / f_{D}\right)^{2}\right)^{0.5} \quad \text { for } \mathrm{f} \in-\mathrm{f}_{\mathrm{d}}, \mathrm{f}_{\mathrm{d}} \tag{CLASS}
\end{equation*}
$$

TableB2: Propagation Conditions for Multi-Path Fading Environments

Case 1, speed 3km/h		Case 2, speed 3km/h		Case 3, speed 120km/h	
Relative Delay [ns]	Average Relative Mean Power [dB]	Relative Delay [ns]	Average Relative Mean Power [dB]	Relative Delay [ns]	Average Relative Mean Power [dB]
0	0	0	0	0	0
2928	-10	2928	0	781	-3
		12000	0	1563	-6
				2344	-9

3GPP TSG RAN WG4 Meeting \#23

CHANGE REQUEST

\&
25.105 CR 115 H ev - \& Current version: 5.0.0 ${ }^{\text {H }}$

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathfrak{H} symbols.

Reason for change: $\mathscr{}$	The existing requirements relating to power are incomplete, inconsistent and ambiguous. The proposed changes remove the possibility of misinterpreting the specification.
Summary of change: \&	6.5.1.1.2 Transmit OFF power - requirement corrected
	7.2.1.2 Reference sensitivity level - defined as mean power, FER removed
	7.3.1.2 Receiver dynamic range - Wanted signal defined as mean power, wanted signal level given as -80 dBm (according formula: REFSENS +30 dB :- $110 \mathrm{dBm}+30 \mathrm{~dB})$
	7.4.1.2 Adiacent Channel Selectivity (ACS) - Missing "offset" added to Fuw definition. wanted signal level given as -104 dBm (according formula: REFSENS $+6 \mathrm{~dB}:-110 \mathrm{dBm}+6 \mathrm{~dB})$
	7.5.0.2, 7.5.1.2 Blocking characteristics - Wanted and interfering signals defined as mean power, wanted signal level given as -104 dBm (according formula: REFSENS + $6 \mathrm{~dB}:-110 \mathrm{dBm}+6 \mathrm{~dB})$
	7.6.1.2 Intermodulation characteristics - Interfering signals defined as mean power
	Annex B.2.2: Average power replaced by relative mean power
Consequences if \& not approved:	Existing power specifications are incomplete, inconsistent and ambiquous which will lead to different interpretation of power quantities (e.g. ACLR, P-CCPCH power, Interferer levels etc.). This will lead to inconsistent performance measurement results.

Isolated impact statement: Correction of requirements. Correct interpretation of the existing specification will not affect implementations or system performance. However, incorrect interpretation may impact conformance test implementation and conformance test results.

Clauses affected: Hi 6.5.1.1.2,7.2.1.2, 7.3.1.2, 7.4.1.2, 7.5.0.2, 7.5.1.2, 7.6.1.2

Other specs
भ
Other core specifications
Test specifications O\&M Specifications
\& affected:

Other comments: \&
Equivalent CRs in other Releases: CR114 cat. F to 25.105 v4.4.0
How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.5 Transmit ON/OFF power

6.5.1 Transmit OFF power

Transmit OFF power is defined as the average power measured over one chip when the transmitter is off. The transmit OFF power state is when the BS does not transmit.

6.5.1.1 Minimum Requirement

6.5.1.1.1 3,84 Mcps TDD Option

The requirement of transmit OFF power shall be less than -79 dBm measured with a filter that has a Root Raised Cosine (RRC) filter response with a roll off $\alpha=0.22$ and a bandwidth equal to the chip rate.

6.5.1.1.2 1,28 Mcps TDD Option

The requirement of transmit OFF power shall be less than -82 dBm measured with a filter that has a Root Raised Cosine (RRC) filter response with a roll off $\alpha=0.22$ and a bandwidth equal to the chip rate.

--- next changed section ---

7.2 Reference sensitivity level

The reference sensitivity is the minimum receiver input power measured at the antenna connector at which the FER/BER does not exceed the specific value indicated in section 7.2.1.

7.2.1 Minimum Requirement

7.2.1.1 3,84 Mcps TDD Option

For the measurement channel specified in Annex A, the reference sensitivity level and performance of the BS shall be as specified in table 7.1 below.

Table 7.1: BS reference sensitivity levels

Data rate	BS reference sensitivity level (dBm)	FER/BER
12.2 kbps	-109 dBm	BER shall not exceed 0.001

7.2.1.2 1,28 Mcps TDD Option

For Using the reference measurement channel specified in Annex A, the reference sensitivity level and performance of the BS shall be as specified in table7.1A

Table7.1A: BS reference sensitivity levels

Reference masurement channel Ddata rate	BS reference sensitivity level_(dBm)	FER/BER
12.2 kbps	-110 dBm	BER shall not exceed 0.001

7.3 Dynamic range

Receiver dynamic range is the receiver ability to handle a rise of interference in the reception frequency channel. The receiver shall fulfil a specified BER requirement for a specified sensitivity degradation of the wanted signal in the presence of an interfering AWGN signal in the same reception frequency channel.

7.3.1 Minimum requirement

7.3.1.1 3,84 Mcps TDD Option

The BER shall not exceed 0.001 for the parameters specified in Table 7.2.
Table 7.2: Dynamic Range

Parameter	Level	Unit
Data rate	12.2	kbps
Wanted signal	<REFSENS $>+30 \mathrm{~dB}$	dBm
Interfering AWGN signal	-73	$\mathrm{dBm} / 3.84 \mathrm{MHz}$

7.3.1.2 1,28 Mcps TDD Option:

The BER shall not exceed 0.001 for the parameters specified in Table7.2A
Table 7.2A: Dynamic Range

Parameter	Level	Unit
$\frac{\text { Reference measurement }}{\text { channel Qdata rate }}$	12.2	kbps
Wanted signal mean power	<REFSENS $>+30 \mathrm{~dB}-80$	dBm
Interfering AWGN signal	-76 dBm	$\mathrm{dBm} / 1.28 \mathrm{MHz}$

7.4 Adjacent Channel Selectivity (ACS)

Adjacent channel selectivity (ACS) is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the center frequency of the assigned channel.ACS is the ratio of the receiver filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.4.1 Minimum Requirement

7.4.1.1 3,84 Mcps TDD Option

The BER shall not exceed 0.001 for the parameters specified in table 7.3.
Table 7.3: Adjacent channel selectivity

Parameter	Level	Unit
Data rate	12.2	kbps
Wanted signal	Reference sensitivity level +6 dB	dBm
Interfering signal	-52	dBm
Fuw (Modulated)	5	MHz

7.4.1.2 1,28 Mcps TDD Option

The BER shall not exceed 0.001 for the parameters specified in table7.3A
Table 7.3A: Adjacent channel selectivity

Parameter	Level	Unit
$\frac{\text { Reference measurement }}{\text { channel Ddata rate }}$	12.2	kbps
$\underline{$ Wanted signal mean power $}$	Reference sensitivity level $+6 \mathrm{~dB}-104$	dBm
Interfering signal mean power	-55	dBm
Fuw offset (Modulated)	1.6	MHz

7.5 Blocking characteristics

The blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the adjacent channels. The blocking performance requirement applies to interfering signals with center frequency within the ranges specified in the tables below, using a 1 MHz step size.

7.5.0 Minimum requirement

The static reference performance as specified in clause 7.2 . 1 shall be met with a wanted and an interfering signal coupled to BS antenna input using the following parameters.

7.5.0.1 3,84 Mcps TDD Option

Table 7.4 (a): Blocking requirements for operating bands defined in 5.2(a)

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1900-1920 \mathrm{MHz}$	-40 dBm	<REFSENS> +6 dB	10 MHz	WCDMA signal with one code
$2010-2025 \mathrm{MHz}$				
$1880-1900 \mathrm{MHz}$,	-40 dBm	<REFSENS> +6 dB	10 MHz	WCDMA signal with one code
$1990-2010 \mathrm{MHz}$,				
$2025-2045 \mathrm{MHz}$	-40 dBm	<REFSENS> +6 dB	10 MHz	WCDMA signal with one code
$1920-1980 \mathrm{MHz}$	-15 dBm	<REFSENS> +6 dB	-	CW carrier
$1-1880 \mathrm{MHz}$, $1980-1990 \mathrm{MHz}$, $2045-12750 \mathrm{MHz}$				

Table 7.4(b) : Blocking requirements for operating bands defined in 5.2(b)

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1850-1990 \mathrm{MHz}$	-40 dBm	<REFSENS $>+6$ dB	10 MHz	WCDMA signal with one code
$1830-1850 \mathrm{MHz}$,	-40 dBm	<REFSENS $>+6$ dB	10 MHz	WCDMA signal with one code
$1990-2010 \mathrm{MHz}$ $1-1830 \mathrm{MHz}$, $2010-12750 \mathrm{MHz}$	-15 dBm	<REFSENS $>+6$ dB	-	CW carrier

Table 7.4(c) : Blocking requirements for operating bands defined in 5.2(c)

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1910-1930 \mathrm{MHz}$	-40 dBm	<REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$1890-1910 \mathrm{MHz}$,	-40 dBm	<REFSENS $>+6 \mathrm{~dB}$	10 MHz	WCDMA signal with one code
$1930-1950 \mathrm{MHz}$			-	CW carrier
$1-1890 \mathrm{MHz}$, $1950-12750 \mathrm{MHz}$	-15 dBm	<REFSENS> +6 dB	-	

7.5.0.2 1,28 Mcps TDD Option

Table 7.4A(a): Blocking requirements for operating bands defined in 5.2(a)

Center Frequency of Interfering Signal	Interfering SignalLevel Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$\begin{aligned} & 1900-1920 \mathrm{MHz}, \\ & 2010-2025 \mathrm{MHz} \end{aligned}$	$-40 \mathrm{dBm}$	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ \underline{-104 \mathrm{dBm}} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{aligned} & 1880-1900 \mathrm{MHz}, \\ & 1990-2010 \mathrm{MHz}, \\ & 2025-2045 \mathrm{MHz} \end{aligned}$	-40dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ \underline{-104 \mathrm{dBm}} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
1920 - 1980 MHz	-40dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{gathered} 1-1880 \mathrm{MHz}, \\ 1980-1990 \mathrm{MHz}, \\ 2045-12750 \mathrm{MHz} \end{gathered}$	-15dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	-	CW carrier

Table 7.4A(b): Blocking requirements for operating bands defined in 5.2(b)

Center Frequency of Interfering Signal	Interfering Signal Level Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1850-1990$ MHz	-40dBm	$\begin{gathered} \text { \&REFSENS }>6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{aligned} & 1830-1850 \mathrm{MHz}, \\ & 1990-2010 \mathrm{MHz} \end{aligned}$	-40 dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{gathered} 1-1830 \mathrm{MHz}, \\ 2010-12750 \mathrm{MHz} \end{gathered}$	-15 dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	-	CW carrier

Table 7.4A(c): Blocking requirements for operating bands defined in 5.2(c)

Center Frequency of Interfering Signal	Interfering SignalLevel Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
1910 - 1930 MHz	-40dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{aligned} & 1890-1910 \mathrm{MHz}, \\ & 1930-1950 \mathrm{MHz} \end{aligned}$	-40dBm	$\begin{gathered} \text { \&REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	3.2 MHz	Narrow band CDMA signal with one code
$\begin{gathered} 1-1890 \mathrm{MHz}, \\ 1950-12750 \mathrm{MHz} \\ \hline \end{gathered}$	-15 dBm	$\begin{gathered} \text { <REFSENS }>+6 \mathrm{~dB} \\ -104 \mathrm{dBm} \end{gathered}$	-	CW carrier

7.5.1 Co-location with GSM900 and/or DCS 1800

This additional blocking requirement may be applied for the protection of TDD BS receivers when GSM900 and/or DCS1800 BTS are co-located with UTRA TDD BS.

The blocking performance requirement applies to interfering signals with center frequency within the ranges specified in the tables below, using a 1 MHz step size.

In case this additional blocking requirement is applied, the static reference performance as specified in clause 7.2 .1 shall be met with a wanted and an interfering signal coupled to BS antenna input using the following parameters.

7.5.1.1 $\quad 3,84$ Mcps TDD Option

Table 7.4 (d): Additional blocking requirements for operating bands defined in 5.2(a) when co-located with GSM900

Centre Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$921-960 \mathrm{MHz}$	+16 dBm	$<$ REFSENS $>+6 \mathrm{~dB}$	-	CW carrier

Table 7.4 (e): Additional blocking requirements for operating bands defined in 5.2(a) when co-located with DCS1800

Center Frequency of Interfering Signal	Interfering Signal Level	Wanted Signal Level	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1805-1880$	+16 dBm	$<R E F S E N S>+6 \mathrm{~dB}$	-	CW carrier

7.5.1.2 1,28 Mcps TDD Option

Table 7.4A (d): Additional blocking requirements for operating bands defined in 5.2(a) when colocated with GSM900

Centre Frequency of Interfering Signal	Interfering SignalLevel Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$921-960 \mathrm{MHz}$	+16 dBm	<REFSENS>+6dB	-	CW carrier

Table 7.4A (e): Additional blocking requirements for operating bands defined in 5.2(a) when colocated with DCS1800

Center Frequency of Interfering Signal	Interfering Signal Level Mean Power	Wanted SignalLevel Mean Power	Minimum Offset of Interfering Signal	Type of Interfering Signal
$1805=-1880 \mathrm{MHz}$	+16 dBm	\&REFSENS $>+6 \mathrm{~dB}$	-	CW carrier

7.6 Intermodulation characteristics

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.6.1 Minimum requirement

The static reference performance as specified in clause 7.2 .1 should be met when the following signals are coupled to BS antenna input.

- A wanted signal at the assigned channel frequency, 6 dB above the static reference level.
- Two interfering signals with the following parameters.

7.6.1.1 3,84 Mcps TDD Option

Table 7.5 : Intermodulation requirement

Interfering Signal Level	Offset	Type of Interfering Signal
-48 dBm	10 MHz	CW signal
-48 dBm	20 MHz	WCDMA signal with one code

7.6.1.2 1,28 Mcps TDD Option

Table7.5A: Intermodulation requirement

Interfering Signal Level Mean Power	Offset	Type of Interfering Signal
-48 dBm	3.2 MHz	CW signal
-48 dBm	6.4 MHz	$1,28 \mathrm{Mcps}$ TDD Option signal with
one code		

--- next changed section ---

B.2.2 1,28 Mcps TDD Option

TableB2 shows propagation conditions that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum, defined as:

$$
\begin{equation*}
S(f) \propto 1 /\left(1-\left(f / f_{D}\right)^{2}\right)^{0.5} \quad \text { for } \mathrm{f} \in-\mathrm{f}_{\mathrm{d}}, \mathrm{f}_{\mathrm{d}} \tag{CLASS}
\end{equation*}
$$

TableB2: Propagation Conditions for Multi-Path Fading Environments

Case 1, speed 3km/h		Case 2, speed 3km/h		Case 3, speed 120km/h	
Relative Delay [ns]	Average Relative Mean Power [dB]	Relative Delay [ns]	Average Relative Mean Power [dB]	Relative Delay [ns]	Average Relative Mean Power [dB]
0	0	0	0	0	0
2928	-10	2928	0	781	-3
		12000	0	1563	-6
				2344	-9

