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AI/ML over Air Interface-Mobility
Justification: Limitation of Rule-based Mobility Mechanism

• Rule-based mobility performs well in normal mobility 
scenarios

– with acceptable complexity and overhead

– has been repeatedly verified and systematically 
improved in deployments

• but cannot achieve optimum performance in extreme 
scenarios (FR2 and/or high mobility)

– It is reactive by design

- The overall mobility procedure (incl. measurement, 
report and HO/cell switch) is not fast enough to adapt 
to channel variations in extreme mobility scenarios. 

– It features high a) complexity b) measurement effort c) 
signaling overhead for suboptimum mobility 
performance in these scenarios

– New capacity-hungry services like e.g. XR require a 
reliable mobility connection with high throughput and 
low latency

• Need for

– Optimum mobility performance with minimum 
measurement and overhead in both FR1 and FR2

– Shift from conventional reactive mobility mechanism 
to proactive data-driven mechanism (with 
autonomous optimization without human 
intervention)
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AI/ML over Air Interface-Mobility
Objectives (vs. RP-232745 baseline) [1/2]
• Type of mobility

– L3-based mobility (including. basic HO in Rel-15 and CHO in Rel-16) and L1/L2-triggered mobility (LTM) are both considered

• HO optimization in Network side [/UE side], including 

– Candidate/target cell prediction in L3-based mobility to improve candidate cell configuration and target cell determination; , or,

candidate/target beam(s) and cell(s) prediction in LTM to improve candidate cell configuration and target cell determination with pre-sync 

and cell switch[RAN2/RAN3].

• RRM measurement and event prediction, including

– Beam-level measurement prediction with reduced RSs and measurement, e.g., spatial and temporal beam prediction cross cells [RAN2];

– Cell-level measurement prediction, e.g., using intra-frequency measurement results to forecast the RRM measurement of inter-

frequency/inter-RAT cells[RAN2];

– HO failure/RLF prediction [RAN2];

– Measurement events prediction to simplify the filtering configuration and operation[RAN2];

– Solutions impacting measurement performance and requirement are in the SI scope. RAN4 should be involved by triggered LS from RAN2 

[RAN4].

• Note 1: no intention to change the existing framework for the mobility under connected mode.

• Note 2: In the SID, target performance metrics and impacts should be clarified

• Note 3: Avoid overlap work with RAN3.
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• Study the impacts on LCM framework if identified: LCM framework and others

• The conclusions in Rel-18 AI/ML study should be used as baseline.

• Other impacts are further studied

• Specify the methodology for evaluating the performance benefits of AI/ML based algorithms:

– Methodology based on statistical models (from TR 38.901) for system level simulation as a starting point. 

- Need for common assumptions for the simulation setting, e.g.,  network deployment and configuration and UE trajectory.

– System-level and intermediate KPIs:

- Determine the KPIs and benchmarks for each use cases. The conventional system-level KPIs for mobility performance evaluation 

incl. HOF/RLF rate, ToS/PingPong rate, HO Interruption time and RSRP distribution are considered as baseline. Other system KPIs, 

e.g., overhead, power consumption should be discussed as part of the study;

- Intermediate KPIs to evaluate the AI/ML algorithms performance e.g., prediction accuracy, RSRP difference as well as inference 

latency, computation complexity should be discussed as part of the study.

– Generalization performance evaluation and methodology should be discussed as part of the study. 

• Assess potential specification impact:

– Protocol aspects: Consider aspects related to e.g., RRM measurement procedures, L3-based and LTM mobility procedures, AI trigger 

events, as well as configuration corresponding to the AI/ML approaches for each use case;

– PHY aspects: Consider aspects related to e.g., the additional physical layer signaling/measurement and the corresponding 

processing. RAN1 only starts the work after sufficient progress is made on the use case study in RAN2.

AI/ML over Air Interface-Mobility
Objectives (vs. RP-232745 baseline) [2/2]
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AI-assisted RRM measurement
Spatial Domain Beam Prediction Cross Cells [1/3]
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• Basic HO and LTM as benchmark

• Setting: FR2, 30km/h, 120km/h, simulation time 200s, 

– AI-RRM uses half of the beam's RSRP as input and predict 
the other half of the beam's RSRP. (50% RS reduction)

– The UE trajectory is considered as input

FR2

RSRP-Diff (dB)

Train Test

AI Spatial Reduction 30kph 2.11 2.95

AI Spatial Reduction 120kph 1.84 2.72
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AI-assisted RRM measurement
Spatial Domain Beam Prediction Cross Cells vs. Basic HO: FR2 [50% RS Reduction] [2/3]

30km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 1.41% 10864 0.96 0.63

AI-RRM 1.45% 10860 1.04 0.62

Data Interruption Time Average Time of Stay

120km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 2.76% 6419 2.30 0.49

AI-RRM 2.49% 8861 2.30 0.30

Observation: While reducing the spatial domain measurement effort by 50%, AI can ensure that the HO performance 
(DIT and ToS) does not deteriorate much at the cost of camping on best cell rate decrease.

Mobility Failure and HO success times
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AI-assisted RRM measurement
Spatial Domain Beam Prediction Cross Cells vs. LTM: FR2 [50% RS Reduction] [3/3]

30km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 0.67% 6968 0.59 0.73

AI-RRM 0.68% 6587 0.59 0.68

Data Interruption Time Average Time of Stay

120km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 1.10% 4808 1.00 0.58

AI-RRM 1.09% 5303 1.04 0.50

Observation: While reducing the spatial domain measurement effort by 50%, AI can ensure that the HO performance 
(DIT and ToS) does not deteriorate much at the cost of camping on best cell rate decrease.

Mobility Failure and HO success times
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AI-assisted RRM measurement
Temporal Domain Beam Prediction Cross Cells [1/3]

• Basic HO and LTM as benchmark

• Setting: FR2, 30km/h, 120km/h, simulation time 200s, 

– Basic HO:160ms observation window; 160ms prediction 
window, 

– LTM: 20ms observation window: 20 ms prediction window

– 50% measurement effort reduction

– The UE trajectory is considered as input

a1
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a4b1
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Cell a

Cell b

t1

t2

t3

Predict current RSRP based on previous 
measurements

Measure all beam 
pairs

RSRP-Diff (dB)

Train Test

AI Temporal Reduction 30kph 2.27 2.85

AI Temporal Reduction 120kph 2.53 2.81

FR2
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AI-assisted RRM measurement
Temporal Domain Beam Prediction Cross Cells vs. Basic HO: FR2 [50% Meas. Effort Reduction] [2/3]

30km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 1.41% 10864 0.96 0.49

AI-RRM 1.38% 12546 1.13 0.34

Data Interruption Time Average Time of Stay

120km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 2.76% 6419 2.30 0.49

AI-RRM 2.68% 7524 2.52 0.34

Observation: While reducing the temporal domain measurement effort by 50%, AI can ensure that the HO 
performance (DIT and ToS) does not deteriorate at the cost of camping on best cell rate decrease.

Mobility Failure and HO success times
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AI-assisted RRM measurement
Temporal Domain Beam Prediction Cross Cells vs. LTM: FR2 [50% Meas. Effort Reduction] [3/3]

30km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 0.67% 6968 0.59 0.73

AI-RRM 0.80% 8420 0.81 0.53

Data Interruption Time Average Time of Stay

120km/h DIT Average 
TOS (ms)

MobFail
(per min)

Opt cell camping 
on rate

Non-AI 1.10% 4808 1.00 0.58

AI-RRM 1.07% 7606 1.33 0.47

Observation: While reducing the temporal domain measurement effort by 50%, AI can ensure that the HO 
performance (DIT and ToS) does not deteriorate at the cost of camping on best cell rate decrease.

Mobility Failure and HO success times
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Measurement Event Prediction

AI/ML 
algorithm

Training

InferenceInput meas.
AI/ML 

algorithm

Target Cell id/RSRP

# of beam pairs

# of samples

t

Observation
window

AI inference Prediction

Prediction
window

Start point

t t + w2 t – w1 
• Basic Algorithm

– To learn the pattern from the dataset and

– To predict measurement event from previous measurement

– Inputs: each beam pair’s RSRP, CSI, etc.

– Output: Target Cell id, Target cell RSRP

– AI Model: CNN, LSTM, Transformer, etc.

• Simplify the filtering configuration (offset, TTT, hysteresis, 
coefficient and so on) and operation

• Predict multiple future steps

– i.e., predict the best RSRP cell for the next 20ms, 
40ms, …140ms

• Make HO decision based on prediction

Experiment (1/3)



• Due to the multiple-step prediction, AI 
approach does not need TTT 
mechanism

– More sensitive 

– No TTT latency

• Better performance in quick variation 
scenarios, e.g., 120km/hr.

• Slightly worse than the basic HO in 
slow UE speed scenario, e.g., 30km/hr.

• Compare with basic HO with the 
typical setting, e.g., 160TTT and 2dB 
A3 event offset.
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Experimental Results (2/3)

Measurement Event Prediction



• AI filter can be trained for different 
optimization targets, e.g., target to have 
optimum link quality 

– Keep the same level of # of mobility fail  

– Higher camp on opt cell rate

– Higher interruption time from the HO 
procedure.

• Challenge I: Metrics Tradeoff

– Hard to compare with basic HO for those 
tradeoff metrics, e.g., interruption time, 
ping-pong, camp on rate, under all different 
configurations, e.g., TTT, offsets.

– Consider the overall system performance 
metric, e.g., average throughput, and show 
the AI gain, which should be positively 
correlated to RSRP CDF result.

• Challenge II: AI accuracy in different 
scenarios.
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Experimental Results (3/3)

Measurement Event Prediction



Annex: Simulation Setting 

Items FR2 

ISD(Inter-site distance) 200m

Number of sites/sectors 21cell, 7 sites, each site 3 sectors

Carrier Frequency 30GHz

Bandwidth 50MHz

Beam setting
Horizontal: 12; Vertical: 2
Total: 24 beams

Sub-carrier spacing 60KHz

BS Total TX power 46 dBm 

BS height 25m

Minimum distance Minimum distance between UE and regular node. >=35m

UE trajectory The random moving model studied in R18 RAN1 BM case

UE speed 30/120 km/h

UE number 8

Sample interval 20ms

Simulation time 1600s(each UE 200s)
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Thank you!


