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Rel-18 study item “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” [1] is the first time for 3GPP to study the potential deployment of AI/ML model for air interface. Due to the limited time, only three features (i.e., CSI, beam management and positioning) were selected for the study. There are many other important features of a cellular communication system, e.g., mobility. Rel-19 will see the study item going into its work item stage. Meanwhile, there is going to be a parallel RAN2-led AI/ML study item for mobility to cover attracting new use cases and advanced features. In this contribution, we propose our understanding on scope of AI/ML-based mobility.
AI/ML for mobility
Model sidedness
Different from RAN3 work on AI/ML for mobility enhancement, which is cell-specific and exchanges information via Xn, the RAN2-led AI/ML-based mobility study can focus more on air interface impacts. From air interface perspective, AI/ML model for mobility can be network-side or UE-side model. 
To differentiate the work from RAN3 WID NR_AIML_NGRAN-Core, the network-side model is better to focus on exploring per UE behavior and providing customized services. For instance, the network-side model can learn UE’s daily mobility pattern including the timing and location to get different types of traffics. Compared to UEs, the network can provide more computing power and sufficient storage space to facilitate the maintenance of large and powerful models. 
For UE-side model execution/inference, UE can process part of or all the data locally, thereby reducing the transmission burden of the air interface. Although UE can get the inference output locally, it should align the results with the network as mobility is currently network-controlled. The alignment can have two types:
· Type 1: UE reports the AI/ML inference output to the network as assistant information to help the network decide the specific actions to take, e.g., which cell to hand over to. 
· Type 2: The network sends available action sets to the UE prior to model inference. UE does the inference and chooses an action from the action sets. 
Proposal 1: For AI/ML-based mobility studies, two types of AI/ML models can be considered: 
· Network-side model
· UE-side model
For UE-side model, UE can use its model to help the network make the decision, but whether to activate/use UE side model should be under network control. For example, action choices based on UE inference in Type 2 should get permission from the network first. 
Proposal 2: The UE-side AI/ML model for mobility is under network control.

Typical use cases
To summarize the potential study scope, at least the following three aspects should be considered:  
Candidate target cell and/or beam prediction
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Fig. 4-1: Illustration of target cell selection
Candidate cell/beam selection during handover is usually based on instant RSRP that neglects the potential long-term performance after handover, which may result in ping-pong or short time-of-stay (ToS). With channel (e.g., RSRP) or trajectory prediction, UE can access the cell or beam that provides continuous and better services in multiple future instants. It is reported that with AI/ML models, interruption time, short ToS, ping-pong rate, and even HOF rate can be reduced, thus improving the performance in mobility and throughput [2-5].
Observation 1: AI/ML-based candidate cell/beam selection can improve mobility performance, e.g., reducing interruption time, short ToS, ping-pong rate, and HOF rate.
Unintended event prediction
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Fig. 4-2: Illustration of RLF avoidance
Regarding unintended events in mobility, the following cases can be considered: RLF, HO failure, Ping-Pong HO, and short-of-stay HO. Current unintended event handling methods are reactive and cannot eliminate the interruption or bad services caused by an unintended event. With AI/ML, we can predict the happening of unintended events in advance and take proactive actions to avoid them. For instance, UE predicts that an RLF will happen in Cell 2 in the near future as illustrated in Fig. 4-2. It can take a proactive HO to Cell 3 to avoid channel deterioration.
Observation 2: AI/ML-based mobility can enable proactive actions before an unintended event (e.g., RLF, HO failure, Ping-Pong HO, or short-of-stay HO) occurs.
RRM measurement prediction
Beam management in Rel-18 AI/ML study introduces two sub-use cases: spatial-domain DL beam prediction and temporal DL beam prediction. Both of them can be well extended to the AI/ML-based mobility study. For spatial-domain DL beam prediction (i.e., BM-Case1), 
· UE can measure wider beams and use an AI/ML model to predict the channel state of narrower beams; or
· Measure part of the detectable beams and use them to predict the rest of the beams.
Signaling and power consumption needed for the measurement can thus be reduced, which also cuts down the interruption time for beam search and beam switch.
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Fig. 4-3: Illustration of temporal DL beam prediction
[bookmark: _Hlk144387362]For temporal DL beam prediction (i.e., BM-Case2), UE can further use measured L1-RSRP before time t to predict the counterpart at or after time t+1. That means the UE can completely stop its RRM measurement if the predicted L1-RSRP is accurate enough. Depending on the time span of the model input (i.e., L1-RSRP), an AI/ML model can now provide accurate prediction for tens of milliseconds [3]. 
Observation 3: Rel-18 BM study can be extended to AI/ML-based mobility to reduce measurement overheads.
In TS 38.300, the high-level measurement model has two-level filtering. One is using the filtered L1 measurement to get cell-level results. The other is to get L3 beam results. Compared to beam-level prediction, cell-level RRM measurement prediction is more attractive as it directly influences the results of candidate cell prediction and unintended event prediction. Currently, HO trigger and RLF declare are both based on L3 measurement results. 
To use RRM measurement prediction for candidate beam/cell prediction and unintended event prediction, we need an additional post-process function to turn predicted measurement results into wanted results. For instance, LTM can use L1 beam measurement prediction to choose candidate cells and cell-level SINR can be used for the decision of the occurrence of RLF. Besides, candidate target cell prediction can be based on the prediction of RRM measurement, unintended event, or other local information, e.g., a cell that may bring in RLF will not be set as a candidate target cell.
Observation 4: The prediction of candidate target cells, unintended events, and RRM measurement are intertwined and will affect each other.
Based on the observations 1-4, it is proposed that:
[bookmark: _Hlk144202567]Proposal 3: For AI/ML-based mobility, study the evaluation and specification impacts at least for the following aspects:
· Candidate target cell and/or beam prediction 
· Unintended event prediction, e.g., HO failure, RLF, Ping-Pong HO, short of stay HO, etc.
· RRM measurement prediction
For the unintended event prediction, the predicted results need to be reported from UE to the network to help the decision-making. That means the AI/ML model is a UE-side model. Otherwise, it would be a network implementation-specific intermediate process that has no specification impact. 
Note that all three use cases focus on UE in RRC_CONNECTED and that the network will not be aware of the behaviour of UE in IDLE or INACTIVE state, it is proposed that:
Proposal 4: AI/ML-based mobility focuses on connected mode UEs only.
Besides L3 mobility, the last plenary meeting also saw discussions on AI/ML-enabled LTM. LTM aims to enable a serving cell change via L1/L2 signaling, in order to reduce the latency, overhead, and interruption time. The goal coincides with the reason we introduce AI/ML into mobility enhancement. In addition, we did see good gains in AI/ML on LTM from simulations [3]. When L3 RRM measurement report is received it is up to network’s implementation whether traditional L3 HO procedure or LTM procedure is triggered. If network decided to go for LTM procedure, RRC configuration is transmitted to UE, where a list of HO candidates and corresponding L1 measurement task are assigned to UE. So compared to traditional L3 HO procedure, the additional part of the LTM case is the phase, during which L1 measurement as well as other procedures e.g., early synchronization, TCI state activation are running. So to cover LTM in this study basically means to cover this additional phase. Since it is relevant to PHY procedure and MAC procedure, so both RAN1 and RAN2 need be involved.
Observation 5: Compared to traditional L3 HO procedure, the additional part of LTM is phase after candidate list is received. 
Proposal 5: L3 mobility and LTM will both be studied for AI/ML-based mobility enhancement. 

Performance evaluation 
To evaluate the performance of AI/ML algorithms, we need to do simulations. Since RAN1 only got 0.5 TU per meeting, it is impossible for them to put too much effort into simulation. The majority of simulation work will lie in RAN2 scope. Unlike RAN1, RAN2 does not have a commonly agreed reference document for mobility simulation. However, RAN2 does not need to start from scratch. The simulation methodology and assumptions studied in Rel-18 TR 38.843 AI/ML for NR air interface, especially the configuration of the BM case, could be the baseline for AI/ML-based mobility to model the wireless environment. In addition, TR 36.839 [6], which studied the simulation for mobility enhancements in heterogeneous networks, can be used to evaluate high-layer behaviors such as ping-pong, RLF, and HO failure. Moreover, some companies showed interest in handover latency and interruption. The evaluation of these metrics should follow the definitions in TS 38.300.
The metrics of the evaluation should be mobility centric. It could be but not limited to e.g., handover latency/interruption, RS/measurement overhead, handover failure rate, Ping-Pong HO rate, short stay rate, prediction accuracy etc. Since this is simulation on mobility issue, there is no doubt that more than one cells should setup as environment. In order to simplify the simulation in RAN2 no traffic model seems necessary i.e., to drop single UE is sufficient. In addition, RRM measurement is L3 filtered measurement and quantity could be RSRP or RSRQ. So, it looks like large scale channel model with some adjustment based on e.g. Raleigh distribution in small scale could work well. For LTM this could be different considering L1 measurement is more sensible to small scale measurement and the EVM for BM use case in Rel18 SID FS_NR_AIML_air can be reused. In short, the EVM assumption in RAN2 could be simplified compared to RAN1 study.
Proposal 6: The methodology and assumptions in TR 38.843 and TR 36.839 can be start point for study on AI/ML-based mobility.
Proposal 6a: The EVM assumption in RAN2 could be simplified compared to RAN1 study

Potential specification impact 
The general LCM framework discussed in Rel-18 AI/ML, e.g. model transfer/delivery, and data collection for training, may also be applied to AI/ML-based mobility. Although for these topics it’s still unclear how much progress we can make in Rel-18 discussion, it’s still valuable to consider these aspects for AI/ML-based mobility. For the general LCM framework on AI/ML-based mobility, we can reuse the conclusion in Rel-18 as much as possible, any mobility-specific AI enhancement is still not precluded, for instance, new metrics for AI mobility and new mechanisms for model inference and/or model monitoring. AI/ML algorithms that are different from SID FS_NR_AIML_air can be also considered e.g. reinforcement learning.
Proposal 7: For AI/ML-based mobility, the general LCM framework discussed in Rel-18 AI/ML can be reused as much as possible, especially for model transfer/delivery and data collection for training. Any mobility-specific AI enhancement is still not precluded if needed, e.g., new mechanisms for model inference and monitoring.
The introduction of different optimization techniques for AI/ML-based mobility enhancement would bring new features to protocol stack(s). Careful considerations are needed to evaluate their corresponding specification impacts. Mobility-specific LCM procedures and parameters may be needed and should be distinct from RAN3 work on mobility enhancement when the model is on the network side. As for testability aspects, RAN4 can focus on requirements and testing frameworks and start the work after there is sufficient progress on use case study in RAN1 and RAN2.
Proposal 8: Assess potential specification impacts of AI/ML-based mobility from the following aspects:
· Evaluate different optimization actions to be taken based on the predictions and their impact on protocol stacks
· Study mobility-specific LCM procedures and parameters
· Study mobility-specific testability aspects, core requirements, and performance requirements

Conclusion
In this contribution, we share our views on AI/ML-based mobility. Our observations are:
Observation 1: AI/ML-based candidate cell/beam selection can improve mobility performance, e.g., reducing interruption time, short ToS, ping-pong rate, and HOF rate.
Observation 2: AI/ML-based mobility can enable proactive actions before an unintended event (e.g., RLF, HO failure, Ping-Pong HO, or short-of-stay HO) occurs.
Observation 3: Rel-18 BM study can be extended to AI/ML-based mobility to reduce measurement overheads.
Observation 4: The prediction of candidate target cells, unintended events, and RRM measurement are intertwined and will affect each other.
Observation 5: Compared to traditional L3 HO procedure, the additional part of LTM is phase after candidate list is received. 
Based on the discussion, we suggest to consider the scope of AI/ML mobility as below:
Proposal 1: For AI/ML-based mobility studies, two types of AI/ML models can be considered: 
· Network-side model
· UE-side model
Proposal 2: The UE-side AI/ML model for mobility is under network control.
Proposal 3: For AI/ML-based mobility, study the evaluation and specification impacts at least for the following aspects:
· Candidate target cell and/or beam prediction 
· Unintended event prediction, e.g., HO failure, RLF, Ping-Pong HO, short of stay HO, etc.
· RRM measurement prediction
Proposal 4: AI/ML-based mobility focuses on connected mode UEs only.
Proposal 5: L3 mobility and LTM will both be studied for AI/ML-based mobility enhancement. 
Proposal 6: The methodology and assumptions in TR 38.843 and TR 36.839 can be start point for study on AI/ML-based mobility.
Proposal 6a: The EVM assumption in RAN2 could be simplified compared to RAN1 study

Proposal 7: For AI/ML-based mobility, the general LCM framework discussed in Rel-18 AI/ML can be reused as much as possible, especially for model transfer/delivery and data collection for training. Any mobility-specific AI enhancement is still not precluded if needed, e.g., new mechanisms for model inference and monitoring.
Proposal 8: Assess potential specification impacts of AI/ML-based mobility from the following aspects:
· Evaluate different optimization actions to be taken based on the predictions and their impact on protocol stacks
· Study mobility-specific LCM procedures and parameters
· Study mobility-specific testability aspects, core requirements, and performance requirements
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Appendix: Evaluation results for AI/ML-based mobility
Below are some preliminary results we obtained, showing the gains brought by AI/ML on mobility enhancement.
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Fig. 7.1-1: Predictive distance error between the predicted trajectory and the actual UE trajectory.
Encoder-decoder LSTM is adopted to predict the trajectory in the next 5s by using UE locations in the prior 5s as model input. The input UE location is a coarse-grained one, with measurement error up to 3m, modelling the scenario where UE’s precise position is unavailable, e.g., due to privacy concerns. High prediction accuracy (around 3m average error) can be achieved when the UE speed is less than 15km/h.
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Fig. 7.1-2: The success rate of handover when cell load of cells varies.
The baseline is a legacy method that chooses the target cell with the maximum measured RSRP. Overloading cells (i.e., the number of connected UEs reaches the cell load threshold) will deny the access request of newly arriving UEs. A Deep Q-learning Network (DQN) is applied with RSRP, (RSRP+network load), or (RSRP+network load+cell sector distribution) as model input to reflect a network-side model for handover without resource reservations. Less access will be denied if the DQN model captures more contextual information.
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Fig. 7.1-3: Throughput performance of AI-driven and non-AI methods.
Contextual bandit is used to assist T304 dynamic adjustment with the UE position as bandit and candidate target cells as arms. The reward of the reinforcement learning algorithm is set to be the total throughput after connecting to a cell. The 5000-time trained model achieves a 32.9% throughput gain in testing, showing the great potential of AI/ML.
Table 7.1-1: Failure event prediction using real data obtained from the Technical University of Denmark LTE drive test
	UE speed
	≤15km/h
	>15km/h

	Correct prediction
	91.53%
	90.2%

	False alarm
	0.77%
	4.63%

	Missed failure
	60.62%
	50.76%


An LSTM model is used to predict RSRPs in the next 20s for failure detection. In most of the cases, there is no failure event and the model can correctly foresee that, thus a pretty high correct prediction rate.
Note: The prediction of a failure event is hard to be 100% accurate. There are two factors that we need to minimize when inaccurate predictions happen. The first one is the false alarm of a failure event, e.g., declare an RLF when the channel is still good. It would lead to unnecessary proactive handover, thus impairing the UE throughput. The second one is missed detection, since the prediction aims to find those failure events as much as possible. Minimizing those two factors at the same time is hard as the decrease of one often results in the increase of the other. Given that missed detection would not deteriorate UE performance compared to the legacy, reducing the false alarm rate should be given priority when the two factors contradict each other. 
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