3GPP TSG RAN meeting #101									       RP-232659
Bangalore, India, September 11-15, 2023								(RP-231763)
Status Report to TSG
Agenda item:			9.2.6
	WI / SI Name
	Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface

	included in this status report
	Study Item: 
Yes
	Core part: 
No
	Performance part:
No
	Testing part:
No

	Acronym
	FS_NR_AIML_Air

	Unique ID
	940084

	TSG Tdoc of latest approved WI/SI description (if any)
	RP-221348

	Target Completion Date
(indicate if changed)
	Study Item: 
12/2023
	Core part:
N/A 
	Performance part: 
N/A
	Testing part: 
N/A

	Overall Completion level
	Study Item: 
80 %
	Core part: 
N/A
	Performance Part: 
N/A
	Testing part: N/A


Note: Overall completion level percentage numbers should use one of the colors below:
· xx%: Normal progress, no RAN plenary action needed
· xx%: Progress behind schedule, may need RAN plenary intervention. If so, SR should clearly define requested action
· xx%: Progress critically behind, RAN plenary shall intervene. SR should define requested action

Source:
	Leading WG
	TSG RAN WG1

	Rapporteur
	Name
	Juan Montojo (RAN1); Mattias Frenne (RAN2); Xiaofeng Liu (RAN4)

	
	Company
	Qualcomm; Ericsson; CAICT

	
	Email
	juanm@qti.qualcomm.com; mattias.frenne@ericsson.com; liuxiaofeng1@caict.ac.cn 




1	Work plan related evaluation
	Do you want to modify the time budget for this WI/SI compared to what was endorsed at the last RAN meeting?
	Yes



If you answered No:	Then please remove the Excel file from the zip file of this status report.
If you answered Yes:	Then please fill out the attached Excel template to request a modification of the time 		budgets for your WI /SI. The Excel table has to be filled out for all affected RAN WGs and 		up to the target date of the WI/SI. The basis are the endorsed time budgets of the last 		RAN meeting. Please highlight all changes of the values.
		One time unit (TU) corresponds to ~ 2 hours in the meeting.
		If this status report covers a WI with Core and Performance part, then please have one 		line for each in the attached Excel table.
		Note: If no Excel table is attached, then this means no time budget change.
Additional explanations/motivations for the time budget changes in the attached Excel table:
RAN1 TUs for Q4-23 requested. 


2.	Detailed progress in RAN WGs since last TSG meeting (for all involved WGs)
	NOTE: Agreements and Open issues impacted cross-TSG aspects shall be explicitly highlighted
2.1	RAN1
2.1.1	Agreements
Agreement
TR in R1-2307914 is endorsed as starting point.

General aspects of AI/ML framework

Agreement
Conclude that applicable functionalities/models can be reported by UE.

Agreement
· Once models are identified via Type A, UE can indicate supported AI/ML model IDs for a given AI/ML-enabled Feature/FG in a UE capability report as starting point.
· FFS: Using a procedure other than UE capability report
· Note: The support and applicability of model identification Type A is a separate discussion.

Agreement
· When a model of a known structure at UE (e.g., Case z4) is transferred from NW, the new model being identified (e.g., via Type B2) has the same structure as an previously identified model at the Network and UE
· Note: the need of model transfer will be discussed separately

Agreement
· Model ID in RAN1 discussion may or may not be globally unique, and different types of model IDs may be created for a single model for various LCM purposes. 
· Note: Details can be studied in the WI phase.

Agreement
RAN1 confirms Assumption 2 in RAN2 LS.
	Assumption 2:
For the latency requirement of data collection, RAN2 assumes:
· For all types of offline model training (i.e., UE- /NW-/ two-sided model training), there is no latency requirement for data collection 
· For model inference, when required data comes from other entities, there is a latency requirement for data collection
· For (real-time) model monitoring, when required monitoring data (e.g., performance metric) comes from other entities, there is a latency requirement for data collection.



Agreement
RAN1 confirms RAN2’s Assumption 3 for CSI compression, CSI prediction, beam prediction and Positioning use cases.
For positioning, it is noted that existing specification supports DL PRS measurement and UE positioning in both RRC_CONNECTED and RRC_INACTIVE state. 
	Assumption 3:
RAN2 assumes that the analysis/selection of the data collection frameworks should focus on the RRC_CONNECTED state (for both data generation and reporting). Analysis and potential enhancement of the non-connected state can be revisited when needed.



Agreement (For Replying RAN2 LS)
· For CSI compression enhancement and beam management use cases:
· For model training, training data can be generated by UE/gNB and terminated at NW/gNB/OAM/OTT server 
· For NW-sided model inference and NW-part of two-sided model inference, input data and assistance information (if needed) can be generated by UE and terminated at gNB.
· For UE-side model inference and UE-part of two-sided model inference, input data is internally available at UE/assistance information (if needed) can be generated by gNB and terminated at UE.
· For (real-time) model performance monitoring at the NW/OTT side, calculated performance metrics  (if needed) or data needed for performance metric calculation (if needed) can be generated by UE and terminated at gNB/OTT.

Agreement (For Replying RAN2 LS)
· For CSI enhancement and beam management use cases:
· For model training, training data can be generated by UE/gNB and terminated at gNB/OAM/OTT server.
· For NW-sided model inference, input data can be generated by UE and terminated at gNB.
· For UE-side model inference, input data/assistance information is internally available at UE. can be generated by gNB and terminated at UE.
· For performancemodel monitoring at the NW side, calculated performance metrics (if needed) or data needed for performance metric calculation (if needed) can be generated by UE and terminated at gNB.
· For positioning enhancement use case:
· For model training, training data can be generated by UE/PRU/gNB/LMF and terminated at LMF/OTT server.
· For LMFNW-sided model inference (Case 2b, Case 3b), input data can be generated by UE/gNB and terminated at LMF gNB.
· For gNB-sided model inference (Case 3a), input data is internally available at gNB.
· For UE-side model inference (Case 1, Case 2a), input data/assistance information is internally available at UE can be generated by LMF/gNB and terminated at the UE.
· For modelperformance monitoring at the NWLMF side, calculated performance metrics (if needed) or data needed for performance metric calculation (if needed) can be generated by UE/gNB and terminated at LMF.
· For modelperformance monitoring at the NWgNB side, calculated performance metrics (if needed) or data needed for performance metric calculation (if needed) can be generated by at least gNB.
Note: RAN1 did not reply on the notes that, regarding training, different NW entities for training (gNB/CN/LMF/OAM) as it is out of RAN1’s expertise that RAN1 cannot confirm. RAN1 simply denoted them as NW in the reply.
Note: For assistance information, inform RAN2 related conclusions/agreements/observations. RAN1 did not reply on assistance information.
Note: RAN1’s understanding is that “input data” in the LS refers to essential inputs for the given use case and does not include assistance information that a model may additionally use as model input.  
Note: RAN1 notes that, regarding model monitoring, performance metric is not a part of data collection but should rather be discussed as a procedure for performance monitoring. Instead, data needed for performance metric calculation (if needed) should be captured in the data collection requirement.

Observation
· Scenario/configuration specific (including site-specific configuration/channel conditions) models may provide performance benefits in some studied use cases (i.e., when a single model cannot generalize well to multiple scenarios/configurations/sites).
· At least, when UE has limitation to store all related models, model delivery/transfer, if feasible, to UE may be beneficial, at the cost of overhead/latency associated with model delivery/transfer.
· Note: On-device Finetuning/retraining, if feasible, of a single model may be an alternative to model delivery/transfer.
· Note: a single model may generalize well in some studied use cases. 
· Note: Model transfer/delivery to UE may also face challenges, e.g., proprietary issues /burdens in some scenarios
Observation
· Model transfer/delivery of an unknown structure at UE has more challenges related to feasibility (e.g. UE implementation feasibility) compared to delivery/transfer of a known structure at UE.

Agreement (For Replying RAN2 LS)
· For CSI prediction enhancement and beam management use cases:
· For model training, training data can be generated by UE/gNB and terminated at gNB/OAM/OTT server.
· For NW-sided model inference, input data can be generated by UE and terminated at gNB.
· For UE-side model inference, input data/assistance information is internally available at UE can be generated by gNB and terminated at UE.
· For performancemodel monitoring at the NW side, calculated performance metrics (if needed) or data needed for performance metric calculation (if needed) can be generated by UE and terminated at gNB.

Agreement
To reply RAN2 LS, for 
	Assumption 1:
RAN2 assumes that for the data collection in some scenarios (e.g., internal data up to implementation or the existing data are enough), possibly no RAN2 specification effort is needed in some scenarios, e.g. (not exhaustive):
· For model inference of the UE-sided model, input data for model inference is available inside the UE.
· For UE-side (real-time) monitoring of the UE-sided model, performance metrics are available inside the UE. UE can independently monitor a model's performance without any data input from NW.


RAN1 informs RAN2:
· For model inference of the UE-sided model, input data for model inference is available inside the UE.

· For (real-time) model UE-side performance monitoring of the UE-sided model, in some cases, e.g., for CSI prediction and beam prediction, performance metrics are available inside the UE. UE can independently monitor a model's performance without any data input from NW.
· Note: RAN1’s understanding is that “data input” in the above refers to essential inputs for the given use case and does not include assistance information that a model may additionally use for performance metric calculation.

Note: RAN1’s understanding is that “input data” in the LS refers to essential inputs for the given use case and does not include assistance information that a model may additionally use as model input. RAN1 did not reply on assistance information.


Evaluation on AI/ML for CSI feedback enhancement

Agreement
For the evaluation of CSI enhancements, update the observations drawn in previous meetings to Updated Observation 2.1.8, Updated Observation 2.1.10, Updated Observation 2.1.12, Observation 2.1.15, and Updated Observation 2.1.20 in R1-2308340.

Agreement
For the evaluation of CSI enhancements, update the observations drawn in previous meetings to Updated Observation 2.1.1, Updated Observation 2.1.4, Updated Observation 2.1.5, Observation 2.1.9, and Updated Observation 2.1.11 in R1-2308340.
Note: for update observation 2.1.4, for Rank 2, 2 sources [Xiaomi, MTK] observe the performance gain of 2% at CSI overhead B (medium overhead).
Note: for Updated Observation 2.1.11, Scalability of AI/ML based CSI compression over various CSI payload sizes can also be achieved by finetuning models on CSI payload size#B, showing loss [0%~-2.2%] by 2 sources [Ericsson, vivo].

Agreement
For the evaluation of CSI enhancements, update the observations drawn in previous meetings to Updated Observation 2.1.2, Updated Observation 2.1.3, Updated Observation 2.1.6, Updated Observation 2.1.7, Updated Observation 2.1.13, and Updated Observation 2.1.14 in R1-2308342.

Observation
For the evaluation of high resolution quantization of the ground-truth CSI for the training of CSI compression, compared to the upper-bound of Float32, quantized high resolution ground-truth CSI can achieve significant overhead reduction with minor performance loss if the parameters are appropriately selected.
· For high resolution scalar quantization,
· Float16 achieves 50% overhead reduction and -0.6% or less performance loss from 2 sources [vivo, Apple] 
· 8 bits scalar quantization achieves 75% overhead reduction and -0.14%~-0.9% performance loss from 2 sources [Huawei, Apple]
· For high resolution R16 eType II-like quantization, 
· R16 eType II CB with legacy parameters can achieve significant overhead reduction while with performance loss compared to Float32, wherein
· PC#6 achieves around 99% overhead reduction with -1.4% ~-1.7% performance loss from 2 sources [Huawei, Fujitsu], and -3%~-9.5% performance loss from 4 sources [Huawei, vivo, ZTE, Fujitsu].
· PC#8 achieves around 98% overhead reduction with 0% ~-1.7% performance loss from 3 sources [Qualcomm, Huawei, Fujitsu], and -2.9%~-5.5% performance loss from 5 sources [Qualcomm, Huawei, vivo, ZTE, MediaTek].
· For R16 eType II CB with new parameters:
· R16 eType II CB with new parameter of 1000-1400bits CSI payload size achieves 95%~97.5% overhead reduction (3~4.1 times overhead compared to PC8) with performance gain of 0.7%~4.3% over PC#8 from 4 sources [Huawei, vivo, ZTE, Ericsson].
· R16 eType II CB with new parameter of 1500-2100bits CSI payload size achieves 94%~96.2% overhead reduction (4.8~6.1 times overhead compared to PC8) with performance gain of 1.3%~5.4% over PC#8 from 3 sources [Huawei, ZTE, Fujitsu].
· Note: it is observed by 1 source [Qualcomm] that using R16 eType II-like quantization with legacy PC may achieve close performance to Float32 by dataset dithering.
· Note: the new parameters include at least one from the follows:
· L= 8, 10, 12;
· pv = 0.8, 0.9, 0.95;
· reference amplitude = 6 bits, 8 bits; differential amplitude = 4bits; phase = 5 bits, 6 bits;
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS for Layer 1.
· Note: Results refer to Table 5.18 of R1-2308342

Observation
For the generalization verification of AI/ML based CSI compression over various TxRU mappings, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain TxRU mapping#B and applied for inference with a same TxRU mapping#B,
· For generalization Case 2, significant degradations are suffered in general from the perspective of the layouts of antenna ports, as observed by 2 sources [MediaTek, Nokia]:
· For TxRU mapping#A is [2,8,2] & TxRU mapping#B is [4,4,2] or TxRU mapping#A is [8,2,2] & TxRU mapping#B is [4,4,2], 2 sources [MediaTek, Nokia] observe -13%~-36.1% degradation.
· For TxRU mapping#A is [4,4,2] & TxRU mapping#B is [2,8,2] or TxRU mapping#A is [8,2,2] & TxRU mapping#B is [2,8,2], 2 sources [MediaTek, Nokia] observe -7%~-23.6% degradation.
· For TxRU mapping#A is [4,4,2] & TxRU mapping#B is [8,2,2] or TxRU mapping#A is [2,8,2] & TxRU mapping#B is [8,2,2], 1 source [MediaTek] observes -19%~-27% degradation.
· For generalization Case 2, generalized performance may be achieved for some certain combinations of TxRU mapping#A and TxRU mapping#B but not for others, from the perspective of the layouts of antenna element mapping, as observed by 2 sources [Huawei, vivo]:
· For TxRU mapping#A is 8x8x2 & TxRU mapping#B is 2x8x2, 2 sources [Huawei, vivo] observe minor/moderate degradation of -0.6%~-2.5%.
· For TxRU mapping#A is 2x8x2 & TxRU mapping#B is 8x8x2, 1 source [Huawei] observes moderate degradation of -3%.
· For generalization Case 3, generalized performance of the AI/ML model can be achieved (0%~-4.4% loss or positive gain) for TxRU mapping#B subject to any of [2,8,2], [4,4,2], and [8,2,2] from the perspective of the layouts of antenna ports, or subject to any of 8x8x2 and 2x8x2 from the perspective of the layouts of antenna element mapping, if the training dataset is constructed with data samples subject to TxRU mappings including TxRU mapping#B, as observed by 4 sources [MediaTek, Apple, Nokia, Huawei].
· Minor loss (0%~-2%) are observed by 4 sources [MediaTek, Apple, Nokia, Huawei].
· Moderate loss (-2.5%~-4.4%) are observed by 1 source [Nokia].
· Positive gains are observed by 1 source [Apple].
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS in linear value for layer 1.
· [x,y,z] for TxRU mapping: Vertical port number, Horizontal port number, polarization
· AxBxC for TxRU mapping: AxBxC antenna elements virtualized to [2,8,2]
· Note: Results refer to Table 5.19 of R1-2308342

Observation
For the evaluation of NW first separate training with dataset sharing manner for CSI compression, for the pairing of 1 NW to 1 UE (Case 1), as compared to 1-on-1 joint training between the NW part model and the UE part model,
· For the NW first separate training case where different backbones are adopted for the NW part model and the UE part model, more degradations are observed in general than the situation where the same backbone is adopted for the NW part model and the UE part model.
· For the case where the shared output of the Network side CSI generation part is after quantization, 3 sources [ZTE, Xiaomi, CATT] observes minor degradation of -0%~-1.02%, and 3 sources [Qualcomm, vivo, Fujitsu] observe moderate degradation of -1.46%~-5.1%.
· For the case where the shared output of the Network side CSI generation part is before quantization, 2 sources [Huawei, CMCC] observe minor degradation of -0%~-0.1%, 1 source [CMCC] observes moderate degradation of -2.03%.
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1/2.
· Same size of training dataset for benchmark, NW part training and the UE part training
· Same pair of NW part model and UE part model between 1-on-1 joint training and NW first separate training.
· Quantization/dequantization method/parameters between NW side and UE side are aligned.
· Note: Results refer to Table 5.16 of R1-2308342.

Observation
For the evaluation of UE first separate training with dataset sharing manner for CSI compression, for the pairing of 1 NW to 1 UE (Case 1), as compared to 1-on-1 joint training between the NW part model and the UE part model,
· For the UE first separate training case where different backbones are adopted for the NW part model and the UE part model, more degradations are observed in general than the situation where the same backbone is adopted for the NW part model and the UE part model.
· For the case where the shared input of the UE side CSI reconstruction part is after quantization, 5 sources [Qualcomm, Xiaomi, CATT, ZTE, vivo] observes minor degradation of -0.23%~-1.07%, and 1 source [ZTE] observes moderate degradation of -1.74%~-1.88%.
· For the case where the shared input of the UE side CSI reconstruction part is before quantization, 1 source [CMCC] observes moderate degradation of -1.58%~-2.73%.
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1/2.
· Same size of training dataset for benchmark, NW part training and the UE part training
· Same pair of NW part model and UE part model between 1-on-1 joint training and UE first separate training.
· Quantization/dequantization method/parameters between NW side and UE side are aligned.
· Note: Results refer to Table 5.17 of R1-2308342

Observation
For the evaluation of NW first separate training with dataset sharing manner for CSI compression, for the pairing between 1 UE part model and N>1 separate NW part models (Case 3), when taking 1-on-1 joint training between the NW part model and the UE part model as benchmark, larger performance loss is observed in general than the case of NW first separate training with 1 UE part model and 1 NW part model pairing (Case 1):
· 6 sources [Huawei, Nokia, Qualcomm, Fujitsu, CATT, Xiaomi] observe minor loss of -0%~-1.6% compared to the 1-on-1 joint training.
· 3 sources [Nokia, CATT, Xiaomi] observe moderate loss of -1.9%~-6.64% compared to the 1-on-1 joint training.
· 5 sources [vivo, Samsung, OPPO, MediaTek, Apple] observe significant loss of -37.9%~-87% compared to the 1-on-1 joint training.
· Note: as opposed to companies which observe significant loss, the minor loss observed by other companies may due to the fact that special handling (e.g., adaptation layer) is performed to pair with N>1 NW part models during the training at the UE side.
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1.
· Same size of training dataset for benchmark, NW part training and the UE part training
· Same pair of NW part model and UE part model between 1-on-1 joint training and NW first separate training.
· Quantization/dequantization method/parameters between NW side and UE side are aligned.
· N=2, 3, or 4 are considered.
· Note: Results refer to Table 5.20 of R1-2308342

Observation
For the evaluation of intermediate KPI based monitoring mechanism for CSI compression, for monitoring Case 1, in terms of monitoring accuracy with Option 1,
· For ground truth CSI format of R16 eType II CB, monitoring accuracy is increased with the increase of the resolution for the ground-truth CSI (number of bits for each sample of ground-truth CSI) in general, with the impact of increased overhead, wherein
· for ground truth CSI format of R16 eType II CB with PC#6, 4 sources [vivo, Ericsson, Intel, Qualcomm] observe KPIDiff as 13.2%~71.6%/ 28.5%~100%/ 68.4%~100% for KPIth_1=0.02/0.05/0.1, respectively.
· Note: two sources [vivo, Qualcomm] observed averaging on the test samples improves the monitoring accuracy.
· for ground truth CSI format of R16 eType II CB with PC#8, 5 sources observe [Apple, Huawei, ZTE, Ericsson, Intel] KPIDiff as 21%~43.0%/ 48.1%~79.1%/ 79.8%~97.1% for KPIth_1=0.02/0.05/0.1, respectively.
· for ground truth CSI format of R16 eType II CB with new parameter of 580-750bits CSI payload size, 2 sources [Ericsson, Intel] observe KPIDiff as 35.4%~63%/ 77.9%~93.0%/ 99.5%~99.9% for KPIth_1=0.02/0.05/0.1, respectively, which have 12.7%~20%/ 13.9%~29.8%/ 8%~31.1% gain over PC#8.
· for ground truth CSI format of R16 eType II CB with new parameter of around 1000bits CSI payload size, 4 sources [Huawei, ZTE, Ericsson, vivo] observe KPIDiff as 34.9%~89%/ 82.9%~100%/ 99.9%~100% for KPIth_1=0.02/0.05/0.1, respectively, which have 12.2%~68%/ 18%~43.62%/ 2.9%~31% gain over PC#8 from 3 sources [Huawei, ZTE, Ericsson] and 4.67%~10.6%/ 0%~5.88%/ 0%~0.49% gain over PC#6 from 1 source [vivo].
· for ground truth CSI format of R16 eType II CB with new parameter of around 1600bits CSI payload size, 2 sources [Huawei, Fujitsu] observe KPIDiff as 89.1%~97%/ 99.9%~100%/ 100% for KPIth_1=0.02/0.05/0.1, respectively, which have 76%/33%/3% gain over PC#8 from 1 source [Huawei].
· for ground truth CSI format of 4 bits scalar quantization, 2 sources [Ericsson, NTT DOCOMO] observe KPIDiff as 9.4%~47%/ 96.3%~100%/ 100% for KPIth_1=0.02/0.05/0.1, respectively.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Time independency is assumed over the test samples for monitoring
· Precoding matrix is used as the model input.
· 1-on-1 joint training is assumed.
· The performance metric is monitoring accuracy for Layer 1.
· Note: Results refer to Table 5.21 of R1-2308343

Observation
For the evaluation of intermediate KPI based monitoring mechanism for CSI compression, for Case 2, in terms of monitoring accuracy with Option 1,
· For Case 2-1 subject to generalization Case 1 for the proxy model, 5 sources [Huawei, Lenovo, vivo, ZTE, Fujitsu] observe KPIDiff as 31%~84%/ 65.63%~99.8%/ 95%~100% for KPIth_1=0.02/0.05/0.1, respectively;
· Compared with monitoring Case 1 with ground truth CSI format of R16 eType II CB with new parameter of around 1000bits CSI payload size,
· 2 sources [vivo, ZTE] observe +0.99%~+4.07% gain at KPIth_1=0.02;
· 3 sources [Huawei, vivo, ZTE] observe -6.03%~-58%/ -0.2%~-24%/ 0%~-5% degradation for KPIth_1=0.02/0.05/0.1, respectively;
· Compared with monitoring Case 1 with ground truth CSI format of R16 eType II CB with new parameter of around 1600bits CSI payload size, 2 sources [Huawei, Fujitsu] observe -16.35%~-66%/ -0.4%~-24%/ 0%~-24% degradation for KPIth_1=0.02/0.05/0.1, respectively.
· Note: For Case 2-1 subject to generalization Case 2 for the proxy model, 2 sources [Huawei, ZTE] observe -1.77%~-37.42% / -1.07%~-23.93%/ -0.16%~-14% compared with generalization Case 1 with the same testing scenario.
· Note: For Case 2-2, 1 source [Qualcomm] observes KPIDiff as 61%~72.1%/ 91.2%~96.6%/ 99.2%~99.75% under generalization Case 1 for the proxy model, and 60%~71.3%/ 90.4%~99.3%/ 99%~100% under generalization Case 3 for the proxy model, for KPIth_1=0.02/0.05/0.1, respectively.
· Note: for Case 2-1, 1 source [Lenovo] observes that if different model backbone is adopted for proxy model as compared to the NW part model, it has negative impact to the monitoring performance.
· Note: for the complexity and overhead analysis:
· Case 2-1/2-2 has smaller air-interface overhead for UE report for monitoring compared with Case 1. Overhead of proxy model from LCM perspective, if any, is not evaluated.
· the complexity aspect for case1/2-1/2-2  is not evaluated.
· Note: “Generalization Case 1” means the proxy model is trained based on training dataset from one Scenario#A, and then tested for monitoring on a dataset from the same Scenario#A. “Generalization Case 2” means the proxy model is trained based on training dataset from one Scenario#B, and then tested for monitoring on a dataset from a different Scenario#A. “Generalization Case 3” means the proxy model is trained based on mixing datasets from multiple scenarios including Scenario#A, and then tested for monitoring on the dataset from Scenario#A.
· Note: two sources [vivo, Qualcomm] observed averaging on the test samples improves the monitoring accuracy.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Time independency is assumed over the test samples for monitoring
· Precoding matrix is used as the model input.
· 1-on-1 joint training is assumed.
· The performance metric is monitoring accuracy for Layer 1.
· Note: Results refer to Table 5.22 of R1-2308343

Observation
For the evaluation of Type 2 training between 1 NW part model and M>1 separate UE part models (Case 2), as compared to joint training between 1 NW part model and the 1 UE part model,
· 7 sources [Huawei, Ericsson, Qualcomm, vivo, Fujitsu, InterDigital, MediaTek] observe minor degradation of -0%~-1.67% or positive gain;
· 3 sources [Huawei, Fujitsu, MediaTek] observe moderate degradation of -2.5%~-6.5%.
· Note: among the above sources, 5 sources [Huawei, Ericsson, Qualcomm, vivo, Fujitsu] adopt simultaneous training, while 1 source [Qualcomm] adopts sequential training starting with NW side training.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1.
· Same pair of NW part model and UE part model between 1-on-1 joint training and Type 2 training.
· M=2, 3, or 4 are considered.
· Note: Results refer to Table 5.23 of R1-2308343

Observation
For the evaluation of Type 2 training between 1 UE part model and N>1 separate NW part models (Case 3), as compared to joint training between 1 NW part model and the 1 UE part model,
· 2 sources [vivo, MediaTek] observe minor degradation of -0%~-0.8% or positive gain;
· 1 source [MediaTek] observe moderate degradation of -1.4%~-4.2%.
· Note: among the above sources, 1 source [vivo] adopts simultaneous training.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1.
· Same pair of NW part model and UE part model between 1-on-1 joint training and Type 2 training.
· N=2, 3, or 4 are considered.
· Note: Results refer to Table 5.24 of R1-2308343

Observation
For the evaluation of UE first separate training with dataset sharing manner for CSI compression, for the pairing between M>1 separate UE part models and 1 NW part model (Case 2), when taking 1-on-1 joint training between the NW part model and the UE part model as benchmark, larger performance loss is observed in general than the case of UE first separate training with 1 UE part model and 1 NW part model pairing (Case 1):
· 8 sources [Nokia, Qualcomm, Fujitsu, Lenovo, Apple, CATT, vivo, Xiaomi] observe minor loss of -0%~-1.82% compared to 1-on-1 joint training.
· 4 sources [Nokia, Lenovo, CATT, CMCC] observe moderate loss of -2.17%~-4.96% compared to 1-on-1 joint training.
· 2 sources [OPPO, MediaTek] observe significant loss of -11.56%~-73.7% compared to 1-on-1 joint training.
· Note: 1 source [Lenovo] observes other UE first separate training implementations may achieve better performance.
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1.
· Same size of training dataset for benchmark, NW part training and the UE part training
· Same pair of NW part model and UE part model between 1-on-1 joint training and UE first separate training.
· Quantization/dequantization method/parameters between NW side and UE side are aligned.
· M=2, 3, or 4 are considered.
· Note: Results refer to Table 5.25 of R1-2308343

Observation
For the AI/ML based CSI prediction, compared with the benchmark of the nearest historical CSI:
· spatial consistency is not adopted in 15 sources [Huawei, ZTE, ETRI, CMCC, Apple, Spreadtrum, Nokia, CATT, Fujitsu, Samsung, NVIDIA, vivo, InterDigital, Xiaomi, CEWiT], wherein
· 15 sources [ZTE, Nokia, Spreadtrum, NVIDIA, Apple, Huawei, Samsung, Fujitsu, CATT, vivo, InterDigital, ETRI, Xiaomi, CMCC, CEWiT] observe the gain of 0.46% ~ 44.8% using raw channel matrix as input, wherein
· 4 sources [Xiaomi, NVIDIA, InterDigital, Samsung] observe the gain of 0.46%~6.3%.
· 14 sources [Huawei, Samsung, ZTE, Spreadtrum, Fujitsu, CATT, Apple, InteDigital, ETRI, Xiaomi, CMCC, CEWiT, NVIDIA, vivo] observe the gain of 7.57%~26.47%.
· 5 sources [vivo, Fujitsu, CMCC, CEWiT, Nokia] observe the gain of 29.03%~44.8%.
· 4 sources [ZTE, CATT, ETRI, OPPO] observe the gain of 2.24% ~ 19.4% using precoding matrix as input, which is in general worse than using raw channel matrix as input
· spatial consistency is adopted in 4 sources, all of which use raw channel matrix as input, wherein
· 3 sources [Nokia, vivo, MediaTek] observe the gain of 1.7%~35.51%.
· 1 source [MediaTek] observe the gain of 76.6%.
· 1 source [InterDigital] observe the loss of -5.5%.
· Note: the above results are based on the following assumptions
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· UE speed includes 10km/h, 30km/h, and 60km/h. The same fixed UE speed is assumed for both training and inference.
· The performance metric is SGCS in linear value for layer 1.
· Note: Results refer to Table 5.26 of R1-2308344

Observation
For the AI/ML based CSI prediction, compared to the Benchmark#1 of the nearest historical CSI, in terms of SGCS, from UE speed perspective, in general the gain of AI/ML based solution is related with the UE speed:
· For 10km/h UE speed, 6 sources [Samsung, Xiaomi, InterDigital, CEWiT, MediaTek, NVIDIA] observe 2.4%~12.5% gain (2.4%~12.5% gain for 5 sources [Samsung, Xiaomi, InterDigital, CEWiT, NVIDIA] who do not adopt spatial consistency, and 8.7% gain for 1 source [MediaTek] who adopts spatial consistency), 1 source [CMCC] observes 21.93% gain (who does not adopt spatial consistency).
· For 30km/h UE speed, 1 source [InterDigital] observes loss of -5.5% (who adopts spatial consistency), 3 sources [OPPO, ETRI, CATT] observe 6%~10.43% gain (who do not adopt spatial consistency), 8 sources [ZTE, Fujitsu, Apple, Xiaomi, Spreadtrum, InterDigital, NVIDIA, vivo] observe 12.65%~33% gain (14.65%~33% gain for 7 sources [ZTE, Fujitsu, Apple, Xiaomi, Spreadtrum, InterDigital, NVIDIA] who do not adopt spatial consistency, and 12.65% gain for 1 source [vivo] who adopts spatial consistency), and 3 sources [MediaTek, CMCC, CEWiT] observe 41.75%~ 76.6% gain (41.75%~ 44.8% gain for 2 sources [CMCC, CEWiT] who do not adopt spatial consistency, and 76.6% gain for 1 source [MediaTek] who adopts spatial consistency), which are in general larger than 10km/h UE speed.
· For 60km/h UE speed, 3 sources [Xiaomi, NVIDIA, MediaTek] observe 0.46%~2.6% gain (0.46%~2.3% gain for 2 sources [Xiaomi, NVIDIA] who do not adopt spatial consistency, and 1.7%~2.6% gain for 1 source [MediaTek] who adopts spatial consistency), 7 sources [Huawei, Samsung, vivo, CMCC, Fujitsu, CATT, Spreadtrum] observe 9.1%~20.6% gain (9.1%~20.6% gain for 6 sources [Huawei, Samsung, CMCC, Fujitsu, CATT, Spreadtrum] who do not adopt spatial consistency, and 13.8% gain for 1 source [vivo] who adopts spatial consistency), 1 source [vivo] observe 29.03% gain, which are in general smaller than 30km/h UE speed.
· Note: the above results are based on the following assumptions
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is SGCS in linear value for layer 1.
· No post processing is considered.
· The same fixed UE speed is assumed for both training and inference.
· Note: Results refer to Table 5.27 of R1-2308344

Observation
For the AI/ML based CSI prediction, in terms of mean UPT, gains are observed compared to both Benchmark#1 of the nearest historical CSI and Benchmark#2 of a non-AI/ML based CSI prediction approach:
· Compared to the benchmark of the nearest historical CSI:
· For FTP traffic:
· 4 sources [Huawei, Spreadtrum, InterDigital, vivo] observe 1.2%~4.9% gain;
· 2 sources [Apple, vivo] observe 5.3%~10.58% gain;
· 2 sources [vivo, MediaTek] observe 15.1% ~23.5% gain.
· 1 source [InterDigital] observes loss of -1.3%~-13.8%.
· For full buffer traffic:
· 1 source [Nokia] observes 2%~3% gain;
· 2 sources [vivo, MediaTek] observe 7.6%~15.6% gain.
· Compared to the benchmark of an auto-regression/Kalman filter based CSI prediction:
· For FTP traffic:
· 3 sources [Huawei, vivo, MediaTek] observe 0.7%~7.0% gain;
· 2 sources [MediaTek, InterDigital] observe loss of -0.1%~-2.4%.
· 1 source [MediaTek, InterDigital] observe loss of -3%~-17%.
· For full buffer traffic:
· 2 sources [vivo, MediaTek] observes 0.6%~2.78% gain.
· 1 source [vivo] observes 8.1%~11.5% gain.
· Note: the above results are based on the following assumptions
· The same fixed UE speed of 30km/h or 60km/h is assumed for both training and inference
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is mean UPT for Max rank 1.
· No post processing is considered.
· Note: Results refer to Table 5.28 of R1-2308344

Observation
For the AI/ML based CSI prediction, in terms of 5% UPT, gains are observed compared to both Benchmark#1 of the nearest historical CSI and Benchmark#2 of a non-AI/ML based CSI prediction approach:
· Compared to the benchmark of the nearest historical CSI:
· For FTP traffic:
· 4 sources [Huawei, vivo, Spreadtrum, InterDigital] observe 1% ~9.7% gain;
· 5 sources [Huawei, Apple, vivo, InterDigital, Spreadtrum] observe 10%~26.4% gain;
· 1 source [InterDigital] observes loss of -11.6%~-14%;
· For full buffer traffic:
· 3 sources [Nokia, vivo, MediaTek] observe 3.5%~35.3% gain;
· Compared to the benchmark of an auto-regression/Kalman filter based CSI prediction:
· For FTP traffic:
· 3 sources [Huawei, vivo, InterDigital] observe 0.18%~17.58% gain;
· 1 source [InterDigital] observes -8.2%~-12.4% degradation;
· For full buffer traffic:
· 1 source [vivo] observes 6.7% ~15.4% gain.
· 1 source [MediaTek] observes -2% degradation
· Note: the above results are based on the following assumptions
· The same fixed UE speed of 30km/h or 60km/h is assumed for both training and inference
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is mean UPT for Max rank 1.
· No post processing is considered.
· Note: Results refer to Table 5.29 of R1-2308344

Observation
For the evaluation of AI/ML based CSI compression, compared to the benchmark, in terms of CSI feedback reduction,
· For Max rank = 1, 
· For CSI overhead A (small overhead), 1 source [ZTE] observes the CSI feedback reduction of 10.24% for FTP traffic; 
· For CSI overhead B (medium overhead), 3 sources [Huawei, ZTE, Futurewei] observe the CSI feedback reduction of 15.62%~60% for FTP traffic, and 2 sources [Huawei, Qualcomm] observes the CSI feedback reduction of 37%~66% for full buffer;
· For CSI overhead C (large overhead), 2 sources [Huawei, ZTE] observe the CSI feedback reduction of 14.37%~55% for FTP traffic, and 2 sources [Huawei, Qualcomm] observes the CSI feedback reduction of 50%~53% for full buffer;
· Note: For CSI overhead C (large overhead), 1 source [Futurewei] observes CSI feedback reduction of 75% for FTP traffic.
· For Max rank = 2, 
· For CSI overhead A (small overhead), 3 sources [Futurewei, Qualcomm, ZTE] observe the CSI feedback reduction of 20.83%~54% for FTP traffic, and 1 source [Qualcomm] observes the CSI feedback reduction of 56% for full buffer; 
· For CSI overhead B (medium overhead), 3 sources [Futurewei, Qualcomm, ZTE] observe the CSI feedback reduction of 22.22%~52% for FTP traffic, and 2 sources [Huawei, Qualcomm] observe the CSI feedback reduction of 52% for full buffer;
· For CSI overhead C (large overhead), 3 sources [Futurewei, Qualcomm, ZTE] observe the CSI feedback reduction of 10%~58.33% for FTP traffic, and 2 sources [Huawei, Qualcomm] observe the CSI feedback reduction of 22%~54% for full buffer;
· Note: For CSI overhead B (medium overhead), 1 source [Futurewei] observe CSI feedback reduction of up to ~83% for FTP traffic using particular VQ codebook solution.
· For Max rank = 4, 
· For CSI overhead A (small overhead), 2 sources [Qualcomm, ZTE] observe the CSI feedback reduction of 50%~79% for FTP traffic, and 1 source [ZTE] observes the CSI feedback reduction of 70.53% for full buffer; 
· For CSI overhead B (medium overhead), 2 sources [Qualcomm, ZTE] observe the CSI feedback reduction of 36.10%~78% for FTP traffic, and 1 source [ZTE] observes the CSI feedback reduction of 47.74% for full buffer;
· For CSI overhead C (large overhead), 2 sources [Qualcomm, ZTE] observe the CSI feedback reduction of 8%~58% for FTP traffic, and 1 source [ZTE] observes the CSI feedback reduction of 42.59% for full buffer;
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix of the current CSI is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is CSI overhead reduction for Max rank 1/2/4.
· Benchmark is Rel-16 Type II codebook.
· Note: Results refer to Table 5.30 of R1-2308344

Observation
For the scalability verification of AI/ML based CSI compression over various bandwidths, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain bandwidth#B and applied for inference with a same bandwidth#B,
· For generalization Case 2, if bandwidth#A is 20MHz & bandwidth#B is 10MHz, or bandwidth#A is 10MHz & bandwidth#B is 20MHz, or bandwidth#A is 10MHz & bandwidth#B is 5MHz:
· 2 sources [ZTE, Ericsson] observe that generalized performance can be achieved:
· For bandwidth#A is 20MHz & bandwidth#B is 10MHz, 1 source [ZTE] observe less than -1.28% degradation.
· For bandwidth#A is 10MHz & bandwidth#B is 20MHz, 2 sources [ZTE, Ericsson] observe less than -1.1% degradation.
· 1 source [InterDigital] observe that moderate/significant degradations are suffered under generalization Case 2:
· For bandwidth#A is 10MHz & bandwidth#B is 5MHz, 1 source [InterDigital] observe larger than -2.5% degradation.
· For generalization Case 3, 3 sources [NTT DOCOMO, Nokia, Qualcomm] observe that generalized performance of the AI/ML model can be achieved (0%~-2.97% loss) for bandwidth#B subject to each of 10MHz/52RB and 20MHz and 48RB, if the training dataset is constructed with data samples subject to multiple bandwidths including bandwidth#B.
· Minor loss (0%~-1.7%) are observed by 2 source [NTT DOCOMO, Nokia].
· Moderate loss (-1.91%~-2.97%) are observed by 2 sources [Nokia, NTT DOCOMO].
· Positive gains are observed by 2 sources [Nokia, Qualcomm].
· Note: Significant loss (-5.4%) is observed by 1 source [Qualcomm]
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS in linear value for layer 1/2.
· Note: Results refer to Table 5.31 of R1-2308344

Observation
For the AI/ML based CSI prediction, compared to the Benchmark#1 of the nearest historical CSI, in terms of SGCS, from observation window length perspective, in general the gain of AI/ML based solution is slightly increased with the increase of the length for the observation window:
· When the observation window is increased from 5/5ms to 8/5ms, the gain over benchmark is increased by 0.28%~2.19%, as observed by 2 sources [Xiaomi, CATT].
· When the observation window is increased from 5/5ms to 15/5ms, the gain over benchmark is increased by 5.59%~10.32%, as observed by 1 source [CMCC].
· When the observation window is increased from 4/5ms to 8/5ms and 10/5ms, the gain over benchmark is increased by 0.96%~4.23% and 1%~4.42%, respectively, as observed by 2 sources [ZTE, vivo].
· Note: the above results are based on the following assumptions
· The UE speed is 30km/h.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is SGCS in linear value for layer 1.
· No post processing is considered.
· Note: Results refer to Table 5.32 of R1-2308344

Observation
For the AI/ML based CSI prediction, compared to the Benchmark#1 of the nearest historical CSI, in terms of SGCS/NMSE, from prediction window length perspective, in general the gain of AI/ML based solution is related with the prediction length in terms of the distance to the applicable time of the predicted CSI:
· When the prediction length is increased from 10ms to 15ms, the gain over benchmark is reduced (gap from -1.13%~-51%), as observed by 3 sources [ZTE, ETRI, MediaTek].
· When the prediction length is increased from 2.5ms/3ms to 5ms, the gain over benchmark is increased (gap from +5.85%~+13%), as observed by 2 sources [Apple, vivo].
· When the prediction length is increased from 5ms to 10ms, 5 sources [ZTE, Apple, ETRI, CMCC, OPPO] observe the gain over benchmark is reduced (gap from -1%~-12.1%) while 2 sources [MediaTek, vivo] observe the gain over benchmark is increased (+11.65%~+45.5%).
· Note: the above results are based on the following assumptions
· The UE speed is 30km/h.
· The observation window considers to start as early as 15ms~50ms.
· Raw channel matrix is considered as model input
· The performance metric is SGCS in linear value for layer 1.
· No post processing is considered.
· Note: Results refer to Table 5.33 of R1-2308344

Observation
For the evaluation of CSI compression, for the type of AI/ML model input (for CSI generation part)/output (for CSI reconstruction part), a vast majority of companies adopt precoding matrix as model input/output.
· Note: For the evaluations of CSI compression with 1-on-1 joint training, 22 sources [Huawei, Nokia, Futurewei, Lenovo, ZTE, vivo, OPPO, Spreadtrum, Fujitsu, NTT DOCOMO, Xiaomi, Qualcomm, Intel, InterDigital, CATT, Apple, China Telecom, MediaTek, BJTU, ETRI, CMCC, Ericsson] take precoding matrix without angular-delay domain conversion as the model input/output; 2 sources [Ericsson, Samsung] takes precoding matrix with angular-delay domain representation as the model input/output. No company submitted explicit channel matrix as input.

Other aspects on AI/ML for CSI feedback enhancement

Agreement
· In CSI compression using two-sided model use case, do not capture the column “Type 1 training at UE/NW/ neutral site with 3GPP transparent model delivery to UE and NW respectively” in the table that summarizes training collaboration Types 1.
· Note: both collaboration level y and z are considered for pros and cons of training types

· In CSI compression using two-sided model use case, the following table capture the pros/cons of training collaboration type 1:  
	   Training types



Characteristics
	Type1: NW side
	Type 1: UE side

	
	Unknown model structure at UE
	Known model structure at UE
	Unknown model structure at NW
	Known model structure at NW











Note: capture unknown model structure with sequential retraining in the unknown model structure at UE/NW column as a note whenever needed. 

Observation
In CSI prediction using UE sided model use case, at least the following aspects have been proposed by companies on data collection, including: 
· Signaling and procedures for the data collection 
· data collection indicated by NW 
· Requested from UE for data collection 
· CSI-RS configuration 
· Assistance information for categorizing the data, if needed
· The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.

Agreement
For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM: 
· Type 1: 
· UE calculate the performance metric(s) 
· UE reports performance monitoring output that facilitates functionality fallback decision at the network
· Performance monitoring output details can be further defined 
· NW may configure threshold criterion to facilitate UE side performance monitoring (if needed). 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Type 2: 
· UE reports predicted CSI and/or the corresponding ground truth  
· NW calculates the performance metrics. 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Type 3: 
· UE calculate the performance metric(s) 
· UE report performance metric(s) to the NW
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Functionality selection/activation/ deactivation/switching what is defined for other UE side use cases can be reused, if applicable. 
· Configuration and procedure for performance monitoring 
· CSI-RS configuration for performance monitoring
· Performance metric including at least intermediate KPI (e.g., NMSE or SGCS)
· UE report, including periodic/semi-persistent/aperiodic reporting, and event driven report.
· Note: down selection is not precluded.
· Note: UE may make decision within the same functionality on model selection, activation, deactivation, switching operation transparent to the NW. 

Observation
In CSI compression using two-sided model use case, at least the following options have been proposed by companies to define the pairing information used to enable the UE to select a CSI generation model(s) that is compatible with the CSI reconstruction model(s) used by the gNB: 
· Option 1: The pairing information is in the forms of the CSI reconstruction model ID that NW will use. 
· Option 2: The pairing information is in the forms of the CSI generation model ID that the UE will use. 
· Option 3: The pairing information is in the forms of the paired CSI generation model and CSI reconstruction model ID. 
· Option 4: The pairing information is in the forms of by the dataset ID during type 3 sequential training. 
· Option 5: The pairing information is in the forms of a training session ID to a prior training session (e.g., API) between NW and UE. 
· Option 6: The pairing information is up to UE/NW offline co-engineering alignment, transparent to 3GPP specification. 
· Note: the disclosure of the vendor information during the model pairing procedure and model identification procedure should be considered.
· Note: If each UE side model is compatible with all NW side model, the information is not needed for the UE. 
· Note: Above does not imply there is a need for a central entity for defining/storing/maintaining the IDs.  

Evaluation on AI/ML for beam management

Observation
Note: This is an update from the corresponding observation in RAN 1#113
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead comparing to using all measurements of Set A (which provides 100% beam prediction performance as non-AI baseline Option 1) without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· Top-1 DL Tx beam prediction accuracy: 
· evaluation results from [9 sources: Huawei/HiSi, Futurewei, NVIDIA, MediaTek, vivo, CEWiT, Interdigital, LG, Ericsson] indicate that, AI/ML can achieve about 70%~80% beam prediction accuracy
· evaluation results from [9 sources: Xiaomi, Apple, Intel, Lenovo, Fujitsu, BUPT, CATT, New H3C, ETRI] indicate that, AI/ML can achieve about 80%~90% beam prediction accuracy
· evaluation results from [7 sources: OPPO, Samsung, Ericsson, Nokia, ZTE, vivo, Spreadtrum] indicate that, AI/ML can achieve more than 90% beam prediction accuracy
· evaluation results from [1 source: Google] indicate that AI/ML can achieve about 60% beam prediction accuracy when the DL Tx beam grid is generated with oversampling
· Note: [1 source: Ericsson] reports that, AI/ML can achieve more than 90% beam prediction accuracy for 100% outdoor UE, and AI/ML can achieve less than 80% beam prediction accuracy for 80% indoor and 20% outdoor. All other results are with the assumption of 80% indoor and 20% outdoor. 
· Note: [One source: vivo] reported that, AI/ML can achieve 97.3% beam prediction accuracy with the measurements from the best Rx beam based on the best Tx beam in Set A, and AI/ML can achieve 76.4% beam prediction accuracy with the measurements from the best Rx beam of on the best Tx beam in Set B, and [1 source: CATT] reported that using the best Rx beam in Set A and Set B have similar performance, i.e., 84.84% and 84.59% respectively. 
· Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beams) can achieve about 25% beam prediction accuracy.
· Top-1 DL Tx beam with 1dB margin:
· evaluation results from [15 sources: Xiaomi, ZTE, Apple, Nokia, Samsung, Ericsson, Intel, InterDigital, Fujitsu, Lenovo, OPPO, CATT, BUPT, Spreadtrum, ETRI] indicate that, AI/ML can achieve more than or about 90% beam prediction accuracy.
· evaluation results from [3 sources: vivo, Huawei/HiSi, Google] indicate that, AI/ML can achieve about 80% beam prediction accuracy, wherein [1 source: vivo] assumed the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B.
· Top-K(=2) DL Tx beam prediction accuracy
· evaluation results from [7 sources: NVIIDA, MediaTek, vivo, CEWiT, LG, Google, Huawei/Hisi] indicate that, AI/ML can achieve 80%- 90% beam prediction accuracy.
· evaluation results from [14 sources: Xiaomi, OPPO, NVIIDA, Nokia, Ericsson, Samsung, CATT, Fujitsu, Futurewei, BUPT, Spreadtrum, New H3C, ETRI, Apple] indicate that, AI/ML can achieve more than 90% beam prediction accuracy. 
· The beam prediction accuracy increases with K.  
· evaluation results from [5 sources: Samsung, CATT, Fujitsu, Spreadtrum, Nokia] indicate that Top-2 DL beam prediction accuracy can be more than 95%
· evaluation results from [2 sources: Lenovo, Ericsson] indicate that Top-3 DL beam prediction accuracy can be more than 95%
· evaluation results from [3 sources: BUPT, Xiaomi, Huawei/Hisi] indicate that Top-4 DL beam prediction accuracy can be more than 95%
· evaluation results from [4 sources: HW/HiSi, CEWiT, Lenovo, ZTE] indicate that Top-5 DL beam prediction accuracy can be more than 95%
· Average L1-RSRP difference of Top-1 predicted beam 
· evaluation results from [17 sources: Huawei/HiSi, Futurewei CATT, xiaomi, OPPO, ZTE, NVIDIA, Nokia, Samsung, MediaTek, Fujitsu, Lenovo, CEWiT, vivo, BUPT, ETRI, Spreadtrum] indicate that it can be below or about 1dB
· evaluation results from [2 sources: vivo, Google] indicates that it can be 2.6~2.7dB with the assumption that the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B
· Average predicted L1-RSRP difference of Top-1 beam 
· evaluation results from [5 sources: vivo, Lenovo, ZTE, xiaomi, Ericsson] indicate that it can be below or about 1dB
· evaluation results from [1 source: MediaTek] indicate that it is about 2dB
· Note that this is assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase (e.g., regression AI/ML model)
· UE average throughput
· evaluation results from [3 sources: Nokia, MediaTek, Interdigital] indicate that AI/ML achieves 96%~99% of the UE average throughput of the BM-Case1 baseline option 1 (exhaustive search over Set A beams).
· evaluation results from [1 source: Interdigital] indicate that non-AI baseline option 2 (exhaustive search over Set B beams) achieves 89% of the UE average throughput of the BM-Case1 baseline option 1 (exhaustive search over Set A beams).
· UE 5%ile throughput
· evaluation results from [2 sources: Nokia, MediaTek] indicate that, AI/ML achieves 95~97% of the UE 5%ile throughput of the BM-Case1 baseline option 1 (exhaustive search over Set A beams).
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· Top-1 DL Tx beam prediction accuracy:
· evaluation results from [7 sources: Futurewei, MediaTek, CEWiT, DoCoMo, LG, New H3C, ETRI] indicate that, AI/ML can achieve about 50% beam prediction accuracy
· evaluation results from [4 sources: Apple, Qualcomm, Intel, vivo, CATT] indicate that, AI/ML can achieve about 60%~70% beam prediction accuracy 
· evaluation results from [5 sources: CMCC, Lenovo, ZTE, Fujitsu, OPPO] indicate that, AI/ML can achieve about 70%~80% beam prediction accuracy.
· evaluation results from [4 sources: Nokia, Samsung, vivo, Spreadtrum] indicate that, AI/ML can achieve more than 80% beam prediction accuracy 
· Note: [1 source: vivo] reported that, AI/ML can achieve 89% beam prediction accuracy with the measurements from the best Rx beam based on the best Tx beam in Set A, and AI/ML can achieve 67.6% beam prediction accuracy with the measurements from the best Rx beam of on the best Tx beam in Set B.
· Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beams) can achieve about 12.5% beam prediction accuracy  
· Top-1 DL Tx beam prediction with 1dB margin
· evaluation results from [7 sources: Apple, Intel, vivo, Lenovo, Fujitsu, Ericsson, CATT] indicate that, AI/ML can achieve 70%-80% beam prediction accuracy
· wherein [1 source: vivo] assumed the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B.
· evaluation results from [1 source: OPPO] indicate that, AI/ML can achieve 80%-90% beam prediction accuracy
· evaluation results from [5 sources: Nokia, Qualcomm, Samsung, ZTE, Spreadtrum] indicate that, AI/ML can achieve more than 90% beam prediction accuracy 
· Top-K(=2) DL Tx beam prediction accuracy
· evaluation results from [6 sources: Futurewei, MediaTek, CEWiT, LG, New H3C, Apple] indicate that, AI/ML can achieve about 70%~ 80% beam prediction accuracy
· evaluation results from [5 sources: CMCC, Intel, Qualcomm, vivo, Fujitsu, CATT] indicate that, AI/ML can achieve 80%~90% beam prediction accuracy 
· evaluation results from [4 sources: Nokia, OPPO, Samsung, Spreadtrum] indicate that, AI/ML can achieve 90% beam prediction accuracy for Top-2 DL Tx beam. 
· The beam prediction accuracy increases with K.  
· evaluation results from [3 sources: Samsung, Lenovo, Ericsson] indicate that Top-3 DL beam prediction accuracy can be more than 95% 
· evaluation results from [4 sources: Qualcomm, CEWiT, Lenovo, ZTE, Nokia] indicate that Top-5 DL beam prediction accuracy can be more than 90% 
· Average L1-RSRP difference of Top-1 predicted beam 
· evaluation results from [8 sources: Nokia, Qualcomm, OPPO, Samsung, CEWiT, ZTE, vivo] indicate that it can be below or about 1dB
· evaluation results from [4 sources: Fujitsu, DoCoMo, Lenovo, CATT, Spreadtrum] indicate that it can be 1dB~2dB
· evaluation results from [1 source: vivo] indicates that it can be 3.4dB with the assumption that the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B
· Average predicted L1-RSRP difference of Top-1 beam 
· evaluation results from [5 sources: vivo, Lenovo, OPPO, ZTE, Ericsson] indicates that it can be 0.8~1.5dB 
· Note that [4 sources: vivo, Lenovo, ZTE, Ericsson] assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase (e.g., regression AI/ML model) and [1 source: OPPO] assumed that only the L1-RSRP of the Top-1 beam in Set A is used as the label in training phase and the result is 0.82 dB. 
· UE average throughput
· evaluation results from [1 source: Nokia] indicates that AI/ML achieves 98% of the UE average throughput of the BMCase1 baseline option 1 (exhaustive search over Set A beams).
· evaluation results from [1 source: MediaTek] indicates that AI/ML achieves 85% of the UE average throughput of the BMCase1 baseline option 1 (exhaustive search over Set A beams).
· UE 5%ile throughput
· evaluation results from [1 source: Nokia] indicates that, AI/ML achieves 84% of the UE 5%ile throughput of the BMCase1 baseline option (exhaustive search over Set A beams).
· evaluation results from [1 source: MediaTek] indicates that, AI/ML achieves 70% of the UE 5%ile throughput of the BMCase1 baseline option (exhaustive search over Set A beams).
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
Note: This is an update from the corresponding observation in RAN 1#113
· For BM-Case1 DL Tx beam prediction, when Set B is different to Set A, with measurements of Set B of wide beams that are 1/4 or 1/6 or 1/8 of Set A beams, AI/ML can provide good beam prediction performance with less measurement/RS overhead comparing to using all measurements of Set A (which provides 100% beam prediction performance as non-AI baseline Option 1) without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· Top-1 DL Tx beam
· evaluation results [from 3 sources: Nokia, Ericsson, Intel] indicate that, AI/ML can achieve more than 80% beam prediction accuracy [from 5 sources: Samsung, Huawei, MediaTek, Qualcomm, Intel] indicate that, AI/ML can achieve more than 55% beam prediction accuracy
· [2 sources: Intel, Ericsson] reported more than 80% beam prediction accuracy with 100% outdoor UEs, and more than 60% beam prediction accuracy with 20% outdoor Ues. 
· Evaluation results from [1 source: Samsung] shows that, with limited measurements (e..g, 1 or 4) of narrow beams in Set A=32, AI/ML can increase 15% or 30% beam prediction accuracy [respectively] compared with 55% beam prediction accuracy with measurement of wide beams only. 
· Top-1 DL Tx beam with 1dB margin 
· evaluation results [from 4 sources: Nokia, Ericsson, Qualcomm, Intel] indicate that, AI/ML can achieve more than 85% beam prediction accuracy
· evaluation results [from 3 sources: Huawei, Samsung, Intel] indicate that, AI/ML can achieve 57%~77% beam prediction accuracy
· [One source: Intel] reported more than 86% beam prediction accuracy with 100% outdoor Ues, and more than 70% beam prediction accuracy with 20% outdoor Ues.
· Top-K(=3) DL Tx beam
· evaluation results [from 3 sources: Nokia, Ericsson, Intel] indicate that, AI/ML can achieve more than 95% beam prediction accuracy 
· evaluation results [from 3 sources: Huawei, Samsung, MediaTek] indicate that, AI/ML can achieve 85~94% beam prediction accuracy 
· evaluation results from [1 source: Qualcomm] indicate that Top-5 DL beam prediction accuracy can be more than 90%.
· Average L1-RSRP difference of Top-1 predicted beam
· evaluation results from [4 sources: Nokia, Samsung, Qualcomm, Ericsson] indicate that, the average L1-RSRP difference can be less or about 1dB
· UE average throughput
· evaluation results [from 1 source: Nokia] indicate that, AI/ML achieves 99% of the UE average throughput of the BMCase1 baseline option 1 (exhaustive search over Set A beams)
· UE 5%ile throughput
· evaluation results [from 1 source: Nokia] indicate that, AI/ML achieves 94% of the of the BMCase1 baseline option 1(exhaustive search over Set A beams)
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
Note: This is an update from the corresponding observation in RAN 1#113
At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes a minor loss in beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B:
· Evaluation results from [13 sources: Interdigital, vivo, Huawei/HiSi, CATT, Fujitsu, Lenovo, Apple, Qualcomm, Samsung, DoCoMo, Ericsson, CEWiT, Nokia] show less than 5% beam prediction accuracy degradation in terms of Top-1 beam prediction accuracy. 
· Note: [1 source: Apple] uses the data without quantization for training and data with quantization for inference. Other sources use the same quantization scheme for data for training and inference.

Observation
Note: This is an update from the corresponding observation in RAN 1#113
At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, 
· evaluation results from [4 sources: vivo, Qualcomm, DoCoMo, Nokia] show that, with 1dB quantization step for the absolute L1-RSRP of the best beam and 4dB quantization step differential L1-RSRP report with the existing quantization range, less than 5% beam prediction accuracy degradation in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B. 
· Same quantization scheme is used for the input data for training and inference. 
· Note: [1 source: DoCoMo] used quantized L1-RSRPs with the same quantization scheme as labels in training.
· Note: [1 source: vivo] used unquantized L1-RSRPs as labels in training.
· Note: [1 source: Nokia] used unquantized L1-RSRPs to determine Top-1 beam id as labels in training.

Observation
Note: This is an update from the corresponding observation in RAN 1#113
At least for BM-Case1 when Set B is a subset of Set A, and for DL Tx beam prediction, with the measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample, AI/ML provides the better performance than with measurements of random Rx beam(s). 
· Evaluation results from [12 sources: vivo, Nokia, Fujitsu, Samsung Lenovo, Huawei/HiSi, Ericsson, MediaTek, CATT, Xiaomi, LG, ETRI] show 20%~50% degradation with random Rx beam(s) comparing with the “best” Rx beam in terms of Top-1 prediction accuracy. 
· Evaluation results from [1 source: CEWiT] show 12% degradation with measurement of random Rx compared with measurement of best Rx in term of Top-1 beam prediction accuracy. 
Comparing performance with non-AI baseline option 2 (based on the measurement from Set B of beams), with measurements of random Rx beam(s) as AI/ML inputs:
· Evaluation results from [7 sources: MediaTek, Fujitsu, vivo, Nokia, Samsung, Xiaomi, ETRI] show that AI/ML can still provide 7%~44% beam prediction accuracy gain in terms of Top-1 beam prediction accuracy. 
Note: In both training and inference, measurements of random Rx beams are used as AI/ML inputs. 

Observation
· For BM-Case1 DL Tx-Rx beam pair prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead comparing to using all measurements of Set A (which provides 100% beam prediction performance as non-AI baseline Option 1) without considering generalization aspects and without UE rotation. 
· (A)With measurements of fixed Set B of beam pairs that of 1/4 of Set A of beam pairs 
· Top-1 beam pair prediction accuracy: 
· evaluation results from [8 sources: DoCoMo, Samsung, Fujitsu, Xiaomi, CEWiT, Futurewei, LG, ETRI] indicate that, AI/ML can achieve about 50%~70% prediction accuracy
· evaluation results from [4 sources: Xiaomi, Nokia, CATT, Interdigital] indicate that, AI/ML can achieve 70%~80% prediction accuracy
· evaluation results from [5 sources: OPPO, ZTE, Lenovo, China Telecom, CMCC] indicate that, AI/ML can achieve about 80%~90% prediction accuracy
· evaluation results from [1 source: Ericsson] indicate that, AI/ML can achieve more than 90% prediction accuracy
· Note: in the above evaluation and the rest of other KPIs, most of the sources used measurements from all Rx beams of a certain set of Tx beams, except [3 sources: DoCoMo, Fujitsu, ETRI] who use measurements from half of Rx beams of a certain set of Tx beams. 
· The results from [3 sources: DoCoMo, Fujitsu, ETRI] indicate 60%~68% prediction accuracy in terms of Top-1 beam pair prediction accuracy. 
· [1 source: CATT] additionally reports that, AI/ML can achieve 76.46% and 56.12% beam prediction accuracy with the measurements from all Rx beams and half of Rx beams of a certain set of Tx beams respectively.
· Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beam pairs) can achieve about 25% prediction accuracy. 
· Top-1 beam pair prediction accuracy with 1dB margin:
· evaluation results from [5 sources: DoCoMo, Samsung, Xiaomi, Fujitsu, ETRI] indicate that, AI/ML can achieve more than 70% prediction accuracy
· evaluation results from [2 source: Xiaomi, Interdigital] indicate that, AI/ML can achieve 80%~ about 90% prediction accuracy
· evaluation results from [6 sources: Ericsson, Lenovo, CATT, Nokia, ZTE, China Telecom] indicate that, AI/ML can achieve more than 90% prediction accuracy.
· Note: [1 source: CATT] reported that, AI/ML can achieve 91.6% and 74.57% beam prediction accuracy with 1dB margin with the measurements from all Rx beams of a certain set of Tx beams and with half of Rx beams of a certain set of Tx beams respectively.
· Top-K(=2) beam pair prediction accuracy
· evaluation results from [2 sources: Samsung, CEWiT] indicate that, AI/ML can achieve 65%- 75% prediction accuracy.
· evaluation results from [6 sources: Fujitsu, Xiaomi, Futurewei, China Telecom, LG, ETRI] indicate that, AI/ML can achieve 80%- 90% prediction accuracy
· evaluation results from [4 sources: CATT, OPPO, Nokia, CMCC] indicate that, AI/ML can achieve more than 90% prediction accuracy
· Note: [1 source: CATT] reported that, AI/ML can achieve 91.34% and 78.06% Top-K(=2) beam prediction accuracy with the measurements from all Rx beams and half of Rx beams of a certain set of Tx beams respectively.
· The beam prediction accuracy increases with K.  
· evaluation results from [1 source: Lenovo] indicate that Top-3 beam pair prediction accuracy can be more than 95% 
· evaluation results from [4 sources: Nokia, xiaomi, Fujitsu, CMCC] indicate that Top-4 beam pair prediction accuracy can be [more than 95%
· evaluation results from [2 source: ZTE, Interdigital] indicate that Top-5 beam pair prediction accuracy can be more than 95%
· evaluation results from [1 source: ETRI] indicate that Top-10 beam pair prediction accuracy can be more than 95% for 32 Tx and 4 Rx with results from half Rx 
· Average L1-RSRP difference of Top-1 predicted beam pair 
· evaluation results from [13 sources: CATT, OPPO, ZTE, DoCoMo, Nokia, Lenovo, xiaomi, CEWiT, Futurewei. Fujitsu, China Telecom, ETRI, Keysight] indicate that it can be below or about 1dB
· evaluation results from [1 source: samsung] indicates that it can be about 1.5dB
· Note: [1 source: CATT] reported that it can be 0.716dB and 1.611dB with the measurements from all Rx beams and half of Rx beams of a certain set of Tx beams respectively.
· Predicted L1-RSRP difference of Top-1 beam pair
· [3 sources: ZTE, Lenovo, xiaomi] indicates that it can be below or about 1dB
· Note that this is assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase (e.g., regression AI/ML model)
· (B) With measurements of fixed Set B of beam pairs that of 1/8 of Set A of beam pairs 
· Top-1 beam pair prediction accuracy:
· evaluation results from [4 sources: Futurewei, Lenovo, LG, ETRI] indicate that, AI/ML can achieve about 50% prediction accuracy
· evaluation results from [4 sources: ZTE, OPPO, Intel, Fujitsu] indicate that, AI/ML can achieve about 60%~70% prediction accuracy 
· evaluation results from [6 sources: Nokia, CMCC, CAICT, China Telecom, vivo, BJTU] indicate that, AI/ML can achieve about 70%~80% prediction accuracy
· Note: in the above evaluation and the rest of other KPIs, most of the sources used measurements from all Rx beams of a certain set of Tx beams, except [7 sources: OPPO, Fujitsu, Futurewei, BJTU, China Telecom, ETRI, CAICT] who use measurements from half of Rx beams of a certain set of Tx beams.
· Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beam pairs) can achieve about 12.5% prediction accuracy  
· Top-1 beam pair prediction with 1dB margin
· evaluation results from [4 sources: Intel, Lenovo, Fujitsu, ETRI] indicate that, AI/ML can achieve 60%-70% prediction accuracy
· evaluation results from [1 source: OPPO] indicate that, AI/ML can achieve 70%-80% prediction accuracy
· evaluation results from [4 source: CAICT, Nokia, vivo, ZTE] indicate that, AI/ML can achieve 80%-90% prediction accuracy
· Top-K(=2) beam pair prediction accuracy
· evaluation results from [4 sources: Futurewei, OPPO, LG, ETRI] indicate that, AI/ML can achieve about 70%- 80% prediction accuracy.
· evaluation results from [6 sources: Nokia, Huawei/HiSi, vivo, BJTU, Fujitsu, China Telecom] indicate that, AI/ML can achieve 80%- 90% prediction accuracy
· evaluation results from [2 sources: CMCC, China Telecom] indicate that, AI/ML can achieve more than 90% prediction accuracy
· The beam prediction accuracy increases with K.  
· evaluation results from [1 source: CMCC] indicate that Top-3 beam pair prediction accuracy can be 96%
· evaluation results from [1 source: China Telcom] indicate that Top-4 beam pair prediction accuracy can be 96%
· evaluation results from [1 source: ZTE] indicate that Top-5 beam pair prediction accuracy can be 91%
· evaluation results from [1 source: Nokia] indicate that Top-5 beam pair prediction accuracy can be 94% 
· Average L1-RSRP difference of Top-1 predicted beam pair 
· evaluation results from [5 sources: ZTE, CAICT, vivo, China Telecom, Nokia] indicate that it can be below or about 1dB
· evaluation results from [5 sources: Futurewei, Fujitsu, OPPO, Lenovo, ETRI] indicate that it can be 1dB~2dB
· Average predicted L1-RSRP difference of Top-1 beam pair
· evaluation results from [2 sources: ZTE, vivo] indicates that it can be 0.7~1.3dB
· Note that this is assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase (e.g., regression AI/ML model).
· (C) With measurements of fixed Set B of beams that of 1/16 of Set A of beams 
· Top-1 beam pair prediction accuracy
· evaluation results from [5 sources: Futurewei, CEWiT, BJTU, Lenovo, ETRI] indicate that, AI/ML can achieve less than 50% or about 50% prediction accuracy
· evaluation results from [2 sources: CAICT, vivo] indicate that, AI/ML can achieve about 55%~57% prediction accuracy 
· evaluation results from [3 sources: Nokia, Intel, CMCC] indicate that, AI/ML can achieve about 60%~70% prediction accuracy 
· evaluation results from [1 source: HW/HiSi] indicate that, AI/ML can achieve about 70%~80% prediction accuracy
· Note: in the above evaluation and the rest of other KPIs, some [6 sources: Futurewei, Huawei/HiSi, CMCC, Nokia, Intel, vivo] used measurements from all Rx beams of a certain set of Tx beams, and some other [6 sources: OPPO, Lenovo, CAICT, ETRI, CAICT, BJTU] use measurements from half or fourth of Rx beams of a certain set of Tx beams. 
· Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beam pairs) can achieve about 6.25% prediction accuracy
· Top-1 beam pair prediction with 1dB margin
· evaluation results from [4 sources: OPPO, Lenovo, ETRI] indicate that, AI/ML can achieve less than 50% or about 50% prediction accuracy
· evaluation results from [1 source: Intel] indicate that, AI/ML can achieve more than 50%~60% prediction accuracy
· evaluation results from [2 sources: CAICT, vivo, OPPO] indicate that, AI/ML can achieve about 60%-70% prediction accuracy
· evaluation results from [2 sources: Nokia, Huawei/Hisi] indicate that, AI/ML can achieve 72%~85% prediction accuracy 
· Top-K(=2) beam pair prediction accuracy
· evaluation results from [3 sources: Futurewei, Lenovo, ETRI] indicate that, AI/ML can achieve less than 60% prediction accuracy.
· evaluation results from [5 sources: Nokia, CMCC, vivo, OPPO, BJTU] indicate that, AI/ML can achieve about 70%- 80% prediction accuracy
· evaluation results from [1 source: Huawei/HiSi] indicate that, AI/ML can achieve more than 85% prediction accuracy
· The beam prediction accuracy increases with K.  
· Average L1-RSRP difference of Top-1 predicted beam pair
· evaluation results from [3 sources: Huawei/HiSi, Nokia, vivo] indicate that it can be 1dB~2dB
· evaluation results from [2 sources:  CAICT, OPPO] indicate that it can be 2dB~3dB
· evaluation results from [2 sources: Lenovo, Futurewei] indicate that it can be more than 3dB
· evaluation results from [1 source: ETRI] indicate that it can be about 6dB
· Predicted L1-RSRP difference of Top-1 beam pair
· evaluation results from [2 sources: vivo, Lenovo] indicates that it can be about 2.5dB
· Note that this is assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase (e.g., regression AI/ML model).
· Note: in the above evaluations, [8 sources: CMCC, ETRI, Nokia, Lenovo, CATT, LG, OPPO, Huawei/HiSi, Intel] assumed 4 Rx, other sources assumed 8 Rx. 
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
· For BM-Case1 beam pair prediction, when Set B is different to Set A, with measurements of Set B of Tx wide beams that are 1/4 or 1/8 of Set A beams, evaluation results [from 1 source: Ericsson] indicate that AI/ML can provide good beam prediction performance with less measurement/RS overhead comparing to using all measurements of Set A (which provides 100% beam prediction performance as non-AI baseline Option 1) without considering generalization without UE rotation.
· For Top-1 beam pair prediction accuracy, evaluation results [from 1 source: Ericsson] indicate that, AI/ML can achieve about 92.7%/92.5% beam prediction accuracy for 1/4 and 1/8 overhead respectively. 
· For Top-1 beam prediction accuracy with 1dB margin, evaluation results [from 1 source: Ericsson] indicate that, AI/ML can achieve about 97.6%/97.3% beam prediction accuracy for 1/4 and 1/8 overhead respectively. 
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Agreement
To calculate the measurement/RS overhead reduction and summarize results for BM-Case 2,
· Case A: based on number of measurements/RSs and prediction time. 
· where T2 is the time duration for beam prediction
· where Mt is the number of time instances for measurement as AI/ML inputs with a periodicity of Tper 
· where Pt is the number of time instance(s) for prediction with a periodicity of Tper in T2
· In this case, the non-AI baseline is Option 1 (measured all the beams at each time instance(s) for prediction with a periodicity of Tper in T2)
· For Set B= Set A, the RS overhead reduction is 1-Mt/(Mt+Pt).  
· For Set B (N beams, same number in each time instance) is a subset of Set A (M beams), the RS overhead reduction is 
· 1- N*Mt/(M*(Mt+Pt)) if no sliding window
· 1-N/M if considering sliding window
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Example for Case A
· Case B: based on a periodicity T of the required reference signals for measurements to achieve a certain beam prediction accuracy 
· For non-AI baseline (Option 2), every T=X ms reference signals for measurements are needed 
· For AI, every T=Y ms, reference signals for measurements are needed 
· In this case, 
· For Set B = Set A, the RS overhead reduction is 1-X/Y.  
· For Set B (N beams) is a subset of Set A (M beams), the RS overhead reduction is 
[1-XN/(YM)]. 
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Example for Case B

· Case B+: based on Y times of a given minimal periodicity Tper of the reference signals for measurements 
· For non-AI baseline (Option 1), UE measures all the reference signals of Set A every Tper 
· For AI, UE measures the reference signals of Set B every Y times of Tper
· In this case, prediction time is defined as the time from each measurement instance to the latest prediction instance before the next measurement instance. 
· In this case, the non-AI baseline is Option 1 (measured all the beams at each time instance(s) for prediction with a periodicity of Tper, which is reported by companies)
· For Set B= Set A, the RS overhead reduction is 1-1/Y.  
· For Set B (N beams) is a subset of Set A (M beams), the RS overhead reduction is 
1-N/(YM). 
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Example for Case B+

Observation
· For BM-Case1 DL Tx beam prediction (unless otherwise stated), when Set B is a subset (1/4 unless otherwise stated) of Set A, without differentiating BB errors and RF errors modelled as truncated Gaussian distribution (unless otherwise stated),
· Considering ±2 dB relative measurement error,
· evaluation results from [3 sources: Nokia, Ericsson, CATT] show that the beam prediction accuracy degrades 6%~10%in terms of Top-1 beam prediction accuracy comparing to the one without measurement error. And [1 source: Nokia] shows that 95%ile of L1-RSRP diff can be about 1.4~2dB, [1 source: CATT] shows that average L1-RSRP diff can be lower than 1dB.
· evaluation results from [1 source: DoCoMo] show that 
· for DL Tx beam prediction, the beam prediction accuracy degrades 28.8% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error, [and average L1-RSRP diff can be about 7.3dB.
· for Tx-Rx beam pair prediction when Set B is 1/8 of Set A, the beam prediction accuracy degrades 2.4% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error, and average L1-RSRP diff can be about 5.8dB
· wherein the measurement error is modelled as uniformed distribution.  
· evaluation results from [1 source: CATT] show that considering different relative measurement error range in model training (±2 dB, ±0 dB), similar (less than 1% difference) Top-1 beam prediction accuracy can be achieved
· Considering ±3 or ±4 dB relative measurement error, 
· evaluation results from [4 sources: Ericsson, Nokia, CEWiT, CATT] show that the beam prediction accuracy degrades 14% (with 3dB error) ~20% (with 4dB error) in terms of Top-1 beam prediction accuracy comparing to the one without measurement error. And [1 source: Nokia] shows that the 95%ile of L1-RSRP diff can be about 2~3.2dB. [1 source: CATT] shows that average L1-RSRP diff can be lower than 1dB.
· evaluation results from [1 source: CATT] show that considering different relative measurement error range in model training (0dB, ±2 dB, ±4 dB), similar (less than 1% difference) Top-1 beam prediction accuracy can be achieved, and average L1-RSRP diff can be lower than 1dB when ±2 dB or ±4 dB relative measurement error is considered in model training
· Considering up to ±5 dB relative measurement error when Set B is 1/8 of Set A, 
· evaluation results from [1 source: Google] show that the beam prediction accuracy degrades 13.6% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error for DL Tx beam prediction.
· Considering ±6 dB relative measurement error, 
· evaluation results from [3 sources: Nokia, Ericsson, CATT] show that the beam prediction accuracy degrades 22%~30% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error. And the 95%ile of L1-RSRP diff can be about 3.1~7.5dB.
· evaluation results from [1 source: Ericsson] show that he L1-RSRP difference in 90%ile degrades 7dB for the AI/ML model, compared to baseline 1 and 2 that degrades 3 dB respectively 1 dB at the same percentile.  
· evaluation results from [1 source: Samsung] show that for both DL Tx beam prediction and beam pair prediction, the beam prediction accuracy degrades 42~48% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error. And the average L1-RSRP diff can be about 1.6dB.
· However, comparing with the global search of all beams in Set A with the same measurement error level, for DL Tx beam prediction the beam prediction accuracy degrades less than 1% in terms of Top-1 beam prediction accuracy, and for Tx-Rx beam pair prediction the beam prediction accuracy degrades about 7% in terms of Top-1 beam prediction accuracy.
· Note: in this evaluation, measurement errors are considered in training and inference phase only for AI inputs with idea labels in training phase. 
· evaluation results from [1 source: DoCoMo] show that 
· for DL Tx beam prediction, the beam prediction accuracy degrades 32.4% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error, [and average L1-RSRP diff can be about 8.34dB.
· for Tx-Rx beam pair prediction, the beam prediction accuracy degrades 5.2% in terms of Top-1 beam prediction accuracy comparing to the one without measurement error, [and average L1-RSRP diff can be about 6.4dB.
· evaluation results from [1 source: CATT] show that considering different relative measurement error range in model training (0dB, ±2 dB, ±6 dB), similar less or than 2% Top-1 beam prediction accuracy can be achieved, and average L1-RSRP diff can be lower than 1dB when ±6 dB relative measurement error is considered in model training

· For BM-Case1 DL Tx beam prediction or Tx-Rx beam pair prediction, when Set B is a subset (1/4 unless otherwise stated) of Set A, with separately modelled BB error and/or RF errors modelled as truncated Gaussian distribution (unless otherwise stated),
· Considering ±3 relative measurement error for BB and RF respectively, 
· evaluation results from [1 source: Samsung] show that for DL Tx beam prediction and beam pair prediction with Set B is ¼ of Set A, the beam prediction accuracy degrades 42% and 38% respectively in terms of Top-1 beam prediction accuracy comparing to the one without measurement error. And the average of L1-RSRP diff is about [1.1dB and 2.16dB respectively.
· However, comparing with the global search of all beams in Set A with the same measurement error level, for DL Tx beam prediction the beam prediction accuracy degrades about 2 % in terms of Top-1 beam prediction accuracy, and for Tx-Rx beam pair prediction the beam prediction accuracy degrades about 8% in terms of Top-1 beam prediction accuracy.
· Note: in this evaluation, measurement errors are considered in training and inference phase only for AI inputs with idea labels in training phase. 
· evaluation results from [1 source: Huawei/HiSi] show that for both DL Tx beam prediction with Set B is 1/4 of Set A and beam pair prediction with Set B is 1/16 Set A, the beam prediction accuracy degrades 4.3% and 6.3% respectively in terms of Top-1 beam prediction accuracy comparing to the one without measurement error. And the average of L1-RSRP diff becomes 0.7dB and 2.18dB larger respectively.
· Note: in this evaluation, for DL Tx beam prediction, the measurements of Set B from each Rx beam of all Rx beams were used as AI inputs to obtain Top-K beams, followed by Top-K beam sweeping with that given Rx beam. This procedure repeats over all Rx beams, to obtain the best Tx beam at all Rx beams.  
· Considering 3.3 dB for standard deviation in relative measurement error without truncation for RF only, evaluations results from [1 source: Apple] show with AI/ML:
· with a common measurement error for all Tx beams at a given Rx beam:
· Top-1 beam prediction accuracy with 1 dB margin performance has slight performance degradation (less than 0.2%) than that without measurement error.
· with independent measurement errors for all Tx beams, 
· Top-1 beam prediction accuracy with 1 dB margin has 10% and 20% performance degradation than that without measurement error for Set B/Set A = 1/2 and 1/4 respectively. 
· wherein, measurement errors are only considered in inference inputs
· Note that 
· In the above results, measurement errors are considered in both training (input data and label) and inference phase (except the ground truth) unless otherwise stated. 
· Beams could be measured regardless of their SNR.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
For BM-Case 1 DL Tx beam prediction without UE rotation, for Top-1 beam prediction accuracy, compared to the best Rx beams obtained from one shot measurements, with quasi-optimal Rx beam performance degradation is observed: 
· evaluation results from [1 source MediaTek] show 2% beam prediction accuracy degradation when Set B = 1/2 Set A and 7% beam prediction accuracy improvement when Set B = 1/4 or 1/8 Set A, when using the best Rx beams obtained from previous exhaustive sweeping (20ms ago) of all beams in Set A, comparing with using the best Rx beam for each Tx beams in Set B obtained from current exhaustive sweeping, without considering UE rotation for 3km/h UE speed. Such beam prediction accuracy improvement may not exist when considering UE rotation and higher UE speed.
· evaluation results from [1 source Samsung] show 2.5% beam prediction accuracy degradation using the best Rx of each Tx beams obtained from previous exhaustive sweeping (20ms ago) than using the best Rx of each Tx beams obtained from current exhaustive sweeping, without considering UE rotation for 3km/h UE speed.
· evaluation results from [1 source Qualcomm] shows 6.6%/6.9%/32.1%/45% degradation using a stochastic model in which the UE Rx beam is randomly selected with average probability that the best Rx beam is selected equal to 87.1%/75.1%/34.3%/10.9% compared to using the best Rx of each Tx beams obtained from current exhaustive sweeping, without considering UE rotation
· evaluation results from [1 source: Samsung] show 13% beam prediction accuracy degradation, with the assumption of the best Rx beam for each Tx beam obtained from previous exhaustive sweeping over all beams in Set A in a SSB-like structure (in the past 160ms for each Rx beam with every 20ms a burst of Set A of beams) without considering UE rotation for 3km/h UE speed.
· evaluation results from [1 source: vivo] show 3%~11% beam prediction accuracy degradation, with the assumption of the best Rx beam obtained from one specific Tx beam which is 1st Tx beam in Set B.
· evaluation results from [1 source: Nokia] show 12% beam prediction accuracy degradation with the assumption of the best Rx beams obtained from one specific Rx beam which is the best between the same Rx beam for different panels.
· In addition, evaluation results from [3 sources: HW/HiSi, Fujitsu, ZTE] show 1%~4% and 6%~12% beam prediction accuracy degradation, with the assumption of the best Rx beam is used for 90% and 80% of the model input samples and random Rx beam for the remaining samples respectively.
· Even though, AI/ML can still provide better performance than non-AI baseline option 2 (exhaustive beam sweeping in Set B of beams), e..g, 50%~60% beam prediction accuracy difference in terms of Top-1 beam prediction accuracy based on the evaluation results from [2 sources: Samsung, MediaTek], where non-AI baseline option 1 (exhaustive beam sweeping in Set A of beams) provides 100% prediction accuracy. 
For BM-Case 2 DL Tx beam prediction with UE rotation, for Top-1 beam prediction accuracy, with quasi-optimal Rx beam selection:
· evaluation results from [1 source: Qualcomm] show 5~11% beam prediction accuracy improvement given the assumption of the best Rx beams obtained from previous round-robin sweep of beam pair links from beams in Set A, compared to sample-and-hold baselines.
· In the evaluation, UE rotation is modelled every 40ms with constant 10 RPM rotation speed in all three rotational axes, with rotational direction chosen uniformly at random among the three axes. 

Observation
Different label options may lead to different data collection overhead for training. At least for BMCase-1, for (Option 1a) Top-1 beam(pair) in Set A as the label and (Option 2a) all L1-RSRPs per beam of all the beams(pairs) in Set A as the label, with the comparable model complexity and computation complexity, the results across companies and the observed performance delta are summarized as below:
· For Top 1 beam (pair) prediction accuracy, 
· evaluation results from [7 sources: MediaTek, OPPO, CMCC, Samsung, China Telecom, ZTE, Nokia] show that an AI/ML model with Top-1 beam(pair) in Set A as the label (Option 1a) can provide better performance (e,g, 2~7% or 12%~18% higher for Top 1 beam prediction accuracy) than an AI/ML model with all L1-RSRPs per beam of all the beams(pairs) in Set A as the label (Option 2a) 
· evaluation results from [1 source: vivo] show that similar or slightly worse (e,g, 2% higher for Top 1 beam prediction accuracy)) can be achieved with Option 1a than Option 2a 
· For Top-K beam (pair) prediction accuracy or Top-1 beam prediction accuracy with 1dB margin,
· evaluation results from [ 2 sources: OPPO, Nokia] show that Option 1a can provide similar performance than Option 2a 
· evaluation results from [ 1 source: Samsung] show that Option 2a can provide 5%~12% better performance than Option 1a for Top-2/-4 beam pair prediction accuracy.
· evaluation results from [1 source: vivo] show that show that Option 1a can provide 2%~5% better performance than Option 2a for Top-2/-6 beam pair prediction accuracy.
· evaluation results from [1 source: ZTE] show that show that Option 1a can provide 2%~7% /1%~5% better performance than Option 2a for Top-2/-4 beam prediction accuracy for DL Tx beam prediction.
· evaluation results from [1 source: MediaTek] show that show that Option 1a can provide <1% or 9%~17% better performance than Option 2a for Top-2/-3 beam prediction accuracy for DL Tx beam prediction for Set B=1/2 Set A or Set B =1/4 or 1/8 Set A.
· Detailed assumptions and results are listed as below:
· evaluation results from [one source: OPPO] show that for both DL Tx beam prediction and beam pair prediction with Set B is ¼ of Set A, with Top-1 beam in Set A as the label, AI/ML can provide 2%~3% higher beam prediction accuracy in terms of Top-1 beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label with comparable model complexity. The Top-K beam prediction accuracy is comparable for DL Tx beam prediction; however, the Top-K beam prediction accuracy is slightly better (<1%) with all L1-RSRPs as the label. The average L1-RSRP difference is similar (about 1.5dB) in the two cases.
· evaluation results from [one source: Nokia] show that for Tx beam prediction with Set B is 1/2 Set A and Set B is 1/4 Set A, with Top-1 beam in Set A as the label, AI/ML can provide 2%-5% higher beam prediction accuracy in terms of Top-1 beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label with comparable model complexity. The Top- 1 beam with 1dB error and Top-K beam prediction accuracy is comparable for DL Tx beam prediction.
· evaluation results from [one source: CMCC] show that for beam pair prediction with Set B is 1/8 or 1/16of Set A, with Top-1 beam in Set A as the label, AI/ML can provide 4%-6% higher beam prediction accuracy in terms of Top-1 beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label even with larger model complexity.
· evaluation results from [one source: Samsung] show that for beam pair prediction with Set B is ¼ Set A, with Top-1 beam in Set A as the label, AI/ML can provide 12% higher beam prediction accuracy in terms of Top-1 beam prediction accuracy comparing to the one with all L1-RSRPs of all the beams as the label with comparable model complexity. However, labeling with all L1-RSRPs can provide 5% and 12 % better for Top-3 or Top-4 beam prediction accuracy comparing with labeling with Top-1 beam ID. 
· evaluation results from [one source: China Telecom] show that for beam pair prediction with Set B is ¼ Set A, with Top-1 beam in Set A as the label, AI/ML can provide 15% higher beam prediction accuracy in terms of Top-1 beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label with comparable model complexity. The average L1-RSRP difference is similar (about 0.4dB) in the two cases.
· evaluation results from [one source: vivo] show that for DL Tx beam prediction with Set B is ¼ of Set A, with Top-1 beam in Set A as the label, AI/ML can provide similar beam prediction accuracy in terms of Top-1 beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label. Using Top-1 beam as the label can provide 2%/5% better performance for Top-2/-6 beam prediction. The average L1-RSRP difference is similar (about 1dB) in the two cases.
· evaluation results from [one source: vivo] show that for beam pair prediction with Set B is 1/16 of Set A, with Top-1 beam in Set A as the label, 2% beam prediction accuracy degradation in terms of Top-1 beam prediction accuracy is achieved comparing to the one with all L1-RSRPs per beam of all the beams as the label.
· evaluation results from [one source: ZTE] show that for Tx beam prediction with Set B is 1/4 of Set A or 1/8 of Set A or 1/16 of Set A, with Top-1 beam in Set A as the label, AI/ML can provide comparable or up to 7% higher beam prediction accuracy in terms of Top-K (K=1, 2, 4) beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label with comparable model complexity. However, the performance of average L1-RSRP difference of Top-1 predicted beam and beam prediction accuracy with 1dB margin for Top-1 beam is comparable or better with all L1-RSRPs per beam of all the beams as the label.
· Evaluation results from [one source: MediaTek] show that for Tx beam prediction with Set B is 1/2 Set A, with Top-1 beam in Set A as the label, AI/ML can provide <1% higher beam prediction accuracy in terms of Top-K (K=1,2,3) beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label with comparable model complexity. With Set B is 1/4 Set A and 1/8 Set A and Top-1 beam in Set A as the label, AI/ML can provide 10-18% higher beam prediction accuracy in terms of Top-K (K=1,2,3) beam prediction accuracy comparing to the one with all L1-RSRPs per beam of all the beams as the label with comparable model complexity.
In addition, [1 source: OPPO] show good performance with Top-K beam(pair)s in Set A and the corresponding L1-RSRPs as the label (Option 2b) can be achieved with two separate AI models. In the evaluation, one classification model (with Top-1/K beam(s) in Set A as the label(s)) is used to predict the Top-1/K beam and another regression model (with L1-RSRP(s) of Top-1/K beam(s) in Set A as the label(s)) is used to predict L1-RSRP(s).
Note: The performance for beam predication accuracy with AI/ML may also depend on some other aspects, e.g., AI/ML model architecture choice, model training parameters (e.g., hyperparameter tuning), loss function corresponding to optimizing certain KPI(s). Assumptions on loss function are not indicated in the evaluations above.
Note: ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
At least for BM-Case1 (unless otherwise stated) DL Tx beam with the measurements from the best Rx beam, and/or beam pair prediction, when Set B is a subset of Set A without considering other generalization aspects and without UE rotation. 
· (Opt 2B) For the case that Set B of beam(pair)s is changed among pre-configured patterns, compared to the case that Set B is fixed across training and inference (Opt 1), for Top-1 beam prediction accuracy
· evaluation results from [14 sources: Nokia, Samsung, vivo, Fujitsu, xiaomi, Futurewei, ZTE, Huawei/HiSi, CATT, ETRI, CEWiT, CMCC, BUPT, Spreadtrum] show no more than 10% or about 10% beam prediction accuracy degradation, wherein [2 sources: Nokia, vivo] used up to 24 pre-configured patterns and the rest of sources use 3 ~ 5 patterns; 
· AI/ML still can provide better performance (e.g., >30%) of Top-1 beam prediction unless otherwise stated) than non-AI baseline option 2 (exhaustive beam sweeping in Set B of beams). 
· Note: the above performance can also be treated as training with mixed patterns of Set B of beam, and testing with mixed patterns Set B of beams. 
· (Opt 2C) For the case that Set B of beam(pair)s is randomly changed in Set A of beams, compared to the case that Set B is fixed across training and inference (Opt 1), for Top-1 beam prediction accuracy
· evaluation results [from 2 sources: Nokia, vivo] show 10%~20% beam prediction accuracy degradation.
· evaluation results [from 7 sources: Futurewei, xiaomi, Samsung, Fujitsu, ETRI, Spreadtrum, CATT] show 20%~50% beam prediction accuracy degradation.
· AI/ML still can provide better performance (e.g., >25% of Top-1 beam prediction unless otherwise stated) than non-AI baseline option 2 (exhaustive beam sweeping in Set B of beams):
· (Opt 2D) For the case that Set B of beams (pairs) is a subset of measured beams (pairs) Set C (where Set C is fixed across training and inference), compared to the case with all measurements of measured beam Set C as AI inputs 
· with Top K=1/2 of the measurements of Set C,
· For Top-1 beam prediction accuracy
· evaluation results from [5 sources: vivo, ZTE, Nokia, Fujitsu, Samsung] show less than 4% the beam prediction accuracy degradation
· evaluation results from [3 sources: Lenovo, CEWiT, InterDigital] show about 7% the beam prediction accuracy degradation
· evaluation results [from 1 source: MediaTek] show <1% and 7% beam prediction accuracy degradation with measuring 1/2 and 1/4 of Set A of beams respectively. 
· evaluation results [from 1 source: CATT] show about 12% the beam prediction accuracy
· Note: all the above results are for DL Tx beam prediction
· For NW-side model, 1/2 UCI reporting overhead for inference inputs can be saved without considering quantization impact.
· In the above evaluation, [5 sources: Fujitsu, Samsung, Lenovo, , CEWiT, CATT] use L1-RSRPs of Top-4 measurements of 8 beams in Set C for 32 Tx beams in Set A. 
· In the above evaluation, [3 sources: Nokia, ZTE, InterDigital] use L1-RSRPs of Top-8 measurements of 16 beams in Set C for 64 Tx beams in Set A
· In the above evaluation, [1 source: MediaTek] uses L1-RSRPs of Top-4/-8 measurements of 8/16 beams in Set C for 32 Tx beams in Set A.
· with Top K=1/4 of the measurements of Set C, 
· For Top-1 beam prediction accuracy
· evaluation results [from 2 sources: ZTE, Nokia] show 8~10% beam prediction accuracy degradation.
· evaluation results [from 1 source: InterDigital] show 15% beam prediction accuracy degradation.  
· evaluation results [from 1 source: MediaTek] show 2% beam prediction accuracy degradation with measuring 1/2 of Set A of beams respectively.
· Note: all the above results are for DL Tx beam prediction
· For NW-side model, 3/4 UCI reporting overhead for inference inputs can be saved without considering quantization impact.
· In the above evaluation, [1 source: MediaTek] uses L1-RSRPs of Top-4 measurements of 16 beams in Set C for 32 Tx beams in Set A. 
· In the above evaluation, [2 sources: Interdigital, ZTE] use L1-RSRPs of Top-4 measurements of 16 beams in Set C for 64 Tx beams in Set A.
· with Top K=1/8 of the measurements of Set C, 
· evaluation results [from 1 source: ZTE] show 7.5% beam prediction accuracy degradation in terms of Top-1 beam prediction accuracy for beam pair prediction. 
· For NW-side model, 7/8 UCI reporting overhead for inference input can be saved. 
· In the evaluation, [1 resource: ZTE] uses L1-RSRPs of Top-16 measurements of 128 beams in Set C for 64 Tx beams and 8 Rx beams in Set A. 
· with Top K=1/6 of the measurements of Set C, for BM-Case 2, evaluation results [from 1 source: Qualcomm] show 3.5% improvement in beam prediction accuracy compared to non-AI/ML baseline (Option 2, sample-and-hold) whose beam prediction accuracy is 78.2%.
· with the reported measurements within a given gap of [5dB/ 10dB/ 14dB~20dB] to the best beam in Set C, evaluation results from [6 sources: Huawei/HiSi, MediaTek, Ericsson, Samsung, ZTE, CATT] show 15%~28% / 4%~16.4%/ 2%~6% respectively beam prediction accuracy degradation.
· [One source: Samsung] simulated for BM-Case 2, and filled in the unreported measurements in Set C as (L1-RSRP of the best Rx beam in Set C–14dB) as the inputs for AI/ML.
· with Top-M measurements in Set C or with the reported measurements within a given gap to the best beam in Set C (when Set C is larger than Set B), comparing with the case that using a smaller number of beams in Set B as the fixed pattern, the results show that comparable or better beam prediction accuracy can be achieved with the same reporting overhead or numbers of measurements as of AI inputs but larger measurement overhead. 
· evaluation results [from 1 source: Nokia] show similar Top-1 beam prediction accuracy for the case using the measurements of Top 8 beams of 16 beams in Set C and 64 beams in Set A comparing with using 8 fixed beams in Set B.
· evaluation results [from 1 source: MediaTek] show 16.5% and 43% gain in terms of Top-1 beam prediction accuracy for the case of using the measurements of Top 4 beams of 8 or 16 beams in Set C and 32 beam in Set A respectively comparing with using 4 fixed beams in Set B. 
· evaluation results [from 1 source: Lenovo] show about 8% gain in terms of Top-1 beam prediction accuracy for the case using the measurements of Top 4 beams of 8 beams in Set C and 32 beams in Set A comparing with using 4 fixed beams in Set B.
· evaluation results [from 1 source: Fujitus] show about 12.5% gain in terms of Top-1 beam prediction accuracy for the case using the measurements of Top 4 beams of 8 beams in Set C and 32 beams in Set A comparing with using 4 fixed beams in Set B.
· evaluation results [from 1 source: Interdigital] show about 18% gain in terms of Top-1 beam prediction accuracy for the case using the measurements of Top 8 beams of 16 beams in Set C and 64 beams in Set A comparing with using 4 beams in Set B.
· evaluation results [from 1 source: CEWiT] show similar Top-1 beam prediction accuracy for the case using the measurements of Top 4 beams of 8 beams in Set C and 32 beams in Set A comparing with using 4 fixed beams in Set B
· evaluation results [from 1 source: ZTE] show 17% gain in terms of Top-1 beam prediction accuracy for the case of using the measurements of Top 8 beams of 16 beams in Set C and 64 beams in Set A comparing with using 8 fixed beams in Set B. . 
· evaluation results [from 1 source: CATT] show 12% gain in terms of Top-1 beam prediction accuracy for the case of using the measurements of Top 4 beams of 8 in Set C and 32 beam in Set A comparing with using 4 fixed beams in Set B respectively. 
· The beam prediction accuracy increases with the number of measurements of Set B. 
· AI/ML still can provide better performance (e.g., >30% of Top-1 beam prediction unless otherwise stated) than non-AI baseline option 2 (exhaustive beam sweeping in Set B of beams). 
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed.  
· This observation is based on Set B patterns that were chosen by each company.
· Implicit or explicit information of Tx beam ID and/or Rx beam ID are used as AI/ML model inputs.

Agreement
Observation 4.1.3A in R1-2308321 is confirmed.

Observation
At least for BMCase-1, AI/ML (without considering model switching) has some performance degradation with some unseen scenarios including:
· For DL Tx beam prediction, 
· deployment scenarios: different ISD, UMi/UMa (at least with same down tilt)
· various outdoor/indoor UE distributions
· various UE parameters: different UE codebooks, and different UE antenna array dimensions.
· Note: at least with the measurement from the best Rx beam. 
· For beam pair prediction
· deployment scenarios: different ISD, UMi/UMa (at least with same down tilt) 
· various outdoor/indoor UE distributions
· various UE parameters: when inference using a subset of Rx beams of training.

However, the AI/ML (without considering model switching) has significant performance degradation with some other unseen scenarios, including:
· For DL Tx beam prediction, 
· deployment scenarios: UMi/UMa (at least with the assumption of different ISD, antenna height, down tilt and NLOS probability)
· various gNB setting: different gNB antenna array dimensions, and DL Tx beam codebook
· various Set B patterns
· various Set A patterns
· For beam pair prediction
· various UE parameters: different UE codebooks, and different UE antenna array dimensions
· deployment scenarios: with the assumption of different ISD, antenna height, down tilt and NLOS probability
· various gNB setting: different gNB antenna array dimensions, and DL Tx beam codebook
· various Set B patterns
· various Set A patterns
In order to let AI/ML model see the data from a new setting which causes performance loss, the AI/ML model can be trained with mixed data or finetuned with the data from the new setting to improve the generalization performance. Alternatively, AI/ML model can be trained for different scenarios and rely on model switching based on applicable scenario which would improve generalization performance.

Observation
For BMCase-2, for variable UE mobility, the collected data for training can be mixed and the generalization performance with mixed UE speeds is acceptable. 

Observation
Different location of AI/ML model (e.g., NW side model, or UE side model) may have different generalization requirements:  
For NW side model, 
· generalization performance with various gNB settings and various Set B of beams may not be an issue since the gNB settings are most likely to be fixed or limited to a given gNB (at least seen by AI/ML before)
· for DL Tx beam prediction, generalization performance with various unseen UE parameters is acceptable at least with the measurement from the best or fixed Rx beam. 
· Tx-Rx beam pair prediction, generalization performance with various UE parameters, i.e., different number of beams in a seen UE codebook when inference using a subset of Rx beams of training is acceptable. 
· for Tx-Rx beam pair prediction, the significant generalization performance degradation with unseen various UE parameters (i.e., different UE codebooks, and/or different UE antenna array dimensions) can be improved to achieve less than 5% degradation (2 sources) and 16%~26% degradation (1 source) in terms of Top-1 beam prediction accuracy with the model training with mixed data compared to generalization performance Case 1.
· Note: with same amount of data for training for different scenarios for Case 3
· Alternatively, AI/ML model can be trained for different scenarios and rely on model switching based on applicable scenario which would improve generalization performance.
For UE side model, 
· generalization performance with unseen various UE parameters may not be an issue 
· the significant generalization performance degradation with unseen various gNB setting (i.e., different gNB antenna array dimensions, and/or DL Tx beam codebook) or unseen various Set B of beam(pairs) can be improved to achieve
· (for gNB setting) less than 5% (6 sources), 10%~15% (2 sources), and 2%~32% (1 source) degradation in terms of Top-1 beam prediction accuracy compared with the model training with mixed data to generalization performance Case 1, and 16%~20% (1 source) degradation in terms of Top-1 beam prediction accuracy compared with the model finetune to generalization performance Case 1.
· (for Set B of beam(pairs)) less than 10% (all 7 sources) degradation in terms of Top-1 beam prediction accuracy compared with the model training with mixed data to generalization performance Case 1.
· Note: For gNB setting, generalization performance Case 3 may depend on how different the gNB settings are across training and inference
· Note: with same amount of data for training for different scenarios for Case 3
· Alternatively, AI/ML model can be trained for different scenarios and rely on model switching based on applicable scenario which would improve generalization performance.

Agreement
Observation 4.1.4 in R1-2308585 is confirmed. 

Agreement
Observation 6.1 in R1-2308585 is confirmed 
Note: this is an update of corresponding observation made in previous meeting 

Other aspects on AI/ML for beam management

Conclusion
Regarding data collection for NW-side AI/ML model of BM-Case1 and BM-Case2, the following approaches have been identified by companies for overhead reduction 
· the omission/selection of collected data 
· the compression of collected data
· Note1: For the different purposes of data collection, the overhead reduction mechanisms and corresponding specification impacts may be different.
· Note2: Support of any mechanism(s) (if necessary) for each LCM purpose and the potential spec impact (if any) are separate discussions
· Note 3: UE complexity and power consumption should be considered.

Observation
At least for BM-Case1 with a UE-side AI/ML model, for AI model inference, the legacy TCI state mechanism can be used to perform beam indication of beams

Observation
Regarding data collection for NW-side AI/ML model of BM-Case1 and BM-Case2, the following reporting signaling for beam-specific aspects maybe applicable: 
· L1 signaling to report the collected data 
· Higher-layer signaling to report the collected data 
· At least not applicable to AI/ML model inference
· Note1: higher layer signaling design is up to other WG(s)
· Note2: Whether each signaling applicable to each LCM purpose is a separate discussion
· Note3: The legacy signaling principle (e.g. RSRP reporting for L1) can be re-used

Observation
Regarding the performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case2, the following table is identified
	Alt.1: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy
	Alt.2: Link quality related KPIs, e.g., throughput, L1-RSRP, L1-SINR, hypothetical BLER

	Alt.3: Performance metric based on input/output data distribution of AI/ML
	Alt.4: The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 

	Applicable to all studied AI models 
	Applicable to all studied AI models 
	Applicable to all studied AI models
	May not applicable to some implementation of AI model (e.g., not output of predicted L1-RSRP)

	Reflect the prediction accuracy of AI model

	Reflect the system/link performance
	Reflect the change of the statics of the input/output data 
	Reflect accuracy of the predicted 1-RSRP

	Not reflect the system/link performance directly


	Not reflect the prediction accuracy of AI model directly
	Not reflect the prediction performance of AI model directly

Not reflect the system/link performance directly
	Not reflect the system/link performance directly



Note1: The above analysis shall not give an indication about whether/which metric is supported or specified  
Note2: Monitoring performance of the above alternatives are not touched in the table

Observation
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, consistency / association of Set B beams and Set A beams across training and inference is beneficial from performance perspective.
· Note: Whether specification impact is needed is a separate discussion.


Evaluation on AI/ML for positioning accuracy enhancement

Agreement
Update the RAN1#113 agreement so that the same understanding applies to both Approach 1-A and 2-A:
Agreement (Made in RAN1#113)
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signalling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For both Approach 1-A and 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

Conclusion
For AI/ML based positioning, capture the sampling period used in companies' evaluations in TR 38.843 as follows:
· 16 Sources (Ericsson, NVIDIA, Huawei, vivo, ZTE, China Telecom, Fraunhofer, Nokia, Apple, xiaomi, OPPO, InterDigital, Samsung, MediaTek, CMCC, IIT) used the following sampling period:
· Sampling period = 1/(Nf ×∆f). For FR1, sampling period = 1/(4096×30)=8.14 (ns), where Nf =4096 according to 38.211, and ∆f =30 KHz is subcarrier spacing. 
· 1 Source (CATT) used: sampling period = 4.069 ns

Observation
For direct AI/ML positioning and different drops, evaluation has been performed where the AI/ML model is (a) previously trained for drop A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for drop B with a dataset of sample density x%  N (#samples/m2), (c) then tested under drop B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [6 sources: MediaTek, OPPO, NVIDIA, vivo, CMCC, Qualcomm] when fine-tuning dataset size is x% = 1.3%~2.5% of full training dataset size, the positioning error is (3.15~10.89)  E0,B;
· [6 sources: MediaTek, Huawei, NVIDIA, vivo, CMCC, Qualcomm, Apple] when fine-tuning dataset size is x% = 4.0%~5.0% of full training dataset size, the positioning error is (2.20~8.82)  E0,B;
· [6 sources: MediaTek, OPPO, NVIDIA, vivo, CMCC, Qualcomm, Apple] when fine-tuning dataset size is x% = 6.3%~10.0% of full training dataset size, the positioning error is (1.99~7.21)  E0,B;
· [6 sources: MediaTek, NVIDIA, vivo, CMCC, Qualcomm, Apple] when fine-tuning dataset size is x% = 12.0%~25.0% of full training dataset size, the positioning error is (1.58~5.13)  E0,B; [1 source: ZTE] the positioning error is (10.46)  E0,B;  
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 34.0%~50.0% of full training dataset size, the positioning error is (1.22~2.70)  E0,B; [1 source: ZTE] the positioning error is (8.88)  E0,B;
· [2 sources: ZTE, MediaTek] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (1.00~1.19)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for drop B.

Observation
For direct AI/ML positioning and different drops, evaluation has been performed where the AI/ML model is (a) previously trained for drop A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for drop B with a dataset of sample density x%  N (#samples/m2), (c) then tested under drop A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 2.5%~5.0% of full training dataset size, the positioning error is (3.00~5.76)  E0,A;
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 10.0%~25.0% of full training dataset size, the positioning error is (3.35~5.96)  E0,A;
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 50.0%~100.0% of full training dataset size, the positioning error is (4.50~7.71)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for drop A.

Observation
For direct AI/ML positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [8 sources: MediaTek, Xiaomi, OPPO, NVIDIA, vivo, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 1.3%~2.5% of full training dataset size, the positioning error is ( 1.8~10.18)  E0,B;
· [11 sources: Samsung, MediaTek, Xiaomi, OPPO, Huawei, NVIDIA, vivo, CATT, Ericsson, Apple, Nokia] when fine-tuning dataset size is x% = 4.0%~8.0% of full training dataset size, the positioning error is (1.77~7.05)  E0,B;
· [9 sources: Samsung, MediaTek, Xiaomi, NVIDIA, vivo, CATT, Ericsson, Apple, Nokia] when fine-tuning dataset size is x% = 10.0%~17.0% of full training dataset size, the positioning error is (1.50~5.34)  E0,B; [1 source: ZTE] the positioning error is (14.65)  E0,B;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 20.0%~34.0% of full training dataset size, the positioning error is (1.01~1.75)  E0,B; [1 source: ZTE] the positioning error is (12.23)  E0,B;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.09~1.25)  E0,B;
· [4 sources: ZTE, MediaTek, Ericsson, Nokia] when fine-tuning dataset size is x% = 95%~100.0% of full training dataset size, the positioning error is (0.82~1.84)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter B.

Observation
For direct AI/ML positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [6 sources: MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 2.5% of full training dataset size, the positioning error is (2.24~22.11)  E0,A;
· [7 sources: Samsung, MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = (5.0%~5.6%) of full training dataset size, the positioning error is (2.02~19.49)  E0,A;
· [6 sources: MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = (10.0%~25.0%) of full training dataset size, the positioning error is (1.40~18.65)  E0,A;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.20~10.72)  E0,A;
· [3 sources: MediaTek, Ericsson, Nokia] when fine-tuning dataset size is x% = 95.0%~100.0% of full training dataset size, the positioning error is (2.08~12.58)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter A.

Observation
For direct AI/ML positioning and different network synchronization error, evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = A (ns) with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = B (ns) with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = B (ns) and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: MediaTek, Xiaomi, OPPO, vivo, CATT] when fine-tuning dataset size is x% = (1.3%~2.5%) of full training dataset size, the positioning error is (0.98~5.21)  E0,B;
· [6 sources: MediaTek, Xiaomi, OPPO, vivo, Apple, CATT] when fine-tuning dataset size is x% = (4.0%~8.0%) of full training dataset size, the positioning error is (0.84~10.70)  E0,B; 
· [6 sources: MediaTek, Xiaomi, Huawei, vivo, Apple, CATT] when fine-tuning dataset size is x% = (10.0%~25.0%) of full training dataset size, the positioning error is (0.80~10.38)  E0,B; 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (0.81~1.1)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for network synchronization error = B (ns).

Observation
For direct AI/ML positioning and different network synchronization error, evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = 0 ns with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = 50 ns with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = 0 ns and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: MediaTek, Xiaomi] when fine-tuning dataset size is x% = (2.5%~10.0%) of full training dataset size, the positioning error is (5.08~23.44)  E0,A;
· [1 source: MediaTek] when fine-tuning dataset size is x% = (25.0%~100.0%) of full training dataset size, the positioning error is (2.28~3.92)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for network synchronization error = 0 ns.

Observation
For direct AI/ML positioning and different UE timing error, evaluation has been performed where the AI/ML model is (a) previously trained without UE timing error with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning with UE timing error with a dataset of sample density x%  N (#samples/m2), (c) then tested with UE timing error and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: OPPO, Huawei] when fine-tuning dataset size is x% = 1.3%~20.0% of full training dataset size, the positioning error is (0.51~2.53)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for the case with UE timing error.

Observation 
For direct AI/ML positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF scenario B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: Samsung, MediaTek, vivo, CATT, Apple] when fine-tuning dataset size is x% = (2.0%~5.6%) of full training dataset size, the positioning error is (0.5~16.67)  E0,B;
· [5 sources: Samsung, MediaTek, vivo, CATT, Apple] when fine-tuning dataset size is x% = (8.0%~15.0%) of full training dataset size, the positioning error is  (0.4~12.6)  E0,B;
· [2 sources: MediaTek, CATT] when fine-tuning dataset size is x% = 25.0% of full training dataset size, the positioning error is (1.60~1.67)  E0,B; 
· [2 sources: MediaTek, CATT] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (0.92~1.41)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for InF scenario B.

Observation
For direct AI/ML positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF scenario A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [3 sources: Samsung, MediaTek, CATT] when fine-tuning dataset size is x% = (2.5%~10.0%) of full training dataset size, the positioning error is (2.28~30.2)  E0,A;
· [2 sources: MediaTek, CATT] when fine-tuning dataset size is x% = (25.0%~100.0%) of full training dataset size, the positioning error is (1.7~9.24)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for InF scenario A.

Observation
For direct AI/ML positioning and different SNR value (dB), evaluation has been performed where the AI/ML model is (a) previously trained for SNR value A (dB) with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for SNR value B (dB) with a dataset of sample density x%  N (#samples/m2), (c) then tested under SNR value B (dB) and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: Samsung] when fine-tuning dataset size is x% = (5.6%~11.1%) of full training dataset size, the positioning error is (1.60~1.90)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for SNR value B (dB).

Observation
For direct AI/ML positioning and different time varying assumptions, evaluation has been performed where the AI/ML model is (a) previously trained for the scenario without time varying change with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for the scenario with time varying change with a dataset of sample density x%  N (#samples/m2), (c) then tested under the scenario with time varying change and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (3.7%~22.0%) of full training dataset size, the positioning error is (1.68~3.49)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for the scenario with time varying change.

Observation
For direct AI/ML positioning and different channel estimation error, evaluation has been performed where the AI/ML model is (a) previously trained for channel estimation error = 20 dB with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for channel estimation error = 0 dB with a dataset of sample density x%  N (#samples/m2), (c) then tested under channel estimation error = 0 dB and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (2.5%~25.0%) of full training dataset size, the positioning error is (1.50~2.79)  E0,B;
· [1 source: MediaTek] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (0.96~1.17)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for channel estimation error = 0 dB.

Observation
For direct AI/ML positioning and different channel estimation error, evaluation has been performed where the AI/ML model is (a) previously trained for channel estimation error = 20 dB with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for channel estimation error = 0 dB with a dataset of sample density x%  N (#samples/m2), (c) then tested under channel estimation error = 20 dB and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (2.5%~25.0%) of full training dataset size, the positioning error is (4.22~5.95)  E0,A;
· [1 source: MediaTek] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (3.08~3.94)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for channel estimation error = 20 dB.

Observation
For AI/ML assisted positioning with timing information as model output and for different drops, evaluation has been performed where the AI/ML model is (a) previously trained for drop A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for drop B with a dataset of sample density x%  N (#samples/m2), (c) then tested under drop B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: vivo, Apple] when fine-tuning dataset size is x% = (2.0%~10.0%) of full training dataset size, the positioning error is (1.27~7.68)  E0,B;
· [2 sources: ZTE, vivo] when fine-tuning dataset size is x% = (12.0%~34.0%) of full training dataset size, the positioning error is (5.59~12.88)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for drop B.

Observation
For AI/ML assisted positioning with timing information as model output and for different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: MediaTek, Xiaomi, vivo, CATT, Ericsson] when fine-tuning dataset size is x% = (2.0%~2.5%) of full training dataset size, the positioning error is (1.47~5.88)  E0,B;
· [6 sources: MediaTek, Xiaomi, vivo, CATT, Ericsson, Apple] when fine-tuning dataset size is x% = (4.0%~5.0%) of full training dataset size, the positioning error is (1.39~4.42)  E0,B;
· [7 sources: MediaTek, Xiaomi, vivo, CATT, Ericsson, Apple, Nokia] when fine-tuning dataset size is x% = (8.0%~12.0%) of full training dataset size, the positioning error is (1.34~3.93)  E0,B; 
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 25.0% of full training dataset size, the positioning error is (1.33~1.91)  E0,B; 
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.15~1.33)  E0,B;
· [2 sources: MediaTek, Ericsson] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (0.89~1.15)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter B.

Observation
For AI/ML assisted positioning with timing information as model output and for different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [4 sources: MediaTek, Xiaomi, CATT, Ericsson] when fine-tuning dataset size is x% = (2.5%~5.0%) of full training dataset size, the positioning error is (1.47~12.94)  E0,A;
· [5 sources: MediaTek, Xiaomi, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 10.0% of full training dataset size, the positioning error is (1.32~11.52)  E0,A;
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 25.0% of full training dataset size, the positioning error is (1.22~7.65)  E0,A;
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.2~5.86)  E0,A;
· [2 sources: MediaTek, Ericsson] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (2.64~4.66)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for the clutter parameter A.

Observation
For AI/ML assisted positioning and different network synchronization error, evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error A (ns) with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error B (ns) with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error B (ns) and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: MediaTek, Xiaomi, vivo, Apple, CATT] when fine-tuning dataset size is x% = 2.0%~5.0% of full training dataset size, the positioning error is (1.28~5.44)  E0,B;
· [5 sources: MediaTek, Xiaomi, vivo, Apple, CATT] when fine-tuning dataset size is x% = 8.0%~25.0% of full training dataset size, the positioning error is (1.10~4.07)  E0,B;
· [1 source: MediaTek] when fine-tuning dataset size is x% = 50.0%~100.0% of full training dataset size, the positioning error is (1.01~1.47)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for network synchronization error B (ns).

Observation 
For AI/ML assisted positioning and different network synchronization error, 
· evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = 0 ns with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = 50 ns with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = 0 ns and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, denoting  (meters) as the full training accuracy at CDF=90% for network synchronization error = 0 ns,
· [2 sources: MediaTek, Xiaomi] when fine-tuning dataset size is x% = (2.5%~100.0%) of full training dataset size, the positioning error is (3.71~5.97)  E0,A;
· evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = 50 ns with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = 0 ns with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = 50 ns and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, denoting  (meters) as the full training accuracy at CDF=90% for network synchronization error = 50 ns,
· [1 source: MediaTek] when fine-tuning dataset size is x% = (2.5%~100.0%) of full training dataset size, the positioning error is ( 1.15~2.23)  E0,A;

Observation
For AI/ML assisted positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF scenario B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [3 sources: vivo, CATT, Apple] when fine-tuning dataset size is x% = (2.0%~12.0%) of full training dataset size, the positioning error is (1.20~6.0)  E0,B;
· [1 source: CATT] when fine-tuning dataset size is x% = 25.0%~50.0% of full training dataset size, the positioning error is (2.55~2.91)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for InF scenario B.

Observation
For AI/ML assisted positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF-DH{60%,6m,2m} with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF-SH{20%,2m,10m} with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF-DH{60%,6m,2m} and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: CATT] when fine-tuning dataset size is x% = 2.5%-50.0% of full training dataset size, the positioning error is (2.53~3.44)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for InF-DH{60%,6m,2m}.

Observation 
For direct AI/ML positioning, evaluation results show that: 
· Fine-tuning/re-training a previous model with dataset of the new deployment scenario improves the model performance for the new deployment scenario. For details on the amount of improvement, see other observations.
· After fine-tuning/re-training a previous model with dataset of the new deployment scenario, the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.
· Examples of the deployment scenario include: different drops, different clutter parameter, different InF scenarios

Observation
For direct AI/ML positioning, 
· if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the similar performance for the new deployment scenario.
· If the new deployment scenario is NOT significantly different from the previous deployment scenario the model was trained for (e.g., 2ns difference in network synchronization error between the previous and the new deployment scenario), fine-tuning a previous model requires a small (e.g., x%=10%) training dataset size as compared to training the model from scratch, in order to achieve the similar performance for the new deployment scenario.

Agreement
For evaluation of AI/ML based positioning, when time domain samples are used as model input and sub-sampling is applied, the selection of N't measurements is based on the strongest power, unless explicitly stated otherwise. When sub-sampling is applied the N't measurement are not necessarily consecutive in time.
· Training dataset and test dataset use the same measurement selection method (e.g., strongest power) unless explicitly stated otherwise.
· Other selection methodologies for N't measurements are also evaluated, and are not precluded.

Agreement
For evaluation of AI/ML based positioning, when timing information is included in model input (e.g., in CIR/PDP/DP), training dataset and test dataset use the same timing format (i.e., both are absolute time, or both are relative time) unless explicitly stated otherwise.

Observation
For evaluation of AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of measurements where each measurement contains the information of: (a) delay, (b) power and (c) phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of measurements where each measurement contains the information of: (a) delay and (b) power.
· DP has the smallest measurement size, where DP is composed of a list of measurements where each measurement contains the information of: (a) delay.
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of active TRPs that provide measurements for the positioning.
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N't (N't < Nt) measurements are selected as model input, measurement size for model input increases (approximately) linearly with N't; 
· For model input type CIR and PDP, if the full set of Nt measurements in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt;
· Note: if DP is used as model input, DP does not use full set of of Nt measurements in time domain (i.e., N't < Nt always).
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference, data collection, and monitoring.
· Note: There are trade-offs between measurement size / signalling overhead and positioning accuracy when using different sets of parameters (N'TRP, Nt, N't, Nport).

Observation 
For AI/ML assisted positioning with LOS/NLOS indicator as model output and for different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter B and the LOS/NLOS indication accuracy is E (using F1-score). Evaluation results show that, 
· [1 source: Nokia] when fine-tuning dataset size is x% = 10.0% of full training dataset size, the accuracy (using F1-score) of LOS/NLOS indicator is (0.56~0.974)  E0,B;
Here  is the full training accuracy (using F1-score) for the clutter parameter B.

Observation 
For AI/ML assisted positioning with LOS/NLOS indicator as model output and for different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter A and the LOS/NLOS indication accuracy is E (using F1-score). Evaluation results show that, 
· [1 source: Nokia] when fine-tuning dataset size is x% = 10.0% of full training dataset size, the accuracy (using F1-score) of LOS/NLOS indicator is (0.09~0.24)  E0,A;
Here  is the full training accuracy (using F1-score) for the clutter parameter A.

Observation 
Based on evaluation results from [3 sources: Ericsson, MediaTek, Nokia], for AI/ML assisted positioning where the model output includes the LOS/NLOS indicator, when the model is trained with dataset containing random LOS/NLOS label error, the models have no or minor degradation for LOS/NLOS identification accuracy up to at least m%=20% and at least n%=20%. When the training dataset has up to m%=20% and n%=20%, evaluation results show that the LOS/NLOS identification accuracy is PlablErr = PnoLablErr – d (percentage), where d is in the range of (1.2%~3.1%).
· PnoLablErr (percentage) is the LOS/NLOS identification accuracy when m%=0% and n%=0%;
· m%=FN/NLOS is false negative rate of the training data label, where FN (False Negative) is the number of actual LOS links which are incorrectly labelled as NLOS, and NLOS is the total number of actual LOS links; 
n%=FP/NNLOS is the false positive rate of the training data label, FP (False Positive) is the number of actual NLOS links which are incorrectly labelled as LOS, and NNLOS is the total number of actual NLOS links.

Observation
Based on evaluation results by [8 sources: vivo, xiaomi, Ericsson, MediaTek, Qualcomm, CATT, Nokia, InterDigital], for TRP reduction of direct AI/ML positioning, approaches supporting dynamic TRP pattern can achieve the horizontal positioning accuracy Edynamic = (0.80~2.15)  Efixed (meters), when other design parameters are held the same, where:
· Edynamic (meters) is the horizontal positioning accuracy at CDF=90% for approaches supporting dynamic TRP pattern (i.e., Approach 1-B and 2-B);
· Efixed (meters) is the horizontal positioning accuracy at CDF=90% for approaches supporting fixed TRP pattern (i.e., Approach 1-A and 2-A);

Observation
Based on evaluation results by [8 sources: vivo, xiaomi, Ericsson, MediaTek, Qualcomm, CATT, Nokia, InterDigital], for TRP reduction of direct AI/ML positioning, Approach 1-A and 2-A achieve similar performance. The horizontal positioning accuracy E2A = (0.87~1.32)  E1A (meters), when other design parameters are held the same, where:
· E1A (meters) is the horizontal positioning accuracy at CDF=90% for Approach 1-A;
· E2A (meters) is the horizontal positioning accuracy at CDF=90% for Approach 2-A;

Note: Add IIT Madras as one of the sources

Observation
Based on evaluation results by [11 sources: Ericsson, vivo, xiaomi, MediaTek, Qualcomm, China Telecom, OPPO, CMCC, CATT, Huawei, InterDigital], for TRP reduction of direct AI/ML positioning, the positioning accuracy degrades as the number of active TRPs are reduced from 18 TRPs to 3 TRPs. The degradation increases as the number of active TRPs decreases.
· When the number of active TRP is reduced from NTP =18 to N'TP =12~8, the average horizontal positioning accuracy E is in the range of E = (1.48~1.95)  E18TRP;
· When the number of active TRP is reduced from NTP =18 to N'TP = 6~5, the average horizontal positioning accuracy E is in the range of E = (2.35~3.04)  E18TRP;
· When the number of active TRP is reduced from NTP =18 to N'TP = 4~3, the average horizontal positioning accuracy E is in the range of E = (2.13~5.11)  E18TRP;
Here E (meters) is the horizontal positioning accuracy at CDF=90% with N'TP active TRPs, E18TRP (meters) is the horizontal positioning accuracy at CDF=90% with NTP =18 active TRPs. 
Note: some results from [2 sources: xiaomin, CATT] show E > 11  E18TRP for N'TP=9 and 6 when using Approach 2-B.
Note: Add IIT Madras as one the sources

Observation
Based on evaluation results by [2 sources: Ericsson, CATT], for TRP reduction of AI/ML assisted positioning with multi-TRP construction, approaches supporting dynamic TRP pattern can achieve the horizontal positioning accuracy Edynamic = (1.03~1.74)  Efixed (meters), when other design parameters are held the same, where:
· Edynamic (meters) is the horizontal positioning accuracy at CDF=90% for approaches supporting dynamic TRP pattern (i.e., Approach 1-B and 2-B);
· Efixed (meters) is the horizontal positioning accuracy at CDF=90% for approaches supporting fixed TRP pattern (i.e., Approach 1-A and 2-A);
Note: evaluation results of [1 source: MediaTek] show Edynamic = (5.66~8.12)  Efixed when the number of active TRP is reduced from NTP =18 to N'TP =9 or 4.

Observation
Based on evaluation results by [2 sources: Ericsson, CATT], for TRP reduction of AI/ML assisted positioning, Approach 1-A and 2-A achieve similar performance. The horizontal positioning accuracy E2A = (1~1.47)  E1A (meters), when other design parameters are held the same, where:
· E1A (meters) is the horizontal positioning accuracy at CDF=90% for Approach 1-A;
· E2A (meters) is the horizontal positioning accuracy at CDF=90% for Approach 2-A;

Observation
Based on evaluation results by [4 sources: Ericsson, CATT, vivo, MediaTek], for TRP reduction of AI/ML assisted positioning, the positioning accuracy degrades as the number of active TRPs are reduced from 18 TRPs to 3 TRPs. The degradation increases as the number of active TRPs decreases.
· When the number of active TRP is reduced from NTP =18 to N'TP =9, the average horizontal positioning accuracy is E = 2.01  E18TRP;
· When the number of active TRP is reduced from NTP =18 to N'TP = 6, the average horizontal positioning accuracy is E = 3.04  E18TRP;
· When the number of active TRP is reduced from NTP =18 to N'TP = 3~4, the average horizontal positioning accuracy is E = (5.01~6.53)  E18TRP;
Here E (meters) is the horizontal positioning accuracy at CDF=90% with N'TP active TRPs, E18TRP (meters) is the horizontal positioning accuracy at CDF=90% with NTP =18 active TRPs.
Note: some results from [1 source: MediaTek] show E > 7.54  E18TRP for N'TP=9 and E > 42.76  E18TRP for N'TP=6 when using Approach 1-B/2-B.

Observation (Updated Observation made in RAN1#112bis)
For direct AI/ML positioning, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 10ns) is 0.52~0.83 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 0ns) is 0.50~0.82 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (0ns, 10ns) is 1.17~9.5 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#112bis show the positioning error of (0ns, 50ns) is 10~40 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation (Updated Observation made in RAN1#113)
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.64~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.50~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~4.40 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation (Updated Observation made in RAN1#113)
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~1.00 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.99 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~5.43 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: identification of the active TRPs is beneficial for Approach 2-B. Otherwise, the model suffers from poor performance in terms of positioning accuracy.
· For example, evaluation results from [4 sources: vivo, xiaomi, CATT, Nokia] show that the horizontal positioning accuracy is greater than 10 m if TRP identification is not included as model input. 

Observation (Updated Observation made in RAN1#113)
For direct AI/ML positioning, the evaluation of positioning accuracy at model inference is affected by the type of model input and AI/ML complexity. For a given AI/ML model design, there is a tradeoff between model input, AI/ML complexity (model complexity and computational complexity), and positioning accuracy. Evaluation results show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· 8 sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112, InterDigital R1-2305123, Qualcomm R1-2307920, Fraunhofer R1-2307235) showed evaluation results where the positioning error of PDP as model input is 1.06 ~ 1.62 times the positioning error of CIR as model input.
· 5 sources (MediaTek R1-2305659, Apple R1-2306112, Huawei R1-2305332, Nokia R1-2300608, Qualcomm R1-2307920) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· 4 sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112, Huawei R1-2306515) showed evaluation results where the positioning error of DP as model input is 1.18 ~ 1.96 times the positioning error of CIR as model input.
· 2 sources (Apple R1-2306112, Qualcomm R1-2305332) showed evaluation results where the positioning error of DP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: For Apple R1-2306112, the difference in relative performance is due to the complexity of the AI/ML model. 
· Note: For QC R1-2307920, the difference in relative performance is due to the parameter settings. 
· Note: the variation in the positioning accuracy depends on each company's simulation assumption (e.g., AI/ML complexity).
· Note: Add CATT as one of the sources.

Observation
Based on evaluation results of [3 sources: Ericsson, Apple, Qualcomm], direct AI/ML positioning and AI/ML assisted positioning can achieve comparable performance when simulation assumptions and parameters (e.g., clutter parameter, model input type, model input size, training dataset size, model complexity) are held the same, Edirect = (0.57~1.14)  Eassisted, where
· Eassisted (meters) is the horizontal positioning accuracy at CDF=90% of AI/ML assisted positioning with multi-TRP construction with timing information as model output,
· Edirect (meters) is the horizontal positioning accuracy at CDF=90% of direct AI/ML positioning.

Other aspects on AI/ML for positioning accuracy enhancement

Agreement
Regarding data collection for AI/ML based positioning, at least the following information of data with potential specification impact are identified.
· Ground truth label
· Report from the label data generation entity
· Measurement (corresponding to model input)
· Report from the measurement data generation entity
· Quality indicator
· For and/or associated with ground truth label and/or measurement 
· Report from the label and/or the measurement data generation entity and/or as request from a different (e.g., data collection, etc.) entity
· RS configuration(s)
· At least for deriving measurement
· Request from data generation entity (UE/PRU/TRP) to LMF and/or as LMF assistance signaling to UE/PRU/TRP
· Note1: there may not be any enhancements on top of existing RS configuration(s) or any new RS configuration(s) for positioning measurement
· Time stamp
· At least for and/or associated with collected data 
· Separate time stamp for measurement and ground truth label, when measurement and ground truth label are generated by different entities
· Report from data generation entity together with collected data and/or as LMF assistance signaling
· Note2: there may not be any enhancements on top of time stamp in existing positioning measurement report or any new time stamp report for positioning measurement
· Note3: whether and how the above information can be applied to different aspects of AI/ML LCM (e.g., training, updating, monitoring, etc.) can be discussed
· Note4: transfer of data from the entity generating data to a different entity is not precluded from RAN1 perspective
· Note5: If any specification impact is identified, the impact may be different between positioning use cases (Case 1/2a/2b/3a/3b).
· Note6: the necessity of other information (e.g., scenario identifier. LOS/NLOS condition, timing error, etc.) for data collection can be discussed
Corresponding Working Assumption does not need to be confirmed

Observation
For direct AI/ML positioning with LMF-side model (Case 2b and 3b), the following types of measurement report are identified if beneficial and necessary (e.g., tradeoff positioning accuracy requirement and signaling overhead), 
· take into account that existing Rel-16/17 measurement and/or expected Rel-18 measurement report may contain timing, power and phase information of the channel response
· measurement report, which contains timing, power and phase information of the channel response
· At least for Case 3b
· Measurement report, which contains timing and power information of the channel response
· Measurement report, which contains timing information of the channel response
· Note: combinations of multiple measurement reports and/or post processing of the measurement reports are not precluded

Observation
Regarding monitoring for AI/ML based positioning, at least the following type of monitoring metrics have been studied 
· For model monitoring based on provided ground truth label (or its approximation), monitoring metric(s) is(are) statistics of the difference between model output and provided ground truth label
· Examples used in contributions: mean, standard deviation, instantaneous value, threshold of ground truth label (or its approximation)
· For model monitoring without using ground truth label
· Statistics of measurement and/or model input compared to the statistics associated with the training data
· Examples used in contributions: norm of model input, mean, min/max of some statistics related to measurement and/or model input, median or data temporal/spatial distribution
· Statistics of model output compared to the statistics associated with the training data and/or its own previous inference output
· Examples used in contributions: mean, standard deviation, variance, etc. of some statistics related to model output
· Note: there’s no extensive evaluation results on model monitoring metric comparison
· Note2: there’s no consensus during SI on whether monitoring metric will have spec impact or not

Observation
For direct AI/ML positioning with LMF-side model (Case 2b and 3b), the following types of measurement report with potential specification impact have been studied for AI/ML based positioning accuracy enhancement
· Measurement report, which contains timing, power and phase information of the channel response
· If support, potential specification impact including new measurement report or enhancement to existing measurement report
· E.g, truncation, [feature extraction,] alignment of sample/path determination
· Measurement report, which contains timing and power information of the channel response
· If support, potential specification impact including new measurement report or enhancement to existing measurement report
· E.g., truncation, [feature extraction,] alignment of sample/path determination
· Measurement report, which contains timing information of the channel response
· If support, potential specification impact including enhancement to existing measurement report
· E.g., alignment of sample/path determination


2.1.2	Remaining Open issues
· Complete General Framework (agenda 9.2.1):
· Further discussion and conclusion on functionality-based LCM and model-ID-based LCM, including model identification procedures
· Further discussion and conclusion on model delivery/transfer analysis
· Finalize CSI work (agenda 9.2.2.2):
· Two-sided model training type pro/cons analysis
· Data collection and performance  monitoring for both, one-sided and two-sided models, including ground-truth related and dataset delivery related aspects 
· Inference-related framework, e.g., CSI configuration, payload related aspects, quantization
· Two-sided model pairing mechanism
· Close the loop with RAN2 and RAN4 on any pertinent item:
· Finalize RAN2 LS reply (Part 2)
· Finalize TR: 
· Get notation uniform across use cases. 
· General Framework finalization incl. applicability of some of the agreements made for specific use cases to the general framework. 
· General clean-up, e.g., stating conclusion or lack of conclusion on a number of study areas.
· Conclusions and recommendations

2.2	RAN2
2.2.1	Agreements
2.2.1.1	Architecture and General
2.2.1.1.1	Entity-to-function mapping
The following Tables have been agreed for their respective use cases. It is though expected that FFS items for which support is not increased will be later removed.
For CSI feedback enhancement:
Table 1 can be used as starting point for discussion on mapping of AI/ML functions to physical entities for CSI compression with two-sided model.
Table 1: The mapping of functions to physical entities for CSI compression with two-sided model
	
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training(offline training)
	gNB, OAM, OTT server, UE, [FFS: CN]

	b)
	Model transfer/delivery
	For training Type 1: gNB->UE, or OAM->gNB&UE, or OTT server->gNB&UE, or UE->gNB, [FFS: CN->gNB&UE]
For training Type 3: 
· For UE part of two-sided model: OTT server->UE, [FFS: CN->UE]; 
· For NW part of two-sided model: OAM->gNB, [FFS: CN->gNB]; 

	c)
	Inference
	NW part of two-sided model: gNB
UE part of two-sided model: UE

	d)
	Model/functionality monitoring
	NW-side: NW monitors the performance
UE-side: UE monitors the performance and may report to NW

	e)
	Model/functionality control (selection, (de)activation, switching, updating, fallback)
	gNB, [FFS: UE]


Note 1: For a), only data collection part may be further discussed, how to perform the model training is up to implementation.
Note 2: For b), no model transfer/delivery is expected if the entity for model training and model inference is the same one.
Note 3: Whether/how OAM is to be involved may need to consult RAN3, SA5. 
Note 4: Whether/how CN is to be involved may need to consult RAN3, SA2.

For beam management:
Table 2 can be used as starting point for discussion on mapping of AI/ML functions to physical entities for beam management with UE-side model.
Table 2: The mapping of AI/ML functions to physical entities for beam management with UE-side model
	
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training(offline training)
	UE-side OTT server, UE, [FFS: gNB, OAM, CN] 

	b)
	Model transfer/delivery
	UE-side OTT server->UE, [FFS: gNB->UE, or OAM->UE, or CN->UE] 

	c)
	Inference
	UE

	d)
	Model/functionality monitoring
	UE (UE monitors the performance, and may report to gNB), gNB (gNB monitors the performance)

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	gNB if monitoring resides at UE or gNB, 
UE if monitoring resides at UE


Note 1: For a), only data collection part may be further discussed, how to perform the model training is up to implementation.
Note 2: For b), no model transfer/delivery is expected if the entity for model training and model inference is the same one.
Note 3: Whether/how OAM is to be involved may need to consult RAN3, SA5.
Note 4: Whether/how CN is to be involved may need to consult RAN3, SA2.

Table 3 can be used as starting point for discussion on mapping of AI/ML functions to physical entities for beam management with NW-side model.
Table 3: The mapping of functions to physical entities for beam management with NW-side model
	
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training (offline training)
	gNB, OAM, [FFS: CN, OTT server]

	b)
	Model transfer/delivery
	OAM->gNB, [FFS: CN->gNB, OTT server->gNB]

	c)
	Inference
	gNB

	d)
	Model/functionality monitoring
	gNB

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	gNB


Note 1: For a), only data collection part may be further discussed, how to perform the model training is up to implementation.
Note 2: For b), no model transfer/delivery is expected if the entity for model training and model inference is the same one.
Note 3: Whether/how OAM is to be involved may need to consult RAN3, SA5.
Note 4: Whether/how CN is to be involved may need to consult RAN3, SA2.

For Positioning accuracy enhancement:
Table 4 can be used as starting point for discussion on mapping of AI/ML functions to physical entities for positioning with UE-side model (case 1 and 2a).
Table 4: The mapping of functions to physical entities for positioning with UE-side model (case 1 and 2a) 
	Use case
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training (offline training)
	UE-side OTT server, UE, [FFS: LMF, OAM, CN]

	b)
	Model transfer/delivery
	UE-side OTT server->UE, [FFS: LMF->UE, OAM->UE, CN->UE]

	c)
	Inference
	UE

	d)
	Model/functionality monitoring
	UE, LMF

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	UE if monitoring resides at UE, 
LMF if monitoring resides at UE or LMF


Note 1: For a), only data collection part may be further discussed, how to perform the model training is up to implementation.
Note 2: For b), no model transfer/delivery is expected if the entity for model training and model inference is the same one.
Note 3: Whether/how OAM is to be involved may need to consult RAN3, SA5.
Note 4: Whether/how CN/LMF is to be involved may need to consult RAN3, SA2.

Table 5 can be used as starting point for discussion on mapping of AI/ML functions to physical entities for positioning with LMF-side model (case 2b and 3b).
Table 5: The mapping of functions to entities for positioning with LMF-side model (case 2b and 3b) 
	
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training (offline training)
	LMF

	b)
	Model transfer/delivery
	N/A

	c)
	Inference
	LMF

	d)
	Model/functionality monitoring
	LMF

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	LMF


Note 1: For a), only data collection part may be further discussed, how to perform the model training is up to implementation.
Note 2: Whether/how LMF is to be involved may need to consult RAN3, SA2.

Table 6 can be used as starting point for discussion on mapping of AI/ML functions to physical entities for positioning with gNB-side model (case 3a).
Table 6: The mapping of AI/ML functions to entities for positioning with gNB-side model (case 3a) 
	Use case
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training (offline training)
	gNB, OAM, [FFS: LMF]

	b)
	Model transfer/delivery
	OAM->gNB, [FFS: LMF->gNB]

	c)
	Inference
	gNB

	d)
	Model/functionality monitoring
	gNB, [FFS: LMF]

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	gNB, [FFS: LMF]


Note 1: For a), only data collection part may be further discussed, how to perform the model training is up to implementation.
Note 2: For b), no model transfer/delivery is expected if the entity for model training and model inference is the same one.
Note 3: Whether/how OAM is to be involved may need to consult RAN3, SA5.
Note 4: Whether/how LMF is to be involved may need to consult RAN3, SA2.

2.2.1.1.2	UE capability and applicability conditions
The following is agreed:
AIML algorithm for a certain use case may be tailored towards and applicable to certain scenarios/location/configuration/deployment etc. AIML algorithm may be updated, e.g. by model change (these are observations): 
RAN2 assumes that for UE-side AIML, the UE may inform the RAN about applicability conditions of AIML algorithm(s) available to the UE, to support RAN control (e.g. activation/deactivation/switching). 
The procedure for UE reporting of AIML applicability conditions is FFS. 

2.2.1.2	Data Collection
[bookmark: OLE_LINK183][bookmark: _Hlk144471253][bookmark: OLE_LINK181][bookmark: OLE_LINK182]As captured in the Chair’s Notes, the following proposals (from R2-2308898) seem to have aspects that need further discussion:
Chair: The proposals below are almost agreeable. It is a narrowing proposal (more specific than the physical entity mapping agreed) and is a reasonable baseline for further work:
Proposal 1	For training of NW-side models, RAN2 prioritizes discussion on the suitability of data collection frameworks for gNB-centric data collection.
Proposal 2	For training of NW-side models, the gNB-centric data collection implies that the gNB configures the UE to transfer data and initiates/terminates a data transferring session.
Proposal 3	For training of NW-side models, RAN2 evaluates the suitability of data collection frameworks for OAM-centric data collection
Proposal 4	For training of NW-side models, the OAM-centric data collection implies that the OAM initiates and terminates the data collection from the UE.
Proposal 5	If feasibility of OAM-centric data collection for NW-side models is assessed by RAN1, RAN2 considers enhancements to logged MDT, such as logging measurements in RRC Connected mode.
Proposal 6	For gNB-centric data collection for NW-side model, RAN2 to study a L3 data collection framework that allows the UE to measure and store a set of measurements (details up to RAN1) to be reported to the gNB upon request.
Proposal 7	For NW-side performance monitoring, RAN2 waits for RAN1 input on the need to enhance the L1 reporting configuration or the L3 RRC measurement configuration and reporting.
FFS Proposal 8	For UE-side model training, RAN2 considers (subject to RAN1 progress), the UE Assistance Information framework as a tool for the UE to request aid from the network in training at the UE.
Proposal 9	For UE-side performance monitoring at NW side, RAN2 to focus on impacts in layer-2, or layer-3 (possibly including some layer-1 related measurements) for reporting of the outcome of performance monitoring (e.g. performance monitoring results, (non)applicability of AIML functionality). Layer-1 details are left to RAN1.
FFS Proposal 10	The need of any enhancements to non-RAN data collection frameworks for UE-side models should be studied in SA WGs.
Proposal 11	For CSI/beam management use cases, RAN2 to agree to Table 1 in Annex A which maps LCM functions to the various existing data collection frameworks considering; the sidedness of the model, and the entity terminating/initiating the data collection.

2.2.1.3	Model Transfer
The following is agreed:
Model transfer/delivery can be initiated in following two ways:
Reactive model transfer/delivery: an AI/ML model is downloaded when it is needed due to changes in scenarios, configurations, or sites.
FFS: Proactive model transfer/delivery: AI/ML models are pre-download to UE, and a model switch is performed when changes in scenarios, configurations, or sites occur.

2.2.2	Remaining Open issues 
· TR drafting:
· A first draft was submitted to RAN2#123. RAN2 plans to keep progressing on the text by including recent agreements and discussion points. Endorsement will follow later.
· Applicability Reporting:
· Study procedures for the UE to report AIML applicability based on recent RAN1 agreements
· Consider any need to draw inspiration from existing RAN2 procedures, or eventually analyze which kind of new solutions might be needed on top of the existing ones
· Data Collection:
· A long email discussion will be organized to analyze agreeable points from the Proposals in R2-2308898.
· RAN2 waits for RAN1’s LS Reply
· When received: incorporate input into the discussion and TR content 
· Model Transfer:
· Address RAN1’s progress and agreements while trying to agree on a way forward in RAN2 with regard to e.g., identified solutions, scope of the discussion, etc…
· Control and LCM
· Incorporate the latest RAN1 agreements into the (potential) development of control solutions and the drafting of the TR
 	
2.3	RAN3
2.3.1	Agreements
2.3.2	Remaining Open issues
2.4	RAN4
2.4.1	Agreements
2.4.1.1	RAN4#108
Issue 1-9: Encoder/decoder terminology for two sided model 
Agreement:
· Only use test encoder/decoder, no need for reference encoder/decoder
Issue 1-10: TR Update comments
Agreements:
· Comments to provide comments on the TP proposed by CAICT by the next meeting
· Further discuss the TR structure based on RAN4 progress
Issue 1-11: Terminology update 
Agreement:
· Follow RAN1 terminology
· Proposed changes in R4-2312741 are endorsed
Issue 1-4: AI/ML model complexity 
Agreement:
· The practical processing capability and implementation complexity for device under test should be assumed when specifying RAN4 requirements.
· The UE capability may be needed to handle different complexity for one side and two-side models.
· The complexity of UE should also be studied when making assumption on BS side model, and vice versa.
Issue 2-2: Metrics/KPIs for Beam prediction requirements/tests 
Agreement:
· Metrics/KPIs for Beam prediction requirements/tests include
· Option 1: RSRP accuracy
· Option 2: beam prediction accuracy :Top-1(%), Top-K(%)
· Option 3: The successful rate for the correct prediction which is considered as maximum RSRP among top-K predicted beams is larger than the RSRP of the strongest beam – x dB, 
· Related measurement accuracy can be considered to determine x
· Option 4: overhead/latency reduction 
· Option 5: combinations of above options
· The overhead/latency reduction should be considered for the requirements as the side condition
Issue 3-3: Encoder/decoder for 2-sided model
Agreement:
· Down-select option 6.
2.4.2	Remaining Open issues
· General aspects
· Requirements for data(training/inference/monitoring) collection
· Handling of AI/ML relative to legacy requirements
· Considerations on AI/ML model complexity
· Requirements definition for a feature/functionality vs a specific model
· Requirements for LCM
· Performance monitoring tests
· RAN4 testing goals
· Generalization aspects: for one-sided model, for two-sided model, testing options
· Specific issues related to use cases 
· Metrics for CSI requirements/tests
· Beam prediction requirements/metrics/KPIs
· Positioning KPIs/metrics
· Performance degradation and robustness/generalization
· Model monitoring KPIs/testing
· Requirements for model transfer/delivery 
· Interoperability and testability aspect
· Reference block diagrams for 1 sided model and 2-sided model 
· Encoder/decoder options for 2-sided model
· Testing for monitoring/control/model update
· Interoperability and testing
· Delay considerations/requirements
· Test datasets
· Functional tests for LCM
2.5	RAN5
2.5.1	Agreements
2.5.2	Remaining Open issues
2.5.3	Remaining Open issues with cross-WG dependencies
2.6	RAN6
2.6.1	Agreements
2.6.2	Remaining Open issues

3.	Detailed progress in SA/CT WGs since last TSG meeting (for all involved WGs)
NOTE: This section only needs to be filled in for WI/SIs where there is a corresponding relevant WI/SI in SA/CT. 
3.1	SAx/CTs
3.1.1	Agreements with cross-TSG impacts
3.1.2	Remaining Open issues with cross-TSG impacts
NOTE: This section should also flag any critical dependencies that need TSG attention. 
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R2-2307813	Remaining issues on Model ID and AI/ML architecture	Apple	discussion	FS_NR_AIML_air
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R2-2308795	AIML method_Architecture General	LG Electronics	discussion	Rel-18	FS_NR_AIML_air
R2-2308836	Further Discussion on general aspects of AIML for PHY	ZTE Corporation, Sanechips	discussion	Rel-18	FS_NR_AIML_air
R2-2308868	Discussion on Architecture and General	TCL	discussion
R2-2308873	Discussion on the AI Functional Framework	China Unicom	discussion	FS_NR_AIML_air
R2-2308914	On UE capability/applicability reporting and functionality-to-entity mapping	Ericsson	discussion	Rel-18	FS_NR_AIML_air
Data Collection 
R2-2308898	Data collection for AI/ML	Ericsson	discussion
R2-2308780	Data collection aspects of AI/ML for NR air interface	AT&T	discussion
R2-2307141	Requirements and Assumptions for AIML Data Collection	NEC	discussion	FS_NR_AIML_air
R2-2307231	Discussion on data collection	Xiaomi	discussion
R2-2307365	Considerations on data collection of AIML for NR air-interface	CATT, Turkcell	discussion	Rel-18	FS_NR_AIML_air
R2-2307405	Discussions on AIML data collection	Fujitsu	discussion	Rel-18	FS_NR_AIML_air
R2-2307434	Remaining issues of data collection for model training at server	vivo, Qualcomm Incorporated	discussion	Rel-18	FS_NR_AIML_air
R2-2307521	Enhancements for RRM/MDT for AI/ML data collection	Samsung R&D Institute UK	discussion	Rel-18	FS_NR_AIML_air
R2-2307814	Remaining issues on data collection for AI/ML	Apple	discussion	FS_NR_AIML_air
R2-2308021	Qualitative analysis on data collection requirements	Lenovo	discussion	Rel-18
R2-2308130	Discussion on data collection	Spreadtrum Communications	discussion	Rel-18
R2-2308151	Data Collection for Model Training at UE Side	MediaTek Inc.	discussion
R2-2308166	Some considerations about data collection	Sony	discussion	Rel-18	FS_NR_AIML_air
R2-2308197	AIML data collection	Nokia, Nokia Shanghai Bell	discussion	Rel-18	FS_NR_AIML_air
R2-2308410	Data collection for AIML	Interdigital Inc.	discussion	Rel-18	FS_NR_AIML_air
R2-2308632	Discussion on data collection	Huawei, HiSilicon	discussion	Rel-18	FS_NR_AIML_air
R2-2308796	AIML method_Data Collection	LG Electronics	discussion	Rel-18	FS_NR_AIML_air
R2-2308837	Further Discussion On  Purpose Driven Data Collection	ZTE Corporation, Sanechips	discussion	Rel-18	FS_NR_AIML_air
R2-2308867	Data collection for AIML methods	TCL	discussion

Model transfer – delivery 
R2-2308022	Discussion on gNB/LMF awareness of UE side model and functionality	Lenovo	discussion	Rel-18
R2-2308178	Discussion on AI/ML Model Transfer/Delivery	MediaTek Inc.	discussion
R2-2307142	AIML Data Collection for Model Training	NEC	discussion	FS_NR_AIML_air
R2-2307143	AIML Model transfer	NEC	discussion	FS_NR_AIML_air
R2-2307158	Open Issue Discussion on Model Transfer Delivery	OPPO	discussion	Rel-18	FS_NR_AIML_air
R2-2307247	AI/ML model delivery	Xiaomi	discussion	Rel-18	FS_NR_AIML_air
R2-2307366	Further discussions on AIML model transfer	CATT, Turkcell	discussion	Rel-18	FS_NR_AIML_air
R2-2307435	Discussion on model transfer	vivo	discussion	Rel-18	FS_NR_AIML_air
R2-2307520	AI/ML model transfer/delivery solutions	Samsung R&D Institute UK	discussion	Rel-18	FS_NR_AIML_air
R2-2307685	Architecture impact on model transfer method	Intel Corporation	discussion	Rel-18	FS_NR_AIML_air
R2-2307815	Further discussion on model transfer	Apple	discussion	FS_NR_AIML_air
R2-2308131	Discussion on model transfer-delivery	Spreadtrum Communications	discussion	Rel-18
R2-2308178	Discussion on AI/ML Model Transfer/Delivery	MediaTek Inc.	discussion
R2-2308199	AIML model transfer delivery	Nokia, Nokia Shanghai Bell	discussion	Rel-18	FS_NR_AIML_air
R2-2308292	Discussion on AI/ML model transfer/delivery	CMCC	discussion	Rel-18	FS_NR_AIML_air
R2-2308411	Way forward for AIML Model transfer/delivery	Interdigital Inc.	discussion	Rel-18	FS_NR_AIML_air
R2-2308597	Discussion on Model Transfer/Delivery	Qualcomm Incorporated	discussion	Rel-18
R2-2308633	Discussion on model transfer and delivery	Huawei, HiSilicon	discussion	Rel-18	FS_NR_AIML_air
R2-2308781	AI/ML model transfer and delivery	AT&T	discussion
R2-2308838	Further Discussion on Model TransferDelivery for AIML	ZTE Corporation, Sanechips	discussion	Rel-18	FS_NR_AIML_air
R2-2308915	On the need for model transfer	Ericsson	discussion	Rel-18	FS_NR_AIML_air

Control and LCM other
R2-2307159	Discussion on Model Monitoring	OPPO	discussion	Rel-18	FS_NR_AIML_air
R2-2307160	Discussion on Model Identification	OPPO	discussion	Rel-18	FS_NR_AIML_air
R2-2307367	Considerations on other model control procedures	CATT, Turkcell	discussion	Rel-18	FS_NR_AIML_air
R2-2307436	Discussion on model management and identification	vivo	discussion	Rel-18	FS_NR_AIML_air
R2-2307486	Discussion on Model Monitoring and Reporting Considering Functionality and Model ID based LCM	SHARP Corporation	discussion	R2-2305826
R2-2307522	Indication of supported AI/ML models and functionalities  	Samsung R&D Institute UK	discussion	FS_NR_AIML_air
R2-2307686	model control procedure: RAN2 impact	Intel Corporation	discussion	Rel-18	FS_NR_AIML_air
R2-2307982	AI ML model management across RRC state transitions and mobility among non-interoperable networks	Rakuten Symphony	discussion	Rel-18
R2-2308132	Discussion on Control and LCM other	Spreadtrum Communications	discussion	Rel-18
R2-2308167	Some considerations about CSI compression	Sony	discussion	Rel-18	FS_NR_AIML_air
R2-2308189	Model Control and Model Monitoring	MediaTek Inc.	discussion
R2-2308212	AIML control and other topics	Nokia, Nokia Shanghai Bell	discussion	Rel-18	FS_NR_AIML_air
R2-2308267	AI/ML model inference and monitoring for positioning accuracy enhancement	Xiaomi	discussion
R2-2308293	Discussion on model control and other LCM procedures	CMCC	discussion	Rel-18	FS_NR_AIML_air
R2-2308457	Discussion on the life cycle management of AI/ML models	Futurewei Technologies	discussion
R2-2308549	Functionality ID for AI/ML control	InterDigital	discussion	Rel-18	FS_NR_AIML_air
R2-2308598	Discussion on Life Cycle Management	Qualcomm Incorporated	discussion	Rel-18
R2-2308634	Discussion on control and LCM other	Huawei, HiSilicon	discussion	Rel-18	FS_NR_AIML_air
R2-2308782	AI/ML model control	AT&T	discussion
R2-2308783	Discussion on model model-based management	LG Electronics France	discussion	Rel-18	38.843	FS_NR_AIML_air
R2-2308839	Consideration on General Porocedure For Different Use Cases	ZTE Corporation, Sanechips	discussion	Rel-18	FS_NR_AIML_air
R2-2308916	Control and monitoring responsibility	Ericsson	discussion	Rel-18	FS_NR_AIML_air

4.3	RAN4
//General and work plan
R4-2311778	AI/ML general
					Type: discussion		For: Approval
					Source: Qualcomm, Inc.
Decision:		Noted.
R4-2311834	Discussion on general aspects of AIML for NR air interface
					Type: discussion		For: Discussion
					Source: CAICT
Abstract: 
Decision:		Noted.
R4-2312072	Discussion on general issues
					Type: other		For: Approval
					Source: ZTE Corporation
Decision:		Noted.
R4-2312152	On general aspects for AI/ML
					Type: discussion		For: Discussion
					Source: vivo
Decision:		Noted.
R4-2312187	On General aspects of AI/ML for NR Air Interface
					Type: discussion		For: Discussion
					Source: Nokia, Nokia Shanghai Bell
Decision:		Noted.
R4-2312380	On AI/ML model monitoring in LCM
					Type: discussion		For: Discussion
					Source: Keysight Technologies UK Ltd
Decision:		Noted.
R4-2312741	On AI/ML terminologies
					Type: other		For: Approval
					Source: Ericsson
Decision:		Noted.
R4-2313191	On general issue
					Type: other		For: Approval
					Source: OPPO
Decision:		Noted.
R4-2313264	General Aspects for RAN4 R-18 SI on AIML for NR air interface
					Type: discussion		For: Discussion
					Source: Huawei, HiSilicon
Decision:		Noted.
R4-2313800	General aspects for AI/ML air interface
					Type: discussion		For: Discussion
					Source: Samsung
Decision:		Noted.
TPs/TR
R4-2312642	Proposed update for TR 38.843 with RAN4 part
					Type: pCR		For: Approval
					38.843 v0.1.0	  CR-  rev  Cat:  (Rel-18)

					Source: CAICT
Decision:		Noted.
R4-2312742	TP to 38.843 on AI/ML terminology
					Type: pCR		For: Approval
					38.843 v0.1.0	  CR-  rev  Cat:  (Rel-18)

					Source: Ericsson
Abstract: 
TP to introduce RAN4 agreed terminology related to AI/ML discussion.
Decision:		Noted.
R4-2311475	Updated TR 38.843 with RAN4 part
					Type: draft TR		For: Agreement
					38.843 v0.1.0	  CR-  rev  Cat:  (Rel-18)

					Source: CAICT
Abstract: 
Updated TR 38.843 with RAN4 part
Decision: 		The document was withdrawn.

R4-2312615	Discussion on RAN4 requirements for AIML
					Type: discussion		For: Discussion
					Source: MediaTek inc.
Decision:		Noted.

//Specific issues related to use case for AI/ML
R4-2311355	On RAN4 requirements for use cases for AI/ML
					Type: discussion		For: Discussion
					Source: Apple
Decision:		Noted.
R4-2311719	Specific issues related to use case for AI/ML
					Type: discussion		For: Discussion
					Source: Nokia, Nokia Shanghai Bell
Decision:		Noted.
R4-2311779	AI/ML use cases
					Type: discussion		For: Approval
					Source: Qualcomm, Inc.
Decision:		Noted.
R4-2311877	Discussion on use cases for AI/ML
					Type: discussion		For: Discussion
					Source: CMCC
Decision:		Noted.
R4-2312150	Further discussion on use cases for AI/ML
					Type: discussion		For: Discussion
					Source: vivo
Decision:		Noted.
R4-2312545	View on test metric per use case of AI/ML
					Type: discussion		For: Discussion
					Source: Samsung
Decision:		Noted.
R4-2312743	On AI/ML use case specific issues
					Type: other		For: Approval
					Source: Ericsson
Abstract: 
This contribution addresses use cases specific issues related to RAN4.
Decision:		Noted.
R4-2313086	On Specific Issues Related to Use Cases For AI/ML
					Type: discussion		For: Discussion
					Source: Keysight Technologies UK Ltd
Decision:		Noted.
R4-2313192	On specific issues related to use case for AIML
					Type: other		For: Approval
					Source: OPPO
Decision:		Noted.
R4-2313265	Discussion on Specific Issues related to Use Case for AIML
					Type: discussion		For: Discussion
					Source: Huawei, HiSilicon
Decision:		Noted.
R4-2313504	Discussion on RAN4 requirements in Rel-18 AI/ML
					Type: discussion		For: Approval
					Source: Google Inc.
Decision:		Noted.

//Interoperability and testability aspect
R4-2311356	On testability with AI/ML in air interface
					Type: discussion		For: Discussion
					Source: Apple
Decision:		Noted.
R4-2311615	Discussion on interoperability and testability aspect for AI/ML
					Type: discussion		For: Discussion
					Source: CATT
Late submission
Decision: 		The document was not treated.
R4-2311720	Interoperability and testability aspect
					Type: discussion		For: Discussion
					Source: Nokia, Nokia Shanghai Bell
Decision:		Noted.
R4-2311780	AI/ML interoperability
					Type: discussion		For: Approval
					Source: Qualcomm, Inc.
Decision:		Noted.
R4-2311862	Discussion on interoperability and testability of AIML for NR air interface
					Type: discussion		For: Discussion
					Source: CAICT
Decision:		Noted.
R4-2311878	Discussion on interoperability and testability for AI/ML
					Type: discussion		For: Discussion
					Source: CMCC
Decision:		Noted.
R4-2312073	Discussion on the Interoperability and testability aspects of AI/ML
					Type: other		For: Approval
					Source: ZTE Corporation
Decision:		Noted.
R4-2312151	Further discussion on interoperability and testability aspects for AI/ML
					Type: discussion		For: Discussion
					Source: vivo
Decision:		Noted.
R4-2313010	AI/ML use case independent, inter-operability and test considerations
					Type: discussion		For: Discussion
					Source: Ericsson
Abstract: 
Discuss use case independent issues
Decision:		Noted.
R4-2313085	On AI/ML Interoperability and testability aspects
					Type: discussion		For: Discussion
					Source: Keysight Technologies UK Ltd
Decision:		Noted.
R4-2313193	On testability issues for two-sided AIML model
					Type: other		For: Approval
					Source: OPPO
Decision:		Noted.
R4-2313209	VIAVI Views on Encoder/Decoder for 2-sided Model
					Type: discussion		For: Discussion
					Source: VIAVI Solutions
Abstract: 
This contribution provides some views on the choice of reference decoder for 2-sided model tests.
Decision:		Noted.
R4-2313266	Discussion on interoperability and testability aspects
					Type: discussion		For: Discussion
					Source: Huawei,HiSilicon
Decision:		Noted.
R4-2313535	Interoperability and testability aspect for AI/ML air interface
					Type: discussion		For: Discussion
					Source: Samsung
Decision:		Noted.


//Moderator summary and conclusions
[108][140] FS_NR_AIML_air AI 8.21 -- Valentin Gheorghiu (Qualcomm)
R4-2314222	Topic summary for [108][140] FS_NR_AIML_air
					Type: other		For: Information
					Source: Moderator (Qualcomm)
Abstract: 
This contribution provides the summary of topics and recommended summary.
Decision:		Noted.
WF & new allocated tdocs
R4-2314740	WF on FS_NR_AIML_air
					Type: other		For: Approval
					Source: Qualcomm
Decision:		Noted.
R4-2314907	Ad hoc minutes for FS_NR_AIML_air
					Type: other		For: Approval
					Source: Qualcomm
Decision:		Approved.
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