Release 15
28
3GPP TR 36.754 V0.0.21 (2017-04)

3GPP TR 36.754 V0.0.2 (2017-04)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access (E-UTRA);
 Study on UL data compression for E-UTRA
(Release 15)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

E-UTRA, UL data compression
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2014, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
6
4
Requirements on UL data compression
6
5
Use cases and traffic characteristics
6
5.1
Use cases
6
5.2
Traffic characteristics
7
6
Evaluation Methodology
12
6.1
Evaluation Guidelines
12
6.2
Simulation Assumptions
12
6.3
Performance Metrics
13
7
UL data compression solutions
13
7.1
Existing data compression methods
13
7.2
Solutions for RAN level UL data compression
13
7.2.1
Solution 1: UL RoHC
14
7.2.1.1
Solution description
14
7.2.1.2
Simulation results
14
7.2.2
Solution 2: UDC solution based on RFC 1950
15
7.2.2.1
Solution description
15
7.2.2.2
Simulation results
15
7.2.3
Solution 3: UDC solution based on RFC 1951
16
7.2.3.1
Solution description
16
7.2.3.2
Simulation results
17
7.2.4
Solution 4
18
7.2.4.1
Solution description
18
7.2.4.2
Simulation results
22
7.3
Evaluation of UL data compression solutions
23
7.3.1
Comparison of UL data compression solutions
23
7.3.2
Procedure to support operator controllability of UL data compression solutions
23
8
Conclusions
23
Annex A (informative): An example of compressor and decompressor algorithm based on solution 4
24
Annex B: Change history
25

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

At the 3GPP TSG RAN#75 meeting, the Study Item Description on "Study on UL data compression in LTE" has been approved RP-162541 [2]. This study item covers evaluation of the data compression schemes to improve uplink capacity in E-UTRA.

1
Scope

The present document is related to the study item "Study on UL data compression in LTE" [2]. This Technical Report constitutes performance evaluation of potential data compression schemes to support increased uplink capacity for E-UTRA.

This document captures descriptions related to the evaluation methodology used, technical outcomes of the study, analysis of potential UL data compression solutions and a conclusion on the way forward.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TSG-RAN RP-162541: "New SI proposal: Study on UL data compression in LTE", RAN#74, June.2016.
[3]
IETF RFC 3095, "RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP and uncompressed".
[4]
IETF RFC 1950, "ZLIB Compressed Data Format Specification version 3.3".
[5]
IETF RFC 1951, "DEFLATE Compressed Data Format Specification version 1.3".
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply.
A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
(none).
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

UDC
Uplink Data Compression
4
Requirements on UL data compression

The shortage of uplink resource becomes a concern in the network due to the following factors:

-
More and more mobile internet users are becoming content producers.
-
Increasing of downlink traffic when using CA leads to more uplink traffic. However UE operates with few uplink carriers, typically only one. This is to satisfy requirements on UE battery consumption and reduce UE complexity.

-
Typical UL/DL configuration in TD-LTE network is configuration 2, i.e. 3DL: 1UL. It is quite often that uplink becomes bottleneck in case of, e.g. file uploading.
Thus uplink capacity improvement is becoming an urgent requirement to address the increase amount of UL traffic in the network. Another concern on uplink is transmission vulnerability to poor radio condition.
-
As the number of LTE subscribers increases, the uplink interference level reaches 5~10 dB in a typical network, making uplink transportation in poor radio condition difficult.

-
Due to power limitation, RLC segmentation is a common way to extend uplink coverage. However, it is not a preferred solution in some cases, e.g. VoLTE call setup where long call setup latency is an issue.

-
Size of SIP message used in VoLTE call setup is about 2KB. When UE is in poor radio condition (e.g. RSRP < -120dBm) and/or high interference (e.g. uplink IoT = 10dB), it has been observed in practical network that a SIP message is segmented into 200 RLC pieces, thus average call setup time and call drop rate are increased. Therefore a large SIP message size becomes a problem.

A RAN level solution should be considered to resolve these problems. Although the data could be compressed at application layer, in current practical networks, most of applications do not compress data. Moreover, operator would not require all applications to support this function. A RAN level solution allows the operator to control the UL compression based on the traffic type.
5
Use cases and traffic characteristics

5.1
Use cases

Use case 1 and case 2 below are evaluated in UDC with high priority while use case 3 may also be considered possibly with low priority.

Use Case1 (Non-encrypted traffic): The application data which are not encrypted at application layer, e.g. web surfing, text uploading, online video and text over instant messaging etc.

Use Case 2 (VoLTE SIP signalling): SIP signalling for VoLTE, which is neither compressed nor encrypted, e.g. INVITE, PRACK etc.

Use Case 3 (HTTPS traffic w/o RoHC): Packet header could be compressed if ROHC is not used even the application data is encrypted, e.g. the TCP/IP header can be compressed by UDC.

5.2
Traffic characteristics
Repetitive appearance of data blocks/strings has been identified in the use cases under study. As demonstrated in the below examples, application layer data, SIP signallings and TCP/IP ACK have traffic characteristics where many fields/content are repeated throughout the transmission.

a) HTTP

POST or GET message is applied for requesting the HTTP service. Two examples for POST and GET are shown below.

POST format:

POST *********** HTTP/1.1
Accept: */*

Accept-Language: zh-cn

host: *********
Content-Type: application/x-www-form-urlencoded

Content-Length: **
Connection:close

GET format:

GET ****************** HTTP/1.1
Accept: */*

Accept-Language: zh-cn

host: *******
Content-Type: application/x-www-form-urlencoded

Content-Length: **
Connection:close

Referring to the above message formats, POST and GET share similar message formats.
The following is a comparison of two POST messages from captured data in a practical system (words in red are different, other parts are same).
[image: image3.png]
From the comparison, many matched data blocks could be found. If the previous POST message is used as the dictionary for the later one, the message can be compressed while improving the transmission efficiency. Even in the same message, some common data is visible. For example “content” is visible several times in the same message.
b) SIP

The following UL SIP signals are compared for illustration of repetitive nature of the traffic field.
· INVITE

· UPDATE

· ACK

· BYE

Comparison of two INVITE messages (words in red are different, other parts are same).
[image: image4.png]
[image: image5.png]
Comparison of two UPDATE messages (words in red are different, other parts are same).
[image: image6.png]
[image: image7.png]
Comparison of two ACK messages (words in red are different, other parts are same).
[image: image8.png]
Comparison of two BYE messages (words in red are different, other parts are same).
[image: image9.png]
c) TCP/IP ACK

In addition to the above application layer data and signalling, TCP/IP ACK packets also show common fields among packets thus it is a candidate for a compression.
	TCP Header

	Bit offset
	 0
	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	0
	Source port
	Destination port

	32
	Sequence number

	64
	Acknowledgment number

	96
	Data offset
	Reserved
	C
W
R
	E
C
E
	U
R
G
	A
C
K
	P
S
H
	R
S
T
	S
Y
N
	F
I
N
	Window Size

	128
	Checksum
	Urgent pointer

Considering TCP header structure, many fields would be same as across packet(s) of the same IP flow.

6
Evaluation Methodology

In order to provide the necessary degree of commonality and comparability between different UL data compression solutions results, an evaluation framework has been established encompassing evaluation guidelines, simulation assumptions and performance metrics.

6.1
Evaluation Guidelines

-
Input traffic profile

For fair comparison of different UDC solutions, the solutions are to be evaluated using a common traffic profile. Traffic traces where data traffic captured from live systems are expected to be used in the evaluation. Traffic generated based on synthetic models or statistical models are not used. The data file format is “.pcap” which only includes UL packets (DL packets are removed).

-
Evaluation model

The aim of the simulation is to evaluate the compression algorithms in terms of compression efficiency, impacts to the existing protocol and specification efforts. Thus detail channel model and radio channel simulation are not seen essential for the evaluation of compression algorithms. To emulate the unreliability of radio channel and data loss if considered necessary, a suitable simplified radio channel based on packet loss rate and random packet discard to be used.

A simplified evaluation model without packet loss rate is considered, scenarios with packet loss rate is considered with low priority.

-
Protocol unit

UL data compression algorithm is considered to be located in PDCP layer in the evaluation

6.2
Simulation Assumptions

-
UDC aims to design a compression solution for the UL user plane (DRB) data received from higher layer, e.g. HTTP data, SIP signalling, TCP ACK for DL traffic, etc. Therefore, only User Plane (DRB) data is considered in simulation of different UDC solutions.

-
The amount of buffered data which are used in compressing current packet could have an effect on the achieved compression ratio. For the simulation and comparison of different solutions 8K and 32K buffer size are considered, and 64K can be optionally selected.
-
RLC-AM is considered in UDC evaluation.

-
UL data compression is applied for both header and payload in evaluation of different solutions.
-
The case of combination of UDC and RoHC on the same DRB is not evaluated.
-
UDC solutions should be agnostic to packet header format.
6.3
Performance Metrics

The aim of UDC study is to identify compression algorithms and/or compressed data formats which could be used in RAN to fulfil the objectives of UDC (e.g. controllability of UDC on service basis by operator). The following Figure illustrates a block diagram of UDC operation. The UDC entity processes the input data and generates the output compressed data.

[image: image10.emf]Input data

UDC (compression)

Output data

Compression efficiency as per the following formulation is considered for performance metric in evaluation of different UL data compression solutions.
Compression efficiency = 1 – (output data size / input data size)

High computation complexity of compression algorithm degrades usefulness of UDC even if the resulted compression efficiency is significant. Additionally, required memory for compression/ decompression also has impacts on the overall performance of UL data compression algorithms. Therefore, not only the compression gain but also processing complexity of compressor/ de-compressor and memory requirements are agreed as the criteria for performance evaluation. Even though it may not be possible to quantify the processing complexity, qualitative analysis of complexity is expected in the performance evaluation. In addition, the evaluation criteria of a compression solution shall take into account the byte alignment and reliability.
7
UL data compression solutions
7.1
Existing data compression methods

7.2
Solutions for RAN level UL data compression
· A number of different UL data compression solutions have been simulated with the following input traffic scenarios. These traffic profiles are generated with neither application layer compression nor application layer encryption.
	PCAP File #
	PCAP File Name
	Note

	1
	FTP data-CMCC(UL-client)
	

	2
	FTP data-CMCC(UL-server)
	

	3
	SIP signalling-CMCC 01(UL)
	

	4
	SIP signalling-CMCC 02(UL)
	

	5
	SIP signalling-CMCC 03(UL)
	

	6
	Video data-CMCC(UL)
	duration: ~6s

	7
	web surfing-CMCC(UL)
	

	8
	long period Video data-CMCC(UL)
	duration: ~6min

	9
	Video data-MTK
	duration: ~1hr

7.2.1
Solution 1: UL RoHC
7.2.1.1
Solution description

Editor Note: in this section, details of the proposed solution are described here, may include the algorithm information, the affected protocol layer, how to decompress, PDU format etc.

For each TCP/IP packet transmitted over LTE uplink, it is prefixed with TCP/IP header. RoHC (Robust Header Compression) [3] is specifically designed to compress TCP/IP header, and it was introduced for TCP/IP header compression in Rel-8 specification. Though the current main use cases are for VoLTE applications, other TCP profiles are also captured in PDCP specification. So, UL-RoHC is a valid option for UDC to reduce the size of an uplink packet.
7.2.1.2
Simulation results
Editor Note: in this section, simulation results of corresponding solution are provided.

Table 7.2.1.2.1 shows the simulation results. It can be found that UL RoHC-based method provides good compression efficiency in FTP and long video data scenarios. In long video data scenario, most of the uplink packets are for TCP ACKs, which makes UL-only RoHC highly efficient.
Table 7.2.1.2.1: Compression efficiency for UL RoHC
	
	UL RoHC
	Ratio of TCP/IP headers

	Input traffic 1: FTP data-client-CMCC
	73.3%
	90.8%

	Input traffic 2: FTP data-server-CMCC
	59.7%
	73.4%

	Input traffic 3: SIP signalling-CMCC
	#01
	5.4%
	7.5%

	
	#02
	5.1%
	7.1%

	
	#03
	4.4%
	6.2%

	Input traffic 4: Video data-CMCC (duration: ~6s)
	21.7%
	29.1%

	Input traffic 5: Long period Video data-CMCC (duration: ~6min)
	45.1%
	58.1%

	Input traffic 6: Video data-MTK (duration: ~1hr)
	80.7%
	95.9%

	Input traffic 7: Web surfing-CMCC
	23.1%
	31.3%

7.2.2
Solution 2: UDC solution based on RFC 1950
7.2.2.1
Solution description
The concept of Zlib-based UDC is shown in Figure 7.2.2.1.1 below. To perform cross-packet checking to find repeated pattern, each source packet is stored in the configurable buffer after being compressed. And, the compressed data format for Zlib [4] is given in Figure 7.2.2.1.2. The definitions of Zlib headers are:
CMF: compression window length
FLG: flag to indicate if preset dictionary is applied
DICTID: preset dictionary ID
Note that, pre-defined dictionary is not used in this evaluation. For the detail descriptions of Zlib algorithm and compressed data format can be found in [4].

[image: image11.emf]Zlib-based compressor

with configurable

buffer size (8K or 32K)

Source packet

Compressed packet

in Zlib data format

Figure 7.2.2.1.1: Illustrative compression flow with Zlib
[image: image12.png]
Figure 7.2.2.1.2: Zlib-based compressed data format
7.2.2.2
Simulation results
Zlib v1.2.11 is used in this evaluation. The compressed packets are byte-aligned, and ended with no tail-byte. The simulation results are shown in Table 7.2.2.2.1. The results show that larger window size provides slightly better compression efficiency though it is not significant. Input traffic 6 is an exception, where 8Kbyte window size configuration is better than 32Kbyte window size configuration. It is because the repeated pattern can be found by short distance in the window. Larger window size configuration provides no additional compression gain, but introduces longer header length.
Table 7.2.2.2.1: Compression efficiency for Zlib

	
	Zlib-based UDC (8K)
	Zlib-based UDC (32K)

	Input traffic 1: FTP data-client-CMCC
	50.5%

	50.5%

	Input traffic 2: FTP data-server-CMCC
	45.1%
	45.1%

	Input traffic 3: SIP signalling-CMCC
	#01
	86.7%
	88.1%

	
	#02
	84.2%
	85.3%

	
	#03
	87.2%
	88.5%

	Input traffic 4: Video data-CMCC (duration: ~6s)
	65.1%
	65.1%

	Input traffic 5: Long period Video data-CMCC (duration: ~6min)
	72.9%
	73.9%

	Input traffic 6: Video data-MTK (duration: ~1hr)
	60.7%
	59.1%

	Input traffic 7: Web surfing-CMCC
	66.3%
	70.1%

7.2.3
Solution 3: UDC solution based on RFC 1951
7.2.3.1
Solution description

Since RFC 1951 (DEFLATE Compressed Data Format Specification) [5] is considered in the simulation. Deflate is a lossless data compression algorithm and associated file format (specified in [5]) that uses a combination of the LZ77 algorithm and Huffman coding. LZ77 is used to eliminate duplicate strings. To perform cross-packet compression, a FIFO buffer is used to buffer original packets which have been compressed. Within the packets which have not been compressed, if a repeated string in buffer is identified, a back-reference is inserted linking to the previous location and the length of that identified string as shown in Figure 7.2.3.1.1.

[image: image13.emf]abcdefgh

Data in buffer

bcd

Compression Entity

Packet to be compressed

Position 7 6 5 4 3 2 1 0

(a) Before compression

[image: image14.emf]B110011

defgh

Data in buffer

bcd

Compression Entity

Compressed Packet

Position 7 6 5 4 3 2 1 0

(b) after compression

Figure 7.2.3.1.1: Illustration of data format before and after compression using RFC 1951
In Figure 7.2.3.1.1, the buffer size is 8 bytes. When a new packet which has content of “bcd” coming, a cross-packet match can be identify in the buffer, with the previous position 6, length 3. The new packet which original length is 3 byte can be compressed to 6 bits (i.e. 3 bits to identify 8 positions in the buffer, and 3 bits for length). After compression, the new packet is inserted in the buffer.

After compressed by LZ77, huffman coding is used to replace frequently used symbols with shorter representations and infrequently used symbols with longer representations. Adaptive selection of static Huffman coding and dynamic Huffman coding is enabled to achieve maximum compression gain in the simulation.

7.2.3.2
Simulation results
The simulation results of RFC 1951 for 8Kbyte and 32Kbytebuffer are shown in Table 7.2.3.2.1.

Table 7.2.3.2.1: Simulation results with RFC 1951

	
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	FTP: client part CMCC
	1211
	585
	51.69%
	1211
	585
	51.69%

	Online video: CMCC
	13450
	4632
	65.56%
	13450
	4633
	65.55%

	SIP UE1: CMCC
	51020
	6639
	86.99%
	51020
	5997
	88.25%

	SIP UE2: CMCC
	32680
	4921
	84.94%
	32680
	4791
	85.34%

	SIP UE3: CMCC
	46688
	5927
	87.31%
	46688
	5313
	88.62%

	Video: CMCC
	1371861
	365346
	73.37%
	1371861
	337360
	75.41%

	Video: MTK
	2453749
	950644
	61.26%
	2453749
	983524
	59.92%

	Web-surfing: CMCC
	2381720
	786295
	66.99%
	2381720
	689638
	71.04%

7.2.4
Solution 4

7.2.4.1
Solution description

7.2.4.1.1
Overview
Both UE and eNB maintains UL Compression Memory to remember uncompressed contents of previous packets. When a new packet arrives, the UE tries to match (partially or fully) with the stored packets. If a match is found, then the UE sends pointers (addresses/locations of matched data block in both the compression memory and the packet) instead of the actual data bytes, to the eNB. The decompression algorithm is similar to the famous C language library function “memcpy(src addr, dest addr, length)” which simply copies the pointed data from the compression memory to the current packet, to recover the original packet. So the compressed data format mainly contains the following parameters.

· “src addr”: the address in compression memory [called “Lookback Length” in this solution]

· “dest addr”: the address in the current packet [called “Distance to pointer” in this solution]

· “length”: the length of the data bytes that was replaced by the compressor [called “size” in this solution]
UDC header memory

A separate UDC header memory of udcHeaderMemorySize is set apart for saving the UDC header in a packet. For packet actions 011 and 010, the entire UDC header shall be pushed to the UDC header memory. If there is more than udcHeaderMemorySize bytes of UDC header in any packet, then that header is not pushed. The UDC header is always copied to the beginning of the UDC header memory, overwriting any contents before.

7.2.4.1.2
Compressed Data Format
UDC is achieved with two headers as mentioned below. The compressor automatically decides which headers to use based on the compression gain and other factors.
· Current Packet Compression Reference (CPCR): The compression/decompression mechanism, which indicates individual matches from UL compression memory, is referred to as CPCR and this header is called the CPCR header. This header refers to matches in UL compression memory using CPCR header metadata each of which points to a block of prior memory that needs to be copied to create the decompressed packet.
· Packet Match Compressed Reference (PMCR): This header refers a prior block of data from UL compression memory and indicates the mismatches in the current packet with respect to the prior block in UL Compression memory. The compression/decompression mechanism using this PMCR header is referred to as PMCR. The PMCR header may be optionally present, which is indicated by the “E” bit set to 1 in the UDC common header.

[image: image15.emf]...

Number of Mismatches

Match lengthMismatch length

OptionLookback length

Lookback length

Length

Numof

mismatch

E

Packet actionChecksumE

Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

...

Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

Match lengthMismatch length

...

Number of matches

:

Uncompressed data bytes

:

Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7Bit 8

PMCR header

CPCR header

metadata

PMCR header

metadata

UDC header

CPCR header

UDC Common

header

CPCR common

header

PMCR common

header

Figure 7.2.4.1.2.1: Compressed data format
The UDC header consists of a UDC common header, PMCR header, and CPCR header. The PMCR header in a compressed packet is always ahead of the CPCR header. This implies that a section of the data packet is decompressed using the PMCR header and the remaining section of the packet is decompressed using the CPCR header.

Packets stored in UL compression memory are word-aligned (4 byte aligned). The beginning of each packet pushed to UL compression memory starts from the next word (4 byte aligned) boundary. UL compression memory is padded with zeros to fill the space between the last byte of the packet to the next word boundary.

UDC common header (the first octet in Figure 7.2.4.1.1)

Packet action (upper 3 bits)

· 011 – Decompression shall be performed as indicated by the UDC header that follows the first octet. The entire packet (decompressed) shall be pushed to UL compression memory. The UDC header shall be pushed to UDC header memory if the UDC header length is less than or equal to udcHeaderMemorySize.

· 010 –Decompression shall be performed as indicated by the UDC header that follows the first octet. The packet header (of the decompressed packet), as indicated by udcHeaderLength, shall be pushed to UL compression memory. The UDC header shall be pushed to UDC header memory if the UDC header length is less than or equal to udcHeaderMemorySize.
· 001 – For this packet action, there is no following header and no decompression needs to be performed. The entire packet shall be pushed to UL compression memory. The UDC header shall not be pushed to UDC header memory.

· 000 – For this packet action, there is no following header and no decompression needs to be performed. The packet shall not be pushed to UL compression memory. The UDC header shall not be pushed to UDC header memory.

· 100 – This is an exact match of the UDC header with the contents of UDC header memory. Decompression shall be performed, as indicated by the previous UDC header, as contained in UDC header memory. The entire packet or packet header only shall be pushed to UL compression memory, depending on the packet action in the previous packet (011 or 010 respectively). The UDC header shall not be pushed to UDC header memory.

· 101 – Reset UL compression memory to all zeros. For this packet action, there are no following header and no decompression needs to be performed. The entire packet shall be pushed to UL compression memory. The UDC header shall not be pushed to UDC header memory.

Checksum (next 4 bits) – The checksum is used by the decompressor to detect UL compression memory out-of-sync conditions between the compressor and decompressor.

Extension (E) (next 1 bit) – Set to 1 if, and only if, a PMCR header follows; set to 0 otherwise. For packet actions 011 and 010, an E bit set to 0 means the CPCR header follows and an E bit set to 1 means the PMCR header follows. For all other packet actions, the E bit is set to 0.

Checksum computation

The checksum is computed based on the packet action.

For packet actions 011 and 010, the checksum contents depend on the presence of the PMCR header.

· No PMCR header – Checksum contains the sum of the first 5 bytes of the first match in this packet.

· PMCR header is present – Checksum contains the sum of the 5 bytes starting from the location pointed to by the lookback length minus 8. See the PMCR header format for the processing of lookback length.

For packet action 001, the checksum contains the sum of the last 5 bytes in UL compression memory before the packet that includes the checksum is pushed into UL compression memory.

For packet action 000, the checksum bits are invalid and shall not be checked.

For packet action 101, the checksum bits shall be set to all zeros.

For packet action 100, the checksum contents depend on the presence of the PMCR header in the UDC header memory.
· No PMCR header – The checksum contains the sum of the first 5 bytes of the first match in this packet.

· PMCR header is present – The checksum contains the sum of the 5 bytes starting from the location pointed to by the lookback length minus 8. See the PMCR header format for the processing of lookback length.

CPCR Header

[image: image16.emf]Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

...

Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

Number of matches

CPCR header

metadata

CPCR header

CPCR common

header

Figure 7.2.4.1.2.2: CPCR Header format
The CPCR header consists of the following two parts:

· CPCR common header – The first byte gives the decompressor the Number of matches in the packet.

· CPCR header metadata – 4 bytes of metadata for each matched block of data indicating Distance to pointer, Lookback length, and length. There are as many metadata as there are Number of matches.

CPCR common header

· Number of matches (1 byte) – The number of matches indicates the number of CPCR header metadata present in the packet. No more than 255 compressed blocks can be present in a single compressed packet.

CPCR header metadata (4 bytes)

Each CPCR header metadata identifies a compressed block within the packet.

· Distance to pointer (11 bits) – Length in bytes of the uncompressed block before this compressed block. It can cover a packet size up to 2048 bytes. The range is 0 to 2047, with a value of 0 indicating that there are no uncompressed bytes that precede this compressed block.

· Lookback length (14 bits) – Distance in bytes to look back in UL compression memory from the current end of UL compression memory to find the replacement for the compressed block; it can reference a UL compression memory capacity up to 16 kB. Valid values for this field range from 4 to 16383, for example, a value of 4 means that the match occurred with the last 5 bytes in UL compression memory.

· Length (7 bits) – Number of bytes to copy from UL compression memory; match length is interpreted as Length + Minimum match length (5). Number of bytes to be copied can be as large as 132 bytes (27 + 5).

PMCR Header

[image: image17.emf]Number of Mismatches

Match lengthMismatch length

OptionLookback length

Lookback length

Length

Numof

mismatch

E

Match lengthMismatch length

...

PMCR header

PMCR header

metadata

PMCR common

header

Figure 7.2.4.1.2.3: PMCR Header format
The PMCR header consists of the following two parts:

· PMCR common header – The first 3 bytes give the decompressor the location and length of the block to be copied from UL compression memory (Lookback length and Length respectively) and the Number of mismatches within that copied block.

· PMCR header metadata – 1 byte of metadata for each mismatched block of data in the copied section indicating Match length and Mismatch length. There are as many metadata bytes as there are Number of mismatches.

PMCR common header

· Option (2 bits) – Set to 01; indicates that this is a PMCR header.

· Extension (1 bit) – Set to 1 if the CPCR header follows. Set to 0 if no CPCR header follows.
· Lookback length (10 bits) – Distance in words to look back in UL compression memory from the current end of UL compression memory to find the block to be copied. Distance in bytes = (Lookback length + 1) * 4 – 1. Valid values for this field range from 0 to 1023.
· Number of mismatches (4 bits) – Number of the PMCR header metadata present in the packet. Valid values for this field range from 0 to 15. No more than 15 mismatched blocks can be present in the copied block. A value of 0 indicates that there are no mismatches in the copied block.
· Length (7 bits) – Number of bytes to copy from UL compression memory. Valid values for this field range from 1 to 127. The number of bytes to be copied can be as large as 127 bytes.
PMCR header metadata (1 byte)

Each PMCR header metadata identifies a mismatched block within the copied block.

· Match length (5 bits) – Length in bytes of the matched block. This length is counted from the end of the previous mismatched block or the start of the packet (for the first metadata). The range is 0 to 31, with a value of 0 indicating that there are no matched bytes that precede the mismatched block.

Mismatch length (3 bits) – Length in bytes of the mismatched block. This length is counted from the end of the matched block. The range is 0 to 7, with a value of 0 indicating that there are no mismatched bytes that follow the matched block. This block of bytes (as many as Mismatch Length) is found in the uncompressed bytes following the UDC header. Note that the mismatched block indicated by this field is found before the uncompressed bytes indicated by the CPCR header, if any.

Example compressor and decompressor algorithms are provided in Annex A.
7.2.4.2
Simulation results

The compression memory is filled to all zeros in the beginning of the simulation. The same simulation results are obtained for setups with 8Kbyte and 32Kbyte compression buffer sizes. The results are shown below.
Table 7.2.4.2.1: Simulation results
	PCAP File #
	PCAP File Name
	Compression Efficiency (%)
	Original Size (Bytes)
	Compressed Size (Bytes)

	Input traffic 1
	FTP data-CMCC(UL-client)
	54.74
	1211
	548

	Input traffic 2
	FTP data-CMCC(UL-server)
	50.39
	1782
	884

	Input traffic 3 – UE1
	SIP signaling-CMCC 01(UL)
	85.61
	51020
	7337

	Input traffic 3- UE2
	SIP signaling-CMCC 02(UL)
	82.16
	32680
	5827

	Input traffic 3- UE3
	SIP signaling-CMCC 03(UL)
	85.94
	46688
	6561

	Input traffic 4
	Video data-CMCC(UL)
	62.04
	13450
	5105

	Input traffic 7
	web surfing-CMCC(UL)
	67.75
	2381720
	767990

	Input traffic 5
	long period Video data-CMCC(UL)
	78.44
	1371861
	295658

[image: image18.png]
Figure 7.2.4.2.4: Simulation results
7.3
Evaluation of UL data compression solutions
7.3.1
Comparison of UL data compression solutions
Editor Note: in this section, comparison of these proposed solutions can be listed here.
The results from UDC solutions 2 to 4 show a similar trend in terms of the compression efficiency. Wherein, about 40% to 50% compression efficiency is shown for UL FTP traffic, over 80% of compression efficiency is shown for UL SIP signalling and about 60% to 75% compression efficiency is shown for UL video traffic. Similarly, over 60% of compression efficiency can be obtained with UL web surfing data.
Simulation results are shown considering 8K Bytes and 32K Bytes buffer sizes. The buffer size has not shown a significant factor to the simulation results in terms of compression efficiency, although the performance with 32K Bytes buffer shows a slight increase of gain compared to that of 8K Bytes buffer case in UDC solution 2 and solution 3. No compression efficiency variation due to buffer size was observed in UDC solution 4. The following remarks can be made based on the simulations:

· A significant compression performance can be achieved with UDC solutions in UL for all types of traffic including FTP, SIP, video and web surfing in case 1 and case 2 type traffic scenarios.
7.3.2
Procedure to support operator controllability of UL data compression solutions
Editor Note: in this section, signalling and procedures of supporting operator controllability of UDC solutions are described.

8
Conclusions
Annex A (informative):
Example compressor and decompressor algorithms based on solution 4
Based on the UDC headers, the decompressor copies data blocks from the compression memory to generate uncompressed packets. The decompressor examines the UL compressed packet to determine if the packet is compressed. If the packet is not compressed, it removes the header byte. If the packet is compressed, it performs decompression on the packet. An example decompressor as shown in the below figure A.1:

[image: image19.emf]Pkt Action !=

‘000’

Pkt Action =

‘001’

Yes

Yes

No

No

Update UL Comp

Memory with entire

packet

Start

Pkt Action =

‘010’?

Remove first

byte

Remove first

byte

Yes

End

Input : UL Comp

Packet

Output : Decompressed Packet

Packet

checksum

valid?

Yes

Error Handing

No

Pkt Action =

‘100’

Pkt Action =

‘100’

Yes

No (Pkt Action

= ‘101’)

Reset UL Comp

Memory with all

zeros

Remove first

byte

Update UL Comp

Memory with entire

packet

No (Only CPCR

header present)

Yes (PMCR header

present)

E= 1 in UDC

common

header?

Remove first 4

bytes

Remove first 2

bytes

Decompress

according to

PMCR header

E = 1 in PMCR

header?

Remove next 1

byte

Decompress

according to

CPCR header

Yes (CPCR header

present)

No

Packet_action

_010_011

Packet_action_010

_011

Start

End

No

Update UL Comp

Memory with packet

header

Pkt Action =

‘011’?

Update UDC header

Memory with UDC

header

Update UDC header

Memory with UDC

header

Packet_action

_010_011

Update UL Comp

Memory with entire

packet

Update UDC header

Memory with UDC

header

Update UDC header

Memory with UDC

header

Replace UDC header

with contents of UDC

header memory

Replace UDC header

with contents of UDC

header memory

Is previous

pkt Action =

‘010’?

Is previous

pkt Action =

‘010’?

Yes

No

No

Yes

Figure A.1: Example Decompressor Algorithm Flow Chart

Figure A.2: An example of CPCR compression and decompression
Annex B:
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2017-04
	R2#97bis
	R2-1703223
	-
	-
	Skeleton TR proposal
	-
	0.0.1

	2017-04
	R2#97bis
	R2-17xxxxx
	-
	-
	Capturing agreements from R2#97bis
	0.0.1
	0.0.2

[image: image20.png]
Compressed Packet: ‘Metadata pointing to ‘/abcde’ + 123’

Input Packet: 123/abcde

CPCR Compressor

Compression memory after the compression: /abcdefgh123/abcde

Compression memory before the compression: /abcdefgh

CPCR Decompressor

Input Packet: ‘Metadata pointing to ‘/abcde’ + 123’

Output Packet: 123/abcde

Compression memory before the compression: /abcdefgh

Compression memory after the compression: /abcdefgh123/abcde

_1551797451.vsd
Compression Entity

Packet to be compressed

b

a

b

c

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

_1553585701.vsd
�

Number of Mismatches

Match length

Mismatch length

Option

Lookback length

Lookback length

Length

Num of mismatch

E

Packet action

Checksum

E

Bit 1

Distance to pointer

Distance to pointer

Lookback length

Lookback length

Lookback length

Length

...

Bit 2

Distance to pointer

Distance to pointer

Lookback length

Lookback length

Lookback length

Length

Bit 3

Match length

Mismatch length

...

Bit 4

Number of matches

Bit 5

Bit 6

:
Uncompressed data bytes
:

Bit 7

...

Bit 8

PMCR header

CPCR header metadata

PMCR header metadata

UDC header

CPCR header

UDC Common header

CPCR common header

PMCR common header

_1554017041.vsd
�

Zlib-based compressor with configurable buffer size (8K or 32K)

Source packet

Compressed packet in Zlib data format

_1551797632.vsd
Compression Entity

Compressed Packet

b

B110011

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

_1551684716.vsd

_1551728623.vsd
�

�

�

Text

�

�

�

