3GPP TR 32.866 V1.2.0 (2017-12)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;

Study on a REST(REpresentational State Transfer) ful HTTP-based Solution Set (SS)
(Release 15)
[image: image19.jpg]{irpRoot}/AlarmIRP/v1

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions, and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
IRP design principles
8
5
Overview of existing Solution Sets (SS)
8
6
Alternative Solution Sets (SS)
8
6.1
RESTful HTTP-based Solution Set (SS)
8
6.1.1
REST API specification in ETSI NFV SOL 17 [5]
8
6.1.1.1
API patterns
8
6.1.1.2
Example specifications
8
6.1.2
RESTCONF Protocol in IETF RFC 8040 [20]
9
6.1.3
Mobile Edge Service APIs in ETSI MEC 009 [7]
9
7
Common principles and design patterns for a RESTful HTTP-based Solution Set (SS)
9
7.1
Input material
9
7.2
Short review of REST
9
7.2.1
REST design principles
9
7.2.2
Richardson Maturity Model
10
7.2.3
REST and HTTP
10
7.3
Short review of HTTP
10
7.3.1
Message Format
10
7.3.2
HTTP methods
11
7.3.2.1
HTTP GET method
11
7.3.2.2
HTTP HEAD method
11
7.3.2.3
HTTP POST method
11
7.3.2.4
HTTP PUT method
11
7.3.2.5
HTTP DELETE method
11
7.3.2.6
HTTP CONNECT method
12
7.3.2.7
HTTP OPTIONS method
12
7.3.2.8
HTTP TRACE method
12
7.3.2.9
HTTP PATCH method
12
7.3.3
HTTP resources
12
7.3.4
Uniform Resource Identifiers (URIs)
12
7.3.5
URI Templates
13
7.4
Usage of HTTP
13
7.4.1
URI structure
13
7.4.2
Resource identification
14
7.4.3
Metadata language for the message body
15
7.4.3.1
Data transport language
15
7.4.3.2
Specification language
15
7.4.3.3
Support for Network Resource Models
16
7.4.4
Usage of HTTP headers and media types
16
7.5
Design Patterns
17
7.5.1
Information model for examples
17
7.5.2
Design pattern for READ operations (scope: one resource)
18
7.5.3
Design pattern for READ operations (scope: multiple resource)
19
7.5.4
Design pattern for UPDATE operations (complete update)
20
7.5.5
Design pattern for UPDATE operations (partial update)
20
7.5.6
Design pattern for CREATE operations (single resource)
21
7.5.7
Design pattern for CREATE operations (multiple resources)
22
7.5.8
Design pattern for DELETE operations (single resource)
22
7.5.9
Design pattern for DELETE operations (multiple resources)
23
7.5.10
Design pattern for SUBSCRIBE/NOTIFY operations
23
7.5.11
Design pattern for TASK operations
24
7.5.12
Design pattern for asynchronous operations
25
7.5.13
Design pattern for scoping and filtering
27
7.5.14
Design pattern for attribute selection
28
7.5.15
Design pattern for links
28
7.5.16
Design pattern for iterations
31
7.5.16.1
Iteration methods
31
7.5.16.2
Iteration using header
31
7.5.16.3
Iteration using query parameters
32
7.6
Example mapping of IRPs
33
7.6.1
Mapping of Network Resource Model (NRM) IRPs to resources
33
7.6.2
Basic CM IRP
33
7.6.3
Alarm IRP
34
7.6.3.1
Introduction
34
7.6.3.2
Richardson Maturity Model Level 0 (The swamp of POX)
34
7.6.3.3
Richardson Maturity Model Level 1 (Resources)
35
7.6.3.4
Richardson Maturity Model Level 2
36
7.7
Example mapping of solution set
37
7.7.1
Example of defining types
37
7.7.2
Example of defining managed objects
37
7.8
REST SS template
39
8
Recommendations
39
Annex A: About TM Forum REST API specifications
40
A.1
REST API design guidelines
40
A.1.0
Introduction
40
A.1.1
General concepts
40
A.1.2
Operations
40
A.1.3
Media types
40
A.2
Example TM Forum REST APIs
41
Annex B: Bibliography
42
Annex C: Change history
43

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The IRP methodology clearly separates between requirements, the protocol neutral Information Service (IS) and the protocol specification called Solution Set (SS). One of the main targets when designing this architecture was to decouple IS and SS as it was assumed that an IS stays stable over a very long period of time whereas Solution Sets have a shorter life time since protocol technologies change more frequently as IT technology advances.

CORBA IDL and SOAP WSDL are used as Solution Set technologies.

The REST architectural style is very prominent for API design. The protocol of choice for implementing REST APIs became HTTP. JSON is replacing XML as data interchange format.
1
Scope

The present document evaluates REST, HTTP and JSON for their applicability to design and implement management interfaces. It provides also best practices and guidelines for designing management interfaces with REST, HTTP and JSON.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 32.111-2: "Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)".
[3]
3GPP TS 32.300: "Name convention for managed objects".

[4]
3GPP TS 32.602: "Telecommunication management; Configuration Management (CM); Basic CM Integration Reference Point (IRP); Information Service (IS)".

[5]
ETSI GS NFV SOL 17: "SOL REST API convention collection living document (2017-01-30)".
[6]
ETSI GS NFV SOL 003: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data Models; RESTful protocols specification for the Or-Vnfm Reference Point".

[7]
ETSI GS MEC 009: "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".

[8]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax" (https://www.ietf.org/rfc/rfc3986.txt).

[9]
IETF RFC 6570: "URI Template" (https://www.ietf.org/rfc/rfc6570.txt).

[10]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing" (https://www.ietf.org/rfc/rfc7230.txt).

[11]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content" (https://www.ietf.org/rfc/rfc7231.txt).

[12]
IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests" (https://www.ietf.org/rfc/rfc7232.txt).

[13]
IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests" (https://www.ietf.org/rfc/rfc7233.txt).

[14]
IETF RFC 5789: "PATCH Method for HTTP" (https://www.ietf.org/rfc/rfc5789.txt).
[15]
IETF RFC 7159: " The JavaScript Object Notation (JSON) Data Interchange Format" (https://www.ietf.org/rfc/rfc7159.txt).

[16]
IETF RFC 7396: "JSON Merge Patch" (https://www.ietf.org/rfc/rfc7396.txt).

[17]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch" (https://www.ietf.org/rfc/rfc7232.txt).

[18]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer" (https://www.ietf.org/rfc/rfc6901.txt).

[19]
IETF RFC 6421: "Network Configuration Protocol (NETCONF)" (https://www.ietf.org/rfc/rfc6241.txt).
[20]
IETF RFC 8040: "RESTCONF Protocol" (https://www.ietf.org/rfc/rfc8040.txt).

[21]
https://martinfowler.com/articles/richardsonMaturityModel.html
[22]
IETF Internet-Draft: "JSON Schema: A Media Type for Describing JSON Documents" (https://tools.ietf.org/html/draft-wright-json-schema-01).

[23]
IETF Internet-Draft: "JSON Schema Validation: A Vocabulary for Structural Validation of JSON" (https://tools.ietf.org/html/draft-wright-json-schema-validation-01).
[24]
IETF Internet-Draft: "JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON" (https://tools.ietf.org/html/draft-wright-json-schema-hyperschema-01).
[25]
Fielding, Roy Thomas (2000). "Architectural Styles and the Design of Network-based Software Architectures". Dissertation. University of California, Irvine. (https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)
[26]
OpenAPI Specification Version 2.0
(https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md)
[27]
IETF RFC 8288: " Web Linking " (https://www.ietf.org/rfc/rfc8288.txt).

[28]
IETF Internet-Draft: "JSON Hypertext Application Language" (https://tools.ietf.org/html/draft-kelly-json-hal-08).
[29]
ETSI GS NFV SOL 002: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data Models; RESTful protocols specification for the Ve-Vnfm Reference Point".

[30]
ETSI GS NFV SOL 005: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point".

3
Definitions, and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

CMIP
Common Management Information Protocol

CORBA
Common Object Request Broker Architecture
GDMO
Guidelines for the Definition of Managed Objects
HAL
Hypertext Application Language

HTTP
Hypertext Transfer Protocol (HTTP)
IS
Information Service
JSON
JavaScript Object Notation
REST
REpresentational State Transfer
SOAP
Simple Object Access Protocol

SS
Solution Set

WSDL
Web Services Description Language
4
IRP design principles

The IRP specification process separates between requirements, protocol neutral definitions named Information Service (IS) and protocol dependent definitions named Solution Set (SS). This clear distinction allows to continue using requirements and IS whilst just changing the protocol definitions in the SS.
5
Overview of existing Solution Sets (SS)
Since its creation 3GPP SA5 has used the following protocols: CMIP GDMO, CORBA IDL and SOAP WSDL.
CMIP was specified by the ITU-T and geared towards the management of telecommunication networks. It was very powerful but suffered from the lack of tool and product support. CMIP was soon replaced by CORBA. CORBA was widely used in the IT industry and the telecom world hoped to overcome the CMIP issues with it. But CORBA became more complex over time, developers complained about expensive CORBA-ORBs and problems with firewalls since tunnelling through port 80 is not easily feasible. At the same time the World Wide Web and its technologies saw an impressive rise and CORBA was more and more used. Soon developers hoped for the better by using the technologies of the World Wide Web, namely HTTP and XML and SOAP was born. SOAP is basically RPC where the operations are described with XML and HTTP POST is used as transport. In a way this was also a step backwards since CORBA and CMIP were object oriented approaches with operations being invoked on the objects and not against service endpoints. That CORBA was not used by 3GPP in this way because so called facade objects (only real CORBA objects with IOR) were introduced as service endpoints for scalability reasons is another story.
As with CORBA, SOAP required extensive software support on the client and server. XML was soon considered complicated and running XML instance documents through parsers even more complicated. Developers started to prefer JSON and HTTP that is readily available on many servers and clients. In 2000 Roy Fielding published in [25] with REST (REpresentational State Transfer) a new architectural style for designing interfaces with strict focus on resources and not operations. HTTP and JSON can be used for implementing REST. More and more developers adopt RESTful HTTP based interfaces.

6
Alternative Solution Sets (SS)
6.1
RESTful HTTP-based Solution Set (SS)
6.1.1
REST API specification in ETSI NFV SOL 17 [5]

6.1.1.1
API patterns

ETSI NFV SOL 17 [5] collects all agreed REST API conventions to be applied to the SOL REST APIs (SOL002 [29], SOL003 [6] and SOL005 at the time of writing). In clause 5 of this document, the following two patterns are described:

- Subscribe-Notify

- Links

6.1.1.2
Example specifications

IN ETSI NFV ISG, REST API specifications are specified, e.g. for the Or-Vnfm reference point (see [6]).

6.1.2
RESTCONF Protocol in IETF RFC 8040 [20]

IETF has specified in RFC 6421 [19] a configuration management protocol (NETCONF). A RESTified version (RESTCONF) is available in RFC 8040 [20].
6.1.3
Mobile Edge Service APIs in ETSI MEC 009 [7]

ETSI GS MEC 009 [7] defines RESTful mobile edge service APIs. The APIs in ETSI MEC are developed based on these common principles and design patterns. The document provides a rich source for the development of own guidelines.

7
Common principles and design patterns for a RESTful HTTP-based Solution Set (SS)
7.1
Input material

As described earlier there are already numerous SDO/fora using RESTful HTTP-based solution sets. 3GPP should consider this material as input for its work and study possible alignment options.

7.2
Short review of REST

7.2.1
REST design principles

REST stands for REpresentational State Transfer. It is an architectural style defined by the following principles:

Client-server architecture

REST follows a client-server architecture. Client and server are linked by the uniform interface. The server is concerned with data storage. The client manipulates this data with create, read, update and delete (CRUD) operations. This architecture allows the client and server to evolve independently.

Stateless servers

REST servers are stateless, meaning that no client context is stored on the server. It is the client holding the session state. Each request from a client contains all the information required to service the request.

Cacheability

REST is cacheable. The client and any intermediary can cache responses, helping to improve system scalability and performance.

Layered System

REST is a layered system. A client cannot know if it is interacting with the end server or an intermediate server on the way to the end server. Each component has only knowledge about the component it is interacting with. All components are independent and easily replaceable or extendable. This improves system scalability and enables load-balancing.

Code on demand

Code on demand is an optional REST feature. It allows servers to transfer executable code to the client, thereby extending the functionality of the client.

Uniform interface

The uniform interface is the most important aspect of REST. Client and server communicate via the uniform interface. It is characterized by the following:
Resource identification: The key concept is to abstract information into resources. These resources have a unique resource identification. Requests are directed towards resources.

Resource representation: Each resource has one or multiple representations. Representations can be in e.g. XML, JSON or HTML. Resource representations are exchanged over the wire together with any representation metadata. The metadata provides information about the representation, such as its media type, the date of last modification, or even a checksum.

Self-descriptive messages: Messages need to be be self-descriptive. All the information required to process the message is included in the message.

Hypermedia as the engine of application state (HATEOAS): This refers to the capability of the server to send hyperlinks to the client allowing the client to traverse and dynamically discover resources without referring to external documentation.
These principles were first described in [25].

7.2.2
Richardson Maturity Model

There are four levels in the Richardson Maturity Model [21].

Level 0 – The Swamp of POX (Plain Old XML): At this level HTTP methods are used as tunnelling mechanism for remote interaction mechanisms, typically Remote Procedure Calls (RPCs). The HTTP POST request is sent to a service endpoint exposed by the server. Different services may have different endpoints but resources behind the service are not individually addressable. This level is primarily action based.

Level 1 - Resources: At this level resources are introduced as addressable units. HTTP requests are directed directly to these resources and not to a few service endpoints. As in level 0, HTTP is used as tunnelling mechanism for operations described in the message body. This level is still pretty much action based even though actions are addressed to individual resources.

Level 2 - HTTP Verbs: At this level HTTP methods are used for their real purpose and not just as tunnelling mechanism. This means that the type of action the server performs is conveyed by the HTTP verb and not by operation names in the message body. There is a clear distinction between the safe (read-only) actions and the unsafe (read-write) actions on the resources.
Level 3 - Hypermedia Controls: At this level, the resource is completely described in the hypermedia documents that are transported over the interface. This is known as Hypermedia As The Engine Of Application State (HATEOAS). The interface is self-documenting and discoverable. This creates a very dynamic interface which has no centralized pre-defined specification. The client has no pre-defined knowledge about the capabilities of the server. This style of interface is well-suited to a DevOps environment where there are frequent changes to the capabilities and structure of the interface.

It is recommended IRP REST Solution Sets comply at least with level 2. The use of hyperlinks (level 3 feature) should also be considered when specifying REST Solution Sets.

7.2.3
REST and HTTP

REST is an architectural style and not tied to any protocol. In practice, however, REST APIs always use HTTP. As already suggested by the title of this study, this document focuses only on an HTTP based solution.

7.3
Short review of HTTP

7.3.1
Message Format

In RFC 7230 [10] the general format of a message is given by:
HTTP-message = start-line

 *(header-field CRLF)

 CRLF

 [message-body]

with:
start-line = request-line / status-line

request-line = method SP request-target SP HTTP-version CRLF

method = token

token = 1*tchar

tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /

"^" / "_" / "‘" / "|" / "˜" / DIGIT / ALPHA

request-target = origin-form

/ absolute-form

/ authority-form

/ asterisk-form

HTTP-name = %x48.54.54.50 ; HTTP

HTTP-version = HTTP-name "/" DIGIT "." DIGIT

status-line = HTTP-version SP status-code SP reason-phrase CRLF

status-code = 3DIGIT

reason-phrase = *(HTAB / SP / VCHAR / obs-text)

header-field = field-name ":" OWS field-value OWS

field-name = token

field-value = *(field-content / obs-fold)

field-content = field-vchar [1*(SP / HTAB) field-vchar]

field-vchar = VCHAR / obs-text

obs-fold = CRLF 1*(SP / HTAB)

; obsolete line folding

; see Section 3.2.4

message-body = *OCTET

7.3.2
HTTP methods

7.3.2.1
HTTP GET method

The HTTP GET method requests a representation of the resource specified by the URI. It is used to retrieve one or multiple resources from the server. The query component of the URI can be used for filtering purposes in case more than one resource is scoped by the path-abempty part of the URI. Only those resources passing the filtering criteria are returned.

7.3.2.2
HTTP HEAD method

The HTTP HEAD method returns only the headers that are returned with a HTTP GET method together with the message body, except for the payload header fields.
7.3.2.3
HTTP POST method

The POST method sends data in the message body to the server. In contrast to HTTP PUT, replacing the resource representation, it requests the target resource to process the representation enclosed in the request according to the resource's own specific semantics. With this method, it is possible to create a new resource.

When a new resource is created, 201 (Created) is returned. The returned Location header carries the URI of the created resource. The URI of the new resource is created by the server. The response message body contains a representation of the created resource.
7.3.2.4
HTTP PUT method
The HTTP PUT method requests that the resource representation of the target resource be created or replaced with the representation enclosed in the request message payload. This method replaces always the complete resource representation. Partial resource modifications are not possible. If a resource at the URI specified in the request does not exist yet, the server creates a new resource at this URI.

Conditional requests (RFC 7232 [12]) using e.g. the entity tag (ETag) can be used to prevent accidentally overwriting modifications made to a resource by another client ("lost update problem").

7.3.2.5
HTTP DELETE method

The DELETE method requests that the origin server deletes the resource identified by the Request-URI. This does not imply that the underlying information is deleted as well.
7.3.2.6
HTTP CONNECT method

This method allows a client to establish a HTTP tunnel between a (first) HTTP proxy server and a destination server, possibly involving more proxies between the aforementioned peers. The tunnel is typically used for secured connections.
7.3.2.7
HTTP OPTIONS method

The HTTP OPTIONS method allows clients to discover the communication options available for the target resource, namely the HTTP methods supported by the target resource. The returned information is contained in the response header fields and the message body. A representation for the response message body is not defined in RFC 7231 [11].
7.3.2.8
HTTP TRACE method

HTTP TRACE allows clients to request a recipient server to mirror back the received request message in the message body of the response. This can be used for testing and diagnostic purposes since clients can see what is received by the recipient. The recipient is either the final server or any proxy server before, as specified by the Max-Forwards request header value.
7.3.2.9
HTTP PATCH method

The HTTP PUT method only allows a complete resource replacement. For this reason, a new method, HTTP PATCH, has been defined by IETF in RFC 5789 [14] for partial resource modifications. The set of changes to be applied is described in the request message body.

RFC 7396 [16] specifies a simple method in JSON (JSON Merge Patch) allowing to describe a set of modifications to be applied to the target resource's content. JSON Merge Patch works at the level of JSON objects. An object is an unordered set of name/value pairs.

Three types of patches are described in RFC 7396 [16]:
1)
Replacing the value of an already existing name/value pair by a new value.

2)
Adding a new name/value pair.

3)
Removing an existing name/value pair.

It is not possible to append e.g. a value to an array other than replacing the complete object.

A more sophisticated method for describing partial resource updates, JSON Patch, is specified in RFC 6902 [17]. This feature works with operations (test, remove, add, replace, move, copy). The location within the target document where the operation is performed is indicated by a JSON-Pointer value (RFC 6901 [18]). Compared to JSON Merge Patch, this method is more powerful. Besides partial modification of resources, it is also possible to create multiple resources with a single HTTP PATCH request.

Conditional requests (RFC 7232 [12]) can be used also with the HTTP PATCH method.

7.3.3
HTTP resources

HTTP methods act on resources identified by a Uniform Resource Identifier (URI)..

7.3.4
Uniform Resource Identifiers (URIs)

URIs are used in HTTP as a means for identifying resources. The generic URI is defined in RFC 3986 [8] by:
URI = scheme ":" hier-part ["?" query] ["#" fragment]

hier-part = "//" authority path-abempty

/ path-absolute

/ path-rootless

/ path-empty

HTTP uses a subset of the generic URI scheme defined in RFC 7230 [10] as:
http-URI = "http:" "//" authority path-abempty ["?" query]

["#" fragment]
where:
authority = <authority, see [RFC3986], Section 3.2>

path-abempty = <path-abempty, see [RFC3986], Section 3.3>

query = <query, see [RFC3986], Section 3.4>

fragment = <fragment, see [RFC3986], Section 3.5>

and:
authority = [userinfo "@"] host [":" port]

path-abempty = *("/" segment)

query = *(pchar / "/" / "?")

fragment = *(pchar / "/" / "?")

and:
segment = *pchar

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"

pct-encoded = "%" HEXDIGHEXDIG

sub-delims = "!" / "$" / "&" / "'" / "(" / ")"

/ "*" / "+" / "," / ";" / "="
Example:

foo://example.com:8042/over/there?name=ferret#nose

_/ ________________/ ________/ _________/ __/

 | | | | |

scheme authority path query fragment

A more readable form is as follows:
http://host:port/path?queryString#fragment

7.3.5
URI Templates

URI Templates [9] allow to specify a range of URIs with parameters that need to be substituted (expanded) with values for constructing the concrete URI reference. The variable part is enclosed by curly brackets {}.
URI Templates can be used for interactions on the wire but also for specifying interfaces.
Example:

http://www.example.com/api/post/{id}

With id=5 this gives
http://www.example.com/api/post/5
7.4
Usage of HTTP

7.4.1
URI structure

The URI should follow a common structure. One possibility is to align with ETSI GS NFV SOL 003 [6]. In this case the URI without the query component follows the structure:
URI = {URI-prefix}/{resourcepath}

URI-prefix = {irpRoot}/{irpName}/{irpVersion}

where:
{irpRoot}
indicates the scheme ("http" or "https"), the host name and optional port, and an optional prefix path.
{irpName}
indicates the IRP name.
{irpVersion}
indicates the version of the IRP.

When comparing this URI scheme to the http-URI you get:
http-URI = "http:" "//" host [":" port] path-abempty ["?" query]

 ____________________________/_/_/_/

 | | | |

 irpRoot irpName | |

 irpVersion |

 resourcepath

The optional userinfo component is not used.

Example 1:

This example illustrates the URI for the case of an Interface IRP not operating on a NRM IRP.

http://example.com:80/optionalPrefixPart/exampleInterfaceIRP/V1/...

Example 2:

This example illustrates the URI for the case of an Interface IRP operating on a NRM IRP. Besides the version of the Interface IRP the version of the NRM IRP needs to be indicated.

http://example.com:80/optionalPrefixPart/exampleInterfaceIRP/V1/exampleNRMIRP/V7/...

7.4.2
Resource identification

TS 32.300 [3] defines the approach for naming a MOI as follows:
"ITU-T Recommendation X.500 [2] uses the AttributeType (defined for use as the first component of the AttributeTypeAndValue of a RDN) to identify one attribute of the subject MO for naming purpose. This AttributeType is called the naming attribute to distinguish itself from other attributes that may be present in the MO."
Based on this definition, the RDN can be defined as:
RDN = "/"{namingAttribute} "/" {namingAttributeValue}

and the resource path is the concatenation of RDNs separated by "/".
resourcePath = *("/" RDN)

The slash "/" is used in this approach as delineator between RDN components and between the naming attribute and the naming attribute value. Another possibility is to use the equal sign "=" as delineator between the naming attribute and the naming attribute values, making the URI more readable.
RDN = "/"{namingAttribute} "=" {namingAttributeValue}

As naming attribute the class name can be used.
Example:

…/SubNetwork/south/IRPAgent/5/ManagedElement/Berlin6754/ENBFunction/1

…/SubNetwork=south/IRPAgent=5/ManagedElement=Berlin6754/ENBFunction=1

There are two options for identification of resources in a RESTful interface:

Option 1: Server allocates the resource identifier.

In this option, the namingAttributeValue is used only in the body of HMTL messages. The server allocates an identifier to be used in the URI.

The client uses a POST message to create a resource, and the server responds with the resource identifier.

Example:
POST www.example.org/network/utranCell HTTP/1.1

{

 "id" : "CityCenterCell17"

}

HTTP/1.1 201 Created

Location: /network/utranCell/8fbc8f030303cdc1

After the resource is created, all subsequent messages refer to the resource identifier.

Example:

DELETE www.example.org/network/utranCell/8fbc8f030303cdc1 HTTP/1.1
HTTP/1.1 200 OK

Option 2: Client allocates the resource identifier.

In this option, the namingAttributeValue is used in the URI.

The client uses a PUT message to add the resource to the list of resources. The server does not allocate another identifier.

Example:

PUT www.example.org/network/utranCell/CityCenterCell17 HTTP/1.1

HTTP/1.1 200 OK

After the resource is created, all subsequent messages use the namingAttributeValue as the resource identifier.

Example:

DELETE www.example.org/network/utranCell/CityCenterCell17 HTTP/1.1

HTTP/1.1 200 OK

7.4.3
Metadata language for the message body

7.4.3.1
Data transport language

There are two commonly-used languages used to transport data in a RESTful message body; JSON and XML.

JSON is optimized for the transport of models, while XML is optimized for the transport of documents.

Because the communication between IRP Manager and IRP Agent is based on information models, JSON is recommended as the data transport language.

JSON is defined in RFC 7159 [15] and JSON Schema is defined in [22], [23] and [24].
7.4.3.2
Specification language

To provide a machine-readable version of an interface specification, 3GPP publishes a Solution Set document which formally describes the schema for each interface. A similar formal schema will be needed for each RESTful interface.

For JSON, there are two parts to this formal description:
-
The behaviour of the API may be described according to the OpenAPI specification [26].

-
The format of the JSON document may be described by a JSON Schema, as defined in the OpenAPI specification [26].

Open API descriptions and JSON Schemas may be expressed as either JSON documents or as YAML documents.

7.4.3.3
Support for Network Resource Models

As part of the Solution Set for an Interface IRP, there is a need for a description of how the Network Resource Model will be transported on the interface. A placeholder for the Network Resource Model needs to be created. Figure 7.4.3.3.1 shows an example of how a SOAP Solution Set describes a placeholder (marked in red) for a managed object.

[image: image1.jpg]

[image: image3]
Figure 7.4.3.3.1: Example of placeholder for Network Resource Model in SOAP Solution Set
In a RESTful interface, it is possible to transport multiple files in a single request. This allows the possibility that the Network Resource Model could be described in a JSON document that is separate from the main body of the request. This has the advantage that the Network Resource Model descriptor could be validated in real time, because it is not embedded as part of another document. Figure 7.4.3.3.2 shows an example of how a JSON Solution Set could describe an external reference (marked in red) for a managed object.

[image: image15.jpg]{irpRoot}/AlarmIRP/v1

[image: image4]
Figure 7.4.3.3.2: Example of external file for Network Resource Model in JSON Solution Set

7.4.4
Usage of HTTP headers and media types

Media types are used in HTTP headers for the following purposes:
-
The Accept-Type HTTP header in a request indicates which media types the client supports. This is used for content format negotiation between server and client.
-
The Content-Type" HTTP header indicates the media type of the message body.
Media types that are supported are listed below:
-
application/json (RFC 7159 [15])
-
application/merge-patch+json (RFC 7396 [16])
-
application/json-patch+json (RFC 6902 [17])
7.5
Design Patterns

7.5.1
Information model for examples

The following class diagram is used for examples in clause 7.5.

[image: image5.png]leInformationObjectCasss|
Ensemble

dsting
type:sting

|eInformationObjectCasss|
Part

dsting
name:siring
vendor:string
sizeinteger

Figure 7.5.1.1: Class diagram

The corresponding JSON Schema definitions are given by:
{

 "title": "Ensemble class",

 "description": "Ensemble class definition serving as example in 3GPP TR 32.866",

 "type": "object",

 "properties": {

 "id": { "type": "string" },

 "type": { "type": "string" }

 }

}

and

{

 "title": "Part class",

 "description": "Part class definition serving as example in 3GPP TR 32.866",

 "type": "object",

 "properties": {

 "id": { "type": "string" },

 "name": { "type": "string" },

 "vendor": { "type": "string" },

 "size": { "type": "integer"}
 }

}

Furthermore, the following instances are assumed:

-
There is one instance of the class Ensemble with the id=1.
-
There are three instances of the class Part with id=a, id=b and id=c.
The instances could look like:
{

 "id": "z",

 "type": "baseStation"

}

and
{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

Multiple instances of the Part class can be transferred in the message body in an array containing a Part class instance as JSON object.
[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

]
7.5.2
Design pattern for READ operations (scope: one resource)

READ operations for single resources are mapped to the HTTP GET method. The resource to be retrieved is identified by the URI.

Example:

The resource representation of the Part class instance with id=b is to be read. A GET is invoked on the corresponding URI. In case of success 200 OK is returned.

GET /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

It is also possible to return the location of the resource. In this case the id attribute is not required any more.
HTTP/1.1 200 OK

Content-Type: application/json

{

 "href": "/Ensemble/1/Part/b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

7.5.3
Design pattern for READ operations (scope: multiple resource)

READ operations for multiple resources are be mapped to the HTTP GET method. For the selection of multiple resources two approaches are possible:

-
With GET …{root}/{ClassName} it is possible to retrieve all resources of type class name below the root resource. Alternatively, a new resource {ClassName}s can be introduced below the {root} resource. Invoking a GET on this resource returns also all ClassName instances.
-
Other resource selection mechanisms can be realized with the query part of the URI, where scoping and filtering constructs can be placed, see clause 7.5.13.

Example:

The resource representations of all Part class instances is read.
GET /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

]
Example:

The base object and the complete subtree below the base object are retrieved. In the example response given below the name containment is reflected in the JSON structure. It is also possible to return a plain list of object instances where each object contains its own URI.
GET /Ensemble/1?scopeType=BASE_SUBTREE HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

[

 {

 "id":"z",

 "type":"baseStation"

 },

 {

 "Part":

 [

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

]

 }

]

7.5.4
Design pattern for UPDATE operations (complete update)

For updating a complete resource HTTP PUT is used. The resource is updated with the representation in the request message body.

In case only a part of the resource needs to be updated, the agent can GET the resource representation, modify it and send the modified complete resource representation back to the server using PUT. All attributes of the resource with final values need to be sent in the message body. Missing attributes will be set by the server to empty or null value. Alternatively, HTTP PATCH can be used for partial updates.

Multiple resources can be selected for an update with the scoping and filtering design pattern.

Example:

Update the Part class instance with id=b, change the size attribute from "2" to "5". Even though the other attributers are not touched, they need to be present in the request message body.

PUT /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

7.5.5
Design pattern for UPDATE operations (partial update)

HTTP PATCH is used when only a part of the resource needs to be replaced. The changes to be applied to the target resource are described in the request message body. RFC 7396 [16] describes a simple method for JSON (JSON Merge Patch) to describe these modifications. Another, more sophisticated method is JSON Patch specified in RFC 6902 [17].

The query part of the URI can be used for scoping and filtering multiple resources.

Example 1:

This example demonstrates the use of JSON Merge Patch for changing the size attribute of the Part class instance identified by id=b from "2" to "5".. In contrast to PUT, only the size attribute needs to be present in the request message body. The unmodified attributes can be omitted.

PATCH /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/merge-patch+json

{

 "size": 5

}

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

Example 2:

This example shows how the size attribute is modified with JSON Patch.

PATCH /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json-patch+json

[

 {

 "op": "replace",

 "path": "/size",

 "value": "5"

 }

]

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

7.5.6
Design pattern for CREATE operations (single resource)

When the identifier of the new resource is to be created by the server, the HTTP POST method needs to be used for resource creation. In case the identifier is to be created by the client and used by the server, the HTTP PUT method needs to be used.

Example:

A new Part class instance is created using the POST method. In case of success "201 Created" is returned. The location header value refers to the new resource. The name of the resource is created by the server.

POST /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}

HTTP/1.1 201 Created

Location: /Ensemble/1/Part/6384

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

Example:

Assume the Part class instance with id=b does not exist yet. A PUT at the location /Ensemble/1/Part/b creates this resource. In case off success "201 Created" is returned. The location header value refers to the new resource.

PUT /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

}

HTTP/1.1 201 Created

Location: /Ensemble/1/Part/b

7.5.7
Design pattern for CREATE operations (multiple resources)

The location header can carry only one URI. For this reason, HTTP POST or HTTP PUT cannot be used for creation of multiple resources, unless the URIs of the created resources are made known to the server in some other way than in the location header response. One possibility to do so is to return "303 See Other" and a location header pointing to a resource containing the links of all created resources.

Another possibility is to use HTTP PATCH with JSON Patch for creation of multiple resources.

Example:

Assume the part class instances with id=b and id=c do not exist yet and are created with a single HTTP PATCH method invocation. JSON PATCH is used to describe the resources to be created.

PATCH /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json-patch+json

[

 {

 "op":"add",

 "path":"/",

 "value":{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 }

 },

 {

 "op":"add",

 "path":"/",

 "value":{

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

 }

]

HTTP/1.1 200 OK

Content-Type: application/json
[

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

]

7.5.8
Design pattern for DELETE operations (single resource)

The HTTP DELETE method is used for deleting single resources.

Example:

The Part class instance with id=b is deleted.

DELETE /Ensemble/1/Part/b HTTP/1.1
Host: example.org

HTTP/1.1 204 No content

7.5.9
Design pattern for DELETE operations (multiple resources)

HTTP PATCH with JSON Patch is used for deleting multiple resources.

Example:

The Part class instances with id=b and id=c are deleted.

DELETE /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json-patch+json

[

 {

 "op":"remove",

 "path":"/b",

 "value":{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 }

 },

 {

 "op":"remove",

 "path":"/c",

 "value":{

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

 }

]

HTTP/1.1 200 OK

Content-Type: application/json
[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

 }

]
7.5.10
Design pattern for SUBSCRIBE/NOTIFY operations

HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to notifications. These mechanisms need to be modelled. To this end the server exposes a subscription resource. To subscribe to notifications the subscriber sends a HTTP POST request to this resource indicating – in the message body - the subscriber to which notifications are sent to, and including information about the type of notifications that are subscribed to. Additional filter information may be included in the message body as well.

Upon reception of a HTTP POST request the HTTP server creates a dedicated subscription resource for this specific subscription. To cancel a subscription, the subscriber deletes this resource with HTTP DELETE. If the cancellation is successful, the server responds with response code 204 (No content).

To send a notification on the occurrence of a notifiable event the HTTP server sends a HTTP POST request to the client identified by HTTP endpoint address. The actual notification content is included in the message body of the HTTP POST request. Conceptually this means that the HTTP server contains a reduced feature HTTP client for sending HTTP POST requests, and vice versa, the HTTP client contains a reduced feature HTTP server for receiving HTTP POST requests and sending HTTP POST responses.
The subscriber can retrieve the information about a specific subscription by sending a HTTP GET request to the URI returned by the server upon creation of this subscription. Information about all subscriptions of a subscriber can be read by invoking a HTTP GET on the parent subscription resource whilst instructing the server, using the query component, to return only the subscriptions related to the client invoking the request.
Example:

This example shows how to subscribe to notifications.

POST /Subscriptions HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "subscriberAddress": "http://subscriber.com/SubscriptionX",

 "subscribedNotificationTypes": "all",

 "notificationFilter": "filterValue"

}

HTTP/1.1 201 Created

Location: /Subscriptions/7324

Content-Type: application/json

{

 "subscriberAddress": "http://subscriber.com/SubscriptionX",

 "subscribedNotificationTypes": "all",

 "notificationFilter": "FilterValue"

}

Example:

This example shows how to send a notification.

POST /SubscriptionX HTTP/1.1
Host: subscriber.com

Content-Type: application/json

{

 "notificationType": "alarm",

 "alarmedResource": "example.org/Ensemble/1/Part/b ",

 "eventTime": "2017-08-09T13:37:27+00:00"

}

HTTP/1.1 204 No Content

Example:

This example shows how to delete a subscription.

DELETE /Subscriptions/7324 HTTP/1.1
Host: example.org

HTTP/1.1 204 No Content

Example:

This example shows how to query information about a specific subscription.

GET /Subscriptions/7234 HTTP/1.1
Host: example.org

HTTP/1.1 200 Ok
Content-Type: application/json

{

 "subscriberAddress": "http://subscriber.com/SubscriptionX",

 "subscribedNotificationTypes": "all",

 "notificationFilter": "FilterValue"

}

7.5.11
Design pattern for TASK operations

Due to their complexity, some operations cannot be mapped easily into CRUD operations. For these operations task resources are introduced.

Task resources are created below a parent resource to which the task is related to. The tasks are invoked by sending a HTTP POST request to the resource. Input parameters can be specified in the message body of the POST request. Output parameters can be returned in the message body of the POST response. The name of the resource should be a verb describing the invoked action.
…/foo/doSomething

Task resources are created automatically by the HTTP server once the parent resource is created. The HTTP client does not need to create them.

The RMM level 1 can be obtained with task resources. For this reason the use of task resources is discouraged.

7.5.12
Design pattern for asynchronous operations

Some operations cannot be mapped to synchronous HTTP requests and responses. For these operations, various options exist to implement asynchronous operations over a HTTP interface.

Option 1: Client requests a notification to a callback URI

In this option, the client submits a callback URI while requesting the asynchronous operation. This URI is called when the asynchronous operation is complete.

To invoke an operation:

The client sends a GET request to an operation-style URI, for example "/network/utranCell/Cell13784/upgrade". The request contains a link to a callback URI so that the client may be notified when the request is completed. If the request is accepted, the server responds with status 200 (OK). If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing operation:

Cancellation is not possible.

To check the status of an operation:

Status check is not possible.

Advantages:

This option is very simple to implement.

Disadvantages:

This option does not properly use the RESTful nature of HTTP, it only uses HTTP as a carrier protocol. The Solution Set needs to describe proprietary handling of request state transitions and error handling.

The client and server need to agree in advance which operations will be asynchronous.

It is not possible for the client to check the status of the request or to cancel the request.

Maturity level:

This option is at Richardson Maturity Level 0. The action is described in the URI, not in the HTTP verb. The status of the request is not reported to the client.

Option 2: Client creates a resource to represent the operation

In this option, the client creates and manages a resource to represent the asynchronous operation. This resource is used to represent the actions on the operation and the error conditions of the operation.

To invoke an operation:

The client POSTs a request to an operation-style URI, for example "/network/utranCell/Cell13784/upgrade". Optionally, the request may contain a link to a callback URI so that the client may be notified when the request is completed. If the request is accepted, the server responds with status 201 (created) and a link to a status URI (for example "Location: /network/utranCell/Cell13784/upgrade/75CD01A7110C"). If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing operation:

The client invokes a DELETE operation on the status URI. If the cancellation is successful, the server responds with response code 204 (success). If it is not possible to cancel the ongoing operation, the server responds with response code 405 (method not allowed).

To check the status of an operation:

The client invokes a GET operation on the status URI. The server responds with response code 200 (OK) and the body of the response describes the current status of the operation (for example ongoing/success/failed).

If the operation has finished, the server may remove the status URI after a suitable timeout. Any requests to the removed URI should result in response code 410 (gone).

Advantages:

This option is compatible with existing 3GPP SA5 Information Models.

Disadvantages:

This option does not properly use the RESTful nature of HTTP, it only uses HTTP as a carrier protocol. The Solution Set needs to describe proprietary handling of request state transitions and error handling.

The client and server need to agree in advance which operations will be asynchronous.

Every operation is expressed as a POST. This causes misuse of HTTP verbs in some cases, for example an asynchronous request to delete a resource needs to be encapsulated within a POST request.

Maturity level:

This option is at Richardson Maturity Level 1. The action is described in the URI, not in the HTTP verb. The status of the request is described in the HTTP body, not in the HTTP status code.

Option 3: Server creates a resource to represent the operation

In this option, the server creates and manages a resource to represent the asynchronous operation. HTTP verbs are used to represent the actions on the operation and HTTP status codes are used to report the error conditions of the operation.

To invoke an operation:

The client sends a request (POST/PUT/DELETE) containing "Expect: 200-ok/201-created/202-accepted" in the request header.

If the server is able to processes the request synchronously, the server responds with code 200 (OK) or 201 (created).

If the server is not able to processes the request synchronously, the server responds with status 202 (accepted) and a link to a status URI (for example "Location: /request/9EB50DADABDF").

If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing asynchronous operation:

The client invokes a DELETE operation on the status URI. If the cancellation is successful, the server responds with response code 204 (success). If it is not possible to cancel the ongoing operation, the server responds with response code 405 (method not allowed).

To check the status of an asynchronous operation:

The client invokes a GET operation on the status URI. If the operation is still ongoing, the server responds with response code 200 (OK). If the operation is finished and an object exists as a result of the operation, the server responds with response code 303 (see other link) and the URI of the object. If the operation is finished and no object exists as a result of the operation, the server responds with response code 410 (gone).

If the operation has finished, the server may remove the status URI after a suitable timeout. Any requests to the removed URI should result in response code 410 (gone).

Advantages:

This option is compatible with cloud-style interfaces. Standard HTTP verbs and HTTP error codes are used properly. Because the behaviour is consistent, code may be reused or automatically generated.

Disadvantages:

This option is very different to the existing 3GPP SA5 solution sets. A typical 3GPP SA5 Information Model defines the behaviour of an asynchronous operation, and this behaviour may differ for various managed objects. In this option, the behaviour of the asynchronous operation is always the same, which may cause a mismatch between the Information Model and the Solution Set.

Maturity level:

This option is at Richardson Maturity Level 2. The lifecycle of the request is controlled by HTTP verbs and is reported by the HTTP status codes.

7.5.13
Design pattern for scoping and filtering

The hierarchical path component in the URI serves to identify a resource, called the base resource. The scope defines the resources below the base resource or at the same level as the base resource. A subset of the scoped resources can be selected by applying one or multiple filtering criteria. The scoped resources that match the filter criteria are those on which the HTTP operation is being applied to.

The query component in the URI is used for scoping and filtering. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

In RFC 3986 [8] the query component is defined as:

query = *(pchar / "/" / "?")

A filter language is not defined in IETF. In ETSI GS NFV SOL 003 the following filter language is specified

simpleFilterExpr := <attrName>["."<attrName>]*"."<op>"="<value>

filterExpr := "?"<simpleFilterExpr>["&"<simpleFilterExpr>]*

op := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |
 "ncont"

attrName := string

with

	Operator <op>
	Meaning

	<attrName>.eq=<value>[,<value>]*
	Attribute equal to one of the values in the list

	<attrName>.neq=<value>[,<value>]*
	Attribute not equal to any of the values in the list

	<attrName>.gt=<value>
	Attribute greater than <value>

	<attrName>.gte=<value>
	Attribute greater than or equal to <value>

	<attrName>.lt=<value>
	Attribute less than <value>

	<attrName>.lte=<value>
	Attribute less than or equal to <value>

	<attrName>.cont=<value>[,<value>]*
	Attribute contains (at least) one of the values in the list

	<attrName>.ncont=<value>[,<value>]*
	Attribute does not contain any of the values in the list

NOTE:
The choice of filtering language and method is not relevant at this stage and may be subject for discussion in the normative phase.

The scope can be defined as follows:

…?scopeType={scopeTypeValue}&scopeLevel={scopeLevelValue}

scopeTypeValue = "BASE_ONLY" / "BASE_NTH_LEVEL" / "BASE_SUBTREE" / "BASE_ALL"

scopeLevelValue = *DIGIT
The scope types are defined in TS 32.602 [4], and repeated here for convenience:
-
BASE_ONLY: select the base object, value of Level is ignored

-
BASE_NTH_LEVEL: select all nth level (indicated by the value of Level) subordinate objects

-
BASE_SUBTREE: select the base object and all of its subordinates down to and including the nth level

-
BASE_ALL: select the base object and all of its subordinates; value of Level is ignored

Another simpler but also less rich possibility to select certain resources is to invoke a HTTP method not on a leaf resource but on a resource before the leaf object.
Example 1:

This URI scopes the leaf resource with the id=c, which is the normal case where one resource is selected.

…/Ensemble/1/Part/c

Example 2:

This URI scopes all three instances of Part with the id=a, id=b and id=c

…/Ensemble/1/Part

Example 3:

This URI scopes the instance of Ensemble with id=1

…/Ensemble/1

Example 4:

This URI scopes all instances of Ensemble, in this case hence only the instance with id=1

…/Ensemble

7.5.14
Design pattern for attribute selection

This design pattern allows to select the attributes to be returned by the GET method. This pattern is not applicable to any other HTTP methods.
The attributes to be returned are specified in the query part of the URI with a key value pair. The key is "fields", the value is equal to the attribute names separated by a comma.
Example 1:

In this example only the attributes "vendor" and "size" are selected to be returned.

GET /Ensemble/1/Part/b?fields=vendor,size HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "vendor": "XYZ",

 "size": 5

}

7.5.15
Design pattern for links

Links are used on Level 3 of the Richardson Maturity Model. Links are returned by the server as part of the resource representation and used by the client to traverse the resource space and discover features of the resources without the need to consult external documents. In its most simple form the value of a link is a URI or a templated URI pointing to another resource (target resource). This information can be complemented by information about how the target resource relates to the context resource (link relation type) and attributes describing the target resource (target attributes).

RFC 8288 [27] describes links to be used in HTTP header fields. The general mechanisms can be used also for conveying links as part of the resource representation in the response message body. However, a JSON Schema for annotating returned resource representations with links would have to be defined.

The IETF Internet "Draft JSON Hypertext Application Language" [28] proposes a new media type for representing resources and their relations with hyperlinks. The JSON Hypertext Application Language (HAL) introduces a "_links" property whose property names (keys) are link relation types defined by RFC 8288 [27]. The property value is a Link Object or an array of Link Objects. A Link Object represents a hyperlink from the containing resource to another resource identified by the URI. A link Object has a couple of properties (key-value pairs):

-
The "href" property identifies the other resource and its value is either a URI or a URI Template.

-
The "templated" property specifies if the URI is templated or not. Its value is boolean (true/false).

-
The "type" property indicates the media type of the resource representation to be expected from the target resource. Its value is a string.

-
The presence of the "deprecation" property indicates that the link is to be deprecated. Its value is a URI pointing to a resource containing more information about the deprecation.

-
The "name" property can be used as secondary key besides the relation type.

-
The "profile" property is a URI pointing to a resource with information about the profile of the target resource.

-
The "title" property is a string and allows to add a human-readable name for the link.

-
The "hreflang" property is a string and indicates the language of the target resource.

It is recommended that each link object should always contain a link identifying the resource itself. The link type is the IANA registered "self".

It is not possible to provide in the Link Object information to the client on which HTTP methods are accepted by the target resource. However, it is possible to specify a URI in the link relation pointing to a resource providing documentation about the target resource like the supported HTTP methods.

HAL features also a "_embedded" property. Its name is a link relation type and its value a resource object or an array of resource objects. Resource representations are those of the target URI or related to the target URI. The server decides to include his property in the response. Some REST guidelines also suggest the usage of an embed query parameter to allow the client to force the inclusion of the "_embedded" property.

Besides HAL there is also the IETF Internet Draft "JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON" [24] proposing keywords for defining link description objects. The general approach is the same as for HAL. Nevertheless, there are differences in syntax and semantics. In HAL, for example" the relationship type is carried by the property names of the name-value pairs included in the "_links" object whereas in the JSON Hyper-Schema a dedicated property ("rel") is defined for that purpose. The keyword for link description objects is "links" and not "_links". As for HAL many keywords are defined for specifying properties on link description objects.

This study does not make any recommendation on which hyperlink standards should be used.

Example 1:

This example demonstrates the usage of HAL. A hyperlink to the alarm resource itself is returned as well as the links to the previous and the next alarm. The link relation types "self", "next" and "prev" are used to identify the semantics of the link. They are registered at IANA.

{

"_links": {

 "self": {"href": "http://example.org/AlarmIRP/v1/Alarms/127"},

 "next": {"href": "http://example.org/AlarmIRP/v1/Alarms/128"},

 "prev": {"href": "http://example.org/AlarmIRP/v1/Alarms/126"}

}

}

Example 2:

This example illustrates the use of a templated URI with Path Segment Expansion. The client can expand the templated URI with a specific alarm id and obtains the URI for retrieving the corresponding alarm resource.

{

 "_links": {

 "find": {"href": "http://example.org/AlarmIRP/v1/Alarms{/id}, "templated": true "}

 }

Example 3:

In the following example possible actions on the returned alarm are listed in the "_links" object. This example assumes the presence of task resources. Note that "comment", "acknowledge" and "unacknowledge" are extension link relation types not registered with IANA.

{
"_links": {

 "comment": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/comment"},

 "acknowledge": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/acknowledge"}

}

}

In case the alarm is already acknowledged the following options are returned.

{

"_links": {

 "comment": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/comment"},

 "unacknowledge": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/unacknowledge"}

}

}

Example 4:

This example shows how a child resource may be linked. The "parts" relation type is not registered with IANA.

GET /ensembles/1 HTTP/1.1

Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "1",

 "type": "Type1",

 "_links":

 {

 "self": { "href": "/ensembles/1" },

 "parts": { "href": "/ensembles/1/parts" }

 }

}

Example 5:

This example demonstrates the usage of HAL with the "_embedded" property. The inclusion of this property in the return message payload is triggered by the "embed" query parameter.

GET /ensembles/1?embed=parts HTTP/1.1

Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "1",

 "type": "Type1",

 "_links":

 {

 "self": { "href": "/ensembles/1" },

 "parts": { "href": "/ensembles/1/parts" }

 }

 "_embedded"

 {

 "parts":

 [

 {

 "id": "a",

 "name": "aName",

 "vendor": "ACME",

 "size": 10,

 "_links":

 {

 "self": { "href": "/ensembles/1/parts/a" }

 }

 },

 {

 "id": "b",

 "name": "bName",

 "vendor": "ACME",

 "size": 5,

 "_links":

 {

 "self": { "href": "/ensembles/1/parts/b" }

 }

 },

 {

 "id": "c",

 "name": "cName",

 "vendor": "ACME",

 "size": 12,

 "_links":

 {

 "self": { "href": "/ensembles/1/parts/c" }

 }

 }

]

 }

}

Example 6:

This example illustrates the usage of the JSON Hyper-Schema.

"links": [

 {

 "rel": "self",

 "href": " http://example.org/AlarmIRP/v1/Alarms/127"

 },

 {

 "rel": "next",

 "href": " http://example.org/AlarmIRP/v1/Alarms/128"

 }

]

7.5.16
Design pattern for iterations

7.5.16.1
Iteration methods

Sometimes large portions of data need to be retrieved by a client. In these cases it is desirable to partition the response and return the data in multiple subsets. This is often referred to as the client iterating through the information to be returned. Two methods are commonly used and may be considered during the normative stage.

7.5.16.2
Iteration using header

RFC 7233 [13] describes range requests that can be used for iterations. A Range header can be specified in the GET request allowing the client to specify a subset of the total resource representation. Only the specified subset is returned in the response. Ranges can be specified either in bytes or based on other substructures like the number of managed object instances. RFC 7233 [13] defines only requests for byte ranges.

In case of success the server returns the status code 206 (Partial Content) and the Content-Range and Content-Length response headers. The response message body contains the partial content. The status code 416 (Range Not Satisfiable) is returned if the requested range cannot be satisfied by the server.

The Accept-Ranges header allows a server to indicate support for range requests for a target resource. The Accept-Ranges header value indicates the range unit type supported. The client can trigger a response including the Accept-Ranges header with a HEAD request.

Example:

The three Part class instances are read in two steps. The first step returns the first two instances, and the second step the last instance.
GET /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json

Range: items=0-1

HTTP/1.1 206 Partial Content

Content-Range: 0-1/3

Content-Length: 1

Content-Type: application/json

[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 5

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 2

 }

]
GET /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json

Range: items=2

HTTP/1.1 206 Partial Content

Content-Range: 2/3

Content-Length: 1

Content-Type: application/json

[

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": 53

 }

]
The Range request header can specify also a set of ranges within a single representation (multipart ranges). The response to these requests is in case of success the 206 (Partial Content) status code and includes a Content-Type header value of multipart/byteranges together with a boundary parameter string. The boundary indicates the boundary between the requested parts in the response message body.

The concept of multipart ranges cannot be used to partition large data sets to be read into multiple smaller responses. It may be used to scope certain managed objects in a large resource representation containing multiple managed objects.

7.5.16.3
Iteration using query parameters

Another method for handling large portions of data need to be retrieved by a client is the use of query parameters. All URLs which return collections of resource results (e.g. GET /dc/api/v5/users) follow the same pattern for paging. When issuing your HTTP request, you can include two parameters which determine paging behavior:

-
limit:

The limit parameter controls the maximum number of items that may be returned for a single request. This parameter can be thought of as the page size. If no limit is specified, the system defaults to a limit of 15 results per request. The maximum valid limit value is 100.

-
offset:

The offset parameter controls the starting point within the collection of resource results. For example, if you have a collection of 15 items to be retrieved from a resource and you specify limit=5, you can retrieve the entire set of results in 3 successive requests by varying the offset value: offset=0, offset=5, and offset=10. Note that the first item in the collection is retrieved by setting a zero offset.

The response to these requests is typically a JSON object with the following three properties: results, next, and prev. The results property is simply an array of the items returned for your request. If you are paged into the result set, the prev property will contain a link to the previous page of results. A next property, if present, will contain a link to the next page of results based on your current limit and offset values.

Example

For this scenario, a request is made to the users' resource, limiting the results to three items per page. Notice the next property on the response object contains a link with an identical URL but with an adjusted offset to include the next set of items.

GET /ensembles/?limit=3,offset=5 HTTP/1.1

Host: example.org

Accept: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "ensembles":

 [

 {
 "id": "5",

 "type": "Type1"

 },

 {
 "id": "6",

 "type": "Type1"

 },

 {
 "id": "7",

 "type": "Type1"

 }

],

 "_links":

 {

 "self": { "href": "/ensembles/?limit=3,offset=5" },

 "next": { "href": "/ensembles/?limit=3,offset=8" }

 "previous": { "href": "/ensembles/?limit=3,offset=2" }

 }

}

7.6
Example mapping of IRPs

7.6.1
Mapping of Network Resource Model (NRM) IRPs to resources

Each Managed Object Instance (MOI) is mapped to a HTTP resource.
7.6.2
Basic CM IRP

The Information Service of the Basic CM IRP is defined in 3GPP TS 32.602 [4] and features the following operations:
	IS operation
	Description

	createMO
	Operation allows to create one MOI

	deleteMO
	Operation allows to create one MOI or (through scoping and filtering) multiple MOIs

	setMOAttributes
	Operation allows to set the attributes of one MOI or (through scoping and filtering) multiple MOIs

	getMOAttributes
	Operation allows to read the attributes of one MOI or (through scoping and filtering) multiple MOIs

	getContainment
	Operation to get the containment starting from the specified base object

	cancelOperation
	Operation to cancel an ongoing Basic CM operation

Case 1: The operations relate to one and only one managed object instance (resource)

In this case the resource is identified by the URI. The scope is the base object alone. Filter constraints can be specified in the query component.

In this case the IS operations can be mapped directly into HTTP methods as specified in the following table.

	IS operation
	HTTP method

	createMO
	POST

	deleteMO
	DELETE

	setMOAttributes
	PATCH (partial update) / PUT (complete update)

	getMOAttributes
	GET

	cancelOperation
	not possible with synchronous methods

	getContainment
	relates to multiple resources

Example: Get all attributes of a resource

Request:

GET …/SubNetwork/south/IRPAgent/5/ManagedElement/6/ENBFunction/Berlin6754

Response:

Returns in the message body the resource instance in JSON.

Case 2: The operations relate to a scope with more than one managed object instance (resource)

	IS operation
	HTTP method

	deleteMO
	DELETE with appropriate identification of multiple resources to be deleted

	setMOAttributes
	PATCH/PUT with appropriate identification of multiple resources

	getMOAttributes
	GET with appropriate identification of multiple resources

	cancelOperation
	not possible with synchronous methods

	getContainment
	GET with appropriate identification of all resources below base resource

7.6.3
Alarm IRP

7.6.3.1
Introduction

The Information Service of the Alarm IRP is specified in TS 32.111-2 [2]. This clause will detail some possible mappings based on the Richardson Maturity Model.

7.6.3.2
Richardson Maturity Model Level 0 (The swamp of POX)

At this level only a service endpoint is exposed as a resource by the server.

 SHAPE * MERGEFORMAT

Figure 7.6.3.2.1: Resource URI structure of the Alarm IRP (RMM Level 0)
HTTP POST methods are invoked against this URI. The operation to be performed is given in the request message body along with the operation input parameters. The operation output parameters are returned in the response message body. Below, there is an example for the operation getAlarmList.

POST /AlarmIRP/V1 HTTP/1.1

[REQUEST HEADER]

{

 "getAlarmListRequest":

 {

 "parameterNameA": "parameterNameA_value",

 "parameterNameB": "parameterNameB_value"

 }

}

HTTP/1.1 200 OK

[RESPONSE HEADER]

{

 "getAlarmListResponse":

 {

 "parameterNameX": "parameterNameX_value",

 "parameterNameY": "parameterNameY_value"

 }

}

7.6.3.3
Richardson Maturity Model Level 1 (Resources)

At this level resources are introduced. The operations getAlarmList and getAlarmCount target the resource AlarmList. A HTTP POST can be invoked against AlarmList. The type of operation as well as input and output parameters are carried in the request and response message bodies in the same way as for RMM Level 0.

The operations acknowledgeAlarms, unacknowledgeAlarms, setComment and clearAlarms can target one or multiple alarms identified by a single alarmId or a list of alarmId. This means that all these operations need to be POSTed against AlarmList, too. The difference to the solution in the clause above is only that the HTTP POST is not directed to a service endpoint but to the AlarmList resource.

 SHAPE * MERGEFORMAT

Figure 7.6.3.3.1: Resource URI structure of the Alarm IRP (RMM Level 1, alternative 1)
In case the operations acknowledgeAlarms, unacknowledgeAlarms, setComment and clearAlarms can target only one alarm, the following resource URI structure could be used.

 SHAPE * MERGEFORMAT

Figure 7.6.3.3.2: Resource URI structure of the Alarm IRP (RMM Level 1, alternative 2)
The operations acknowledgeAlarms, unacknowledgeAlarms, setComment and clearAlarms are POSTed against the alarmId resource in this case.

Yet another possibility is to use task resources as shown in the following figure.

 SHAPE * MERGEFORMAT

Figure 7.6.3.3.3: Resource URI structure of the Alarm IRP (RMM Level 1, alternative 3)
7.6.3.4
Richardson Maturity Model Level 2

At this maturity level resources are used and the HTTP verbs are used as they are used in HTTP. The following figure shows the resource URI structure.

 SHAPE * MERGEFORMAT

Figure 7.6.3.4.1: Resource URI structure of the Alarm IRP (RMM Level 2)
getAlarmList:

GET /AlarmIRP/V1/Alarms HTTP/1.1

acknowledgeAlarms:

PATCH /Alarms?alarmId=5,alarmId=7 HTTP/1.1

[REQUEST HEADER]

{

 "ackUserId": "5"

 "ackSystemId": "53",

 "ackState": "acknowledged"

}

unacknowledgeAlarms:
PATCH /Alarms?alarmId=5,alarmId=7 HTTP/1.1

[REQUEST HEADER]

{

 "ackUserId": "5",

 "ackSystemId": "53",

 "ackState": "unacknowledged"

}

clearAlarms
PATCH /Alarms?alarmId=5,alarmId=7 HTTP/1.1

[REQUEST HEADER]

{

 "clearUserId": "5"

 "clearSystemId": "53"

}

setComment
PUT /AlarmList/1/Comment HTTP/1.1
[REQUEST HEADER]

{

 "commentUserId": "5"

 "commentSystemId": "53",

 "commentText": "This is a comment."

}

getAlarmCount:
GET /AlarmIRP/V1/Alarms?count HTTP/1.1

7.7
Example mapping of solution set

7.7.1
Example of defining types

Figure 7.7.1.1 shows an example of how a common type is defined in a SOAP Solution Set.

[image: image11]
Figure 7.7.1.1: Example of common type definition in SOAP Solution Set

Figure 7.7.1.2 shows how this example may be defined in a JSON Solution Set (expressed in YAML to aid readability).

[image: image12]
Figure 7.7.1.2: Example of common type definition in JSON Solution Set

7.7.2
Example of defining managed objects

Figure 7.7.2.1 shows an example of how a managed object is defined in a SOAP Solution Set.

[image: image13]
Figure 7.7.2.1: Example of managed object definition in SOAP Solution Set

Figure 7.7.2.2 shows how this example may be defined in a JSON Solution Set (expressed in YAML to aid readability).

[image: image14]
Figure 7.7.2.2: Example of managed object definition in JSON Solution Set

7.8
REST SS template

This clause provides the REST SS template.

8
Recommendations

The present document provides an overview of the REST architectural style and HTTP. Design patterns, conforming to the REST style and using HTTP, are described for functions commonly used for management purposes. Example mappings of IRPs are provided. This proves that IRPs can be implemented based on HTTP whilst following REST principles.

It is recommended to introduce new RESTful HTTP based Solution Set definitions.
Annex A:
About TM Forum REST API specifications

A.1
REST API design guidelines

A.1.0
Introduction

This clause provides information regarding the development of TM Forum APIs using REST. Documents in Annex X provide recommendations and guidelines for the implementation of Entity CRUD operations and Task operations. They also provide information on filtering and attribute selection. Finally they provide information on supporting notification management in REST based systems.

A.1.1
General concepts

-
A Managed Resource is e.g. a database record or a managed entity. Its representation includes fields with values and links to related resources. Client can create, query, update and delete (CRUD) managed resources;

-
A Resource Collection is a server managed collection of resources;

-
Executable functions are of two kinds:

-
CRUD methods;
-
Tasks.

-
REST APIs embrace all aspects of HTTP 1.1, including its requests methods, response codes and message headers.

A.1.2
Operations
	Type of operation
	API operation
	Description

	Query managed entities
	GET Resource
	GET is used to retrieve a representation of a resource.

	Create managed entity
	POST Resource
	POST is used to create a new resource

	Partial Update of a managed entity
	PATCH Resource
	PATCH is used to partially update a resource

	Complete Update of a managed entity
	PUT Resource
	PUT is used to completely update a resource

	Remove a managed entity
	DELETE Resource
	DELETE is used to delete a resource

	Execute an Action on a managed entity
	POST on TASK Resource
	POST is used to execute actions other than CRUD.

A.1.3
Media types

- REST methods may be able to transfer data in XML or JSON; each is represented by its media type

- REST APIs need to support the JSON media type

- The default for resource representation is JSON
- XML and other formats may optionally be supported via content negotiation between the client and the server.

A.2
Example TM Forum REST APIs

Here below is an non exhaustive list of REST APIs specified by TM Forum:

- Trouble Ticket API

- Customer Management API

- Product Catalog Management API

- Product Inventory Management API

- Performance Management API, etc.

Annex B:
Bibliography

TMF 630
TM Forum REST API Design Guidelines Part 1- Practical guidelines for RESTful APIs naming, CRUD, filtering, notifications. Release 14.5.1 – March 2015

TMF 631
TM Forum REST API Design Guidelines Part 2 – Advanced guidelines for RESTful APIs lifecycle management, polymorphism, common tasks. Release 14.5.1 – March 2015

Annex C:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2016-11
	SA5#110
	S5-166218
	
	
	
	Skeleton
	0.0.0

	2017-04
	SA5#112
	S5-171985
	
	
	
	pCRs in S5-171942 and S5-171943 added
	0.1.0

	2017-05
	SA5#113
	S5-173543
	
	
	
	pCRs in S5-173516, S5-173517 added
	0.2.0

	2017-08
	SA5#114
	S5-174431
	
	
	
	pCRs in S5-174171, S5-174427, S5-174428, S5-174429, S5-174430, S5-174432, S5-174433, S5-174434 added
	0.3.0

	2017-09
	SA#77
	SP-170664
	
	
	
	Presented for information
	1.0.0

	2017-11
	SA5#115
	S5-175433
	
	
	
	pCRS in S5-175257, S5-175258, S5-175259, S5-175260, S5-175261, S5-175262, S5-175263, S5-175264, S5-175265, S5-175266, S5-175434, S5-175485 added
	1.1.0

	2017-12
	SA5#116
	S5-176482
	
	
	
	pCRs in S5-176260, S5-176263, S5-176459, S5-176474, S5-176480, S5-176481, S5-176483, S5-176485, S5-176489, S5-176532 added. Editorial fixes by MCC/EditHelp
	1.2.0

<!-- createMO Request -->

<element name="createMO">

	<complexType>

		<sequence>

			<element name="mOIElementLoc" type="string"/>

			<element name="referenceObjectInstance" type="string" minOccurs="0"/>

			<element name="mO" type="basicCMIRPData:AnyMOType"/>

		</sequence>

	</complexType>

</element>

paths:

/managedObject:

post:

summary: Creates a new managed object.

consumes:

	-	multipart/form-data

parameters:

	-	in: formData

				name: createMO

			description: Parameters to create a new managed object.

			schema:

			type: object

			properties:

				mOIElementLoc:

					type: string

					required: true

				referenceObjectInstance:

					type: string

	-	in: formData

				name: managedObject

				type: file

			description: JSON document to describe managed object.

			x-mimetype: application/json

			required: true

		responses:

			200:

				description: OK

<complexType name="longList">

 <sequence>

 <element name="em" type="long" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

</complexType>

definitions:

longList:

	type: array

	items:

		type: integer

 format: int64

<element

 name="MscServerFunction"

 substitutionGroup="xn:ManagedElementOptionallyContainedNrmClass"

>

 <complexType>

 <complexContent>

 <extension base="xn:NrmClass">

 <sequence>

 <element name="attributes" minOccurs="0">

 <complexType>

 <all>

 <element name="userLabel" type="string"/>

 <element name="mccList" type="cn:longList"/>

 <element name="mncList" type="cn:longList"/>

 <element name="lacList" type="cn:longList"/>

 <element name="sacList" type="cn:longList"/>

 <element name="gcaList" type="cn:longList" minOccurs="0"/>

 <element name="mscId" type="long"/>

 <element name="mscServerFunctionGsmCell" type="xn:dnList"/>

 <element name="mscServerFunctionExternalGsmCell" type="xn:dnList"/>

 <element name="mscServerFunctionCsMgwFunction" type="xn:dnList"/>

 <element name="nriList" type="cn:longList"/>

 <element name="mscServerFunctionMscPool" type="xn:dnList" minOccurs="0"/>

 <element name="defaultMsc" type="cn:defaultMscType" minOccurs="0"/>

 </all>

 </complexType>

 </element>

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="cn:IucsLink"/>

 <element ref="cn:ALink"/>

 <element ref="xn:VsDataContainer"/>

 </choice>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</element>

$schema: http://json-schema.org/draft-04/schema#

description: "MscServerFunction"

type: object

properties:

 attributes:

 type: object

 required:

 - mccList

 - mncList

 - lacList

 - sacList

 - mscId

 - mscServerFunctionGsmCell

 - mscServerFunctionExternalGsmCell

 - mscServerFunctionCsMgwFunction

 - nriList

 properties:

 userLabel:

 type: string

 mccList:

 $ref: "#/definitions/longList"

 mncList:

 $ref: "#/definitions/longList"

 lacList:

 $ref: "#/definitions/longList"

 sacList:

 $ref: "#/definitions/longList"

 gcaList:

 $ref: "#/definitions/longList"

 mscId:

 type: integer

 mscServerFunctionGsmCell:

 $ref: "#/definitions/dnList"

 mscServerFunctionExternalGsmCell:

 $ref: "#/definitions/dnList"

 mscServerFunctionCsMgwFunction:

 $ref: "#/definitions/dnList"

 nriList:

 $ref: "#/definitions/longList"

 mscServerFunctionMscPool:

 $ref: "#/definitions/dnList"

 defaultMsc:

 $ref: "#/definitions/defaultMscType"

 IucsLinks:

 $ref: "#/definitions/IucsLinkList"

 ALinks:

 $ref: "#/definitions/ALinkList"

 VsDataContainer:

 $ref: "#/definitions/VsDataContainer"

[image: image16.jpg]{irpRoot}/AlarmIRP/v1

\—l /Alarms
—{ Kalarmld}

/acknowledgeAlarm

/unacknowledgeAlarm

/setComment

[clearAlarm

IgetAlarmList

IgetAlarmCount

[image: image17.jpg]{irpRoot}/AlarmIRP/v1

\—l /Alarms
Kalarmlid}

[image: image18.jpg]{irpRoot}/AlarmIRP/v1

