3GPP TR 29.998-4-4 V0.2.1 (2002-01)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API) Mapping for OSA;

Part 4: Call Control Service Mapping;

Subpart 4: Multiparty Call Control SIP

(Release 5)

[image: image74.wmf]

 OSA SCS

SIP UA

-

Terminating

SIP UA

-

Origfinating

Proxy

Proxy

S

-

CSCF

2. BYE

Service logic

1. BYE

3. 200 OK

4. 200 OK

5. INVITE

6. INVITE

7. 200

OK

8. 200 OK

SIP dialog #1

SIP dialog #2

SIP

leg

#2

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID:

 R

From: P

To: Q

Call

-

ID: R

B2BUA Mode:

OSA SIP server

-

 end

-

to

-

end

session

 split into

 two SIP

 dialogues by

-

 terminating and

 originating SIP

 User

 Agents.

SIP

dialog

#1

SCF

 OSA AS

OSA API

User

User

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

3Contents

Foreword
6
Introduction
6
1
Scope
8
2
References
8
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
11
4
Mapping OSA Call and Call Leg to SIP
11
4.1
Introduction
11
4.2
SIP Call-id &dialog vs OSA Call & Call Leg Session ID
12
4.2.1
OSA Call and SIP Dialogue Correlation Tables
12
5
Multi Party Call Control Flows
16
5.1
Call Manager Service Interface
17
5.1.1
createCall
17
5.1.2
CreateNotification
18
5.1.3
changeNotification
19
5.1.4
destroyNotification
20
5.1.5
getNotification
21
5.1.6
setCallLoadControl
22
5.2
Call Manager Application Interface
24
5.2.1
managerInterrupted
24
5.2.2
managerResumed
24
5.2.3
reportNotification
25
5.2.4
callAborted
27
5.2.5
callOverloadEncountered
28
5.2.6
callOverloadCeased
29
5.3
Multi-Party Call Service Interface
29
5.3.1
GetCallLegs
30
5.3.2
createCallLeg
30
5.3.3
createAndRouteCallLegReq
31
5.3.4
release
35
5.3.5
deassignCall
37
5.3.6
getInfoReq
38
5.3.7
superviseReq
39
5.3.8
setAdviceOfCharge
40
5.3.9
SetChargePlan
42
5.4
Multi-Party Call Application Interface
43
5.4.1
createAndRouteCallLegErr
43
5.4.2
callEnded
44
5.4.3
getInfoRes
45
5.4.4
getInfoErr
46
5.4.5
superviseErr
47
5.4.6
superviseRes
48
5.5
CallLeg Service Interface
50
5.5.1
routeReq
50
5.5.1.1
Case 1 UA mode operation
51
5.5.1.2
Case 2 Proxy mode operation
52
5.5.2
eventReportReq
53
5.5.3
release
54
5.5.4
getInfoReq
58
5.5.5
getCall
59
5.5.6
continueProcessing
60
5.5.7
attachMediaReq
61
5.5.8
detachMediaReq
64
5.5.9
deassign
66
5.5.10
getCurrentDestinationAddress
67
5.6
CallLeg Application Interface
68
5.6.1
routeErr
68
5.6.2
eventReportRes
69
5.6.3
eventReportErr
70
5.6.4
callLegEnded
71
5.6.5
getInfoRes
72
5.6.6
getInfoErr
74
5.6.7
superviseErr
75
5.6.8
superviseRes
76
5.6.9
attachMediaErr
78
5.6.10
attachMediaRes
79
5.6.11
detachMediaErr
80
5.6.12
detachMediaRes
81
6
Detailed Parameter Mappings
84
6.1
TpAdditionalCallEventCriteria
84
6.2
TpAddress
85
6.3
TpAddressRange
86
6.4
TpCallAppInfo
86
6.5
TpCallError
88
6.6
TpCallErrorType
88
6.7
TpCallEventInfo
89
6.8
TpCallEventRequest
89
6.9
TpCallEventType
89
6.10
TpCallInfoType
91
6.11
TpCallLegInfoType mapping from SIP
92
6.12
TpCallLegConnectionProperties to SIP
92
6.13
TpCallMonitorMode
93
6.14
TpCallNotificationReportScope
93
6.15
TpCallNotifiationRequest
94
6.16
TpCallTreatmentType
94
6.17
TpRelaseCause, mapping to SIP response
95
6.18
TpRelaseCause, mapping from SIP
96
6.19
TpAoCInfo, mapping to SIP
98
6.20
TpAoCOrder, mapping to SIP
98
A
Annex A (informative):Introduction to API Mapping for OSA MPCCS API.
99
A.1 OSA Service Provision for MPCCS in IMS
99
A.2 MPCCS
101
A.2.1 Introduction
101
A.2.2 SIP Server Roles in OSA SCS
101
A.2.2.1 Introduction
101
A.2.2.2 OSA SCS acting as a SIP Proxy server
102
A.2.2.3 OSA SCS acting as Redirect server
102
A.2.2.4 OSA SCS acting as UA
104
A.2.2.5 OSA SCS acting as a B2BUA
105
A.2.2.6 OSA SCS acting as a 3rd Party Controller
106
A.2.3 SIP Server Role Mode Transitions
107
B
Annex B (informative): SDP in SIP at application controlled calls for OSA MPCCS API
108
B.1 Introduction
108
B.2 OSA SCS and Application based Call and Media Control
108
B.3 Example OSA SCS Application initiated One-Party Call
108
B.4 Example OSA SCS Application initiated Two-Party Call
110
B.5 Example OSA SCS control of User initiated Two-Party Call
113
B.6 Example OSA SCS control of User initiated Two-Party Call with announcement
115
B.7 Example OSA SCS Application initiated Multi-Party Call
119
C
Annex C (informative): OSA call forwarding presentation
120
C.1 Introduction
120
C.2 Call Forwarding presentation in OSA: mapping to SIP
120

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Structure of the OSA API Mapping (3GPP TR 29.998)

The Technical Report 3GPP TR 29.998 consists of a series of parts and subparts. An effort has been made to ensure that the part numbers used in the mapping TR correspond to the part numbers of the base OSA specification in 3GPP TS 29.198. For this reason, certain parts, for which no suitable mapping could be suggested, have not been delivered. At a later stage a mapping to a new protocol may become evident, in which case these missing parts will be developed.

The OSA documentation was defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, in co-operation with the JAIN consortium. The 3GPP TR 29.998 is based on a mapping document with a wider scope, developed as part of this co-operation. Certain mappings defined in the course of this joint development are not applicable for 3GPP Release 4 or Release 5, which is why not all sub-parts have been delivered as part of 3GPP Release 5. However, it is expected that some will become applicable within the scope of 3GPP Release 5, which is why a common sub-part numbering is being retained, albeit with gaps for 3GPP Release 5.

If mapping for a certain Part is "Not Applicable" it can either indicate that a mapping does not exist (e.g. Part 2 Common Data), or the API is considered to be implemented directly on a physical entity, or via a proprietary mechanism.

The present document is part 4 subpart 4 of a multi-part TR covering the 3rd Generation Partnership Project: Technical Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API) Mapping for OSA, as identified below.

29.998-1:
General Issues on API Mapping

29.998-2:
Not Applicable

29.998-3:
Not Applicable

29.998-4-1:
Call Control Service Mapping;
Subpart: API to CAP Mapping

29.998-4-2:
Call Control Service Mapping;
Subpart 2 generic call control INAP (not Rel4)

29.998-4-3:
Call Control Service Mapping;
Subpart 3 multiparty call control INAP (not Rel4)

29.998-4-4:
Call Control Service Mapping;
Subpart 4 multiparty call control SIP (Rel5)

29.998-4-5:
Call Control Service Mapping;
Subpart 5 multimedia call control extensions mapping to SIP (Rel5?)

29.998-5-1:
User Interaction Service Mapping;
Subpart 1: API to CAP Mapping

29.998-5-2:
User Interaction Service Mapping;
Subpart 2 user interaction INAP (not Rel4)
29.998-5-3:
User Interaction Service Mapping;
Subpart 3 user interaction Megacop (not Rel4)
29.998-5-4:
User Interaction Service Mapping;
Subpart 4: API to SMS Mapping

29.998-6:
User Location – User Status Service Mapping to MAP

29.998-7:
Not Applicable

29.998-8:
Data Session Control Service Mapping to CAP

OSA API specifications 29.198-family
OSA API Mapping - 29.998-family

29.198-1
Part 1: Overview
29.998-1
Part 1: Overview

29.198-2
Part 2: Common Data Definitions
29.998-2
Not Applicable

29.198-3
Part 3: Framework
29.998-3
Not Applicable

29.198-4
Part 4: Call Control SCF
29.998-4-1
Subpart 1: Generic Call Control – CAP mapping

29.998-4-2

29.998-4-3

29.998-4-4
Subpart 4: Multi Party Call Control SIP

29.998-4-5

29.198-5
Part 5: User Interaction SCF
29.998-5-1
Subpart 1: User Interaction – CAP mapping

29.998-5-2

29.998-5-3

29.998-5-4
Subpart 4: User Interaction – SMS mapping

29.198-6
Part 6: Mobility SCF
29.998-6
User Status and User Location – MAP mapping

29.198-7
Part 7: Terminal Capabilities SCF
29.998-7
Not Applicable

29.198-8
Part 8: Data Session Control SCF
29.998-8
Data Session Control – CAP mapping

29.198-9
Part 9: Generic Messaging SCF
29.998-9
Not Applicable

29.198-10
Part 10: Connectivity Manager SCF
29.998-10
Not Applicable

29.198-11
Part 11: Account Management SCF
29.998-11
Not Applicable

29.198-12
Part 12: Charging SCF
29.998-12
Not Applicable

1 Scope

The present document investigates how the OSA Call Control Interface Class methods defined in 3GPP TS 29.198-4 [5] can be mapped onto SIP methods.
The mapping of the OSA API to the SIP is considered informative, and not normative. An overview of the mapping TR is contained in the introduction of the present document as well as in 3GPP TR 29.998-1 [10].

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The API specification is contained in the 3GPP TS 29.198 series of specifications. An overview of these is available in the introduction of the present document as well as in 3GPP TS 29.198-1 [1]. The concepts and the functional architecture for the Open Service Access (OSA) are described by 3GPP TS 22.121 [3]. The requirements for OSA are defined in 3GPP TS 22.127 [2].

The present document has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, in co-operation with the JAIN consortium.

2 References

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

[2]
3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 5)".

[3]
3GPP TS 22.121: "The Virtual Home Environment (Release 5)".
[4]
3GPP TR 22.905: "3GPP Vocabulary".

[5]
3GPP TS 29.198-4: "Open Service Access; Application Programming Interface - Part 4: Call Control".

[6]
3GPP TS 23.218: "IP Multimedia (IM) Session Handling; IP Multimedia (IM) call model
(Release 5).

[7]
3GPP TS 22.101: "Universal Mobile Telecommunications System (UMTS): Service Aspects; Service Principles".

[8]
3GPPTS 29.228 “IP Multimedia Subsystem Cx interface; signalling flows and message contents”

[9]
3GPP TR 29.998-1: "API Mapping for Open Service Access; Part 1: General Issues on API Mapping".

[10]
IETF RFC 2806 “URLs for Telephone Calls”

[11]
3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2
[12]
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on SIP and SDP. (Release 5).

[13]
3GPP TS 24.228: "Signalling flows for the IP multimedia call control based on SIP and SDP. (Release 5).

[14]
Draft IETF RFC 2543bis-: "SIP: Session Initiation Protocol"
ftp://ftp.nordu.net/internet-drafts/draft-ietf-sip-rfc2543bis-05.txt

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
Specific SIP definitions can be found in [13] and [11].

The following terms have special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request, and processes it as a UAS. In order to determine how the request should be answered, it acts as a UAC and generates requests. Unlike a proxy server, it maintains dialog state, and must participate in all requests sent on the dialogs it has established. Since it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behaviour.

Call: A call is an informal term that refers to a dialog between peers, generally set up for the purposes of a multimedia conversation.

Call leg: In a SIP context another name for a dialogue. In an OSA context the communication path as seen from an application to an addressable entity/call party in the network.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiating INVITE to the terminating BYE request.

Client: A client is any network element that sends SIP requests, and receives SIP responses. Clients may or may not interact directly with a human user. User agent clients and proxies are clients.

Dialog: A dialog in SIP is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time. A dialog is established by SIP messages, such as a 2xx response to an INVITE request. A dialog is identified by a call identifier, local address, and remote address.

Downstream: A direction of message forwarding within a transaction which refers to the direction that requests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposed to a provisional response that does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Informational Response: Same as a provisional response.

Initiator, calling party, caller: The party initiating a session with an INVITE request. A caller retains this role from the time it sends the INVITE until the termination of any dialogs established by the INVITE.

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives an INVITE request for the purposes of establishing a new session. A callee retains this role from the time it receives the INVITE until the termination of the dialog established by that INVITE.

Location server: See location service.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about a callee's possible location(s). It is an abstract database, sometimes referred to as a location server. The contents of the database can be populated in many ways, including being written by registrars.

Method: The method is the primary function that a request is meant to invoke on a server. The method is carried in the request message itself. Example methods are INVITE and BYE.

Outbound proxy: A proxy that receives all requests from a client, even though it is not the server resolved by the Request-URI. The outbound proxy sends these requests, after any local processing, to the address indicated in the Request-URI, or to another outbound proxy.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiving an incoming request. Rather than issuing one request and then waiting for the final response before issuing the next request as in a sequential search , a parallel search issues requests without waiting for the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP transaction. 1xx responses are provisional, other responses are considered final.

Proxy, proxy server: An intermediary entity that acts as both a server and a client for the purpose of making requests on behalf of other clients. A proxy server primarily plays to role of routing, which means its job is to ensure that a request is passed on to another entity that can further process the request. Proxies are also useful for enforcing policy and for firewall traversal. A proxy interprets, and, if necessary, rewrites parts of a request message before forwarding it.

Redirect server: A redirect server is a server that accepts a SIP request, maps the address into zero or more new addresses and returns these addresses to the client. Unlike a proxy server, it does not initiate its own SIP request. Unlike a user agent server, it does not accept calls.

Registrar: A registrar is a server that accepts REGISTER requests, and places the information it receives in those requests into the location service for the domain it handles.

Server: A server is a network element that receives requests in order to service them, and sends back responses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and registrars.

Sequential search: In a sequential search, a proxy server attempts each contact address in sequence, proceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: "A multimedia session is a set of multimedia senders and receivers and the data streams flowing from senders to receivers. A multimedia conference is an example of a multimedia session." (RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP sessions.) As defined, a callee can be invited several times, by different calls, to the same session. If SDP is used, a session is defined by the concatenation of the user name , session id , network type , address type and address elements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from the first request sent from the client to the server up to a final (non-1xx) response sent from the server to the client, and the ACK for the response in the case the response was a 2xx. The ACK for a 2xx response is a separate transaction.

 Spiral: A spiral is a SIP request which is routed to a proxy, forwarded onwards, and arrives once again at that proxy, but this time, differs in a way which will result in a different processing decision than the original request. Typically, this means that it has a Request-URI that differs from the previous arrival. A spiral is not an error condition, unlike a loop.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines defined in this specification when it processes requests. A stateless proxy forwards every request it receives downstream and every response it receives upstream.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by this specification during the processing of a request. Also known as a transaction stateful proxy.. A stateful proxy is not the same as a call stateful proxy.

Upstream: A direction of message forwarding within a transaction which refers to the direction that responses flow from the user agent server to user agent client.

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses the client transaction state machinery to send it. The role of UAC lasts only for the duration of that transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration of that transaction. If it receives a request later on, it takes on the role of a User Agent Server for the processing of that transaction.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request. The response accepts, rejects or redirects the request. This role lasts only for the duration of that transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the duration of that transaction. If it generates a request later on, it takes on the role of a User agent client for the processing of that transaction.

User agent (UA): A logical entity which can act as both a user agent client and user agent server for the duration of a dialog.
User: is a logical, identifiable entity which uses services. In a SIP context it encompasses a User Agent (UA).
3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Mapping OSA Call and Call Leg to SIP

4.1 Introduction

 In the MPCCS the CallSessionID designates the call as seen from the application, i.e. the ID used to identify a call session. The MPCC API uses this callSessionID to identify a call session.

In SIP, a SIP dialogue (or call) is identified by a globally unique call-id. The call-id is created when a user agent sends an INVITE request. This INVITE request may generate multiple acceptances, each of which are part of the same call.

 However, the sematics of SIP Call-ID is somewhat different from traditional telephony. It identifies an invitation of a particular client. This means that a conference in SIP may raise several calls with different Call-IDs. In traditional telephony and in MPCCS this would always be the same call.

4.2
In MPCCS a call leg designates the association between a call and an address as seen from the application and is identified by a callLegSessionID, i.e. the ID used to identify a call leg session. It represents an addressable user in the call. The MPCC API uses this callLegSessionID to identify a call leg session.

In SIP, a dialogue is defined as the pairwise signalling relationship between two SIP user agents (see [13]). It is identified by the Call_ID, the To and From address header Fields. The Call-ID identifies the call in the network. It is a global unique identifier. The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request.

4.3 SIP Call-id &dialog vs OSA Call & Call Leg Session ID

There is a correspondence between the concepts Call and Call Leg in OSA and call-ID and dialog in SIP.
The correlation applicable depends on the mode (e.g. Proxy, B2BUA, UA) in which the controller (e.g. OSA SCS) operates. When the controller operates in UA mode there can be a simple 1:1 correlation between OSA callLeg and SIP call-ID, in other cases (e.g. when operating in Proxy mode) a somewhat more complex correlation applies that demands supplementary information such as TO and From header fields in SIP to be correlated with the OSA leg identifiers ("callLeg sessionID).
4.3.1
The Call-ID, the From and To header fields define an association between the call (Call-ID) and the address (To, From).
Thus we can map the call and call leg concepts in OSA to SIP.
 However, there is no easy mapping between SIP and OSA MPCCS call and call leg concepts because of the definition of a SIP dialog always include TWO user agents (UAs). Therefore, the mapping depends on the SIP server role that OSA SCS plays in a SIP session. For example, if SIP server in OSA SCS acts as a proxy server then the 2-party call has only one dialog in SIP (between the 2 UAs), while OSA MPCCS expects 2 legs (one from the calling party to OSA SCS and another from OSA SCS to the called party). Where an application demands full leg control in SIP the SIP server in OSA SCS should always act as UA (UA or B2BUA) or 3rd party controller . Only the latter modes of operation in SCS realises a direct 1:1 correlation between SIP dialog and OSA SCS MPCCS call leg.

4.3.2 OSA Call and SIP Dialogue Correlation Tables

Table 4-1: Parameter Correlation Proxy Mode, 2-party call

SIP
Headers

OSA API
Leg
CALL

SIP
Dialog #1
call-ID(1)

callSessionID(1),

MPCCS

Call Object

From header(1)

originatingAddress(1)
callLegSessionID(1),

MPCCS
Originating Call Leg (1) object

To header(1)

destinationAddress(1)
callLegSessionID(2),

MPCCS
Terminating Call Leg (2) object

Request-URI(1)

targetAddress(1)

Note: The SIP server in OSA SCS is here acting as a stateful Proxy server. However, forking is NOT supported by current OSA API.

Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id in the SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation from caller.

Table 4-2: Parameter Correlation B2BUA Mode, 2-party call

SIP
Headers

OSA API
Leg
CALL

SIP
Dialog #1
call-ID(1)

callSessionID(1),

MPCCS

Call Object

From header(1)

originatingAddress(1)
CallLegSessionID(1)

MPCCS
Originating Call Leg (1) Object

To header(1)

destinationAddress(1)

Request-URI(1)

targetAddress(1)

SIP
Dialog #2
call-ID(2)

From header(1)

originatingAddress(1/2)
- may be changed by application.

To header(1)

destinationAddress(1)
CallLegSessionID(2),
MPCCS
Terminating Call Leg (2) object

Request-URI(1)

targetAddress(1/2)
- may be changed by application.

Note: The B2BUA mode is comprised in the OSA SCS SIP server by two User Agents, acting as a User Agent Originating and a User Agent Terminating. Not possible in SIP to shift from proxy mode into B2BUA mode. Therefore where an application demands this mode of operation it has to be secured that it is established already at invitation request (INVITE).
Notice: It is possible that only the call_ID(2) will be changed for the new SIP dialog #2 compared to SIP dialog #1as the incoming INVITE is “proxied”. If a call forwarding application is invoked the targetAddress may be changed for routeing to the desired destination (Request URI).

Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id in the SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request (e.g. the controller OSA SCS for SIP dialog #2). The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case an INVITE initial invitation.

Table 4-3: Parameter Correlation Originating UA Mode, 1-party call

SIP
Headers

OSA API
Leg
CALL

SIP
Dialog #1
call-ID(1)

callSessionID(1),

MPCCS

Call Object

From header(1)

originatingAddress(1)

(pre-defined default value provided by
OSA SCS)

To header(1)

targetAddress (1)
CallLegSessionID(1)

MPCCS
Terminating Call Leg (2) object

Request-URI(1)

targetAddress(1)

Note1: The SIP server in OSA SCS is here acting as an User Agent Originating.
The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id applied in the SIP dialogue. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSessionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request (e.g. the controller OSA SCS). The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

Table 4-4: Parameter Correlation Terminating UA / Redirection Mode, 1-party call

SIP
Headers

OSA API
Leg
CALL

SIP
Dialog #1
call-ID(1)

callSessionID(1),

MPCCS

Call Object

From header(1)

originatingAddress(1)
CallLegSessionID(1).

MPCCS
Originating Call Leg (1) object

To header(1)

address (1)

Request-URI(1)

address(1)

Note: The SIP server in OSA SCS is acting as a User Agent Terminating.
In this UA Terminating / Redirection mode the OSA SCS does not accept calls. The OSA MPCCS API allows the application to instruct the return of a final SIP response (3xx, 4xx, 5xx, 6xx) to a received SIP request (INVITE) , but unlike a real user agent server not to accept calls (SIP 200 OK).

Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id applied in the SIP dialogue. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

Table 4-5: Parameter Correlation 3rd party controller Mode, 2-party call

SIP
Headers

OSA API Parameters
Leg
CALL

SIP
Dialog #1
call-ID(1)

-

callSessionID(1)
See Note1.

MPCCS
Call Object

From header(1)

originatingAddress(1)

(if not present, pre-defined default value provided by
OSA SCS may be used)

To header(1)

targetAddress (1)
callLegSessionID(1)

MPCCS
Terminating Call Leg (1) object.

Request-URI(1)

targetAddress(1)

SIP
Dialog #2
call-ID(2)

-

From header(1)

originatingAddress(1)

(if not present, pre-defined default value provided by
OSA SCS may be used)

To header(2)

targetAddress (2)
callLegSessionID(2),
MPCCS
Terminating Call Leg (2) object

Request-URI(2)

targetAddress (2)

Note: The 3.rd party controller mode is comprised in the OSA SCS SIP server by two or more User Agents , in this example by two User Agents Originating.
Not possible in SIP to shift from proxy mode into 3rd party controller mode. Therefore where an application demands this mode of operation it has to be secured that it is established already at invitation request (INVITE).

Note1:
Same callSessionID(1) used by the application in the creation of both the OSA Call Leg objects as both legs are to be part of the same call.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

5 Multi Party Call Control Flows

Note: The Call Flows in the following are to be regarded as example flows. They are merely intended to illustrate the
SIP mapping from/to OSA APIs and do not necessary provide complete SIP call/session flows. More detailed SIP call flows are defined in [13].

Additional information including the different SIP server modes of operation for OSA SCS in relation to MPCCS mapping is found in Annex A “ Introduction to API Mapping for OSA MPCCS”.
[Editor notes:
1) SetCallLoadControl
Assumption made: Load control is to be handled by the SIP server (controller) in the OSA SCS – and not for the controlled SIP server (S-CSCF).
If this assumption is wrong , part of information needs to be conveyed to controlled server (S-CSCF) from
controlling entity (OSA SCS) e.g. over the ISC (SIP) interface
2) collection of call related information.
Because the OSA SCS receives the full SIP message, the collection of call related data is assumed to be done in the OSA SCS. Hereby is avoided the need to convey any service specific semantics to the controlled etity S-CSCF to reuest such information to be collected.
Concerned methods: getInfoReq, superviseReq, getCurrentDestinationAddress.

3) Registration handling for OSA SCS, HSS and S-CSCF needs to be defined. It is not an OSA SCS specific problem, but applicable to all ASs (e.g. SIP AS, …). How this may imply involvement of HSS for storage of information needs clarification.
Concerned methods; createNotification, changeNotification, destroyNotification, getNotification.
4) Handling of subsequent Filtering Information:
It is assumed that OSA SCS SIP Server is to handle subsequent filtering information.
There is no need identified for downloading of subsequent filtering information via ISC interface to the S-CSCF, because OSA SCS SIP server should receive all SIP messages.
This is a general assumption, i.e. applicable to any AS (e.g. also SIP-AS, ..)
(Note: if this assumption should be wrong, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping may be needed as well !!)].
5) Annex B is based upon the principles described in: I-D “Third Party Call Control in SIP”
ftp://ftp.nordu.net/internet-drafts/draft-rosenberg-sip-3pcc-03.txt
6) Mapping, (if any) to SIP for charging methods (setAdviceOfCharge, setChargePlan), is still to be filled in
(including the data tables, e.g. Table 6-15, 6-16).
 - end of editor’s notes]
5.1 Call Manager Service Interface

The call manager interface class provides the management functions to the multi-party call Service Capability Features. The application programmer can use this interface to create call objects and to enable or disable call-related event notifications.

5.1.1 createCall

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

This method is used to create a new Call object in the SCS.

[image: image2.wmf]

Application

createCall

OSA SCS

SIP

server

SCF

Figure 5-1: Call Flow for createCall()

Table 5-1: Normal Operation

SIP Server Mode
for the OSA SCS:
UA mode

Pre-conditions:
An agreement is established between the network operator and the service provider to enable the application to create call object.

1
A new Multi-party Call object is created in the SCS and the application gets a reference to the call object.

Table 5-2: Parameter Mapping

From: createCall
To: SIP
Remark

appCall (IpAppMultiPartyCallRef)
N/A
No mapping.

Returns:
TpMultiPartyCallIdentifier:
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)
N/A
Not mapped.
 However, the call Session ID returned in this method will later on be correlated to the applied SIP call-Id

5.1.2 CreateNotification

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest) : TpAssignmentID
This method is used to enable call notifications so that events can be sent to the application.

[image: image3.wmf]

 DB

 (e.g HSS)

Application

createNotifica

tion

 SIP Server set to observe for

call events to be notified.

[Editor note:

In the 3GPP IMS architecture the

Sh interface is used to store filtering

data in HSS

For further study]

OSA SCS

SIP

server

SCF

Figure 5‑2 Call Flow for createNotification()

Table 5-3: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the event notification to be enabled

1
The application invokes the createNotification method

2
The SCS requests the controlled SIP server to observe for certain SIP call events to be notified to the application.
Initial filtering information will be downloaded to the DB (Data Base e.g. HSS) and from here to controlled entity (e.g. S-CSCF), when the user gets registered.

NOTE: The createNotification represents the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification
However, createNotification() is not applicable if the call is set-up from the network by the application.

Table 5-4: Parameter Mapping

From: createNotification
To: SIP
Remark

appCallControlManager (IpAppMultiPartyCallControlManagerRef)
N/A
If set it specifies a reference to the application interface, which is used for callbacks.

notificationRequest (TpCallNotificationRequest) :
See table 6-15:
TpCallNotificationRequest for the mapping from SIP.
Specifies the event specific criteria used by the application to define the event required. Not mapped to SIP.
However, the parameter has to be verified for SIP validity of parameter values.

Returns:
TpAssignmemtID
N/A
Returns assignmentID to application, which specifies the ID assigned by the multi party call control manager interface for this newly enabled event notification.

NOTE: No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting are fulfilled.

5.1.3 changeNotification

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void

This method is used by the application to change the call notifications previously set by createNotification .

[image: image4.wmf]

 DB

 (e.g. HSS)

Application

changeNotification

 NOTE: Controlled SIP Server

(e.g. S

-

CSCF) will be set to

observe for call events to be

notified for the application, when

user becomes registered.

OSA SCS

SIP

server

SCF

Figure 5‑3 Call Flow for changeNotification()
Table 5-5: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the event notification to be enabled. Notifications have been enabled by the application

1
The application invokes the changeNotification method

2
The SCS requests a change in the set of initial notifications, i.e. initial filtering information is changed.

Note: Updated initial filtering information will be downloaded to the DB (Data Base e.g. HSS) and from here to the controlled entity
 (e.g. S-CSCF), when the user gets registered.

Table 5-6: Parameter Mapping

From: changeNotification
To: SIP
Remark

assignmentID (TpAssignmentID)
N/A
Specifies the ID assigned by the multi party call control manager interface for the event notification.

notificationRequest (TpCallNotificationRequest) :
See table 6-15:
TpCallNotificationRequest for the mapping from SIP.
Not mapped directly to SIP. However, the parameter has to be verified for SIP validity of parameter values.

NOTE:
No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting are fulfilled.

5.1.4 destroyNotification

destroyNotification (assignmentID : in TpAssignmentID) : void

This method is used by the application to disable call notifications.

[image: image5.wmf]

 DB

 (e.g. HSS)

Application

destroyNotification

Note: Controlled SIP Serverwill be

set to stop the observation for call

events to be notified to the

application,for registrated user..

OSA SCS

SIP

server

SCF

Figure 5‑4 Call Flow for destroyNotification()

Table 5-7: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the event notification to be disabled.

1
The application invokes the destroyNotification method

2
The SCS requests to de-activate the active call notification.
Note: Destroyed notifications (initial filtering) information will be downloaded to the DB (Data Base e.g. HSS) and from here to the controlled entity
 (e.g. S-CSCF), if the user has been registered.

Table 5-8: Parameter Mapping

From: destroyNotification
To: SIP
Remark

assignmentID (TpAssignmentID)
N/A
Specifies the ID assigned by the multi party call control manager interface for the event notification.

5.1.5 getNotification

getNotification () : TpNotificationRequestedSet

This method is used by the application to query the event criteria set previously using createNotification and possibly changeNotification.

[image: image6.wmf]

 DB

(e.g. HSS)

Application

getNotification

Retrieve the information

previously set on call events to be

notified for the application.

OSA SCS

SIP

server

SCF

Figure 5‑5 Call Flow for getNotification()
Table 5-9: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the event notification. Notifications have been enabled by the application.

1
The application invokes the getNotification method.

2
The OSA SCS returns the retrieved criteria from the DB (Data Base e.g. HSS) as set for event notification.
[Editor Note: How this may be mapped to the Sh interface (OSA SCS – HSS) for retrieval of this information needs clarification]

Table 5-10: Parameter Mapping

From: getNotification
To: SIP
Remark

Returns:
TpNotificationRequestedSet:
A set of TpNotificationRequested:
-
No SIP mapping.

- AppCallNotificationRequest
(TpCallNotificationRequest)
N/A
Returns information as previously set in createNotification and changeNotification.

- AssignmentID (TpInt32)
N/A

NOTE:
The set of all previously requested notification events are returned. No mapping to SIP.
The method getNotification contains no parameter – only a return parameter exists.

5.1.6 setCallLoadControl

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

This method is used to impose or remove load control on calls made to a specific address within the call control service.

[image: image7.wmf]

Application

setCallLoadcontrol

Activate load

control

OSA SCS

SIP

server

SCF

Figure 5‑6: Flow for setCallLoadControl()
Table 5-11: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the set call load control.

1
The application invokes the setCallLoadControl method to remove or set load control on calls made to a specific address or address range.

2
The SCS requests the SIP server to activate or remove call load control

Table 5-12: Parameter Mapping

From: setCallLoadControl
To: SIP
Remark

duration (TpDuration)
N/A
-

mechanism (TpCallLoadControlMechanism)
N/A

Specifies the applied load control mechanism and defines the call admission rate (e.g. allow one call per interval).

treatment (TpCallTreatment)
TpCallTreatment sequence of:
 - TpCallTreatmentType,

 - TpReleaseCause
See Table 6-16 TpCallTreatment Type

and Table 6-18
TpReleaseCause
 for the mapping to SIP
Specifies how to treat (e.g. deny) new invitations if overload prevails.

addressRange (TpAddressRange)
See Table 6-3:
TpAddressRange for the “mapping” from SIP.
Specifies the address or address range to which overload control should be applied or removed.
Not mapped directly but has to be verified for application with SIP URL.

5.2 Call Manager Application Interface

5.2.1 managerInterrupted

managerInterrupted () : void

This method is used to indicate to the application that all event notifications and method invocations have been temporarily interrupted, for example due to network resources unavailable.

[image: image8.wmf]

Application

mangerInterrupted

 Fault

detected

OSA SCS

SIP

server

SCF

Figure 5‑7 Call Flow for managerInterrupted()

Table 5-13: Normal Operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3rd Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the call notifcation. Call notifications have been enabled using the createNotification method on the Call Manager interface.

1
The SCS has detected, or has been informed of a fault which prevents further events from being notified to the application.

2
The SCS invokes the managerInterrupted method

Table 5-14: Parameter Mapping

From: managerInterrupted
To: SIP
Remark

-
N/A
No parameters in this method.

5.2.2 managerResumed

managerResumed () : void

This method is used to indicate to the application that all event notifications are possible and method invocations are enabled after having previously been interrupted.

[image: image9.wmf]

Application

managerResumed

 Fault

ceased

OSA SCS

SIP

server

SCF

Figure 5‑8 Call Flow for managerResumed()

Table 5-15: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
An agreement is established between the network operator and the service provider for the call notification. Call notifications have been interrupted and managerInterrupted method has been invoked.

1
The SCS detects that call notifications are again possible.

2
The SCS invokes the managerResumed method.

Table 5-16: Parameter Mapping

From: managerInterrupted
To: SIP
Remark

-
N/A
No parameters in the method.

5.2.3 reportNotification

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) : TpAppMultiPartyCallBack

This method is used to notify the application of the arrival of a call-related event. It is sent in response to the createNotification() method.

[image: image10.wmf]

 User

Application

2a. reportNotification

 1a. ISC: INVITE, CANCEL; Re

-

INVITE, BYE

OSA SCS

SIP

server

SCF

Figure 5‑9 Call Flow for reportNotification, SIP message from caller (UAC)

[image: image11.wmf]

 User

Application

2b. reportNotification

 1b.ISC: 1xx, 200, 3xx, 4xx, 5xx, 6xx, BYE, Re

-

INVITE

OSA SCS

SIP

server

SCF

Figure 5‑10 Call Flow for reportNotification, SIP message from callee (UAS)

Table 5-17: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA,3rd Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
Call notifications have been enabled using the createNotification method on the Call Manager interface.

1
A call arrives from a call party or terminates to a call party or a call party decides to issue a mid-call event or terminate the involvement in an established call. This request is detected by the SIP server and the criteria for an initial notification to be reported is checked.

2
When the criteria for an initial notification is met, the SCS identifies the application responsible for handling the call and invokes the reportNotification method.

Table 5-18: Parameter Mapping

To: reportNotification
From: SIP
Remark

callReference (TpMultiPartiCallIdentifier)
TpMultiPartyCallIdentifier:
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.

The SCS will create a new call object and associated call leg object and pass them to the application.
 A correlation between SIP call-ID and call session ID is created.

callLegReferenceSet (TpCallIdentifierSet).
A set of TpCallIdentifier:
-

- CallLegreference (IpCallLegRef)
N/A
This element specifies the interface for the
Call Leg object.

 - CallLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
 Table 4-1 to 4-5.
This element specifies the call leg session ID.
No direct mapping to SIP – but a correlation is created.

notificationInfo (TpCallNotificationInfo):
-

 -TpCallNotificationReportScope
See Table 6-14 : TpCallNotificationReportScope

 - CallAppInfo (TpCallAppInfoSet)

 Note: A set of TpCallAppInfo
See Table 6-4: TpCallAppInfo

 - CallEventInfo (TpCallEventInfo)
See Table 6-7: TpCallEventInfo

assignmentID (TpAssignmentID)
N/A
See note:
]
Specifies the assignment id which was returned by the createNotification() method.
The application can use assignment id to associate events with specific criteria and to act accordingly.

Note: Indeed the assignmentiD does not involve SIP mapping, it could be stored in the OSA SCS. .

5.2.4 callAborted

callAborted (callReference : in TpSessionID) : void

This method is used to indicate to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call and the application.

[image: image12.wmf]

 User

Application

callAborted

ISC: 481 Call Leg/transaction

Does Not Exist; Outgoing BYE,

CANCEL, INVITE without any

response

OSA SCS

SIP

server

SCF

Figure 5‑11 Call Flow for callAborted()
Table 5-19: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
The SCS detect a failure in its communication with the SIP server

1
The SCS, invokes the callAborted method. Since the SIP server reflects the call running in the network, the call could also have been aborted in the network

Table 5-20: Parameter Mapping

From: callAborted
To: SIP
Remark

callReference (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.
Specifies the sessionID of the call that has aborted or terminated abnormally.
No direct mapping to SIP – but a correlation is created.

5.2.5 callOverloadEncountered

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

[image: image13.wmf]

Application

callOverLoadEncountered

OSA SCS

SCF

SIP Server

Figure 5‑12 Call flow for callOverLoadEncountered()

Table 5-21: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
Call overload control have been enabled using the setCallOverloadControl method on the Call Manager interface.

1
The SCS detect a call overload situation in its communication with the SIP server of the OSA SCS.

2
The SCS, invokes the callOverLoadEncountered method. The call running in the network may continue or not depending on the requested treatment at overload (defined by setCallOverloadControl method received previously).

Table 5-22: Parameter Mapping

From: callOverloadEncountered
To: SIP
Remark

assignmentID (TpAssignmentID)
N/A.

Specifies the assignmentID corresponding to the associated setCallLoadControl method. This implies the address or address range within which the overload has been encountered (the SIP URL(s)).

5.2.6 callOverloadCeased

callOverloadCeased (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

[image: image14.wmf]

SIP Server

SCF

Application

callOverLoadCeased

OSA SCS

Figure 5‑13 Call Flow for callOverLoadCeased()
Table 5-23: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
The network has detected overload and may have automatically imposed load control on calls requested to a particular address or address range.

1
The SCS detect that an overload situation has ceased in its communication with the SIP server

2
The SCS, invokes the callOverLoadCeased method.

Table 5-24: Parameter Mapping

From: callOverloadEncountered
To: SIP
Remark

assignmentID (TpAssignmentID)
N/A.
Specifies the assignmentID corresponding to the associated setCallLoadControl method. This implies the address or address range within which cease of overload has been encountered (the SIP URL(s)).

No mapping to SIP – but an association is created, see mapping for setCallOverloadControl.

5.3 Multi-Party Call Service Interface

The multi-party call interface class represents the interface to the multi-party call Service Capability Feature. It provides a structure to allow simple and complex call behaviour.

5.3.1 GetCallLegs

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

This method is used to obtain references to the current Call Leg objects, associated to the Multi-party call object.

[image: image15.wmf]

 User

Application

getCallLegs

OSA SCS

SIP

server

SCF

Figure 5‑14 Call Flow for getCallLegs()

Table 5-25: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

Pre-conditions:
The application has a reference to a Multi-party Call object.

1
The application invokes the getCallLegs method

2
The SCS returns information about the involved call leg objects

Table 5-26: Parameter Mapping

From: callOverloadEncountered
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.
Specifies the call session ID of the call.

No direct mapping to SIP – but a correlation is created.

5.3.2 createCallLeg

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

This method is used to create a new CallLeg object in the SCS.

[image: image16.wmf]

 User

Application

createCallLeg

OSA SCS

SIP

server

SCF

Figure 5‑15 Call Flow for createCallLeg()

Table 5-27: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect).

Pre-conditions:
The application has a reference to a Multi-party Call object.

1
The application invokes the createCallLeg method

2
The SCS creates the requested call leg object

Table 5-28: Parameter Mapping

From: callOverloadEncountered
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.

Specifies the call session ID of the call.

No direct mapping to SIP – but a correlation is created.

appCallLeg (IpAppCallLegRef
N/A
Specifies the application interface for callbacks from the call leg created

Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.
The SCS will create a new call leg object to be associated with the existing call object and pass it to the application.
Note: The correlation to SIP will be created when setup of a connection associated with the created call leg occurs..

Note:

5.3.3 createAndRouteCallLegReq

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

This method is an asynchronous method used to request the creation of a new Call Leg and the setup of a connection to the indicated address.

[image: image17.wmf]

 3c. ISC: 183 Progress (SDP)

 3a. ISC: 100 Trying

 User

Application

ISC: 200 OK

 2. ISC: INVITE

 (no SDP)

1. createAndRouteCallLegReq

ISC :PRACK

OSA SCS

ISC:

 COMET

ISC: 180 Ringing

ISC: 200 OK

SIP

server

SCF

Figure 5‑16 Call Flow for createAndRouteCallLegReq(), OSA SCS acting as UA Client

[image: image18.wmf]

 3c. ISC: PRACK

 3a. ISC: 183Progress

Application

 4. ISC: PRACK

 2. ISC: INVITE

1. createAndRouteCallLegReq

3. ISC : 183Progress

OSA SCS

ISC: 100 Tr

ying

B A

 User

 ISC: INVITE

(SDP

SIP

server

SCF

Figure 5‑17 Call Flow for createAndRouteCallLegReq(), OSA SCS acting as Proxy server

Table 5-29: Normal Operation, case a: UA mode

SIP Server Mode
for the OSA SCS:
UA (or 3rd party controller, B2BUA).

Pre-conditions:
The application has a reference to a Multi-party Call object.

1
The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg object and instructs the SIP server of the OSA SCS to generates a SIP INVITE message.

2
The SIP server acting in a UA mode sends the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE being sent by the SIP server (Forking).

3
The SIP server acting as UA acknowledge the incoming SIP response message.

Note: The application has no control of the SIP server forking functionality.
Assuming the UA (“surrogate UAC”) of the OSA SCS does not posses any media resource, the INVITE is sent with “no SDP”. This results in a SIP dialog with no media (e.g. no RTP stream) stream setup, i.e. a plain session control dialog created by the application.
The possible handling of media by “UA” within the OSA SCS for application initiated calls is outside the scope of standardisation.
Note1: See also Annex B for supplementary information and flow examples (B2- B5)
(CreateAndRouteCallLegReq may hereby be viewed as a concatenation the methods createCallLeg, eventReportReq and routeReq).

Table 5-30: Parameter Mapping, UA mode

From: createAndRouteCallLegReq
To: SIP INVITE
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables” for Originating UA mode.
Table 4-2 to 4-5.

No direct mapping, merely a correlation is created.

eventsRequested (TpCallEventRequestSet)

Note: A set of TpCallEventRequest
See Table 6-8:
TpCallEventRequest
for mapping to SIP.
Start observation in SIP server for occurrence of requested events to be notified to the application.

targetAddress (TpAddress)
SIP URL in the TO header and
Request-URI

See Table 6-2:
TpAddress
mapping to SIP.

originatingAddress (TpAddress)
SIP URL in the From header.

See Table 6-2:
TpAddress
mapping to SIP.
The originating address may e.g. be the application server SIP address
(third party call set up) or the SCS server when the the SCS is the endpoint (UAC) which initiates the INVITE.
If originatingAddress not present a default value could be provided by the OSA SCS.

appInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo
See Table 6-4: TpCallAppInfo
for mapping to SIP.

appLegtInterface (IpAppCallLegRef)
N/A
Defines a reference to data type IPCallLeg

Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-2 to 4-5.

A correlation to SIP is created.
The SCS will create a new call leg object to be associated with the existing call object and pass it to the application.
Note: The correlation to SIP is created when setup of a connection associated with the created call leg occurs..

Note: See also Annex B and Annex C

Table 5-31: Normal Operation, case b: Proxy mode

SIP Server Mode
for the OSA SCS:
Proxy.

Pre-conditions:
The application has a reference to a Multi-party Call object.

1
The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg object, and forwards the received SIP INVITE message to the indicated target address.

2
The SIP server forwards the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE being sent by the SIP server (Forking).

3
The SIP server forwards the incoming SIP response message to the SCS.

Note: The application has no control of the SIP server forking functionality

Table 5-32: Parameter Mapping, Proxy mode

From: createAndRouteCallLegReq
To: SIP INVITE
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables” for Proxy mode.
Table 4-1.

No direct mapping of CallSessionID onto SIP Call-ID to ensure the SIP Call-ID uniqueness, merely a correlation is needed. A SIP call ID must be unique and not be reused for later calls.
Acting as a UA (or B2BUA) a new call_ID is created for the new originating SIP leg for which a correlation with callSessionID is created.

eventsRequested (TpCallEventRequestSet)

Note: A set of TpCallEventRequest
See Table 6-8: TpCallEventRequest
for mapping to SIP
Start observation in SIP server of the OSA SCS for occurrence of requested events to be notified to the application.

targetAddress (TpAddress)
SIP URL in the
Request URI header.
See Table 6-2:
TpAddress
mapping to SIP.
If present, the targetAddress is used for routeing using Request-URI

originatingAddress (TpAddress)
N/A
FROM header containf the originator address (caller) of the invitation.
This must not be changed.

appInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo
See Table 6-4:
TpCallAppInfo
for mapping to SIP.

appLegtInterface (IpAppCallLegRef)
N/A
Defines a reference to data type IPCallLeg

Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1.

A correlation to SIP is created.
The SCS will create a new call leg object to be associated with the existing call object and pass it to the application.
Note: The correlation to SIP is created when setup of a connection associated with the created call leg occurs..

Note: See also Annex B and Annec C.

5.3.4 release

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method used to request the release of the call and associated objects.

Remarks: If several legs are connected, this method will also release each of the call legs, i.e. the complete call is released..The flow example below indicates the release of a single user (call party), it is however applicable for the release of any user, i.e. BYE is to be sent for each user (SIP dialog) that take part in the call.

[image: image19.wmf]

:

 3c. ISC: 200 OK

 User(s)

SIP

server

SCF

Application

 2. ISC: (n x) BYE

1. release

ISC :ACK

OSA SCS

Figure 5‑18 Call Flow for release, acting as UA (incl. B2BUA, 3rd. Party Controller)
Table 5-33: Normal Operation, UA mode

SIP Server Mode
for the OSA SCS:
UA (or 3rd party controller, B2BUA).

For call release from application, UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

Pre-conditions:
Call is in progress.
 The application has a reference to a Multi-party Call object.

1
The application invokes the release method. For all legs associated to the call, the SCS will act as if a release() method was received for each present leg(s).

2
If the application has requested some reports at the end of the call (e.g., getInfoReq(), superviseReq()) these reports will be sent to the application

3

Note: The SIP server of the SCS gateway is to be capable to issue the SIP BYE to release the call participant(s) on request from the application - and therefore it demands to play the role of a UA.

Note 2: Release may be sent any time from the application e.g. resulting in creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request or the termination of an establishment session (BYE) or the cancellation of a pending request (CANCEL) after the application has issued an INVITE request.

Table 5-34: Parameter Mapping

From: release
To: SIP BYE, 4xx, 5xx,
Cancel (if any pending INVITE requests from application)
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-2 to 4-5.

No direct mapping, merely a correlation is created.

cause (TpReleaseCause) :
See table 6-17: TpReleaseCause for mapping to SIP response codes
See also note below

Note: The release() method may be sent any time from the application e.g. resulting in
a) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request or
b) the termination of an established session (BYE) or
c) the cancellation of pending requests (CANCEL) when the application has issued an INVITE request.

5.3.5 deassignCall

deassignCall (callSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

[image: image20.wmf]

 User

Application

deassignCall

OSA SCS

SIP

server

SCF

Figure 5‑19 Call Flow for deassignCall()

Table 5-35: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect

Pre-conditions:
A relationship between the application and the call including associated objects exists.

1
The application invokes the deassignCall method

2
The SCS terminates the relationship between the application and the call and its associated objects and notifies the SIP server of the OSA SCS.

3
The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any control from the application. Any possible interrupted call processing is to be resumed.

Note: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself from the route-request.

Table 5-36: Parameter Mapping

From: release
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created.

5.3.6 getInfoReq

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

This method is an asynchronous method that requests information associated with the call to be provided at the appropriate time (for example, to calculate charging).

[image: image21.wmf]

 User

Application

getInfoReq

OSA SCS

SIP

server

SCF

Figure 5‑20 Call Flow for getInfoReq()

Table 5-37: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode)

Pre-conditions:
A relationship between the application and the call including associated objects exists.
The getInfoReq method must be invoked before the call is routed to a target address.

1
The application invokes the getInfoReq method. The SCS monitors the call to be capable to collect the requested information.

2
The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the messages received from the SIP server of the OSA SCS.

3

Note: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information associated to the call..

Restriction: The getInfoReq method is only applicable on call level for a plain user initiated call between a caller and a callee, where a report is demanded when the destination leg or party (callee) terminates or when the call ends.
(For application initiated calls and multiparty calls the method should instead be applied on a per destination leg (per callee)).

Table 5-38: Parameter Mapping

From: getInfoReq
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created.

callInfoRequested (TpCallInfoType) :
See table 6-10: TpCallInfoType mapping to SIP

Note: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events via the SIP server of the OSA SCS:
a) receipt of a SIP response (“answer” 200 OK/ACK) to an incoming INVITE request or
b) the termination of an establishment dialog session (BYE)

5.3.7 superviseReq

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void

This method is called by the application to supervise a call.
The application can set a granted connection time for this call. If an application calls this method before it routes a call the time measurement will start as soon as the call is confirmed (answered) by the called party.

[image: image22.wmf]

 User

Application

superviseReq

OSA SCS

SIP

server

SCF

Figure 5‑21 Call Flow for superviseReq()

Table 5-39: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then a UA mode of opertion is demanded (UA, B2BUA, 3rd party controller).

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

Pre-conditions:
A relationship between the application and the call including associated objects exists.
The superviseReq method must be invoked before the call is confirmed, i.e. before answered.

1
The application invokes the superviseReq method. The SCS monitors the call to be capable to collect the requested information.

2
The OSA SCS will later on send the corresponding superviseRes() or superviseErr() based on the messages received from the SIP server of the OSA SCS.

Note: The SIP server of the OSA SCS should use the messages received by the SIP server during the call session in order to sent the corresponding superviseRes() or superviseErr() method.

Table 5-40: Parameter Mapping

From: getInfoReq
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation .

time (TpDuration)
ACK (confirmation of “answer” SIP 200 OK)
No direct mapping , but specified call supervision timer is to start upon the confirmation of answer event.

treatment (TpCallSuperviseTreatment) :
N/A

See Note:
No direct mapping.
Defines the treatment of the call by the call control service when the call supervision timer expires, e.g. release call (BYE) and /or send warning tone to calling party.

Note: There is no direct mapping to SIP. However, the expiry of the call supervistion timer during the active call initiates the action as specified in TpCallSuperviseTreatment.

5.3.8 setAdviceOfCharge

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

This method allows the application to determine the charging information that will be send to the end-users terminal.

[image: image23.wmf]

 User

Application

setAdviceOfCharge

 SIP Server impact ?

OSA SCS

SIP

server

SCF

Figure 5‑22 Call Flow for setAdviceOfCharge()

Table 5-41: Normal Operation

SIP Server Mode
for the OSA SCS:
UA mode

The generation of a SIP message on request from the application demands the SIP server of the OSA to operatate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

 [Editor Note: SIP currently do not allow network initiated SIP messages being generated from a proxy server – it would e.g. violate the synch of messages exchanged between the UA.]

Pre-conditions:
A relationship between the application and the call including associated objects exists.
The setAdviseOfCharge method must be invoked before the call is confirmed, i.e. before answered.

1
The application invokes the setAdviceOfCharge method. The SCS enables the call to be capable to send the requested information to the end-user.

2

Note: The SIP server of the OSA SCS should sent the information regarding AOC to the calling party.
Could be mapped to an Instant Message (using method MESSAGE).

[Editor note: The assumption is that the information is only applicable to be provided toward the calling party as no individual leg object is addressed. However, if also to be sent toward the called party (destination) there might be a risk of forking downstream – and missing an indication if applicable for caller and/or callee.]!

Table 5-42: Parameter Mapping

From: setAdviceOfCharge
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation .

aOCInfo (TpAoCInfo):

 - ChargeOrder (TpAoCOrder)

 - Currecy (TpString)

See Table 6-19
TpAoCInfo
mapping to SIP.

[Editor note: Could be mapped to an Instant Message (MESSAGE in SIP). ??
ffs]

Currency unit according to ISO-4217:1995 [8]

tariffSwitch (TpDuration)
N/A
[Editor note: Information relevant to signalling ??]
ffs

Note:

5.3.9 SetChargePlan

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

This is a method that allows the application to set an operator specific charge plan for the call enabling to include charging information in network generated CDR.

[image: image24.wmf]

 User

Application

setChargePlan

 SIP Server set to create CDR ??

OSA SCS

SIP

server

SCF

Figure 5‑23 Call Flow for setChargePlan()

Table 5-43: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode ??)

[Editor Note: Redirect mode implies that the invite request is denied and the SIP server
will be released as a call redirection is requested. Therefore set of charge plan not
applicable ?. In the IMS where is charge plan to be set, e.g. in S-CSCF ?]

Pre-conditions:
A relationship between the application and the call including associated objects exists.
The setChargePlan method may have to be invoked before the call is confirmed, i.e. before answered .

1
The application invokes the setChargePlan method. The SCS enables the call to be capable to be charged according to defined plan .

2

Note: The SIP server of the OSA SCS should invoke the requested charge plan. Information relevant to application and SCS not to SIP signalling.

Table 5-44: Parameter Mapping

From: setChargePlan
To: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

callChargePlan (TpCallChargePlan)

N/A
Information relevant to application and SCS not to signalling

Note:

5.4 Multi-Party Call Application Interface

5.4.1 createAndRouteCallLegErr

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party was unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid address, the request was refused, etc).

[image: image25.wmf]

 User

SIP

server

SCF

Application

createAndRouteCallLegErr

 ISC: 400, 404, 413, 414, 481, 484, 485

 (response to previous sent INVITE)

ACK

OSA SCS

Figure 5‑24 Call Flow for createAndRouteCallLegErr()
Table 5-45: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode.)

Pre-conditions:
Application has sent createAndRouteCallLegReq() , a request to route the call to the destination party.

1
The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP server of the SCS.

2
The SCS invokes the createAndRouteCallLegErr method

Note: The SIP server of the OSA SCS should detect the denial.

Table 5-46: Parameter Mapping

To: createAndRouteCallLegErr
From: SIP
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation .

callLegReference (TpCallLegIdentifier)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
[Editor Note: Open if needed

errorIndication (TpCallError)
 See table 6-5:
TpCallError
mapping from SIP

Note:

5.4.2 callEnded

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

This method is invoked when the call has terminated in the network. Furthermore, the operation contains an indication on the reason why the call has been ended. The method will always be invoked when the call is ended.

[image: image26.wmf]

ISC

:

 BYE etc.

 User

SIP

server

SCF

Application

 The SIP server of the

SCS

 detects

that call has been released or the

call in terminated in the

network(e.g., last leg released or

disconnected)

 callEnded

OSA

SCS

Figure 5‑25 Call Flow for callEnded()
Table 5-47: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect.
(Any)

Pre-conditions:
There is an application monitoring the call in some way.

1
The SCS detects that there is no leg connected to the call or the call has been released.
The SCS invokes the callEnded method.

Note: The callEnded() method is sent to the application when the last leg has released or the call itself was released or no party has answered the call. This method does not require any SIP mapping. It reflects the call state in the SCS.

Table 5-48: Parameter Mapping

To: callEnded
From: SIP: BYE, 3xx, 4xx, 5xx, 6xx
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.

No direct mapping – a correlation.

report (TpCallEndedReport) :
-

 - CallLegSessionID
 (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”
Table 4-1 to 4-5.

 - Cause (TpReleaseCause)
See table 6-18:
TpReleaseCause
for the mapping from SIP

5.4.3 getInfoRes

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

This is an asynchronous method that reports all the necessary information requested by the application, for example to calculate charging.

[image: image27.wmf]

 User

Application

getInfoRes

OSA SCS

SIP

server

SCF

Figure 5‑26 Call Flow for getInfoRes()

Table 5-49: Normal Operation

SIP Server Mode
for the OSA SCS:
(Proxy, UA, B2BUA or 3rd party controller)
(Any, except Redirect mode)

Pre-conditions:
Call is in progress. The application has requested information associated with a call via the getInfoReq method

1
The OSA SCS detects that the call is terminated. The SCS invokes the getInfoRes() method

Note:

Table 5-50: Parameter Mapping

To: getInfoRes
From: SIP: BYE, 3xx, 4xx, 5xx, 6xx
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
 Table 4-1 to 4-5.

No direct mapping – a correlation.

callInfoReport (TpCallInfoReport):
-

 - CallInfoType (TpCallInfoType)
See Table 6-10:
TpCallInfoType
Defines the type of call information requested and reported

 - CallInitiationStartTime
 (TpDateAndTime)
N/A
The time when the SIP server of the OSA SCS sent the SIP INVITE message.

 - CallConnectedToResourceTime
 (TpDateAndTime)
N/A

 - CallConnectedToDestinationTime
 (TpTpDateAndTime)
N/A
The moment the party received the ACK message for the INVITE. This information may be provided by the OSA SCS.

 - CallEndTime (TpDateAndTime)
N/A
Moment when SIP BYE message is sent to participant or received from the participant..
This information may be provided by the OSA SCS.

 - Cause (TpReleaseCause)
See Table 6-18
TpReleasecause for the mapping from SIP

5.4.4 getInfoErr

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error condition.

[image: image28.wmf]

 User

Application

getInfoErr

OSA SCS

SIP

server

SCF

Figure 5‑27 Call Flow for getInfoErr()

Table 5-51: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect)

Pre-conditions:
Call is in progress. The application has requested information associated with a call via the getInfoReq method

1
The original request getInfoReq is erroneous or cannot be accepted due to e.g. call terminates abnormally.

2
The SCS identifies the correct applications that requested the call information and invokes the getInfoErr method.

Note:

Table 5-52: Parameter Mapping

To: getInfoErr
From: SIP 4xx
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError)
 See Table 6-5:
TpCallError mapping table from SIP.

Note:

5.4.5 superviseErr

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call supervision error to the application.

[image: image29.wmf]

 User

Application

superviseErr

OSA SCS

SIP

server

SCF

Figure 5‑28 Call Flow for superviseErr()

Table 5-53: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed].

Pre-conditions:
Call is in progress. The application has requested information associated with a call via the superviseReq method.

1
The SCS detects an error that can affect call supervision, e.g call routing error.

2
The SCS identifies the correct applications that requested the call information and invokes the superviseErr method.

Note:

Table 5-54: Parameter Mapping

To: createAndRouteCallLegErr
From: SIP 4xx
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation .

errorIndication (TpCallError)
 See Table 6-5:
TpCallError
mapping from SIP

Note:

5.4.6 superviseRes

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

This is an asynchronous method that reports a call supervision event to the application.

[image: image30.wmf]

 User

Application

superviseRes

OSA SCS

SIP

server

SCF

Figure 5‑29 Call Flow for superviseRes()

Table 5-55: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

Pre-conditions:
Call is in progress. The application has requested information associated with a call via the superviseReq method. The specified call supervision timer expires.

1
The OSA SCS detects that the supervision time is expired and acts according to the requested treatment (e.g. release call sending BYE) in superviseReq The OSA SCS identifies the correct application and invokes the superviseRes method.

Note:

 Table 5-56: Parameter Mapping

To: superviseRes
From: SIP 4xx
Remark

callSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation .

report (TpCallSuperviseReport)
 N/A
Defines the response(s) from the call control service for calls that have been supervised, (e.g. timeout, call-ended, tone-applied, UI-finished).

usedTime (TpDuration)
BYE (release call)

Note: Tone sending N/A

[editor note: How to provide simple warning
tone sending to caller
(Re-Invite ??? or ?]

No direct mapping to SIP:
TpCallSuperviseTreatment in superviseReq defines the treatment of the call by the call control service when the call supervision timer expires. It may be a request to release (P_CALL_SUPERVISE_RELEASE) the call and /or a request to send a warning tone (P_CALL_SUPERVISE_TONE_APPLIED) to the caller and/or to notify the application

The OSA SCS to issue BYE in SIP.

Note: The OSA SCS to issue BYE in SIP when the call supervise treatment request is to release the call.

5.5 CallLeg Service Interface

The call leg interface class represents the logical call leg associating a call with an address.
The leg represents the signalling relationship between the call and an address.

5.5.1 routeReq

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : void

This method is an asynchronous method used to request routing of the call leg to the remote party indicated by the target address.

[image: image31.wmf]

1. routeReq

:

 3c. ISC: 200 OK

:

 3a. ISC: 1xx

 User

SIP

server

SCF

Application

3b. eventReportRes

 2. ISC: INVITE

3d. eventReportRes

ISC :ACK

Figure 5‑30 Call Flow for routeReq(), UA mode

5.5.1.1 Case 1 UA mode operation

Table 5-57: Normal Operation, UA operation mode

SIP Server Mode
for the OSA SCS:
UA mode

The generation of a SIP message (INVITE) on request from the application demands the SIP server of the OSA to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

Pre-conditions:
A relationship between the application and the call including associated objects exists.
For the routeReq() method, the SCS does not create any new call or call leg objects since the method is called on the existing Terminating Call Leg object

1
The application invokes the routeReq method. The SCS enables the call to be setup by issuing an invitation (INVITE) for the end-user to be called.

2

Note: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD.
The SIP server of the OSA SCS should sent the INVITE for request thee routing to remote party.

Forking is not supported by the OSA API.

The call flow for this method is the equivalent to the createCallAndRouteReq() method.

Note: When operation in B2BUA mode the flow is similar to UA mode, but behaviour reflects a specialisation of a proxy server comprising the split of the SIP dialogue between the end-users into two dialogues – one for each call party
enabling the application to gain full session control.
See also Annex B and the flow examples B2-B5.

Table 5-58: Parameter Mapping, UA mode operation

From: routeReq
To: SIP INVITE
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation is created.

targetAddress (TpAddress)
TO Header:
 SIP URL

See Table 6-2:
TpAddress
mapping to SIP.

originatingAddress (TpAddress)
FROM header:
 SIP URL

See Table 6-2:
TpAddress
mapping to SIP.

appInfo (TpCallAppInfoSet)
See Table 6-4:
TpCallAppInfo
mapping to SIP.

ConnectionProperties (TpCallLegConnectionProperties):
See Table 6-12
TpCallLegConnectionProperties
mapping to SIP.

Note: See also Annex B and Annex C.

5.5.1.2 Case 2 Proxy mode operation

[image: image32.wmf]

1. routeReq

SIP

server

SCF

Application

3b. eventReportRes

 2. ISC: INVITE

ISC :INVITE

A

B

 User

Figure 5‑31 Call Flow for routeReq(), Proxy mode

Table 5-59: Normal Operation, Proxy operation mode

SIP Server Mode
for the OSA SCS:
Proxy mode

The routeReq is used to forward a call (SIP message (INVITE)) on request from the application: The SIP server of the OSA SCS operates in proxy mode.

Pre-conditions:
A relationship between the application and the call including associated objects exists.
For the routeReq() method, the SCS does not create any new call or call leg objects since the method is called on the terminating call leg object

1
The application invokes the routeReq method. The SCS enables the call to be setup by proxying the invitation (INVITE) for the end-user to be called.

Note: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD.
The SIP server of the OSA SCS should forward sent the INVITE for request the routing to remote party.

Forking is not supported by the OSA API.

The call flow for this method is equivalent to createCallAndRouteReq() method.

Table 5-60: Parameter Mapping, Proxy mode operation

From: routeReq
To: SIP INVITE
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2.
No direct mapping – a correlation is created .

targetAddress (TpAddress)
Request-URI Header:
 SIP URL

See Table 6-2:
TpAddress
mapping to SIP.
TO header: not to be changed.

Note: Request-URI may or may not be changed –depends on invoked application
(e.g. plain call monitoring or call forwarding)

originatingAddress (TpAddress)
N/A
FROM header: not to be changed

appInfo (TpCallAppInfoSet)
See Table 6-4:
TpCallAppInfo
mapping to SIP

ConnectionProperties (TpCallLegConnectionProperties):
See Table 6-12:
TpCallLegConnectionProperties

Note: See also Annex B and Annex C.

5.5.2 eventReportReq

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

This method is an asynchronous method used to set, clear or change criteria for the events that the Call Leg object will observe.

[image: image33.wmf]

Application

eventReportReq

OSA SCS

SIP

server

SCF

Figure 5‑32 Call Flow for eventReportReq()

Table 5-61: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any mode, except Redirection.)

Pre-conditions:
A relationship between the application and the call including associated leg objects exists.
 The eventReportReq method must be invoked before call setup (e.g. routeReq method) if to monitor events reporting the results of the call setup request (invitaion).

1
The application invokes the eventReportReq method. The OSA SCS enables the call to be monitored for subsequent events to be reported.

2
The SCS monitors the call and will later on send the corresponding eventReportRes() or eventReportErr() based on the messages received for the controlling entity, i.e. the SIP server of the OSA SCS.

Note: The eventReportReq method is applicable for any leg created leg being part of the MPCC call leg STD.

Table 5-62: Parameter Mapping

From: eventReportReq
From: SIP
Remark

callLegSessionID
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
A correlation - no direct mapping

eventsRequested (TpCallEventRequestSet)
See Table 6-8:
TpCallEventRequest
mapping from SIP.

5.5.3 release

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method is used to request the release of a single call leg.

[image: image34.wmf]

Note: The participant is already

 connected: SIP: 200 OK

-

 ACK

messages have been exchanged

:

 3. ISC: 200 OK

 User

Application

 2a. ISC: BYE

1a. release

ISC: ACK

ISC:

200 OK

OSA SCS

SCF

SIP

server

Figure 5‑33 Scenario a: Call Flow for release(), participant connected

[image: image35.wmf]

Note: The participant is not yet

 connected: SIP: INVITE has been

sent, but 200 OK

-

 ACK

messages have not been exchan

ged

:

 3. SIP: 200 OK

 User

Application

 2b. SIP: CANCEL

1b. release

SIP: 1xx

SIP: INVITE

OSA SCS

SIP

server

SCF

Figure 5‑34 Scenario b: Call Flow for release(), pending call attempt toward participant

[image: image36.wmf]

Note: The participant is not yet

 conneced.

 SIP: Invite has been sent

 A negative response is received.

:

 3c. ISC: ACK

 User

Application

 ISC: 1xx

4c. release

2c.

ISC: 3xx, 4xx, 5xx, 6xx

ISC: INVITE

3c. e

ventReportRes()

OSA SCS

SIP

server

SCF

Figure 5‑35 Scenario c: Call Flow for release(), call (invite) to participant not accepted.

[image: image37.wmf]

Note: The participant is not yet

 conneced.

 SIP: Invite has been received

 A negative final response

 is provided by the

application

 (e.g.call barring).

:

 User

Application

 ISC: INVITE

1. release

2d.

ISC: 3xx, 4xx, 5xx, 6xx

ISC: ACK

OSA SCS

SIP

server

SCF

Figure 5‑36 Scenario d: Call Flow for release(), call (invite) from participant not accepted

Table 5-63: Normal Operation

SIP Server Mode
for the OSA SCS:
UA mode

The generation of a SIP message (BYE) on request from the application to release a single participant in the call demands the SIP server of the OSA to operate in a UA mode
 (e.g. UAC, B2BUA, 3rd party controller).

Pre-conditions:
Call is in progress

1
The application or the SCS invokes the release method. The SCS generates the SIP message to release the requested party (call leg) from the call

2a
Scenario 2a: SIP BYE is sent. The SIP server sends the BYE Message toward the participant connected to the call.

2b
Scenario 2b: SIP CANCEL is sent to terminate a pending leg. The SIP server sends the CANCEL message toward the participants associated to the call but not connected yet.
Note: CANCEL secures in case of SIP forking that all with the OSA leg possible associated pending SIP legs will be released.

2c
Scenario 2c: The invitation to a participant is not accepted. The application sends a Release to terminate its leg.
Note: It could also send a continueProcessing() or deassign() to terminate it logical call leg object representing the connection (SIP leg) in the network. !!

2d

Note:
For scenario 2c the application could instead of release() send a continueProcessing() or deassign() to terminate it logical call leg object representing the connection (SIP leg) in the network. !!
When operating in B2BUA mode the decision whether a release from one participant will cause the release of any other participant can be controlled by the application.

Table 5-64: Parameter Mapping

From: release
To: SIP BYE, 4xx, 5xx,
Cancel (if any pending INVITE requests from application)
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
A correlation - no direct mapping

cause (TpReleaseCause)
See table 6-17: TpReleaseCause for mapping to SIP
See table for TpReleaseCause for mapping to SIP response codes

Note: The release() method may be sent any time from the application e.g. resulting in
a) the termination of an establishment session (BYE) or
b) the cancellation of a pending request (CANCEL) after the application has issued an INVITE request.
c) the termination of an unsuccesful call attempt (e.g. meeting busy, not reachable etc.) or
d) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request.

5.5.4 getInfoReq

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

This method is an asynchronous method that requests information associated with the call to be provided at the appropriate time (for example, to calculate charging).

[image: image38.wmf]

 User

Application

getInfoReq

OSA SCS

SIP

server

SCF

Figure 5‑37 Call Flow for getInfoReq()

Table 5-65: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect mode.)

Pre-conditions:
A relationship between the application and the call including associated call leg objects exists.
The getInfoReq method must be invoked on a call leg before the call leg is routed to a target address.

1
The application invokes the getInfoReq method. The SCS monitors the call leg to be capable to collect the requested information.

2
The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the messages received from the SIP server of the OSA SCS.

3

Note: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information associated to the call. Indeed the method does not involve SIP mapping.

The OSA SCS should use the messages received by the SIP server during the call session in order to sent the corresponding getInfoRes() or getInfoErr() method.

Table 5-66: Parameter Mapping

From: getInfoReq
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

callLegInfoRequested (TpCallLegInfoType) :
See table 6-11: TpCallLegInfoType

Note: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events:
a) receipt of a SIP response (200 OK/ACK) to an incoming INVITE request or
b) the termination of an establishment session (BYE).

5.5.5 getCall

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

This method used to retrieve the reference of the Call object associated with the Call leg object.

[image: image39.wmf]

 User

Application

getCall

OSA SCS

SIP

server

SCF

Figure 5‑38 Call Flow for getCall()

Table 5-67: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect.
(Any)

Pre-conditions:
A relationship between the application and the call including associated call leg object(s) exists. The getCall method can be invoked on any existing call leg object.

1
The application invokes the getCall method. The SCS return the associated call object reference to the application.

Note: The getCallLeg() method is not related to SIP signalling, it is sent by the application to request information about the associated logical call object in the SCS. Indeed the method does not involve any SIP mapping.

Table 5-68: Parameter Mapping

From: getInfoReq
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created.

Returns:
TpMultiPartyCallIdentifier
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)
N/A

Note:

5.5.6 continueProcessing

continueProcessing (callLegSessionID : in TpSessionID) : void

This method used to continue processing of the call.

[image: image40.wmf]

 User

Application

continueProcessing

 SIP call processing resumed

-

 processing of any interupted

 SIP message is resumed.

-

OSA SCS

SIP

server

SCF

Figure 5‑39 Call flow for continueProcessing()

Table 5-69: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirection.)

Pre-conditions:
A relationship between the application and the call including associated call leg object(s) exists. Call processing is suspended and the application is informed of call related events in interrupt mode.

1
The application invokes the continueProcessing method requesting processing for the call leg object to be resumed.

2
The SCS requests the SIP server of the OSA SCS to resume SIP processing, when the call is to be resumed. That is the necessary response(s) from the application to resume call processing has been determined.

Note: The continueProcessing method is addressed to a single leg object.
Resumption of SIP call processing occurs when all the MPCCS leg objects STDs are in processing state (not suspended).

The continueProcessing method can be invoked on any existing call leg object to resume processing.

Table 5-70: Parameter Mapping

From: continueProcessing
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created.

5.5.7 attachMediaReq
attachMediaReq (callLegSessionID : in TpSessionID) : void

This asynchronous method used to request that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully. However, the request may be sent as soon as the call leg object exists.

[image: image41.wmf]

Note: The applicationrequests e.g. in

 routeReq(connectionproperties)

 the media

to be detached implying initial

invite with no SDP, and user responds with

its SDP in 200 OK, which is immediately

ACKed with an on

-

hold SDP generated by

OSA SCSbut put on hold

 at call/session establihment.

eventReportRes

:

 3c. ISC: ACK (SDP held)

 User

Application

 ISC: 200 OK (SDP user)

4c. attachMediaReq

2c.

ISC

: INVITE

 (Re

-

INVITE,)

ISC: INVITE (no SDP)

3c. e.g. routeReq

(detach media)

eventReport

Res()

OSA SCS

SIP

server

SCF

Figure 5‑40 Scenario a: Call flow for attachMediaReq(), UA/B2BUA mode

[image: image42.wmf]

Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

p

articipant on hold (disconnected)

See detachMediaReq method

detackMediaRes

:

 3c. ISC: ACK

 User

Application

 ISC: 200 OK

4c. attachMediaReq

2c.

ISC: INVITE

 (Re

-

INVITE)

ISC: INVITE (Re

-

INVITE SDP on hold)

3c.detachMediaReq

(detach media)

eventReportRes()

OSA SCS

SIP

server

SCF

Figure 5‑41 Scenario b: Call flow for attachMediaReq(), UA/B2BUA mode
Table 5-71: Normal Operation

SIP Server Mode
for the OSA SCS:
UA, B2BUA, 3rd. party controller mode

The generation of a SIP message (re-INVITE) on request from the application to attach media channels of a single user in the call demands the SIP server of the OSA SCS to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

Pre-conditions:
Call is processing. A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection state and has a media connection established with the others legs in the call.
AttachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if received before the SCS should buffer the request until it can be executed..

1
The application invokes the attachMediaReq method requesting the media stream(s) for the call leg object to be attached, i.e. enabling media communication fie the call party. Application request the media attachment for this leg.

2
The SCS requests the SIP server of the OSA SCS to attach the media when the call enables this..
The SCS generates a new SIP INVITE (Re-INVITE) message to be sent to the participant, i.e. in this case the attachMediaReq() method is mapped onto the INVITE message.

Note:
The new INVITE (re-INVITE) sent to the participant does not issue a new SIP session, it is only updating the previous SIP session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media description has changed.

The attachMediaReq method can be invoked on any existing call leg object to request the media attachment. If SIP processing is in the call setup phase, the request is buffered until it can be executed, i.e. it is not executed until the phase in call procession where it is applicable to connect media. Note: no error is reported in case media is already attached.

 In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a party can be disconnected (detachMediaReq) and re-connected (attachMediaReq) to a call.
 A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach media) while the session is established or after the establishment. When the application will request to attach the media, a new INVITE will be sent to the participant with the media session description. This solution necessities a new SIP session initiation (Re-INVITE) each time the application wants to re-attach the participant to the call, i.e. reinitiating a session in the normal SIP way…
A standard User (SIP user agent) should be controllable in the mechanism described here.
The attach mechanism relies on the support of Re-invites by user agent servers.
Furthermore in support of media on hold (connection properties) at call /session establishment the user agent servers should support initial invites with no SDP (or initial invites on hold).

See also Annex B and flow example B6

Table 5-72: Parameter Mapping

From: continueProcessing
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation.

5.5.8 detachMediaReq
detachMedia (callLegSessionID : in TpSessionID) : void

This asynchronous method is used to detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

[image: image43.wmf]

Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

participant on hold (disconnected)

 User

Application

ISC: INVITE (Re

-

INVITE)

1.detachMediaReq

OSA S

CS

SIP

server

SCF

Figure 5‑42 Call Flow for detachMediaReq(), UA/B2BUA mode

Table 5-73: Normal Operation

SIP Server Mode
for the OSA SCS.
UA, B2BUA, 3rd. party controller mode

The generation of a SIP message (re-INVITE) on request from the application to detach media channels of a single user in the call demands the SIP server of the OSA SCS to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

Pre-conditions:
Call is processing. A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection state and has a media connection established with the others legs in the call.
DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if received before the SCS should buffer the request until it can be executed..

1
The application invokes the detachMediaReq method requesting the media stream(s) for the call leg object to be de-attached, i.e. enabling to put the media communication on hold for the call party. Application request the media de-attachment for this leg. The application prevents the transmission of media connection to this leg by calling the detachMediaReq().

2
The SCS requests the SIP server of the OSA SCS to de-attach the media when the call enables this..
The SCS generates a new SIP INVITE (Re-INVITE) message to be sent to the participant, i.e. in this case the detachMediaReq() method is mapped onto a SIP INVITE message with an SDP on hold.

Note:
The new INVITE (re-INVITE) sent to the participant does not issue a new SIP session, it is only updating the previous SIP session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media description has changed.

The detachMediaReq method can be invoked on any existing call leg object to request the media attachment. If SIP processing is in the call setup phase, the request is buffered until it can be executed, i.e. it is not executed until the phase in call procession where it is applicable to connect media. Note: no error is reported in case media is already detached.

 In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a party can be disconnected (detachMedia) and re-connected (attachMedia) to a call.
 A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach media) while the session is established or after the establishment. When the application will request to attach the media, a new INVITE will be sent to the participant with the media session description. This solution necessities a new SIP session initiation (Re-INVITE) each time the application wants to re-attach the participant to the call, i.e. reinitiating a session in the normal SIP way…
A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of re-INVITE by user agent servers.

See also Annex B and flow example B6.

Table 5-74: Parameter Mapping

From: continueProcessing
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation.

5.5.9 deassign

deassignCall (callLegSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call leg and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call leg object so that the application has no further control of call leg processing. If a call leg is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

[image: image44.wmf]

 User

Application

deassign

OSA SCS

SIP

server

SCF

Figure 5‑43 Call Flow for deassign()

Table 5-75: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect.
(Any)

Pre-conditions:
A relationship between the application and the call leg including associated objects exists.

1
The application invokes the deassign method on a leg

2
The SCS terminates the relationship between the application and the call leg and its associated objects and notifies the SIP server of the OSA SCS.

3
The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any control from the application related to the call leg object. Any possible interrupted call processing related to the leg that has been deassigned control is to be resumed.

Note: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself from the route-request.

Table 5-76: Parameter Mapping

From: continueProcessing
To: SIP xx
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created.

5.5.10 getCurrentDestinationAddress
getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

This method is sent by the application to the leg to get the currentt address of the destination the leg has been directed to.

[image: image45.wmf]

Note: Returns

the address of the

destination point towards which the

call leg has been routed.

User

Application

1. getCurrentDestinationAddress

OSA SCS

SIP

server

SCF

Figure 5‑44 Call Flow for getCurrentDestinationAddress()

Table 5-77: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controllert.
(Any, except Redirect)

Pre-conditions:
A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection and is a terminating leg in the MPCCS STD.

1
The application invokes the getCurrentDestinationAddress method requesting information for the call leg object regarding the address of current destination point..

2
The SCS returns the address of the destination point towards which the call leg has been routed in the method return parameter.

Note: The getCurrentDestinationAddress method can be invoked on any OSA MPCCS Terminating Call Leg object.

Table 5-78: Parameter Mapping

From: getLastRedirectedAddress
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created..

Returns:
TpAddress
See Table 6-2:
TpAddress
mapping to SIP.
Specifies the last address where the call leg was directed to.

5.6 CallLeg Application Interface

5.6.1 routeErr

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party was unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid address, the request was refused, etc).

[image: image46.wmf]

 User

Application

routeErr

 ISC: 400, 404, 413, 414, 481, 484, 485

 (response to previous sent INVITE)

ACK

OSA SCS

SIP

server

SCF

Figure 5‑45 Call Flow for routeErr()
Table 5-79: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any , except Redirect mode.)

Pre-conditions:
Application has sent routeReq() , a request to route the call to the destination party.

1
The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP server of the SCS.

2
The SCS invokes the routeErr method

Note: The SIP server of the OSA SCS could detect the denial.

Table 5-80: Parameter Mapping

To: routeErr
From: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError)
 See Table 6-5:
TpCallError
for mapping from SIP.

Note:

5.6.2 eventReportRes

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

This asynchronous method is used to report that an event has occurred on the call leg that was requested to be reported (for example , a mid-call event from the party; the party has requested to disconnect; etc.).

[image: image47.wmf]

 User

Application

2. eventReportRes

Note 1: any appropriate SIP

message:INVITE, 1xx, 2xx, 3xx,

4xx, 5xs, 6xx, ?

1. ISC: see Note 1

OSA SCS

SIP

server

SCF

Figure 5‑46 Call Flow for eventReportRes()

Table 5-81: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect) (Editor note: assumed not applicable for Redirect mode ???)

Pre-conditions:
A relationship between the application and the call including associated call leg object(s) exists. The application requested to be notified of the event with e.g. eventReportReq and this specific event has occurred in the network.

1
The SIP server of the OSA SCS detects a SIP message (response or request) that corresponds to a requested call event to be reported to the application.

2
The OSA SCS invokes the eventReportRes() method.

Note:

Table 5-82: Parameter Mapping

To: eventReportRes
From: SIP (any SIP message)
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

eventInfo (TpCallEventInfo)
See Table 6-7:
TpCallEventInfo
mapping from SIP.

5.6.3 eventReportErr

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method used to indicate that the request to manage call leg event reports was unsuccessful (for example, parameters were incorrect, the request was refused, etc).

[image: image48.wmf]

 User

Application

eventReportErr

OSA SCS

SIP

server

SCF

Figure 5‑47 Call Flow for eventReportErr()

Table 5-83: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect)

Pre-conditions:
Call is in progress. The application has requested information associated with a call via the eventReportReq method

1
The original request eventReportReq is erroneous - or cannot be accepted due to e.g. call terminates abnormally.

2
The SCS identifies the correct applications that requested the event report information and invokes the eventReportErr method.

Note:

Table 5-84: Parameter Mapping

To: eventReportErr
From: SIP 4xx
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError)
 See Table 6-5:
TpCallError
for mapping
from SIP.

Note:

5.6.4 callLegEnded

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method is used to indicate to the application that the leg has terminated in the network. The application has received all requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this method. Furthermore, the operation contains an indication on the reason why the call leg has been ended. The method will always be invoked when the call leg is ended.

[image: image49.wmf]

ISC:

 BYE etc.

 User

Application

 The SIP server of the OSA

SCS

detects that call leg (OSA leg) has

been released

 callLegEnded

OSA SCS

SIP

server

SCF

Figure 5‑48 Call Flow for callLegEnded()

Table 5-85: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect
(Any) [Editor note: applicable for Redirect mode ???]

Pre-conditions:
There is an application monitoring the call in some way.

1
The SCS detects that the OSA call leg object connected to the call is destroyed, i.e. the call has been released.
The SCS invokes the callLegEnded method.

Note: The callLegEnd() method is sent to the application when the party associated with the leg has released or the call itself was released to connection to the party .

Table 5-86: Parameter Mapping

To: callLegEnded
From: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping, merely a correlation is created

cause (TpReleaseCause)
See Table 6-18;
TpReleaseCause Mapping from SIP

5.6.5 getInfoRes

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

This is an asynchronous method that is used to report all the necessary information requested by the application, for example to calculate charging.

[image: image50.wmf]

 User

Application

getInfoRes

OSA SCS

SIP

server

SCF

Figure 5‑49 Call Flow for getInfoRes()

Table 5-87: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect
(Any)

Pre-conditions:
Call is in progress. The application has requested call leg information with the getInfoReq method.

1
The SCS detects that the OSA call leg is terminated. The SCS invokes the getInfoRes() method.
The OSA SCS has via its SIP Server collected the requested call related information which is reported to the application.

Note:

Table 5-88: Parameter Mapping

To: getInfoRes
From: SIP:
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

callLegInfoReport (TpCallLegInfoReport):
-

 -CallLegInfoType (TpCallLegInfoType)
N/A
Indicates the type of the call leg information being reported.

 - CallLegStartTime (TpDateAndTime)
INVITE
The time and date when the call leg was started (i.e. the leg was routed).The time when the SCS received/ sent the SIP INVITE message to intiate the call. The OSA SCS should make a time stamp to be used as this parameter value.

- CallLegConnectedToResourceTime
 (TpDateAndTime)

N/A
The date and time when the call leg was connected to the resource. If no resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid, depending on whether the report is sent as a result of user interaction.

- CallLegConnectedToAddressTime
 (TpDateAndTime)
ACK message for the INVITE (answer confirmed).
The date and time when the party received the ACK message for the INVITE (answer confirmed). This information may be provided by the SIP server.

It tells when the call leg was connected to the destination (i.e. when the destination answered the call). If the destination did not answer, the time is set to an empty string.

- CallLegEndTime
 (TpDateAndTime)
SIP BYE /
3xx, 4xx, 5xx, 6xx
Date and time when when the call leg was released (e.g. SIP BYE message is sent to participant or received from the participant).

- ConnectedAddress (TpAddress)
N/A ?
FROM header URL (OSA terminating call leg)
or
TO header URL (OSA
originating call leg)See Table 6-2:
TpAddress
for mapping from SIP
The address of the party associated with the leg. If during the call the connected address was received from the party (SIP Contact header ?) then this is returned, otherwise the destination address (for legs connected to a destination) or the originating address (for legs connected to the origination) is returned

- CallLegReleaseCause (TpReleaseCause)
See Table 6-18:
TpReleaseCause
for mapping from SIP
The cause of the termination. May be present with P_CALL_LEG_INFO_RELEASE_CAUSE was specified

- CallAppInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo
See Table 6-4:
TpCallAppInfo
for mapping from SIP
Additional information for the leg. May be present with P_CALL_LEG_INFO_APPINFO was specified.

5.6.6 getInfoErr

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error condition.

[image: image51.wmf]

 User

Application

getInfoErr

OSA SCS

SIP

server

SCF

Figure 5‑50 Call Flow for getInfoErr()

Table 5-89: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller, Redirect.

Pre-conditions:
Call is in progress. The application has requested information associated with a call leg via the getInfoReq method

1
The original request getInfoReq is erroneous or cannot be accepted due to e.g. call leg terminates abnormally.

2
The SCS identifies the correct applications that requested the call leg information and invokes the getInfoErr method.

Note:

Table 5-90: Parameter Mapping

To: getInfoErr
From: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError):
See Table 6-5:
TpCallError for mapping from SIP.

Note:

5.6.7 superviseErr

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call leg supervision error to the application.

[image: image52.wmf]

 User

Application

superviseErr

OSA SCS

SIP

server

SCF

Figure 5‑51 Call Flow for superviseErr()

Table 5-91: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect mode.)

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed].

Pre-conditions:
Call is in progress. The application has requested information associated with a call via the superviseReq method.

1
The SCS detects an error that can affect call supervision, e.g call routing error.

2
The SCS identifies the correct applications that requested the call information and invokes the superviseErr method.

Note:

Table 5-92: Parameter Mapping

To: superviseErr
From: SIP 4xx
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError)
 See Table 6-5:

TpCallError
mapping from SIP

Note:

5.6.8 superviseRes

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

This is an asynchronous method that reports a call leg supervision event to the application.

[image: image53.wmf]

 User

Application

superviseRes

OSA SCS

SIP

server

SCF

Figure ‑52 Call Flow for superviseRes()

Table 5-93: Normal Operation

SIP Server Mode
for the OSA SCS:
Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect mode.)

However, if treatment (TpCallSuperviseTreatment) implies call leg release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

Pre-conditions:
Call is in progress. The application has requested information associated with a call leg via the superviseReq method. The specified call leg supervision timer expires.

1
The SCS detects that the supervision time is expired and acts according to the requested treatment (e.g. release call sending BYE) in superviseReq .

The SCS identifies the correct application and invokes the superviseRes method.

Note:

 Table 5-94: Parameter Mapping

To: superviseRes
From: SIP 4xx
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-1 to 4-5.
No direct mapping – a correlation.

report (TpCallSuperviseReport)
 N/A
Defines the response(s) from the call control service for calls that have been supervised, (e.g. timeout, call-ended, tone-applied, UI-finished).

usedTime (TpDuration)
BYE (release call)

Note: Tone sending N/A

[Editor note: How to provide simple warning
tone sending to caller
(Re-Invite ??? or ?]

No direct mapping to SIP:
TpCallSuperviseTreatment in superviseReq defines the treatment of the call by the call control service when the call supervision timer expires. It may be a request to release (P_CALL_SUPERVISE_RELEASE) the call and /or a request to send a warning tone (P_CALL_SUPERVISE_TONE_APPLIED) to the caller and/or to notify the application

The OSA SCS to issue BYE in SIP.

Note: The OSA SCS to issue BYE in SIP when the call supervise treatment request is to release the call.

5.6.9 attachMediaErr

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

[image: image54.wmf]

 User

Application

attachMediaErr

OSA SCS

SIP

server

SCF

Figure 5‑53 Call Flow for attachMediaErr()
Table 5-95: Normal Operation

SIP Server Mode
for the OSA SCS:
 UA, B2BUA or 3rd party controller.

Pre-conditions:
Call is in progress. The application has requested attach media associated with a call leg via the attachMediaReq method.

1
The SCS detects an error that can affect the call, e.g call routing error.

2
The SCS identifies the correct applications that requested the attach media and invokes the attachMediaErr method.

Note: A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of Re-invites by user agent servers.

Table 5-96: Parameter Mapping

To: superviseErr
From: SIP 4xx
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError)
 See Table 6-5:
TpCallError
mapping from SIP

Note:

5.6.10 attachMediaRes
attachMediaRes (callLegSessionID : in TpSessionID) : void

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer connections to this leg are now available.

[image: image55.wmf]

Note: It is anticipated that

 the media for the user is

 not connected.

:

ISC: ACK

 User

Application

4c. attachMediaReq

2c.

ISC

: INVITE

 (Re

-

INVITE,)

 ISC: 200 OK

OSA SCS

SIP

server

SCF

5. attachMediaRes

Figure 5‑54 Scenario a: Call flow for attachMediaRes(), UA/B2BUA mode

Table 5-97: Normal Operation

SIP Server Mode
for the OSA SCS:
UA mode

The generation of a SIP message (re-INVITE) on request from the application to attach media channels of a single user in the call demands the SIP server of the OSA SCS to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

Pre-conditions:
A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection state and the media communication is on-hold for the call party in its communication with the other legs in the call.
AttachMedia has bee requested (not executed until the connected state is reached (200 OK /ACK) , i.e. if received before the SCS should buffer the request until it can be executed).

1
The OSA SCS has requested the media stream(s) for the call leg object to be attached when the call/session state enables this.
(The SCS generates a new SIP INVITE (Re-INVITE) message to be sent toward the user, i.e. in this case the attachMediaReq() method is mapped onto a SIP INVITE message with an SDP on hold.)

2
The OSA SCS confirms the attach media (200 OK /ACK) and notifies the application about the successful attachment of the media stream(s) for the user with the attachMediaRes()

Note:
The media connection is established when application receives the attachMediaRes() method.
A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of re-INVITE by user agent servers.
See also Annex B and flow example B6

Table 5-98: Parameter Mapping

From: attachMediaRes
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation.

5.6.11 detachMediaErr

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

[image: image56.wmf]

 User

Application

detachMediaErr

OSA SCS

SIP

server

SCF

Figure 5‑55 Call Flow for detachMediaErr()

Table 5-99: Normal Operation

SIP Server Mode
for the OSA SCS:
 UA, B2BUA or 3rd party controller.

Pre-conditions:
Call is in progress. The application has requested detach media associated with a call leg via the detachMediaReq method.

1
The SCS detects an error that can affect the call, e.g call routing error.

2
The SCS identifies the correct applications that requested the detach media and invokes the detachMediaErr method.

Note: A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of Re-invites by user agent servers.

Table 5-100: Parameter Mapping

To: detachMediaErr
From: SIP 4xx
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation.

errorIndication (TpCallError)
 See Table 6-5:
TpCallError
mapping from SIP

Note:

5.6.12 detachMediaRes

detachMediaRes (callLegSessionID : in TpSessionID) : void

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer connections to this leg are no longer available.

[image: image57.wmf]

Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

participant on hold (di

sconnected)

:

 ISC: ACK

 User

Application

 ISC: 200 OK

2.detachMediaRes

ISC: INVITE (Re

-

INVITE)

1.detachMediaReq

OSA SCS

SIP

server

SCF

Figure 5‑56 Call Flow for detachMediaReq/Res(), UA/B2BUA mode

Table 5-101: Normal Operation

SIP Server Mode
for the OSA SCS.
UA mode

The generation of a SIP message (re-INVITE) on request from the application to detach media channels of a single user in the call demands the SIP server of the OSA SCS to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

Pre-conditions:
 A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection state and has a media connection established with the others legs in the call.
The application has requested to put the media communication on hold for the call party (detach media), by e.g. invoking the detachMediaReq method.

DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if received before the OSA SCS should buffer the request until it can be executed..

1
The OSA SCS has requested the SIP server of the OSA SCS to de-attach the media when the call/session state enables this.
(The SCS generates a new SIP INVITE (Re-INVITE) message to be sent toward the user, i.e. in this case the detachMediaReq() method is mapped onto a SIP INVITE message with an SDP on hold.)

2
The OSA SCS confirms the detach media (200 OK /ACK) and notifies the application about the successful detach media with the detachMediaRes()

Note:
The media on-hold (disconnection) is established when application receives the detachMediaRes() method.

 A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach media) while the session is established or after the establishment.
A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of re-INVITE by user agent servers.
See also Annex B and flow example B6

Table 5-102: Parameter Mapping

From: continueProcessing
To: SIP
Remark

callLegSessionID (TpSessionID)
See “OSA Call and SIP Dialogue Correlation Tables”.
Table 4-2 to 4-5.
No direct mapping – a correlation.

6 Detailed Parameter Mappings

This clause contains detailed parameter mappings for data types that are used in the Parameter Mapping tables in the previous clauses.

6.1 TpAdditionalCallEventCriteria

Table 6-1:TpAddtionalCallEventCriteria Table mapping.

TpAdditionalCallEventCriteria
(TpCallEventType)
From SIP
(observe for requested
additional info)
Remark

Undefined (NULL)
(P_CALL_EVENT_UNDEFINED)
N/A

Undefined (NULL)
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT

Undefined (NULL)
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

MinAddresslength (TpINT32)
P_CALL_EVENT_ADDRESS_COLLECTED

Undefined (NULL)
P_CALL_EVENT_ADDRESS_ANALYSED

OriginatingServiceCode
(TpCallServiceCode)
P_CALL_EVENT_ORIGINATING_SERVICE_CODE
See Table for TpCallServiceCode ??

OriginatingReleaseCauseSet
(TpReleaseCauseSet)
P_CALL_EVENT_ORIGINATING_RELEASE

Undefined (NULL)
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT

Undefined (NULL)
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED

Undefined (NULL)
P_CALL_EVENT_ALERTING

Undefined (NULL)
P_CALL_EVENT_ANSWER

TerminatingReleaseCauseSet
(TpReleaseCauseSet)
P_CALL_EVENT_TERMINATING_RELEASE

Undefined (NULL)
P_CALL_EVENT_REDIRECTED

TerminatingServiceCode
(TpCallServiceCode)
P_CALL_EVENT_TERMINATING_SERVICE_CODE

QueueStatus (TpString)P_CALL_EVENT_QUEUED
SIP 182
reason phrase.

See Note1:
Reason phrase is mapped to TpString

Note:
[editor note. Data definition QueueStatus (TpString) missing for MPCCS – only defined for GCC ?]

Note 1: The 182 informational response may be sent several times (e.g. indicating the poison of the calling user in a queue. Furthermore, the message body in the SIP 182 informational response can also be used to carry e.g. music on hold or other media.

6.2 TpAddress

Table 6-2 TpAddress Table mapping

From: TpAddressRange

To: SIP
Remark

Plan (TpAddressPlan)
SIP
Specifies the address plan in force.
Here only SIP URL is applicable.

AddrString (TpString)
SIP: URL address
Contains a valid SIP address string.

A few examples of SIP URLs:
- A user of an online service:
 “sip:user@xxx.org”
 “sip:alice@10.1.1.1”

 - A PSTN phone number at a gateway service:
”sip:1212@gateway.com”,
”sip: +1-212-555-1212:1234@gateway.com; user =phone”

Notice: For SIP addresses, wildcards are allowed between the ‘sip:’ and the ‘@’ in the AddrString, e.g.

"sip:*@sales.org"
matches all SIP addresses at sales.org:5060.

Name (TpString)
N/A

Presentation (TpAddressPresentation)
N/A
[Editor note:no SIP support ?
Check ISUP-SIP interworking]
Defines whether an address can be presented to an end user (presentation allowed or restriced or address not available for presentation) .

Screening (TpAddressScreening)
N/A
[Editor note:no SIP support ?
Check ISUP-SIP interworking]
Defines whether an address can be presented to an end user. E.g. “user provided address
verified and passed” or “Network provided address”

SubAddressString (TpString)
N/A

Note: The AddrString defines the actual address information and the structure of the string depends on the Plan.
Further information can be found in the OSA API part covering common data definitions [1].

NOTE 1:
It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to the same user at the same network address. The textual form of the two addresses need not be the same. For example, sip:enquiries@yyy.org will be deemed to match <sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4).

6.3 TpAddressRange

Table 6-3 TpAddressRange Table mapping

From: TpAddressRange

To: SIP
Remark

Plan (TpAddressPlan)
SIP
Specifies the address plan in force.
Here only SIP URL is applicable.

AddrString (TpString)
SIP: URL address
Contains a valid SIP address string.

A few examples of SIP URLs:
- A user of an online service:
 “sip:user@xxx.org”
 “sip:alice@10.1.1.1”

 - A PSTN phone number at a gateway service:
”sip:1212@gateway.com”,
”sip: +1-212-555-1212:1234@gateway.com; user =phone”

Notice: For SIP addresses, wildcards are allowed between the ‘sip:’ and the ‘@’ in the AddrString, e.g.

"sip:*@sales.org"
matches all SIP addresses at sales.org:5060.

Name (TpString)
N/A

SubAddressString (TpString)
N/A

Note: The AddrString defines the actual address information and the structure of the string depends on the Plan.
Further information can be found in the OSA API part covering common data definitions [1].

NOTE 1:
It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to the same user at the same network address. The textual form of the two addresses need not be the same. For example, sip:enquiries@yyy.org will be deemed to match <sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4).

6.4 TpCallAppInfo

Table 6-4 TpCallAppInfo Table mapping

To: TpCallAppInfo

From: SIP
Remark

CallAppAlertingMechanism (TpCallAlertingMechanism)
N/A
Indicates the alerting mechamism or pattern to use

Cannot be mapped as Alert-info is defined in SIP

CallAppNetworkAccessType
(TpCallNetworkAccessType)
N/A
Indicates the network access type (e.g. ISDN)

Not mapped. No valid value for SIP in this parameter

CallAppTeleService
(TpCallTeleService)
N/A

Indicates the tele service (e.g. telephony)

To be detailed if/how to map ?

CallAppBearerService
(TpCallBearerService)
Media type from SDP ?
Indicates the bearer services (e.g. 64kbit/s unrestricted data)

Specifies the type of media indicated in the incoming SDP e.g. data, audio, video.
To be detailed if/how to map ?

CallAppPartyCategory
(TpCallPartyCategory)
N/A
The category of the calling party.

Not mapped.
Not defined in SIP
[editor note: ??? check ISUP –SIP interworking]

CallAppPresentationAddress
(TpAddress)
May be SIP From header field ?

This may also be the optional STRING associated to the URI (similar to the name you can associate to an e-mail address)
The address to be presented to other call parties.

In case the SIP From header and SIP Contact are different, The From header field may be seen as presentation Address since the UA will only use the contact or via address to decide the routing destination.

CallAppGenericInfo
(TpString)
?
E..g. convey info in a “container” in SIP when ISC is used ?!.

Open how – needs further study !

Carries unspecified service-service information

Application dependent information to be conveyed to the application (transported transparently from S-CSCF to SIP server in OSA SCS. ?=??

CallAppAdditionalAddress
(TpAddress)
N/A
Indicates an additional address.

No mapping: Not fined in SIP

CallAppOriginalDestinationAddress
(TpAddress)
SIP TO Header field
Contains the original address specified by the originating user when launching the call.

Even if the call is forwarded or redirected by the SIP server, the TO header field will be unchanged and will remain the same. So the TO Field always specifies the original destination of the call

CallAppRedirectingAddress
(
N/A

The request-URI in some forwarding cases?
Contains the address of the user from which the call is diverting.

6.5 TpCallError

Table 6-5: TpCallError Table mapping

To TpCallError
From SIP
Remarks

ErrorTime (TpDateAndTime)
N/A
Time should be provided locally by the OSA SCS.

Note:
In order to have the accurate time, the Timestamp header field may be added to the SIP send by the participant or the SIP server.
However, it is not possible to rely on timestamp to be recived in message.

ErrorType (TpCallErrorType)
See Table 6-6:
TpCallErrorType mapping table from SIP

AdditionnalErrorInfo (TpCallAdditionalErrorInfo)
N/A
See also TpCallErrorType

Note:

6.6 TpCallErrorType
Table 6‑6: TpCallErrorType Table mapping

To: TpCallErrorType

From: SIP
Remark

P_CALL_ERROR_UNDEFINED
Undefined

P_CALL_ERROR_INVALID_STATE
481 Call/
Transaction Does Not Exist

P_CALL_ERROR_INVALID_ADDRESS
400 Bad Request,

413 Request Entity Too Large

414 Request URI Too Long

484 Address Incomplete

485 Ambigous

6.7 TpCallEventInfo
Table 6-7: TpCallEventInfo Table mapping.

To: TpCallEventInfo

From: SIP
Remark

CallEventType (TpCallEventType)
See Table 6-9:
TpCallEventType
mapping from SIP.

AdditionalCallEventInfo
(TpCallAdditionalEventInfo)
See Table 6-9:
TpCallEventType mapping from SIP.

CallMonitorMode
(TpCallMonitorMode)
See Table 6-13:
TpCallMonitorMode mapping from SIP.

CallEventTime
(TpDateAndTime)
N/A
Timestamp provided by OSA SCS at event reporting.

6.8 TpCallEventRequest

Table 6-8: TpCallEventRequest Table mapping
To TpCallEventRequest
From SIP
Remark

CallEventType (TpCallEventType)
See Table 6-9:
TpCallEventType
mapping from SIP
.

AdditionalCallEventCriteria
(TpAdditionalCallEventCriteria)
See Table 6-1:
TpAdditionalCallEventCriteria
mapping from SIP

CallMonitorMode (TpCallMonitorMode)
See Table 6-13:
TpCallMonitorMode mapping from SIP

Note:

6.9 TpCallEventType

Table 6-9: TpCallEventType Table mapping
To TpCallEventType
From SIP
Remark

P_CALL_EVENT_UNDEFINED
N/A
No mapping from SIP.

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
N/A
Originating Call Leg event.
Not applicable to SIP; would mean an empty To: header

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
N/A
Originating Call Leg event.

P_CALL_EVENT_ADDRESS_COLLECTED
INVITE
Originating Call Leg event.
No direct mapping to any SIP Method/Response.
Correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

P_CALL_EVENT_ADDRESS_ANALYSED
INVITE
Originating Call Leg event.
No direct mapping to any SIP Method/Response.
Correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
INVITE
Originating Call Leg event.
RE-INVITE case - mapping ffs

P_CALL_EVENT_ORIGINATING_RELEASE
BYE, CANCEL
See corresponding Table for details
Originating Call Leg event.
Request for termination of session from calling party.

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
INVITE
Terminating Call Leg event.
Incoming INVITE received at destination requesting the termination of the session (i.e. dialogue invitation request) for callee.

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
INVITE
Terminating Call Leg event.
Incoming INVITE received at destination requesting the establishment of the terminating session for the callee

P_CALL_EVENT_ALERTING
SIP: 180 Ringing
Terminating Call Leg event.
The user agent receiving the INVITE is trying to alert the callee. This response may be used to initiate local ringback for the caller.
Note: Implies that the corresponding INVITE request passed through the OSA SCS

P_CALL_EVENT_ANSWER
ACK
-confirmation of invitation. (INVITE -
200 OK)
Terminating Call Leg event.
The ACK method is used to acknowledge the successful response (answer - 200 OK) to the invitation (INVITE).
The user agent receiving the invitation has answered (and media session is established).
Note: Implies that the corresponding INVITE request passed through the OSA SCS.

P_CALL_EVENT_TERMINATING_RELEASE
BYE,
4xx, 5xx, 6xx
See corresponding Table for details
Terminating Call Leg event.
Request for termination of session (i.e. release of dialogue) from called party/destination.

P_CALL_EVENT_REDIRECTED
181 Call Is Being Forwarded
Terminating Call Leg event.
This status code is used to indicate that the call is being forwarded to a different (set of)
destination(s).
The redirection address contained in the provisional SIP response 181 is to be reported in the CALL_EVENT_REDIRECTED event (ForwardAddress field additional event info) to the application.

P_CALL_EVENT_TERMINATING_SERVICE_CODE
INVITE
Terminating Call Leg event.
RE-INVITE case - mapping ffs

P_CALL_EVENT_QUEUED
SIP:182 Queued
Terminating Call Leg event.

In case of ISC, implies that the corresponding INVITE request passed through the OSA SCS.

Note: support of supplementary information:
The reason phrase gives further details about the status of the call. For example “5th call in the queue, expected waiting time 10 minutes”.

6.10 TpCallInfoType

Table 6‑10: TpCallInfoType Table mapping

From: TpCallInfoType

From: SIP
Remark

P_CALL_INFO_UNDEFINED
N/A
-Undefined

P_CALL_INFO_TIMES
N/A
- Relevant call time

P_CALL_INFO_RELEASE_CAUSE
See Table 6-17, 6-18:
TpReleaseCause
for mapping from / to SIP
- Call release cause

P_CALL_INFO_INTERMEDIATE
N/A
- Send only intermediate reports.
When this is not specified the information report will only be sent to the application when the call has ended.
When intermediate reports are requested a report will be sent between follow-on calls, i.e. when a party leaves the call.

Note: Defines the type of call information requested and reported. The values may be combined (logical ‘OR’)

6.11 TpCallLegInfoType
Table 6‑11: TpCallLegInfoType Table mapping

From: TpCallLegInfoType

From: SIP
Remark

P_CALL_LEG_INFO_UNDEFINED
N/A
Undefined

P_CALL_LEG_INFO_TIMES
N/A
Relevant call times

P_CALL_LEG_INFO_RELEASE_CAUSE
See Table ???
Call leg release cause

P_CALL_LEG_INFO_ADDRESS
See Table ???
Call leg connected address.

P_CALL_LEG_INFO_APPINFO
N/A
Call leg application related information

NOTE: Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

6.12 TpCallLegConnectionProperties
Table 6‑12: TpCallLegConnectiomProperties Table mapping

From: TpCallLegConnectionProperties

To: SIP
Remark

P_CALLLEG_ATTACH_IMPLICITLY
N/A
SIP ACK message directly sent.
It means that the callLeg should be implicitly attached to the call. In this case, the mapping to SIP is done naturally since in SIP, the natural behavior is to start media session with others parties in the call once the signaling is established (INVITE, 200 OK, ACK)

P_CALLLEG_ATTACH_EXPLICITLY
INVITE SDP on hold ??
It means that the callLeg should be explicitly attached to the call. In this case, the mapping to SIP is done do as to start media session with the party on hold once the signaling is established(INVITE with SDP “on hold”, 200 OK, ACK)
[which call leg to be addressed here –callee?
- details for hold to be added].

Attach method need to be called by the application to establish the media connection. See description for attachMedia().

6.13 TpCallMonitorMode

Table 6-13: TpCallMonitorMode Table mapping

From TpCallMonitorMode
To SIP
Remarks

P_CALL_MONITOR_MODE_INTERRUPT
N/A
Processing interrupted
SIP Server set to observe for SIP event as requested and if encountered interrupt SIP processing, nitify the application and await a request to resume processing.

P_CALL_MONITOR_MODE_NOTIFY
N/A
Processing NotifyAnd
Continue
SIP server set to observe for SIP event as requested and if encountered notify the application.; SIP Procesing continues.

P_CALL_MONITOR_MODE_DO_NOT_MONITOR
N/A
Processing transparent
SIP server set not to observe for SIP event –no application interest.
It implies there is no initial filtering for the associated indicated event

6.14 TpCallNotificationReportScope
Table 6-14: TpCallNotificationReportScope Table mapping

To: TpCallNotificationReportScope

From SIP
Remark

DestinationAddress (TpAddressRange)

If transaction issued from caller (e.g. INVITE)
OR
OriginatingAddress, if transactin from callee (e.g Re-INVITE, BYE)-
 Note1
SIP Request-URI header field
URL SIP To header field
URL

Depends on applied filtering criteria

I don’t think it depends on the filter (if you speak about the 3GPP filter, as filters are specific to the originating or terminating party already). It is more related to the perception of the call to be incoming or outgoing. This can be achieved by different ports being used to receive the ISC/SIP messages.

OriginatingAddress
(TpAddressRange)

If transaction from caller (e.g. INVITE)
OR
DestinationAddress , if transaction issued from caller (e.g. Re-INVITE, BYE)
Note1
SIP From header field URL
Depends on applied filtering criteria

NotificationCallType (TpNotificationCallType)

 [Editor note:
Data type TpNotificationCallType does not exists !!!
Parameter should be removed !]
N/A
Indicates if the notification was reported

Note1: In SIP, destination (To: header) and origination address (From: header) are relative to the transaction and not to the call as in OSA.

6.15 TpCallNotifiationRequest

Table 6‑15: TpCallNotificationRequest Table mapping

From: TpCallLegInfoType

To: SIP
Remark

CallNotificationScope
(TpCallNotificationScope):

 DestinationAddress
(TpAddressRange)
SIP URL
(see NOTE)
Parameter specific to filtering criteria (event triggering) of destination address information. Address plan that can only be accepted is URL (SIP URL).

 OriginatingAddress
(TpAddressRange)
SIP URL
(see NOTE)
Parameter specific to filtering criteria (event triggering) of originating address information (like e.g. in From header Field in SIP messaging). Address plan that can only be accepted is URL (SIP URL).

CallEventsRequested (set):
(TpCallEventsRequest (set)

Note: A set of TpCallEventRequest
See Table 6-8:
TpCallEventRequest
mapping from SIP

NOTE: The SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be notified if encountered to the application.

6.16 TpCallTreatmentType

Table 6-16: TpCallTreatmentType Mapping
TpCallTreatmentType

To SIP
Remark

P_CALL_TREATMENT_DEFAULT
undefined
Depends on any applied default

P_CALL_TREATMENT_RELEASE
SIP: 503 Service Unavailable
Service Unavailable response sent to deny invite request for a new session .Already established call sessions are not affected

P_CALL_TREATMENT_SIAR
SIP: 503 Service Unavailable
or
BYE
BYE only after user interaction if it implies and established session (e.g. to MRF) Service Unavailable response sent to deny invite request for a new session.

Note: Already established call sessions should not be affected by the overload call treatment.

6.17 TpRelaseCause, mapping to SIP response
Table 6‑17: TpReleaseCause Table mapping to SIP

From: TpReleaseCause

To: SIP
Remark

P_UNDEFINED
N/A
See Note 3

P_USER_NOT_AVAILBLE
480 Temporarily Unavailable
The callee is currently unavailable.
Normal call clearing, unspecified reason.

Note: No support for inclusion of additional information in the Retry-After header.
This header in the response may indicate a better time to call.

P_BUSY
486 Busy Here
The callee is currently not willing or able to take additional calls (user busy).

Note: No support for include additional information in the Retry-After header.
This header in the response may indicate a better time to call.

P_NO_ANSWER
603 Decline
The callee explicitly does not wish to or cannot participate in the call.

Note: No support for include additional information in the Retry-After header.
This header in the response may indicate a better time to call.

P_NOT_REACHABLE
480 Temporarily Unavailable

The callee is currently unavailable.
The user is absent or not reachable e.g. MS turned off or out of coverage area.

P_ROUTING_FAILURE
404 Not Found
The user does not exist at the domain specified in the Request-URI. This status is also returned if the domain in the Request-URI does not match any of the domains handled by the recipient of the request.

P_PREMATURE_DISCONNECT
N/A
See Note 3

P_DISCONNECTED
N/A

See Note2.
See Note 3
Normal call clearing.

Recommended value when an established session is to be released.

P_CALL_RESTRICTED
403 Forbidden

P_UNAVAILABLE_RESOURCE
503 Service Unavailable

P_GENERAL_FAILURE
500 Server Internal Error

P_TIMER_EXPIRY
408 Request Timeout

Note 1 : SIP CANCEL will be sent if any pending invitations (INVITE) to be cancelled in response to the release() method independent of TpReleaseCause value

Note 2: SIP BYE will be sent if an established session (SIP leg) is to be released in response to the release() method independent of TpReleaseCause value. However, the recommended value is in this case P_DISCONNECTED.

Note 3: Where no mapping is defined, a default mapping to 480 Temporarily Unavailable is recommended.

6.18 TpRelaseCause, mapping from SIP
Table 6‑18: TpReleaseCause Table mapping

From: TpReleaseCause

To: SIP
Remark

P_UNDEFINED
N/A
No mapping

P_USER_NOT_AVAILBLE
410 Gone

604 Does Not Exist Anywhere
The callee is unavailable.
e.g. the address of callee might have been changed.

P_BUSY
486 Busy Here

600 Busy EveryWhere

P_NO_ANSWER

603 Decline

The callee explicitly does not wish to or cannot participate in the call.

P_NOT_REACHABLE
480 Temporarily Unavailable

P_ROUTING_FAILURE
404 Not Found

400 Bad Request,
420 Bad Extension,
482 Loop Detected,
483 Too Many Hops

484 Address Incomplete

485 Ambiguous,

P_PREMATURE_DISCONNECT
SIP CANCEL
Pending invitation (INVITE) abandoned by caller before answer (i.e. before the request has been acknowledged (ACK)).

P_DISCONNECTED
SIP BYE
Normal call clearing

P_CALL_RESTRICTED
403 Forbidden

P_UNAVAILABLE_RESOURCE
503 Service Unavailable

P_GENERAL_FAILURE
500 Server Internal Error,
501 Not Implemented,
502 Bad Gateway,
505 Version Not Supported

P_TIMER_EXPIRY
408 Request Timeout,
504 Gateway Timeout

6.19 TpAoCInfo
Table 6‑19: TpAoCInfo Table mapping

From: TpAoCOrder

To: SIP
Remark

ChargeOrder (TpAoCOrder)
See Table 6-20:
TpAocOrder

Currency (TpString)
??
Currency unit according to ISO-4217:1995

Note: Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal

6.20 TpAoCOrder
Table 6‑20: TpAoCOrder Table mapping

From: TpAoCOrder

To: SIP
Remark

TpAoCOrderCategory:
-

P_CHARGE_ADVICE_INFO (TpChargeAdviceInfo)
??

P_CHARGE_PER_TIME
(TpChargePerTime)
??

P_CHARGE_NETWORK
(TpString)
??

Note: Defines the Data Elements that specify the charge plan for the call.

A Annex A (informative):Introduction to API Mapping for OSA MPCCS
A.1 OSA Service Provision for MPCCS in IMS

The figure below depicts an overall view of how MPCC services can be provided.

[image: image58.wmf]S

-

CSCF

S

-

CSCF

MRF

MRF

OSA

Application

Server

OSA

Application

Server

Cx

SIP

ISC

Mr

Sr

OSA

MPCCS

API

Sh

SIP

server

SCF

User

OSA SCS

HSS

Scope of

OSA

–

MPCCS

API mapping

[image: image1.png]

Figure A-1: Functional architecture for support of MPCCS Service Provision for IP Multimedia subsystem

The OSA Service Capability Server (OSA SCS) is the “controlling entity” and the Serving-Call Session Control Function (S-CSCF) is the “controlled entity” .The MRF is the Media Resource Function. (MRF).

 ISC: This reference point is the Internal Service Control Interface, used between the S- CSCF and the OSA SCS.
The ISC interface is based on Session Initiation Protocol (SIP), which is specified in 3GPP TS 24.229[12].
Cx: The Cx reference point supports information transfer between CSCF and HSS.
The protocol used between the S-CSCF and HSS (Cx Interface) is specified in 3GPP TS 29.228[8].

Sh: The Sh reference point supports information transfer between OSA SCS and HSS.
The protocol used between the OSA SCS and HSS (Sh Interface) is ???
Mr: This reference point allows interaction between an S-CSCF and an MRF (i.e. the Media Resource Function controller, MRFC). The protocol used for the Mr reference point is based on SIP, which is specified in 3GPP TS 24.229[12].
Sr : The details and functionality, if any, of the Sr interface are outside the scope of this document.

[Editor notes:
- The Sr interface seems not needed for the MPCCS part
- The protocol used between the OSA SCS and HSS (Sh Interface) is still to be defined.]

Filtering is done in the S-CSCF on SIP requests messages only. It can e.g. be based upon:

· The method of the SIP request.

· Whether the request was received in the originating or terminating case.

· A particular media type included in the SDP of a request.

· The presence/content of a particular SIP header.

Filter Criteria (FC) is the information the S-CSCF receives from the HSS or the OSA SCS (AS) that defines when in the call process a particular application should be notified in order to be invoked. They select the subset of SIP requests received by the S-CSCF that should be sent/proxied to a particular application.
 When the S-CSCF receives a SIP request (i.e. initial INVITE) for a dialog, it evaluates the initial filter criteria. The SIP message received by the S-CSCF will be passed to each application server (e.g. OSA SCS, SIP AS, etc.) as specified in the initial filter information received from the HSS for the user. The S-CSCF first checks if this is an originating request or a terminating request and then whether this request matches the initial filter criteria. Only for those met initial criteria at the S-CSCF, their associated application servers will be contacted by the S-CSCF. If more than one application servers are needed to contact, the S-CSCF will do it in sequence (cascaded chain principle). The output of the first AS will be the input of the second AS. This is true only when the output of the first AS matches the initial filter criteria for the second AS. If no initial filter criteria are met, the S-CSCF will proxy SIP messages to the next SIP server. For the end-to-end call between caller and callee a cascaded call chain of “SIP servers” (like OSA SCSs, SIP AS..) will be established whenever OSA applications are invoked on the call.
[Editor note: It may be worth noticing that this implied cascaded call/session chain as described above implies that at least the same level of “multiple point of control as defined for ETSI Core INAP IN CS3 can be accomplished here,
 i,e, a foundation for support of multiple points of control for Rel 5 is here given].
If the SIP request matches the filter criteria, the S-CSCF proxies the SIP request to the corresponding application server. The application server concerned in this document is represented by the OSA SCS.

 It is here anticipated that the user has registered with the network. Initial Filter Criteria (iFC) are filter criteria that are stored in the HSS as part of the user profile and are downloaded together with addresses of the assigned application servers (e,g, OSA SCS addresses) via the Cx interface to the S-CSCF upon user registration. They represent a provisioned subscription of a user to an application. Application server specific data is also exchanged between HSS and the OSA SCS during registration via Sh interface.
After downloading the User Profile from the HSS, the S-CSCF activates for the indicated OSA SCS the filtering on SIP requests messages. Initial Filter Criteria are valid throughout the registration lifetime of a user or until the User Profile is changed.

- Constrains:

Initial Filtering is in S-CSCF on SIP request messages only !.
In case an application is to be invoked on a final SIP response (e.g. 486 Busy Here) the S-CSCF will filter on the initial INVITE request message in order to get the OSA SCS SIP server into the cascaded call chain. The OSA SCS shall however, in this case not invoke the application until a final response is received. The filtering for invocation of an application may be based on basic or complex triggers.

A.2 MPCCS

A.2.1 Introduction

The MPCCS allows an application to establish multi-party calls where several legs can simultaneously be connected.. In fact, the MPCCS as defined, allows application to create a leg and to route it. In SIP, to establish a session it requires at least two SIP endpoints (UAs).
MPCCS which beside 2-party call encompasses application initiated 1 party and multi-party calls can be mapped to SIP implying the OSA SCS behaves as a SIP application server on the ISC interface. concepts.

A.2.2 SIP Server Roles in OSA SCS

A.2.2.1 Introduction

The OSA SCS behaves as a SIP server toward the ISC interface.
The SIP application server hereby may act in different roles or modes The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-transaction basis.
For example, the user agent initiating a call acts as a UAC when sending the initial INVITE request and as a UAS when receiving a BYE request from the callee.
Similarly, the same software can act as a proxy server for one request and as a redirect server for the next request.

However, besides these modes of operation for more advanced service application demands also the Back-to-Back User Agent (B2BUA) and 3rd Party controller modes have been defined.
The OSA SCS possible different modes of SIP server operation is described in the following.
A.2.2.2 OSA SCS acting as a SIP Proxy server

[image: image65.wmf]

OSA SCS

SIP UA

-

Term

inating

Proxy

S

-

CSCF

1. INVITE

OR

2. INVITE

Service logic

3. 200 OK

4. 200 OK

OSA SCS

SIP UA

-

Originating

Proxy

S

-

CSCF

2. INVITE

1. INVITE

4. 200 OK

3. 200 OK

SIP

dialog

#1

From: X

To: Y

Call

-

ID: Z

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP dialog leg #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

UA Mode:

Terminating

Endpoint

UA M

ode:

Originating

Endpoint

SCF

OSA AS

SCF

OSA API

OSA API

User

User

Service logic

OSA AS

In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS, which then acts as a SIP proxy server proxying the Request back to the S-CSCF which then proxies it towards the destination.

Figure A-2: Example OSA SCS Proxy Server Mode operation
- Scope:
Service applications that need to manipulate data conveyed in the SIP signalling between a UAC and a UAS, like changing destination address (call forwarding services), but do not demand to intervene on the call as such.

During the proxy operation the OSA SCS may add, remove or modify the header contents contained in the SIP request according to the Proxy rules specified in [14].
Applicable for 2-party calls. However, forking may occur resulting in more SIP dialogues being established between the Caller) UAC and 2 or more callees (UASs).

- Constrains:
The control and visibility of forking in the application is not currently covered by the OSA API MPCCS.

A.2.2.3 OSA SCS acting as Redirect server

In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a Redirect Server as specified in [14].

[image: image66.wmf]

 OSA S

CS

Sip server: redirect mode

proxy

1. INVITE

2. INVITE

3. 3o1/

 302

5. INVITE from user to

 new destination

4. 301/302

Service logic

SIP

dialog

#1

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

SCF

 OSA AS

 S

-

CSCF

 Redirect Mode:

OSA API

User

Figure A-3: Example OSA SCS Redirect Server Mode operation

- Scope:
Service applications that need to request a redirection of a call by the network to a new destination, e.g. due to number changed (callee moved). Hereby the application is to provide the new contact address(es) and leave the call.

During the Redirect operation the OSA SCS may terminate the dialog by requesting a call redirection given a list of 1 or more possible new addresses to contact contained in the redirection response request according to the Redirect rules specified in [14].

- Constrains:
NOTE: The control and possibility of requesting a redirection (3xx response) is not currently supported by the OSA MPCCS API.

A.2.2.4 OSA SCS acting as UA

· SIP User Agent Terminating (UAt)
In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a terminating UA (UAS) as specified in [14].

· [image: image67.wmf]

 SCF

 SIP server: Proxy Mode

OSA

-

API

proxy

proxy

S

-

CSCF

1. INVITE

2. INVITE

3. INVITE

4. INVITE

 5. 200 OK

 6. 200 OK

 7. 200 OK

 8. 200 OK

SIP dialog #1

SIP dialog#1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP

dialog

#1

Fro

m: X

To: Y

Call

-

ID: Z

From: X

To:

Y

Call

-

ID: Z

 Proxy Mode

Service logic

OSA

-

AS

OSA SCS

User

User

SIP User Agent Originating (UAo)
In this mode of operation the OSA SCS acts as an originating UA (UAC) as specified in [14] and generates a SIP Request which it sends to the S-CSCF which then proxies it towards the destination.

Figure A-4: Example OSA SCS User Agent Server Mode operation
- Constrains:
NOTE: Any direct control of media resources by the OSA SCS when acting as UA is outside the scope of this specification.

A.2.2.5 OSA SCS acting as a B2BUA

In this case the controller, i.e. the OSA SCS, takes over the ownership of the call setup by a different party by acting as a Back-to-Back User Agent (B2BUA). The OSA SCS looks deceptively like a proxy, but it is not. The OSA SCS acts as a UAS for the INVITE received from caller (UAC), and then as a UAC when it initiates a call to the callee (UAS).

[image: image68.wmf]

 OSA SCS

SIP UA

-

Terminating

SIP UA

-

Originating

Proxy

S

-

CSCF

2. BYE

Proxy

Service logic

1. BYE

3. 200 OK

4. 200 OK

SIP UA

-

Originating

Proxy

10. INVITE

11. 200 OK

5. INVITE

9. INVITE

12. 200 OK

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #3

SIP dialog #2

SIP

dialog

#2

SIP

dialog

#3

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID: R

From: P

To: B

Call

-

ID: W

From: P

To: B

Call

-

ID: W

From: P

To:

Q

Call

-

ID: R

B2BUA

 end

-

to

-

end

session

 split into

 two SIP

 dialogues

-

 terminating and

 originating.

UA client

-

 originating 3

rd

 party

SIP dialog

SIP

dialog

#1

SCF

 OSA AS

 3rd Party Controler Mode:

OSA API

User

Use

r

User

In this case the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then generates a new SIP Request for a different SIP dialog which it sends to the S-CSCF which then proxies it towards the destination.
In this mode the OSA SCS behaves as a B2BUA for the multiple SIP dialogs as specified in [14].

Figure A-5: Example OSA SCS B2BUA Server Mode operation
- Usage:
Service applications that need advanced signalling control, i.e. the capability to intervene on a call.
Some examples may be applications that needs to release a call (e.g. prepaid service)or a single user, or add or replace a user (follow-on call), or needs to generate messages during the call or act on mid-call events from a call party (e.g. re-INVITE).
Example: Pre-Paid card service runs out of money: the application may generate some message to the user and/or release the user.
- Constrains:
The mode B2BUA is to be determined based on SIP requests messages only as it will not be possible e.g. to change from Proxy mode to B2BUA mode – and vice versa. Where it cannot be known in advance if the application demands Proxy mode or B2BUA mode, the default should for the OSA SCS be to act as a B2BUA.

An application that is to be invoked on a response or after session established , e.g. mid-call event may implicit demand the OSA SCS to operate in B2BUA mode- despite that the application may not be activated (e.g. no mid-call event encountered from the user).

NOTE: Notice that the end-to-end call (SIP dialogue) between caller and callee will become divided t into a multitude of different “end-to-end” calls (SIP dialogues) , where the B2BUA concept is applied.

A.2.2.6 OSA SCS acting as a 3rd Party Controller

[image: image69.wmf]

 OSA SCS

SIP UA

-

Terminating

SIP UA

-

Origfinating

Proxy

Proxy

S

-

CSCF

2. BYE

Service logic

1. BYE

3. 200 OK

4. 200 OK

5. INVITE

6. INVITE

7. 200

OK

8. 200 OK

SIP dialog #1

SIP dialog #2

SIP

leg

#2

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID:

 R

From: P

To: Q

Call

-

ID: R

B2BUA Mode:

OSA SIP server

-

 end

-

to

-

end

session

 split into

 two SIP

 dialogues by

-

 terminating and

 originating SIP

 User

 Agents.

SIP

dialog

#1

SCF

 OSA AS

OSA API

User

User

In this mode the OSA SCS generates a new SIP Request for a different SIP leg which it sends to the S-CSCF which then proxies it towards the destination. The OSA SCS may generate one or more different SIP dialogues in this way. This may be combined with the OSA SCS behaviour as a B2BUA for the multiple SIP legs as specified in RFC2543bis, i.e. when more than 2 parties are involved in the call.

Figure A-6: Example OSA SCS 3rd Party Controller Server Mode operation
- Usage:
Application initiated one party , two-party and multi-party calls.
It may also be associated with B2BUA mode of operation, e.g. where the application demands to invite a 3rd part into a 2-party.

- Constrains:
The control of media resources for application initiated calls is outside the scope of this specification.
A.2.3 SIP Server Role Mode Transitions

Figure 5 provides an overview of the states and transitions of the FSM for Call Control Signalling Terminations. These states and transitions are more precisely defined in the following clauses.

[image: image60.wmf]

UA

3

rd

 PARTY

Controller

 B2BUA

E3

 E2

E4

E5

E7

E6

 E1

PROXY

E9

REDIRECT

E8

Figure A-7: Operation Mode for the OSA SCS

The server mode diagram above for the OSA SCS shows the possible mode transitions.
It contains the following transitions (events):

E1
Incoming Invite received from the network (caller) or
request received from the application to initiate a call “out of the blue”. detected

E2
Application request to act as B2BUA on call received from the network

E3
Application request to act as Redirect server on call received from the network

E4
Application request to act as Proxy server on call received from the network

E5
Application request to act as single UA on call received from the network

E6
Application request to act as 3rd Party controller on call received from the network

E7
Application request to act as B2BUA on call received from the network

E8
Application request to act as 3rd Party controller on call initiated from application

E7
Application request to act as single UA.

B Annex B (informative): SDP in SIP at application controlled calls for OSA MPCCS API

B.1 Introduction

A mechanism is needed that allows a controller like OSA SCS to create, modify, and terminate calls with other entities.. Third party call control refers to the ability of one entity, in this case the OSA SCS to create a call in which communications are actually between other parties. A SIP mechanism for accomplishing third party call control that does not require any extensions or changes to SIP is presented. It is merely an application of the tools enabled through the SIP specification RFC 2543bis [14]. It enables a controller like the OSA SCS to create calls/sessions with any entity that contains a normal SIP User Agent.
B.2 OSA SCS and Application based Call and Media Control
Third party call control is a set of good design patterns for how to implement a service that needs to be in control of a session. The B2BUA mechanism is just one pattern that the 3rd party call controller can use to get control of a session. A B2BUA is a mechanism that allows a controller to take over the control of a session initiated by another party. Once in control it can control the session by generating requests and responses on the different call-legs. OSA SCS can of course also at all times initiate a session or a new transaction within a given SIP dialogue hereby acting as a User Agent or 3rd party call controller.
The basic principle behind the third party mechanism applied for OSA MPCCS application initiated calls is simple.
The OSA SCS acting as a controller on request from the OSA application first calls one of the users, A, and presents the INVITE without any media. When this call is complete, the OSA SCS has the SDP needed to communicate with user A. The OSA SCS can then, if so requested by the OSA application, use SDP A to establishe a call to user B. When this call is completed, the OSA SCS has the SDP needed to communicate with user B. This information is then passed to user A. The result is that there is on request from the application established an OSA call leg (SIP dialogue) between the OSA SCS and user A, and a call leg (SIP dialogue) between the OSA SCS and user B, but media between user A and user B.
The aim here is to keep the OSA application based session control for MPCCS as simple as possible, but also generally useable, and avoid SDP awareness in the OSA SCS acting as the controller..
In the following some example scenarios for illustrating a possible handling of SDP in SIP at OSA MPCCS application controlled call sessions are given.

Note1: A user may herein be presented by any entity that contains a normal SIP User Agent. For example a user could be represented by an ordinary call party (e.g. SIP enabled phone/PC), a gateway or a network entity like e.g. a Conference Server or MRF.
Note2: Where an OSA application demands to control (e.g. restrict call to a given media type (e.g. voice),) which media types should be allowed on a call, it can also use the Multimedia Call Control Service (MMCCS), which enhances the MPCCS with multimedia control capabilities (allows e.g. the application to bar certain media type(s)).
B.3 Example OSA SCS Application initiated One-Party Call

An example of an application initiated One-Party Call could be a booked “wake-up call” or “reminder call”, i.e. a call that is to be setup at a predefined time and date from the network initiated by an OSA application using the MPCCS.

The recommended flow is as follows: The application requests a call to be setup to user A.
The OSA SCS sends an INVITE to the user A, without any SDP (it means that the OSA SCS does not need to assume anything about the media of the devices). User A responds with its SDP a1, in a 200 OK, which is immediately ACK’ed with an on-hold SDP generated by the OSA SCS.

A flow example for a One Party call setup from application is illustrated in the figure below:

[image: image61.wmf]

4a. routeReq (user A)

6b. SIP:ACK

(SDP held)

5a.SIP: 200 OK

(SDP a1)

OSA AS

S

-

CSCF

4b. ISC: INVITE

(no SDP)

4c. SIP: INVITE

(no SDP)

User A

User B

 OSA SCS

S

C

F

UAo1

SIP

UAo

 6c. eventReportRes (user A)

1. createCall

2. createCallLeg

3. eventReportReq

5b.. ISC: 200 OK

 (SDP a1)

6a. ISC: ACK

 (

SDP held)

User Agent mode

Figure B-1 Example Initiating OSA SCS Flow for One Party call Setup

A description for the flow is given below:

1:
This message requests the OSA SCS to create a call object (an object implementing the the IpMultiPartyCall interface). Assuming that the criteria for creating a call object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met it is created.

2:
This message instructs the OSA SCS to create a call leg (the object implementing the IpMultiPartyCall interface) for user A.

3:
This message requests the call leg for user A to inform the application when the call leg answers the call.

4a:
The created OSA terminating call leg is requested to route the call/session to the specified destination for user A.
4b: The OSA SCS acting as a logical UAo1 generates an INVITE request message with no SDP on the ISC interface to S-CSCF providing the destination address of user A.
The OSA SCS SIP server is in SIP UA Originating Endpoint mode.
4c: The S-CSCF proxies the INVITE request toward user A.
5a: User A answers the call and responds with its SDP (SIP 200 OK including SDP a1)
Note: It is here only shown that the call is answered by user A, e.g. user A accepting the incoming call and sending a 180(Ringing) back to the UAo1 on OSA SCS is omitted for simplicity reasons !..
5b: The S-CSCF proxies the SIP 200 OK including SDP a1 to the originating UAo1 in the OSA SCS via the ISC interface.

6a. The OSA SCS being the controller immediately generates an ACK with an on-hold SDP being send on the ISC interface to the S-CSCF. It hereby takes SDP a1, and generates another SDP which has the same media composition, but is on hold.
6b. The S-CSCF proxies the ACK with SDP on hold toward user A.
6c. The leg object (implementing user A's IpCallLeg interface) in OSA SCS passes the result of the call being answered back to the application in OSA AS.

General Remarks:

The OSA SCS operation in User Agent mode provides a central point for signalling control, as the application hereby is offered complete control over the call.
B.4 Example OSA SCS Application initiated Two-Party Call

An example of an application initiated Two-Party Call could be a Click-to dial service, that allows a user to click on a web page when wished to speak to a customer service representative. The web-server then via some “stimuli” causes the OSA application to be invoked in order to establish a call between the user and a customer service representative. The call being setup can be between different entities like between two phones, a phone and an IP host, or two IP hosts.

The recommended flow is as follows: First a call object is created. Then user A's call leg is created before events are requested on it for answer and then call setup to user A is initiated as described in the application initiated One-Party call example. On answer from user A, the call is being set up to user B. On answer from Party B the media communication between user A and user B is established..

A flow example for a Two Party call setup from the OSA application is illustrated in the figure below:

[image: image62.wmf]

4a. routeReq

(user A)

6b. SIP:ACK

(SDP held)

13c. ISC: ACK

(SDP a2’)

9c.SIP: INVITE

(no SDP)

5a..SIP: 200 OK

(SDP a1)

OSA AS

S

-

CSCF

4b. ISC: INVITE

(no SDP)

 4c. SIP: INVITE

(no SDP

)

User A

User B

 OSA SCS

S

C

F

UAo2

User Agent mode

controller mode

UAo1

SIP

UAo

SIP

UAo

11a. ISC: INVITE

(SDP b1’)

12a. SIP:

200 OK

(SDP a2)

 13a. ISC: ACK

 6c. eventReportRes (user A)

1.createCall

2. createCallLeg

3. eventReportReq

 7. createCallLeg

 8. eventReportReq

 9a. routeReq (user B)

5b. ISC: 200 OK

(SDP a1)

6a. ISC: ACK

 (SDP held)

9b. ISC: INVITE

(no SDP)

10a. SIP: 200 OK

(SDP b1)

10b: ISC: 200 OK

(SDP b1)

 13e. eventReportRes (user B)

11b.

 SIP: INVITE

(SDP b1’)

12b. ISC: 200 OK

(SDP a2)

13b. SIP: ACK

13d. SIP: ACK

(SDP a2’)

14. RTP

 3rd party controller mode

Figure B-2. Example application Initiating OSA SCS Flow for Two Party call Setup
A description for the flow is given below:

1: through 6. Call setup to user A. The flow is exactly the same as described in the previous example for Application initiated One-Party Call for user A.

7: This message instructs the OSA SCS (the object implementing the IpMultiPartyCall interface) to create a call leg for user B.

8:
This message requests the call leg for user B to inform the application when the call leg answers the call.

9a:
The created OSA terminating call leg for user B is requested to route the call/session to the specified destination for user B.

9b: The OSA SCS acting as a logical UAo2 generates an INVITE message with no SDP on the ISC interface to S-CSCF providing the destination address of user B.
The OSA SCS SIP server is now in SIP 3rd Party Controller mode (encompassing two UA Originating Endpoints, one associated with the call leg for User A and another with the call leg for user B).

9c: The S-CSCF proxies the INVITE request toward user B.

10a: User B answers the call and responds with its SDP (SIP 200 OK including SDP b1)
Note: It is here for simplicity assumed that the call is answered directly by user B, i.e. user B accepting the incoming call and sending a 180(Ringing) back to the UAo2 on OSA SCS is not shown.

10b: The S-CSCF proxies the SIP 200 OK including SDP b1 to the originating UAo2 in the OSA SCS via the ISC interface.

11a. The OSA SCS being the controller uses the SDP b1 in the 200 OK to generate an INVITE (re-INVITE) to the first user A. The re-INVITE is based on SDP b1, but may need to be reorganised to match up media lines with those previously applied for “SDP on hold”, therefore denoted as SDP b1’ when SDP is here send on the ISC interface to the S-CSCF for user A.
11b. The S-CSCF proxies the INVITE (re-INVITE with SDP b1’) toward user A.
12a. User A responds in a 200 OK with its SDP (SIP 200 OK including SDP a2)
Note: SDP a2 may be different from SDP a1 reported initially from user A.

12b: The S-CSCF proxies the SIP 200 OK including SDP a2 to the originating UAo1 in the OSA SCS via the ISC interface.

13a. The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface to the S-CSCF.

13b. The S-CSCF proxies the ACK toward user A.

13c. The SDP a2 received in 200 OK from user A is to be passed immediately to user B. It may also need reorganization to match up media lines, i.e. therefore here denoted a2’. The OSA SCS being the controller generate an ACK with SDP a2’ for user B being send on the ISC interface to the S-CSCF.
13d. The S-CSCF proxies the ACK with SDP a2’ toward user B.
13e. The leg object (implementing user B’s IpCallLeg interface) for user B in OSA SCS passes the result of the call being answered back to the application.
14. The media communication between user A and user B has been established based on exchanged SDP information.

General Remarks:

This first part of the flow is exactly as the one described previously for a One-Party Call.

The call flow is somewhat complicated as the OSA SCS acting as controller needs to perform some SDP manipulation as the call is requested to be setup to B. The OSA SCS needs to perform some SDP manipulations. Specifically, it must take some SDP, and generate another SDPwhich has the same media composition, but is on hold. Secondly, it may need to reorder an SDP x, so that its media lines match up with those in some other SDP y.

However, still the OSA SCS does not need to assume anything about the supported media of the terminals. There should be no problem with timers as it must be expected that a re-INVITE will be answered quickly. As we make a re-INVITE we cannot assume anything about the SDP that will be send back in the 200 OK, that is also why no SDP is used in the initiating INVITE for user B.
Once the two party call has been established, the OSA SCS operation in 3rd party controller mode is still a central point for signalling control, it now has complete control over the call. It can e.g. on request from the application disconnect one user, disconnect all users (i.e. the call), reconnect one user to another user (e.g. a follow-on call) or connect a user to another user being e.g. a media server for an announcement or conference call.

NOTE: One issue worth mentioning is the case of a follow on call where the leg for the new callee is ringing (180) or is rejected e.g. busy (e.g. 486 “Busy Here”) and the application wants this information to be conveyed to the caller. Since the OSA application initiated the call setup this information cannot be propagated by the OSA SCS toward the caller. However, one way to inform the caller could be by connection of the user (caller) to a media server for e.g. an announcement or tone sending

Once the calls are established, both user A and user B believe they are in a single point-to-point call with some control system (assuming the OSA SCS has identified itself as the controller in the From field of the INVITE). However, they are exchanging media directly with each other, rather than with the controller, here the OSA SCS. The result is that the OSA application has set up a call between user A and user B.
B.5 Example OSA SCS control of User initiated Two-Party Call

An example of an application controlled user initiated Two-Party Call could be a Call Forwarding service
 The call being setup can be between different entities like between two phones, a phone and an IP host, or two IP hosts.

An example flow for a user initiated Two Party call setup controlled from the OSA application is depicted in the figure below:

[image: image63.wmf]

4a. routeReq (user B)

5d. SIP: 200 OK

(SDP b1)

5a.SIP: 200 OK

(SDP b1)

OSA AS

S

-

CSCF

4b. ISC: INVITE

(SDP a1)

 4c. SIP: INVITE

 (SDP a1)

User A

User B

 OSA SCS

S

C

F

UAo1

B2BUA mode

UAt1

SIP

UAt

SIP

UAo

 6c. ISC: ACK

 6e. eventReportRes (user B)

1c. .repor

tNotification

2. createCallLeg

3. eventReportReq

5b. ISC: 200 OK

(SDP b1)

5c. ISC: 200 OK

(SDP b1)

6b. ISC: ACK

6a. SIP: ACK

6d. SIP: ACK

7. RTP

 B2BUA mode

1a SIP: INVITE

(SDP a1)

1b ISC: INVITE

(SDP a1)

Figure B-3. Example user Initiating OSA SCS Flow for Two Party call Setup

A description for the flow is given below:

1a: The S-CSCF receives the incoming invitation (INVITE) from user A for a dialog. As the initial filtering identifies the need to invoke an application, the S-CSCF proxies the INVITE to the OSA SCS via the ISC interface.
1b: The OSA SCS receives the incoming INVITE via the ISC interface. As the application to be invoked demands B2BUA mode of operation (i.e. to secure full call/session control), the OSA SCS is acting as a logical User Agent (UAt1) for the incoming INVITE message received from the S-CSCF. The OSA SCS creates an OSA call object (the object implementing the IpMultiPartyCall interface) and a leg object (implementing user A's IpCallLeg interface). The leg object represents the OSA originating call leg for user A, i.e. the leg defined by the OSA MPCCS API on which the dialog invitation is received (i.e. the initial INVITE).
1c: The OSA SCS identifies the application responsible for handling the call .The application is invoked with this message to the OSA AS. The created call object and call leg object are passed to the application.
2: This message instructs the OSA SCS (e.g. the object implementing the IpMultiPartyCall interface) to create a call leg for user B.

3:
This message requests the call leg for user B to inform the application when the call leg answers the call.

4a:
The created terminating call leg for user B is requested to route the call/session to the specified destination for user B.

4b: The OSA SCS acting as a logical User Agent (UAo1) proxies (after some modification) the received INVITE message on the ISC interface to S-CSCF providing the destination address for user B.
The OSA SCS SIP server is now in Back-to-Back User Agent (B2BUA)mode (hereby encompassing a UA Terminating Endpoint associated with the call leg (SIP dialog) for User A and another UA Originating Endpoint associated with the call leg (SIP dialog) for user B).

4c: The S-CSCF proxies the INVITE request toward user B.

5a: User B answers the call and responds with its SDP (SIP 200 OK including SDP b1)
Note: It is here for simplicity assumed that the call is answered directly by user B, i.e. user B accepting the incoming call and sending a 180(Ringing) back to the UAo1 in OSA SCS is not shown.

5b: The S-CSCF proxies the SIP 200 OK including SDP b1 to the originating UAo1 in the OSA SCS via the ISC interface.

5c. The OSA SCS being the controller “proxies” via its terminating UAt1 the SIP 200 OK including SDP b1 on the ISC interface to the S-CSCF.
5d. The S-CSCF proxies the 200 OK (with SDP b1) toward user A.

6a. User A responds with an ACK

6b: The S-CSCF proxies the ACK to the terminating UAt1 in the OSA SCS via the ISC interface.

6c. The OSA SCS “proxies” via its originating UAo1 the ACK on the ISC interface to the S-CSCF.

6d. The S-CSCF proxies the ACK toward user B.
6e. The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call being answered back to the application.

7. The media communication between user A and user B has been established based on exchanged SDP information.

General Remarks:
Once the two party call has been established, the OSA SCS as the controller is exactly in the same state as if it had initiated the call on request from the OSA application as described in a previous flow example.
The OSA SCS operation in B2BUA (or 3rd party controller) mode provides a central point for signalling control, as the application hereby is offered complete control over the call. The application can e.g. disconnect one user, disconnect all users (i.e. the call), reconnect one user to another user (e.g. a follow-on call) or connect a user to a specialised user (e.g. a user representing media server for an announcement or call conference).
 B.6 Example OSA SCS control of User initiated Two-Party Call with announcement

The flow for a two –party call may also be extended so that an announcement could also be played e.g. to user A after the call with user B has been established. The announcement can be accomplished by setting up a SIP call session to a user C (e.g. being an IP host representing a media server (MRF)).
While the announcement is being played, user B's media stream is put on hold. After the announcement has been played
(e.g. determined by a predefined timeout) the application may cancel the announcement and release user C (the media server represented by the MRF) and reestablish the call between user A and user B including the media communication (exchange of SDP information).

An example of an application controlled possible connection of a media server to a user on an already established Two-Party Call is depicted in the flow below:

[image: image64.wmf]

 3a. ISC: ACK

1c.SIP: INVITE

(SDP hold

)

OSA AS

S

-

CSCF

User

A

User

B

 OSA SCS

S

C

F

UAo2

B

B2BU

A mode OR

UAt/o1

A

SIP

UAt

SIP

UAo

 1b. ISC: INVITE

(SDP hold)

2a. SIP:

200 OK (SDP b2)

 1a. detachMediaReq (user B)

 5. createCallLeg (user C)

 2b: ISC: 200 OK

(SDP b2)

 3c. detach

MediaRes (user B)

8b. ISC: 200 OK

(SDP c1)

. RTP

 3rd party controller mode

3b. SIP: ACK

media

server

User

C

UAo3

C

SIP

UAo

9b

. SIP:INVITE

(SDP c1’)

9a: ISC: INVITE

(SDP c1’)

8a. SIP: 200 OK

(SDP c1)

6. eventReportReq

 7a. routeReq (user C)

 4

. on hold

10b. ISC: 200 OK

(SDP a2)

11a. ISC: ACK

11e. eventReportRes

11c. ISC: ACK

(SDP a2’

)

11b. SIP: ACK

11d. SIP: ACK

(SDP a2)’

13a. release (user C)

13b. ISC: BYE

13c. SIP: BYE

16a. attachMediaReq

16b. ISC: INVITE

(no SDP)

14a. SIP: 200 OK

14b. ISC: 200 OK

16c. SIP: INVITE

(no SDP)

17a. SIP: 200 OK

 (SDP b2)

7b. SIP: INVITE

(no SDP)

7c. SIP: INVITE

(no SDP)

17b. ISC: 200 OK

(SDP b2)

18a. ISC: INVITE

(SDP b2’)

18b. SIP: INVITE

(SDP b2’)

19a. SIP: 200 OK

(SDP a3)

19b. ISC: 200 OK

(SDP a 3)

20a. ISC: ACK

20b. SIP: ACK

20c. ISC: ACK

(SDP a3’)

20d. ISC:

(SDP a3’)

20e. attachMediaRes

 21. RTP

12. RTP

15

10a. SIP 200 OK

(SDP a2)

Figure B-4. Example application Initiating call to media server on a Two Party call

A description for the flow is given below:

1a: This message instructs the leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS to detach the call leg from the call, i.e. prevent transmission for user B of any media streams to and from other parties in the call.

1b:
 The OSA SCS acting as a logical User Agent (UAo2) generates an INVITE (re-INVITE) with “SDP on hold” for user B. The re-INVITE is sent on the ISC interface to the S-CSCF.
1c. The S-CSCF proxies the INVITE (re-INVITE with SDP on hold) toward user B.

2a. User B responds in a 200 OK with its SDP (SDP b2)
Note: SDP b2 may be different from SDP b1 reported initially from user B during call establishment.

2b: The S-CSCF proxies the SIP 200 OK (including SDP b2) to the originating UAo2 in the OSA SCS via the ISC interface.

3a. The OSA SCS being the controller immediately generates from UAo2 an ACK for user B being send on the ISC interface to the S-CSCF.

3b. The S-CSCF proxies the ACK toward user B.
3c. The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call leg being detached back to the application.

4. The media communication for user B is on hold.
5: This message instructs the OSA SCS (e.g. the object implementing the IpMultiPartyCall interface) to create a call leg for user C.

6:
This message requests the call leg for user C to inform the application when the call leg answers the call.

7a:
The created OSA terminating call leg for user C is requested to route the call/session to the specified destination for user C.

7b: The OSA SCS acting as a logical UAo3creates an INVITE message (with no SDP) on the ISC interface to S-CSCF providing the destination address of user C.
The OSA SCS SIP server is now in SIP 3rd Party Controller mode (encompassing three UAs).

7c: The S-CSCF proxies the INVITE request toward user C.

8a: User C answers the call and responds with its SDP (SIP 200 OK including SDP c1)
Note: It is here for simplicity assumed that the call is answered directly by user C, i.e. user C accepting the incoming call and sending a 180(Ringing) back to the UAo3 in OSA SCS is not shown.

8b: The S-CSCF proxies the SIP 200 OK including SDP c1 to the originating UAo3 in the OSA SCS via the ISC interface.

9a. The OSA SCS being the controller uses the SDP c1 in the 200 OK to generate an INVITE (re-INVITE) to user A. The re-INVITE is based on SDP c1, but may need to be reorganised to match up media lines with those previously applied, therefore denoted as SDP c1’ when SDP is send on the ISC interface to the S-CSCF for user A.

9b. The S-CSCF proxies the INVITE (re-INVITE with SDP c1’) toward user A.

10a. User A responds in a 200 OK with its SDP (SIP 200 OK including SDP a2)
Note: SDP a2 may be different from SDP a1 reported initially from user A during call establishment.

10b: The S-CSCF proxies the SIP 200 OK(including SDP a2) to the originating/terminating UAo1/UAt1 in the OSA SCS via the ISC interface.

11a. The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface to the S-CSCF.

11b. The S-CSCF proxies the ACK toward user A.

11c. The SDP a2 received in 200 OK from user A is to be passed immediately to user C. It may also need reorganization to match up m lines, i.e. therefore here denoted a2’. The OSA SCS being the controller generate an ACK with SDP a2’ for user C being send on the ISC interface to the S-CSCF (response to 200 OK in 8b).

11d. The S-CSCF proxies the ACK with SDP a2’ toward user C.

11e. The leg object (implementing party C's IpCallLeg interface) for user C in OSA SCS passes the result of the call being answered back to the application.

12. The media communication between user A and user C has been established based on exchanged SDP information.

13a. This message instructs the leg object (implementing party C's IpCallLeg interface) for user C in OSA SCS to release the call leg from the call.

13b. The OSA SCS acting as a logical UAo3 issues the BYE message on the ISC interface to S-CSCF for the release of user C.
14a. User C responds in a 200 OK.

14b: The S-CSCF proxies the SIP 200 OK to the originating UAo3 in the OSA SCS via the ISC interface.
The UAo3 and the call leg object for C is terminated (destroyed).
15: The media communication between user A and user C is terminated.
16a: This message instructs the leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS to attach the call leg for user B to the call to enable any media streams to and from other parties in the call.

16b:
 The OSA SCS acting as a logical User Agent (UAo2) generates an INVITE (re-INVITE with no SDP) for user B. The re-INVITE is sent on the ISC interface to the S-CSCF.

16c. The S-CSCF proxies the INVITE (re-INVITE with no SDP) toward user B.

17a. User B responds in a 200 OK with its SDP (SDP b2)
Note: SDP b2 may be different from SDP b1 reported initially from user B during call establishment.

17b: The S-CSCF proxies the SIP 200 OK (including SDP b2) to the originating UAo2 in the OSA SCS via the ISC interface.

18a.The OSA SCS being the controller uses the SDP b2 in the 200 OK from user B to generate an INVITE (re-INVITE) from UAo1/UAt1 to user A. The re-INVITE is based on SDP b2, but may need to be reorganised to match up media lines with those previously applied , therefore denoted as SDP b2’ when SDP is send on the ISC interface to the S-CSCF for user A.

18b. The S-CSCF proxies the re-INVITE toward user A.
19a. User A responds in a 200 OK with its SDP (SDP a3)
Note: SDP a3 may be different from SDP a1 reported initially from user A during call establishment.

19b: The S-CSCF proxies the SIP 200 OK (including SDP a3) to the UAo1/UAt1 in the OSA SCS via the ISC interface.
20a. The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface to the S-CSCF.

20b. The S-CSCF proxies the ACK toward user A.

20c. The SDP a3 received in 200 OK from user A is to be passed immediately to user B. It may also need reorganization to match up m lines, i.e. therefore here denoted a3’. The OSA SCS being the controller generate an ACK with SDP a3’ for user B being send from UAo2 on the ISC interface to the S-CSCF (response to 200 OK in 17b).

20d. The S-CSCF proxies the ACK with SDP a3’ toward user B.

20e. The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call leg being attached back to the application.

21. The media communication between user A and user B has been re-established based on exchanged SDP information.
General Remarks:

The flow 5- 12 for call setup to C party is exactly the same as for the call setup to B-party.

Flow 1-4 and 16-21: Different implementation options may apply for attach/detach media;
 In the flow example above it is anticipated that the OSA SCS would not re-use (store) any SDP information previously received from the users, but always fetch it when needed, i.e. for detachMediaReq / attachMediaReq always retrieve the actual SDP information from the user (with SDP in 200 OK in response to re-INVITE).
Another option could also be to preference re-INVITE with no SDP and so for attach media provide the SDP within the ACK (instead of including the SDP in the re-INVITE itself as shown in the flow).
B.7 Example OSA SCS Application initiated Multi-Party Call

The capability to control multiple call legs is supported by the MPCCS.The OSA SCS when acting as 3rd. party controller can create and control multiple call-legs (i.e. more than two parties involved in a call).

The 2-party call may as a variation be extended to include 3 parties (or more). After a two party call is established, the application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the A-party by entering a service code (mid-call event) or some other stimuli.

Furthermore conference call may be established by connection each user to a “specialized” user, i.e. a conference device represented by a MRF entity, but addressed like any other user via SIP. Hereby a conference call could be established as a set of two party calls where each call is termination at the same “user”, i.e. the user (MRF) constituting the conference device in the network.

[Editor note: Recommended call flows for such a 3-party call scenarios etc. should be provided in this section to especially describe the handling of SDP in case of multiple parties in a call session. This is for durther study]
C Annex C (informative): OSA call forwarding presentation

C.1 Introduction

The application can request a call forwarding causing a SIP session being forwarded to a new destination.
The applied methods for this (createAndRouteCallLegReq and routeReq) specifies that in case the application wants the call to be presented in the network as a redirection (call forwarding) it should include the Original Destination Address. The same should apply for the presence of field REDIRECTING_ADDRESS in AppInfo.

The question raised is how to present this to callee and caller, i.e. make the call visible in the network as a redirected or forwarded call.

When the application instructs a call redirection containing beside the targetAddress (SIP URL) parameter also the Original Destination Address (field in TpCallAppInfo) and / or Redirecting Address the call is to be presented in the network as being a redirection, e.g. in case of any call forwarding service.
C.2 Call Forwarding presentation in OSA: mapping to SIP

The following mappings to SIP applies:

Toward callee:
Call redirection information is to be given to the callee (forwarded-to- party) so that this callee may respond to the caller appropriately. In these situations, the party receiving a redirected call needs an answer to the questions:

 Q1: From whom was the request diverted?

 Q2: Why was the request diverted?

The SIP Diversion header is used to answer these questions for the party receiving the diverted call.

First the reply to Q1 is given:
Original Destination Address:
 In response to createAndRouteCallLegReq and routeReq if the Original Destination Address is present there shall be a map of the redirecting address to the Diversion header being added to the SIP INVITE.
As the INVITE request may contain information about the first and subsequent redirections
the Original Destination Address, when present, should be used to set the bottom-most Diversion header to present the original called address (if not already inserted here).

Redirecting address:
How to map the presence of field REDIRECTING_ADDRESS in appInfo in response to createAndRouteCallLegReq and routeReq. This field contains the address of the user from which the call is redirected /diverted

Here the top-most Diversion header is to be used to set the Redirecting address.

reply to Q2:
Information regarding why the call request was diverted is given by filling in the "reason" tag into the Diversion header (by the OSA SCS). Here a default value “unknown” is recommended as “diversion-reason”.

Note: Currently there is no MPCCS API support allowing the application to indicate “diversion-reason”.
The diversion-reason should be used to set the Redirecting Reason corresponding to the associated redirecting address
inserted into the SIP Diversion header field.

NOTE: A Diversion header is added when features such as call forwarding change the Request-URI.
The proposal herein is in alignment with how redirection numbers are mapped between ISUP and SIP.

Toward caller:

To make the call visible as a forwarded call in the network the provisional response 181 “Call Is Being Forwarded “should be sent upstream by the SIP proxy (e.g. the OSA SCS gateway). This response is to indicate to the caller that the call is being forwarded to a different (set of) destination(s).

targetAddress :
The targetAddress received in createAndRouteCallLegReq and routeReq should be included in the 181 provisional response as to enable the presentation of the “forwarded to” address to the caller, i.e. the current destination address. redirected address.

Note1: If the call is a call redirection, i.e. the appInfo should include at least one of the fields: ORIGINAL_DESTINATION_ADDRESS and/or REDIRECTING_ADDRESS as to identify the routing request to be a request for a call redirection. In this case the OSA SCS should store the targetAddress as to enable the application to use getCurrentDestinationAddress to read the address where the call was directed to. This address is also to be sent upstream in a 181 provisional response to enable previous invoked applications as well as the caller to be notified.

Note2: A previous invoked application (further upstream) should then be notified of the call being forwarded if it has subscribed to the event CALL_EVENT_REDIRECTED including the redirected address (forwardAddress).

Note3: The redirected address (i.e. the current address of the termination point) is to be stored in the OSA SCS so that the application can request this information anytime with the getCurrentDestinationAddress.

Distribution List

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image70.wmf]

 SCF

 SIP server: Proxy Mode

OSA

-

API

proxy

proxy

S

-

CSCF

1. INVITE

2. INVITE

3. INVITE

4. INVITE

 5. 200 OK

 6. 200 OK

 7. 200 OK

 8. 200 OK

SIP dialog #1

SIP dialog#1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP

dialog

#1

Fro

m: X

To: Y

Call

-

ID: Z

From: X

To:

Y

Call

-

ID: Z

 Proxy Mode

Service logic

OSA

-

AS

OSA SCS

User

User

[image: image71.wmf]

OSA SCS

SIP UA

-

Term

inating

Proxy

S

-

CSCF

1. INVITE

OR

2. INVITE

Service logic

3. 200 OK

4. 200 OK

OSA SCS

SIP UA

-

Originating

Proxy

S

-

CSCF

2. INVITE

1. INVITE

4. 200 OK

3. 200 OK

SIP

dialog

#1

From: X

To: Y

Call

-

ID: Z

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP dialog leg #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

UA Mode:

Terminating

Endpoint

UA M

ode:

Originating

Endpoint

SCF

OSA AS

SCF

OSA API

OSA API

User

User

Service logic

OSA AS

[image: image72.wmf]

 OSA SCS

SIP UA

-

Terminating

SIP UA

-

Originating

Proxy

S

-

CSCF

2. BYE

Proxy

Service logic

1. BYE

3. 200 OK

4. 200 OK

SIP UA

-

Originating

Proxy

10. INVITE

11. 200 OK

5. INVITE

9. INVITE

12. 200 OK

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #3

SIP dialog #2

SIP

dialog

#2

SIP

dialog

#3

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID: R

From: P

To: B

Call

-

ID: W

From: P

To: B

Call

-

ID: W

From: P

To:

Q

Call

-

ID: R

B2BUA

 end

-

to

-

end

session

 split into

 two SIP

 dialogues

-

 terminating and

 originating.

UA client

-

 originating 3

rd

 party

SIP dialog

SIP

dialog

#1

SCF

 OSA AS

 3rd Party Controler Mode:

OSA API

User

Use

r

User

[image: image73.wmf]

 OSA S

CS

Sip server: redirect mode

proxy

1. INVITE

2. INVITE

3. 3o1/

 302

5. INVITE from user to

 new destination

4. 301/302

Service logic

SIP

dialog

#1

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

SCF

 OSA AS

 S

-

CSCF

 Redirect Mode:

OSA API

User

_1071470855.doc

 User

SIP server

SCF

Application

deassignCall

OSA SCS

_1071472800.doc

 User

SIP server

SCF

Application

 ISC: INVITE

 2d. ISC: 3xx, 4xx, 5xx, 6xx

:

 Note: The participant is not yet� conneced.� SIP: Invite has been received � A negative final response � is provided by the application� (e.g.call barring).

1. release

ISC: ACK

OSA SCS

_1071476051.doc

 User

SIP server

SCF

Application

 The SIP server of the OSA SCS detects that call leg (OSA leg) has been released

ISC: BYE etc.

 callLegEnded

OSA SCS

_1071570482.ppt

S-CSCF

HSS

OSA service capability server

(SCS)

OSA application server

Cx

 ISC

 (SIP)

SIP

UE

OSA API

Sh

_1072257324.doc

OSA AS

SIP �UAo

SIP�UAo

S-CSCF

UAo1

4b. ISC: INVITE(no SDP)

UAo2

 User A

 4c. SIP: INVITE (no SDP)

User B

User Agent mode controller mode

4a. routeReq (user A)

9c.SIP: INVITE (no SDP)��

5a..SIP: 200 OK�(SDP a1)

10a. SIP: 200 OK�(SDP b1)

1.createCall

13c. ISC: ACK�(SDP a2’)

6b. SIP:ACK�(SDP held)

 OSA SCS

S�C�F

11a. ISC: INVITE (SDP b1’)

 12a. SIP: 200 OK (SDP a2)

 6c. eventReportRes (user A)

 13a. ISC: ACK

2. createCallLeg

3. eventReportReq

 7. createCallLeg

 8. eventReportReq

 9a. routeReq (user B)

5b. ISC: 200 OK (SDP a1)

6a. ISC: ACK� (SDP held)

9b. ISC: INVITE (no SDP)

10b: ISC: 200 OK (SDP b1)

 13e. eventReportRes (user B)

11b. SIP: INVITE (SDP b1’)

12b. ISC: 200 OK (SDP a2)

13b. SIP: ACK

13d. SIP: ACK (SDP a2’)

14. RTP

 3rd party controller mode

_1072514959.doc

 DB� (e.g HSS)

SIP server

SCF

Application

 SIP Server set to observe for�call events to be notified.�[Editor note:�In the 3GPP IMS architecture the Sh interface is used to store filtering data in HSS �For further study]

�

createNotification

OSA SCS

_1072518432.doc

 User

SIP server

SCF

Application

 1b.ISC: 1xx, 200, 3xx, 4xx, 5xx, 6xx, BYE, Re-INVITE

2b. reportNotification

OSA SCS

_1072523410.doc

SIP server

SCF

Application

OSA SCS

eventReportReq

_1072515041.doc

SIP server

SCF

Application

createCall

OSA SCS

_1072261140.doc

OSA AS

SIP �UAo

SIP�UAt

S-CSCF

UAt1

4b. ISC: INVITE�(SDP a1)

UAo1

User A

 4c. SIP: INVITE (SDP a1)

User B

B2BUA mode

4a. routeReq (user B)

5a.SIP: 200 OK�(SDP b1)

1c. .reportNotification

5d. SIP: 200 OK�(SDP b1)

 OSA SCS

S�C�F

 6e. eventReportRes (user B)

 6c. ISC: ACK

2. createCallLeg

3. eventReportReq

5b. ISC: 200 OK (SDP b1)

5c. ISC: 200 OK�(SDP b1)

6b. ISC: ACK

6a. SIP: ACK

6d. SIP: ACK

7. RTP

 B2BUA mode

1a SIP: INVITE�(SDP a1)

 1b ISC: INVITE�(SDP a1)

_1072266739.doc

OSA AS

SIP �UAo

SIP�UAt

S-CSCF

UAt/o1�A

13b. ISC: BYE

UAo2�B

User A

13a. release (user C)

User B

B2BUA mode OR

13c. SIP: BYE

1c.SIP: INVITE (SDP hold)��

11d. SIP: ACK (SDP a2)’

8a. SIP: 200 OK (SDP c1)

14a. SIP: 200 OK

 3a. ISC: ACK

11b. SIP: ACK

 OSA SCS

S�C�F

 1b. ISC: INVITE (SDP hold)

 2a. SIP: 200 OK (SDP b2)

7c. SIP: INVITE (no SDP)

 4. on hold

16b. ISC: INVITE (no SDP)

16a. attachMediaReq

 1a. detachMediaReq (user B)

 5. createCallLeg (user C)

 7a. routeReq (user C)

11c. ISC: ACK (SDP a2’)

11e. eventReportRes

10b. ISC: 200 OK (SDP a2)

 2b: ISC: 200 OK (SDP b2)

 3c. detachMediaRes (user B)

7b. SIP: INVITE (no SDP)

8b. ISC: 200 OK (SDP c1)

11a. ISC: ACK

6. eventReportReq

. RTP

 3rd party controller mode

14b. ISC: 200 OK

16c. SIP: INVITE (no SDP)

3b. SIP: ACK

User C

media server

SIP�UAo

12. RTP

UAo3�C

9b. SIP:INVITE (SDP c1’)

10a. SIP 200 OK (SDP a2)

9a: ISC: INVITE (SDP c1’)

17a. SIP: 200 OK (SDP b2)

17b. ISC: 200 OK (SDP b2)

18a. ISC: INVITE (SDP b2’)

18b. SIP: INVITE (SDP b2’)

19a. SIP: 200 OK (SDP a3)

19b. ISC: 200 OK (SDP a 3)

20a. ISC: ACK

20b. SIP: ACK

20c. ISC: ACK (SDP a3’)

20d. ISC: (SDP a3’)

20e. attachMediaRes

 21. RTP

15

_1072255276.ppt

S-CSCF

MRF

OSA Application Server

Cx

SIP

ISC

Mr

Sr

 OSA

 MPCCS

 API

Sh

SIP

server

SCF

User

OSA SCS

HSS

Scope of

OSA – MPCCS

API mapping

_1072256822.doc

OSA AS

User Agent mode

SIP�UAo

S-CSCF

UAo1

4b. ISC: INVITE�(no SDP)

 User A

4c. SIP: INVITE (no SDP)

User B

4a. routeReq (user A)

5a.SIP: 200 OK�(SDP a1)

1. createCall

6b. SIP:ACK�(SDP held)

 OSA SCS

S�C�F

 6c. eventReportRes (user A)

2. createCallLeg

3. eventReportReq

5b.. ISC: 200 OK� (SDP a1)

6a. ISC: ACK� (SDP held)

_1071659924.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Proxy

Proxy

OSA AS

OSA AS

UA Mode:��Originating�Endpoint

Service logic

Service logic

SIP dialog leg #1

SIP dialog #1

2. INVITE

S-CSCF

S-CSCF

User

User

OSA SCS

4. 200 OK

OSA SCS

4. 200 OK

1. INVITE

OSA API

OSA API

SIP UA-Originating

SCF

3. 200 OK

SCF

SIP UA-�Terminating

SIP dialog #1

UA Mode:��Terminating�Endpoint

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

SIP dialog #1

From: X

To: Y

Call-ID: Z

3. 200 OK

2. INVITE

1. INVITE

OR

_935227290.doc

_1071926575.doc

E9

PROXY

E5

E7

E6

 E1

REDIRECT

 B2BUA

E8

E3

 E2

E4

3rd PARTY�Controller�

UA

_1072251087.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

SIP leg #2

From: P

To: Q

Call-ID: R

User

SIP dialog #2

S-CSCF

Service logic

 OSA AS

3. 200 OK

2. BYE

User

From: P

To: Q

Call-ID: R

 OSA SCS

Proxy

 B2BUA Mode:�OSA SIP server -� end-to-end session� split into� two SIP � dialogues by�- terminating and � originating SIP� User Agents.

OSA API

7. 200 OK

6. INVITE

SCF

SIP UA-Origfinating

SIP UA-Terminating

SIP dialog #1

SIP dialog #1

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

8. 200 OK

5. INVITE

Proxy

4. 200 OK

1. BYE

_935227290.doc

_1071659537.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Service logic

 8. 200 OK

1. INVITE

User

User

From: X

To: Y

Call-ID: Z

3. INVITE

 6. 200 OK

SIP dialog #1

S-CSCF

OSA-AS

OSA SCS

 5. 200 OK

4. INVITE

 Proxy Mode

 7. 200 OK

 SIP server: Proxy Mode

OSA-API

proxy

proxy

 SCF

SIP dialog#1

SIP dialog #1

From: X

To: Y

Call-ID: Z

SIP dialog #1

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

2. INVITE

_935227290.doc

_1071659612.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Service logic

User

 SCF

 S-CSCF

 OSA SCS

3. 3o1/� 302

OSA API

 OSA AS

From: X

To: Y

Call-ID: Z

SIP dialog #1

5. INVITE from user to� new destination

 Redirect Mode:

proxy

Sip server: redirect mode

SIP dialog #1

From: X

To: Y

Call-ID: Z

4. 301/302

2. INVITE

1. INVITE

_935227290.doc

_1071648025.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

From: P

To: Q

Call-ID: R

7. 200 OK

6. INVITE

User

User

User

Proxy

S-CSCF

2. BYE

1. BYE

From: P

To: B

Call-ID: W

12. 200 OK

SIP dialog #3

 OSA AS

 OSA SCS

9. INVITE

5. INVITE

OSA API

 3rd Party Controler Mode:

 UA client�- originating 3rd party SIP dialog

SCF

Service logic

SIP UA-Originating

SIP UA-Originating

SIP UA-Terminating

SIP dialog #2

SIP dialog #3

SIP dialog #2

SIP dialog #1

 B2BUA� end-to-end session� split into� two SIP � dialogues�- terminating and � originating.

SIP dialog #1

From: P

To: Q

Call-ID: R

From: P

To: B

Call-ID: W

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

8. 200 OK

10. INVITE

11. 200 OK

3. 200 OK

Proxy

Proxy

4. 200 OK

_935227290.doc

_1071567762.doc

 User

SIP server

SCF

Application

 ISC: 200 OK

 2c. ISC: INVITE� (Re-INVITE)

: 3c. ISC: ACK

 Note: The application may in� deachMedia request the media to be detached, i.e. to put the media for the participant on hold (disconnected)�See detachMediaReq method �

3c.detachMediaReq (detach media) eventReportRes()

4c. attachMediaReq

ISC: INVITE (Re-INVITE SDP on hold)

detackMediaRes

OSA SCS

_1071568368.doc

 User

SIP server

SCF

Application

superviseRes

OSA SCS

_1071569232.doc

User

SIP server

SCF

Application

OSA SCS

 Note: Returns the address of the destination point towards which the call leg has been routed.

1. getCurrentDestinationAddress

_1071568104.doc

 User

SIP server

SCF

Application

 ISC: 200 OK (SDP user)

 2c. ISC: INVITE� (Re-INVITE,)

: 3c. ISC: ACK (SDP held)

 Note: The applicationrequests e.g. in � routeReq(connectionproperties) � the media to be detached implying initial invite with no SDP, and user responds with its SDP in 200 OK, which is immediately ACKed with an on-hold SDP generated by OSA SCSbut put on hold� at call/session establihment.

3c. e.g. routeReq (detach media) eventReportRes()

4c. attachMediaReq

ISC: INVITE (no SDP)

eventReportRes

OSA SCS

_1071476291.doc

 User

SIP server

SCF

Application

getInfoErr

OSA SCS

_1071560144.doc

 User

SIP server

SCF

Application

attachMediaErr

OSA SCS

_1071566092.doc

 User

SIP server

SCF

Application

 Note: The application may in� deachMedia request the media to be detached, i.e. to put the media for the participant on hold (disconnected)�

1.detachMediaReq

ISC: INVITE (Re-INVITE)

OSA SCS

_1071560647.doc

 User

SIP server

SCF

Application

 2c. ISC: INVITE� (Re-INVITE,)

:ISC: ACK

 Note: It is anticipated that � the media for the user is� not connected.

4c. attachMediaReq

 ISC: 200 OK

OSA SCS

 5. attachMediaRes

_1071476343.doc

 User

SIP server

SCF

Application

superviseErr

OSA SCS

_1071559493.doc

 User

SIP server

SCF

Application

detachMediaErr

OSA SCS

_1071476108.doc

 User

SIP server

SCF

Application

getInfoRes

OSA SCS

_1071473255.doc

 User

SIP server

SCF

Application

deassign

OSA SCS

_1071475974.doc

 User

SIP server

SCF

Application

Note 1: any appropriate SIP message:INVITE, 1xx, 2xx, 3xx, 4xx, 5xs, 6xx, ?�

2. eventReportRes

1. ISC: see Note 1

OSA SCS

_1071476014.doc

 User

SIP server

SCF

Application

eventReportErr

OSA SCS

_1071473851.doc

 User

SIP server

SCF

Application

 ISC: 400, 404, 413, 414, 481, 484, 485� (response to previous sent INVITE)

routeErr

ACK

OSA SCS

_1071475742.doc

 User

SIP server

SCF

Application

 ISC: 200 OK

2.detachMediaRes

: ISC: ACK

 Note: The application may in� deachMedia request the media to be detached, i.e. to put the media for the participant on hold (disconnected)�

1.detachMediaReq

ISC: INVITE (Re-INVITE)

OSA SCS

_1071472974.doc

 User

SIP server

SCF

Application

getCall

OSA SCS

_1071473049.doc

 User

SIP server

SCF

Application

 SIP call processing resumed� - processing of any interupted� SIP message is resumed.�-

continueProcessing

OSA SCS

_1071472842.doc

 User

SIP server

SCF

Application

getInfoReq

OSA SCS

_1071471769.doc

 User

SIP server

SCF

Application

getInfoErr

OSA SCS

_1071472477.doc

 User

SIP server

SCF

Application

 2. ISC: INVITE

3b. eventReportRes

B

A

1. routeReq �

ISC :INVITE

_1071472707.doc

 User

SIP server

SCF

Application

 2b. SIP: CANCEL

 SIP: 1xx

: 3. SIP: 200 OK

 Note: The participant is not yet� connected: SIP: INVITE has been sent, but 200 OK - ACK �messages have not been exchanged

OSA SCS

1b. release

SIP: INVITE

_1071472779.doc

 User

SIP server

SCF

Application

 ISC: 1xx

 2c. ISC: 3xx, 4xx, 5xx, 6xx

: 3c. ISC: ACK

 Note: The participant is not yet� conneced.� SIP: Invite has been sent � A negative response is received.

3c. eventReportRes()

4c. release

ISC: INVITE

OSA SCS

_1071472680.doc

 User

SIP server

SCF

Application

 2a. ISC: BYE

 ISC: ACK

: 3. ISC: 200 OK

 Note: The participant is already� connected: SIP: 200 OK - ACK �messages have been exchanged

OSA SCS

1a. release

ISC: 200 OK

_1071471892.doc

 User

SIP server

SCF

Application

superviseRes

OSA SCS

_1071472411.doc

 User

SIP server

SCF

Application

 2. ISC: INVITE

3b. eventReportRes

: 3a. ISC: 1xx

: 3c. ISC: 200 OK

3d. eventReportRes

1. routeReq �

ISC :ACK

_1071471831.doc

 User

SIP server

SCF

Application

superviseErr

OSA SCS

_1071471336.doc

 User

SIP server

SCF

Application

 SIP Server set to create CDR ??

setChargePlan

OSA SCS

_1071471452.doc

 User

SIP server

SCF

Application

 The SIP server of the SCS detects that call has been released or the call in terminated in the network(e.g., last leg released or disconnected)

ISC: BYE etc.

 callEnded

OSA SCS

_1071471555.doc

 User

SIP server

SCF

Application

getInfoRes

OSA SCS

_1071471413.doc

 User

SIP server

SCF

Application

 ISC: 400, 404, 413, 414, 481, 484, 485� (response to previous sent INVITE)

createAndRouteCallLegErr

ACK

OSA SCS

_1071471172.doc

 User

SIP server

SCF

Application

superviseReq

OSA SCS

_1071471269.doc

 User

SIP server

SCF

Application

 SIP Server impact ?

setAdviceOfCharge

OSA SCS

_1071470949.doc

 User

SIP server

SCF

Application

getInfoReq

OSA SCS

_1070368507.doc

SIP server

SCF

Application

 Fault ceased

managerResumed

OSA SCS

_1070368961.doc

 User

SIP server

SCF

Application

createCallLeg

OSA SCS

_1071470331.doc

 User

SIP server

SCF

Application

 2. ISC: INVITE

 4. ISC: PRACK

 3a. ISC: 183Progress

 3c. ISC: PRACK

OSA SCS

1. createAndRouteCallLegReq

3. ISC : 183Progress

 ISC: INVITE (SDP

ISC: 100 Trying

B A

_1071470794.doc

 User(s)

SIP server

SCF

Application

 2. ISC: (n x) BYE

OSA SCS

: 3c. ISC: 200 OK

1. release

ISC :ACK

_1071470280.doc

 User

SIP server

SCF

Application

 2. ISC: INVITE� (no SDP)

ISC: 200 OK

 3a. ISC: 100 Trying

 3c. ISC: 183 Progress (SDP)

OSA SCS

1. createAndRouteCallLegReq

ISC :PRACK

ISC: COMET

ISC: 180 Ringing

ISC: 200 OK

_1070368795.doc

SIP Server

SCF

Application

callOverLoadCeased

OSA SCS

_1070368904.doc

 User

SIP server

SCF

Application

getCallLegs

OSA SCS

_1070368660.doc

SIP Server

SCF

Application

OSA SCS

callOverLoadEncountered

_1070360870.doc

SIP server

SCF

Application

Activate load control

setCallLoadcontrol

OSA SCS

_1070364857.doc

 User

SIP server

SCF

Application

 1a. ISC: INVITE, CANCEL; Re-INVITE, BYE

2a. reportNotification

OSA SCS

_1070365504.doc

 User

SIP server

SCF

Application

ISC: 481 Call Leg/transaction Does Not Exist; Outgoing BYE, CANCEL, INVITE without any response

callAborted

OSA SCS

_1070364600.doc

SIP server

SCF

Application

 Fault detected

mangerInterrupted

OSA SCS

_1070360626.doc

 DB� (e.g. HSS)�

SIP server

SCF

Application

Note: Controlled SIP Serverwill be set to stop the observation for call events to be notified to the application,for registrated user..

destroyNotification

OSA SCS

_1070360728.doc

 DB�(e.g. HSS)

SIP server

SCF

Application

Retrieve the information previously set on call events to be notified for the application.

getNotification

OSA SCS

_1070360160.doc

 DB� (e.g. HSS)

SIP server

SCF

Application

 NOTE: Controlled SIP Server (e.g. S-CSCF) will be set to observe for call events to be notified for the application, when user becomes registered.

changeNotification

OSA SCS

