3GPP TS 29.199-14 V7.1.0 (2005-06)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;

Open Service Access (OSA);

Parlay X Web Services;

Part 14: Presence

(Release 7)

[image: image1.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UTMS, API, OSA, location

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
Detailed service description
8
5
Namespaces
9
6
Sequence diagrams
9
6.1
Interface flow overview
9
7
XML Schema data type definition
11
7.1
PresenceAttributeType enumeration
11
7.2
ActivityValue enumeration
11
7.3
PlaceValue enumeration
12
7.4
PrivacyValue enumeration
12
7.5
SphereValue enumeration
12
7.6
CommunicationMeansType enumeration
13
7.7
CommunicationMeans structure
13
7.8
CommunicationValue structure
13
7.9
OtherValue structure
13
7.10
PresenceAttribute structure
13
7.11
SubscriptionRequest structure
14
7.12
PresencePermission structure
14
7.13
CommunicationStatusType enumeration
14
8
Web Service interface definition
14
8.1
Interface: PresenceConsumer
15
8.1.1
Operation: subscribePresence
15
8.1.1.1
Input message: subscribePresenceRequest
15
8.1.1.2
Output message: subscribePresenceResponse
15
8.1.1.3
Referenced faults
15
8.1.2
Operation: getUserPresence
15
8.1.2.1
Input message: getUserPresenceRequest
16
8.1.2.2
Output message: getUserPresenceResponse
16
8.1.2.3
Referenced faults
16
8.1.3
Operation: startPresenceNotification
16
8.1.3.1
Input message: startPresenceNotificationRequest
17
8.1.3.2
Output message: startPresenceNotificationResponse
17
8.1.3.3
Referenced faults
17
8.1.4
Operation: endPresenceNotification
17
8.1.4.1
Input message: endPresenceNotificationsRequest
18
8.1.4.2
Output message: endPresenceNotificationResponse
18
8.1.4.3
Referenced faults
18
8.2
Interface: PresenceNotification
18
8.2.1
Operation: statusChanged
18
8.2.1.1
Input message: statusChangedRequest
18
8.2.1.2
Output message: statusChangedResponse
18
8.2.1.3
Referenced faults
18
8.2.2
Operation: statusEnd
18
8.2.2.1
Input message: statusEndRequest
19
8.2.2.2
Output message: statusEndResponse
19
8.2.2.3
Referenced faults
19
8.2.3
Operation: notifySubscription
19
8.2.3.1
Input message: notifySubscriptionRequest
19
8.2.3.2
Output message: notifySubscriptionResponse
19
8.2.4
Operation: subscriptionEnded
19
8.2.4.1
Input message: subscriptionEndedRequest
19
8.2.4.2
Output message: subscriptionEndedResponse
19
8.3
Interface: PresenceSupplier
20
8.3.1
Operation: publish
20
8.3.1.1
Input message: publishRequest
20
8.3.1.2
Output message: publishResponse
20
8.3.1.3
Referenced faults
20
8.3.2
Operation: getOpenSubscriptions
20
8.3.2.1
Input message: getOpenSubscriptionsRequest
20
8.3.2.2
Output message: getOpenSubscriptionsResponse
20
8.3.2.3
Referenced faults
20
8.3.3
Operation: updateSubscriptionAuthorization
21
8.3.3.1
Input message: updateSubscriptionAuthorizationRequest
21
8.3.3.2
Output message updateSubscriptionAuthorizationResponse
21
8.3.3.3
Referenced faults
21
8.3.4
Operation: getMyWatchers
21
8.3.4.1
Input message: getMyWatchersRequest
21
8.3.4.2
Output message: getMyWatchersResponse
22
8.3.4.3
Referenced faults
22
8.3.5
Operation: getSubscribedAttributes
22
8.3.5.1
Input message: getSubscribedAttributesRequest
22
8.3.5.2
Output message: getSubscribedAttributesResponse
22
8.3.5.3
Referenced faults
22
8.3.6
Operation: blockSubscription
22
8.3.6.1
Input message: blockSubscriptionRequest
23
8.3.6.2
Output message: blockSubscriptionResponse
23
8.3.6.3
Referenced faults
23
9
Fault definitions
23
9.1
ServiceException
23
9.1.1
SVC0220: No subscription request
23
9.1.2
SVC0221: Not a watcher
23
10
Service policies
24
Annex A (normative):
WSDL of Presence API
25
Annex B (informative):
Bibliography
26
Annex C (informative):
Change history
27

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

3GPP acknowledges the contribution of the Parlay X Web Services specifications from The Parlay Group. The Parlay Group is pleased to see 3GPP acknowledge and publish the present document, and the Parlay Group looks forward to working with the 3GPP community to improve future versions of the present document.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 14 of a multi-part deliverable covering the 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Open Service Access (OSA); Parlay X Web Services, as identified below:

Part 1:
"Common";
Part 2:
"Third party call";
Part 3:
"Call Notification";

Part 4:
"Short Messaging";

Part 5:
"Multimedia Messaging";

Part 6:
"Payment";
Part 7:
"Account management";
Part 8:
"Terminal Status";

Part 9:
"Terminal location";

Part 10:
"Call handling";
Part 11:
"Audio call";
Part 12:
"Multimedia conference";
Part 13:
"Address list management";
Part 14:
"Presence".

Part 15:
"Message Broadcast";

Part 16:
"Geocoding";

Part 17:
"Application-driven Quality of Service (QoS)".

1
Scope

The present document is Part 14 of the Stage 3 Parlay X Web Services specification for Open Service Access (OSA).
The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardized interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Presence Web Service aspects of the interface. All aspects of the Presence Web Service are defined here, these being:

· Name spaces.

· Sequence diagrams.

· Data definitions.

· Interface specification plus detailed method descriptions.

· Fault definitions.

· Service policies.

· WSDL Description of the interfaces.

The present document has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and the Parlay Consortium.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3]
3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4]
3GPP TS 22.101: "Service aspects; Service principles".

[5]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes". http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[6]
3GPP TS 29.199-1: "Open Service Access (OSA); Parlay X Web Services; Part 1: Common".

[7]
Void.

[8]
3GPP TS 29.198-14: "Open Service Access (OSA) Application Programming Interface (API); Part 14: Presence and Availability Management (PAM)".

[9]
RFC 3856: "A Presence Event Package for the Session Initiation Protocol (SIP)". http://www.ietf.org/rfc/rfc3856.txt
[10]
Void.

[11]
Void.

[12]
3GPP TS 23.141: "Presence service; Architecture and functional description; Stage 2".

[13]
3GPP TS 29.199-13: "Open Service Access (OSA); Parlay X Web Services; Part 13: Address list management".

[11]
IETF RFC 3265: "Session Initiation Protocol (SIP)-Specific Event Notification".

[15]
Void.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 29.199-1 [6] and the following apply:

applications: for Instant Messaging, Push to Talk, or call control and other purposes may become clients of the presence Web Service
We assume that these applications belong to a watcher and authenticate to the services in the name of the watcher.

identity: represents a user in the real world

NOTE:
See OSA/Parlay PAM identities [8], section 4.4.1.

presence attributes: contain information about a presentity
An attribute has a name and a value and can be supplied by any device, application or network module that can be associated to the presentity's identity. A watcher can obtains attributes only after he has successfully subscribed to them. Examples for attributes are activity, location type, communication means, etc.

presence information: consists of a set of attributes that characterize the presentity such as current activity, environment, communication means and contact addresses
Only the system and the presentity have direct access to this information, which may be collected and aggregated from several devices associated to the presentity.

subscription: before a watcher can access presence data, he has to subscribe to it
One possibility the API provides is an end-to-end subscription concept, in which only identities that have accepted a subscription to their presence can be addressed. Subscriptions can be also automatically handled by server policies edited by the presentity or other authorized users. The service/protocol to manage those policies is out of the scope of the present document.

NOTE:
This definition is not related to the term "subscription" in 3GPP TR 21.905 [1].

watcher and presentity: We use these names to denote the role of the client connected to the presence services
Like in OSA/Parlay PAM [8] the watcher and the presentity have to be associated to identities registered to the system, i.e. users, groups of users or organizations.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TS 29.199-1 [6] and the following apply:

ACL
Access Control List

DMS
Data Manipulation Server

GM
Group Management

IETF
Internet Engineering Task Force

IMS
IP Multimedia Subsystem

ISC
IP multimedia subsystem Service Control interface

MMS
Multimedia Message Service

PAM
Presence and Availability Management

RLS
Resource List Server

SCF
Service Capability Feature

SIMPLE
SIP for Instant Messaging and Presence Leveraging Extensions

SIP
Session Initiation Protocol

SMS
Short Message Service

URI
Uniform Resource Identifier

WS
Web Service

WSDL
Web Services Definition Language

XCAP
XML Configuration Access Protocol

XML
eXtensible Markup Language

XMPP
eXtensible Messaging and Presence Protocol

XSD
XML Schema Definition

4
Detailed service description

The presence service allows for presence information to be obtained about one or more users and to register presence for the same. It is assumed that the typical client of these interfaces is either a supplier or a consumer of the presence information. An Instant Messaging application is a canonical example of such a client of this interface.

Figure 4.1 shows the architecture of the presence Web Service and the underlying services. The OSA/Parlay PAM SCF is the straightforward option and implements the presence server with extended identity-, device capability,- and presence agent management. OSA/Parlay PAM allows aggregation of presence information from internet, mobile and enterprise users, etc. using a presence transport network of SIP or XMPP servers. The Presence Web Service can however communicate directly for example with IMS presence network elements (presence and resource list servers) using the ISC (SIP/SIMPLE) protocol interface.

[image: image2.emf]

PAM Parlay SCF

watcher client

watcher application

presentity client

Group Management WS

Parlay - X API

Parlay - X Presence Web Service

OSA/Parlay API

Policy rules

Network protocols (e.g. SIP)

Network elements (e.g. SIP)

Figure 4.1: The PAM Web Service Environment

Relationship to Similar or Supplanted Specifications:
The most important relations are to:

· Parlay-X Terminal Status and Terminal Location: Both services deal with information that could be considered part of the user's presence information. Communication abilities can be derived from terminal status information, and the user's placetype can be derived from his location.

· OSA/Parlay PAM: The OSA/Parlay Presence and Availability specification can be considered the big brother of this specification. While ParlayX Presence stays behind OSA PAM in terms of flexibility and power - especially concerning attributes and management interfaces - it also extends PAM by introducing end-to-end authorization. This specification aims to be mappable to OSA PAM.

· SIP SIMPLE [9]: This specification aims to be mappable to the SIP/SIMPLE architecture.

· XMPP (Jabber): Many principles of this specification (see Bibliography) have been adopted, especially the end-to-end authorization.

· IETF Rich Presence (see Bibliography). The set of attributes the present document specifies is closely aligned with the IETF's Rich Presence ideas.

· Group Management [13]: Presence of groups is supported by this specification, however their creation and manipulation has to be done using the GM PX Web Service. In the 3GPP presence context, contact lists and group manipulation is done with the XCAP protocol (see Bibliography).

5
Namespaces

The PresenceConsumer interface uses the namespace:

http://www.csapi.org/wsdl/parlayx/presence/consumer/v3_1
The PresenceNotification interfaces uses the namespace:

http://www.csapi.org/wsdl/parlayx/presence/notification/v3_1
The PresenceSupplier interfaces uses the namespace:

http://www.csapi.org/wsdl/parlayx/presence/supplier/v3_1
The data types are defined in the namespace:

http://www.csapi.org/schema/parlayx/presence/v3_1
The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [5]. The use of the name 'xsd' is not semantically significant.

6
Sequence diagrams

6.1
Interface flow overview

The sequence diagram shows the interactions in case both watcher application and presentity are Web Service clients. Compared to the SIP interactions, the subscription notification is separated from the delivery of presence information itself. Based on the subscription result, the watcher can select the polling or notification mode for presence events. Changes in the authorization of presence attributes are propagated to the watchers via notifySubscription() message, the blocking of a subscription by the presentity are propagated via an endSubscriptionNotification message.

The sequence diagram does not show the internal communication within the presence server. It is assumed that the Presence Consumer and Supplier interfaces are implemented by the same instance. If an implementers of the API find other solutions preferable, he has to take care of the internal communication himself.

[image: image3]
Figure : Message interaction overview

7
XML Schema data type definition

Presence attributes are inspired by the IETF's Rich Presence ideas (see Bibliography).

7.1
PresenceAttributeType enumeration

The different types of attributes. For each entry in this enumeration there is a separate value type.

	Enumeration
	Description

	Activity
	The presentity's activity (available, busy, lunch, etc.)

	Place
	At what kind of place the presentity is (home, office, etc.)

	Privacy
	The amount of privacy the user wants (public, quiet, etc.)

	Sphere
	The user's current environment (work, home)

	Communication
	The user's means of communication (phone, mail, etc.)

	Other
	A name - value pair for arbitrary presence information

7.2
ActivityValue enumeration

This enumeration shows the user's current activity. If the activity is unknown, the attribute value will be ActivityNone, meaning the attribute was not set. If the user is doing something not in this list, the value will be set to ActivityOther.

	Enumeration
	Description

	ActivityNone
	Not set.

	Available
	The user is available for communication.

	Busy
	The user is busy and is only available for urgent matters.

	DoNotDisturb
	The user is very busy and does not wish to be disturbed.

	OnThePhone
	The user is on the phone.

	Steering
	The user is driving a car / train / airplane, etc.

	Meeting
	The user is in a meeting.

	Away
	No idea what the user is doing, but he is away.

	Meal
	The user is eating.

	PermanentAbsence
	The user is away and will not return for an extended period.

	Holiday
	The user is on holidays.

	Performance
	The user is in a theatre / concert.

	InTransit
	The user is in the transit area of an (air)port.

	Travel
	The user is travelling.

	Sleeping
	The user is sleeping.

	ActivityOther
	The user is doing something not in this list.

7.3
PlaceValue enumeration

This enumeration shows the type of the user's current location. If the place type is unknown, the attribute value will be PlaceNone, meaning the attribute was not set. If the user in a place not in this list, the value will be set to PlaceOther.

	Enumeration
	Description

	PlaceNone
	Not set.

	Home
	The user is at home.

	Office
	The user is in an office.

	PublicTransport
	The user is on public transport.

	Street
	Walking on the street.

	Outdoors
	Generally outdoors.

	PublicPlace
	The user is in a public place.

	Hotel
	The user is in a hotel.

	Theatre
	The user is in a theatre or concert.

	Restaurant
	The user is in a restaurant / bar / etc.

	School
	The user is at school.

	Industrial
	The user is in an industrial building.

	Quiet
	The user is in a quiet area.

	Noisy
	The user is in a noisy area.

	Aircraft
	The user is on an aircraft.

	Ship
	The user is on a ship.

	Bus
	The user is in a bus.

	Station
	The user is in a bus- or railway station.

	Mall
	The user is in a mall.

	Airport
	The user is in an airport.

	Train
	The user is in a train.

	PlaceOther
	The user is in a kind of place not listed here.

7.4
PrivacyValue enumeration

This enumeration shows the amount of privacy a user currently has. If the privacy is unknown, the attribute value will be PrivacyNone, meaning the attribute was not set. If the privacy is not in this list, the value will be set to PrivacyOther.

	Enumeration
	Description

	PrivacyNone
	Not set.

	PrivacyPublic
	The user is surrounded by other people and cannot discuss openly.

	PrivacyPrivate
	The user is alone and able to talk openly.

	PrivacyQuiet
	The user is in a quiet environment and cannot talk at all.

	PrivacyOther
	None of the other values applies.

7.5
SphereValue enumeration

This enumeration shows the sphere within which the user acts. If the sphere is unknown, the attribute value will be SphereNone, meaning the attribute was not set. If the sphere is not in this list (neither work nor home), the value will be set to SphereOther.

	Enumeration
	Description

	SphereNone
	Not set.

	SphereWork
	The user is acting within his work sphere, i.e. as a member of his company

	SphereHome
	The user is acting within his home sphere, i.e. as a private person.

	SphereOther
	The user is acting neither within his work nor within his home sphere.

7.6
CommunicationMeansType enumeration

This enumeration lists communication means. If the communication attribute referrers to a means not in this list, it will point to MeansOther.

	Enumeration
	Description

	Phone
	The communication attribute refers to a phone (fixed line or mobile or SIP).

	Chat
	The communication attribute refers to a chat client.

	SMS
	The communication attribute refers to an SMS client.

	Video
	The communication attribute refers to a video phone (fixed line or mobile or SIP).

	Web
	The communication attribute refers to a web client.

	EMail
	The communication attribute refers to an e-mail client.

	MMS
	The communication attribute refers to an MMS client.

	MeansOther
	The communication attribute refers to any other client.

7.7
CommunicationMeans structure

This structure describes on way of reaching the presentity.

	Element name
	Element type
	Optional
	Description

	Priority
	xsd:float
	No
	The priority of this communication means. Between 0 and 1, the latter meaning the highest priority.

	Contact
	xsd:anyURI
	No
	The presentity's contact address for this communication means.

	Type
	CommunicationMeansType
	No
	The type of this communication means.

	Status
	CommunicationStatusType
	Yes
	The status of this communication means.

7.8
CommunicationValue structure

This structure describes the various ways of reaching a presentity.

	Element name
	Element type
	Optional
	Description

	Means
	CommunicationMeans [0..unbounded]
	Yes
	The different ways of reaching the presentity.

7.9
OtherValue structure

This structure can be used for storing arbitrary data about a presentity.

	Element name
	Element type
	Optional
	Description

	Name
	xsd:string
	No
	Description of the content.

	Value
	xsd:string
	No
	Attribute content.

7.10
PresenceAttribute structure

Presence data published by a presentity and retrieved by watchers.

	Element name
	Element type
	Optional
	Description

	LastChange
	xsd:dateTime
	No
	The time and date when the attribute was changed last.

	Note
	xsd:string
	Yes
	An explanatory note.

	Type
	PresenceAttributeType
	No
	Determines the type of the value field.

	Value
	One of the six value types; depends on field "type"
	No
	The actual value of the attribute.

This data structure is split into two types in the XSD file: A PresenceAttribute contains an AttributeTypeAndValue.

7.11
SubscriptionRequest structure

This structure is returned to the presentity by the PAM Web Service and contains the requesting watcher and the attributes he wants to subscribe.

	Element name
	Element type
	Optional
	Description

	Watcher
	xsd:anyURI
	No
	The watcher who wants to gain access to data.

	Attributes
	PresenceAttributeType [1..unbounded]
	No
	The attributes the watcher wants to see.

	Application
	xsd:string
	No
	The name of the application running on behalf of the watcher. Note that this field has solely informative purposes, access rights management is based on watcher id only.

7.12
PresencePermission structure

The answer from the service to the watcher in the message getSubscriptionStatusResponse.

	Element name
	Element type
	Optional
	Description

	Attribute
	PresenceAttributeType
	No
	The name of the attribute the watcher wanted to subscribe

	Decision
	xsd:Boolean
	No
	Whether the presentity accepted the subscription. If no, any further fields should be ignored.

7.13
CommunicationStatusType enumeration

This enumeration shows the status of communication means.

	Enumeration
	Description

	On
	Presentity has his own communication means that is available now. Watcher can connect directly.

	Off
	Presentity has his own communication means that is not available for some reason.

	Busy
	Presentity has his own communication means that is busy.

8
Web Service interface definition

This API is separated into three interfaces:

· PresenceConsumer interface: watcher methods for requesting and subscribing presence data.

· PresenceNotification interface: is the watcher notification interface for presence events.

· PresenceSupplier interface: presentity methods for supplying presence data and managing subscriptions.

8.1
Interface: PresenceConsumer

Client role: watcher.

This set of methods is used by the watcher to obtain presence data. After the subscription to presence data, the watcher can select between a polling mode or a notification mode in order to receive presence data.

8.1.1
Operation: subscribePresence

The presentity is contacted and requested to authorize the watcher. As this process generally involves user interaction there cannot be an immediate response. The watcher is notified with notifySubscription(). If the presentity is a group, every member of the group will be contacted for authorization. The watcher will get one notification for each member.

Only after the subscription is completed (and the presentity has allowed access to attributes) may the watcher will get information when he uses getUserPresence() or startPresenceNotification().

Note that the SimpleReference contains the correlator string used in subsequent messages to the notification interface.

At this interface level, the subscription has no expiration, although at can be ended from the presentity of the underlying layers (see subscriptionEnded method).

8.1.1.1
Input message: subscribePresenceRequest

	Part name
	Part type
	Optional
	Description

	watcher
	xsd:anyURI
	No
	A watcher who wants to monitor a presentity or a group of presentities.

	Presentity
	xsd:anyURI
	No
	A presentity or a group of presentities whose attributes the watcher wants to monitor.

	Attributes
	PresenceAttributeType [0..unbounded]
	Yes
	The attributes the watcher wants to access. (the same for all the group members). An empty array means subscription of all attributes.

	Application
	xsd:string
	No
	Describes the application the watcher needs the data for.

	Reference
	common:SimpleReference
	No
	The notification interface.

8.1.1.2
Output message: subscribePresenceResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.1.1.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

· SVC0004: No valid addresses - if the presentity address does not exist.

PolicyException from 3GPP TS 29.199-1 [6]:.

· POL0006: Groups not allowed.

· POL0007: Nested groups not allowed.

8.1.2
Operation: getUserPresence

Returns the aggregated presence data of a presentity. Only the attributes which the watcher is entitled to see will be returned. This method does not support group identities.

Before getting these attributes, the watcher has to subscribe to them (see above). The presentity needs not be informed of the access, as he has already consented when the watcher called subscribePresence().

8.1.2.1
Input message: getUserPresenceRequest

	Part name
	Part type
	Optional
	Description

	watcher
	xsd:anyURI
	No
	The watcher who wants to see the presentity’s presence data.

	Presentity
	xsd:anyURI
	No
	The presentity whose data the watcher wants to see.

	Attributes
	PresenceAttributeType [0..unbounded]
	Yes
	The attributes the watcher wants to see. An empty array means all attributes.

8.1.2.2
Output message: getUserPresenceResponse

	Part name
	Part type
	Optional
	Description

	Result
	PresenceAttribute [0..unbounded]
	Yes
	The actual presence data.

8.1.2.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

· SVC0004: No valid addresses - if the presentity address does not exist.

PolicyException from 3GPP TS 29.199-1 [6]. The presentity has the possibility to cancel or block a subscription by manipulating the policy rules. The exception informs the watcher about this status change.

· POL0002: Privacy error - if the watcher is not subscribed to the requested data.

· POL0006: Groups not allowed.

8.1.3
Operation: startPresenceNotification

The notification pattern with correlation is used in order to be able to correlate the notification events with the request. The attributes represent a subset of the attributes subscribed and can be used as filter.

The watcher sets a notification trigger on certain user presence attribute changes. If the list of attributes is empty, the watcher wants to be notified on all subscribed attributes.

In case the presentity is a group the watcher will receive notifications for every single member of the group. The watcher will only get notifications for those attributes and presentities he subscribed successfully prior to the call. The service will return a list of presentities where the notifications could not be set up.

The presentity needs not be informed of the access, as he has already consented when the watcher called subscribePresence().

Note that the SimpleReference contains the correlator string used in subsequent messages to the notification interface.

8.1.3.1
Input message: startPresenceNotificationRequest

	Part name
	Part type
	Optional
	Description

	watcher
	xsd:anyURI
	No
	The watcher who wants to monitor the presentity’s presence data.

	Presentity
	xsd:anyURI
	No
	The presentity or group whose attributes the watcher wants to monitor.

	Attributes
	PresenceAttributeType [0..unbounded]
	Yes
	The attributes the watcher wants to see.

	Reference
	common:SimpleReference
	No
	The notification interface

	Frequency
	common:TimeMetric
	No
	Maximum frequency of notifications (can also be considered minimum time between notifications). In case of a group subscription the service must make sure this frequency is not violated by notifications for various members of the group, especially in combination with checkImmediate.

	Duration
	common:TimeMetric
	Yes
	Length of time notifications occur for, do not specify to use default notification time defined by service policy.

	Count
	xsd:int
	Yes
	Maximum number of notifications. For no maximum, either do not specify this part or specify a value of zero.

	CheckImmediate
	xsd:boolean
	No
	Whether to check status immediately after establishing notification.

8.1.3.2
Output message: startPresenceNotificationResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:anyURI [0..unbounded]
	Yes
	The presentities whose attributes the watcher did not subscribe. Empty if all went fine.

8.1.3.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

· SVC0004: No valid addresses - if the presentity URI does not exist.

· SVC0005: Duplicate correlator.

PolicyException from 3GPP TS 29.199-1 [6]. The presentity has the possibility to cancel or block a subscription by manipulating the policy rules. The exception informs the watcher about this status change.

· POL0001: Policy error.

· POL0004: Unlimited notifications not supported.

· POL0005: Too many notifications requested.

· POL0006: Groups not allowed.

· POL0007: Nested groups not allowed.

8.1.4
Operation: endPresenceNotification

Indicates that the watcher does not want further notifications for a specific notification request (identified by the correlator). Note that the subscription to presence data stays active; the caller of this method remains a watcher and can still use getUserPresence() or reactivate the notifications.

8.1.4.1
Input message: endPresenceNotificationsRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	The notification the watcher wants to cancel.

8.1.4.2
Output message: endPresenceNotificationResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.1.4.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

8.2
Interface: PresenceNotification

This client callback interface is used by the presence consumer interface to send notifications.

8.2.1
Operation: statusChanged

The asynchronous operation is called by the Web Service when an attribute for which notifications were requested changes.

8.2.1.1
Input message: statusChangedRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	Identifies the notification request

	Presentity
	xsd:anyURI
	No
	The presentity whose presence status has changed

	ChangedAttributes
	PresenceAttribute [1..unbounded]
	No
	The new presence data

8.2.1.2
Output message: statusChangedResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.2.1.3
Referenced faults

None.

8.2.2
Operation: statusEnd

The notifications have ended for this correlator. This message will be delivered when the duration or count for notifications have been completed. This message will not be delivered in the case of an error ending the notifications or deliberate ending of the notifications (using endPresenceNotification operation).

8.2.2.1
Input message: statusEndRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	Correlator provided in request to set up this notification

8.2.2.2
Output message: statusEndResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.2.2.3
Referenced faults

None.

8.2.3
Operation: notifySubscription

This asynchronous method notifies the watcher that the server or the presentity handled the pending subscription.

8.2.3.1
Input message: notifySubscriptionRequest

	Part name
	Part type
	Optional
	Description

	Presentity
	xsd:anyURI
	No
	The presentity whose attributes the watcher wants to monitor

	watcher
	xsd:anyURI
	No
	The watcher who wants to monitor the presentity’s presence data

	Decisions
	PresencePermission [0..unbounded]
	Yes
	Denote the attributes the server/presentity accepted to expose

8.2.3.2
Output message: notifySubscriptionResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.2.4
Operation: subscriptionEnded

This asynchronous operation is called by the Web Service to notify the watcher (application) that the subscription has terminated. Typical reasons are a timeout of the underlying SIP soft state subscription (in accordance with [14] and [9]) or the decision of the presentity to block further presence information to that watcher. Since the subscription request has no expiration parameters, the service implementation may provide an inactivity timer that also triggers the subscriptionEnded message.

8.2.4.1
Input message: subscriptionEndedRequest

	Part name
	Part type
	Optional
	Description

	Presentity
	xsd:anyURI
	No
	The presentity to which the subscription has terminated

	watcher
	xsd:anyURI
	No
	The watcher whose subscription is terminated.

	Reason
	xsd:string
	No
	Timeout, Blocked

8.2.4.2
Output message: subscriptionEndedResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.3
Interface: PresenceSupplier

These methods are used by the presentity to supply presence data and manage access to the data by its watchers. We assume that the presentity has been previously authenticated, so that his Identity is known.

8.3.1
Operation: publish

The presentity publishes data about herself. This data will then be filtered by the system and forwarded to the watchers who have ordered notifications.

8.3.1.1
Input message: publishRequest

	Part name
	Part type
	Optional
	Description

	Presentity
	xsd:anyURI
	No
	The presentity who wants to publish his or her presence data.

	Presence
	PresenceAttribute [0..unbounded]
	Yes
	The presence attributes the devices of the presentity supports

8.3.1.2
Output message: publishResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.3.1.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

8.3.2
Operation: getOpenSubscriptions

Called periodically by the presentity to see if any watchers wants to subscribe to presence data. The client will answer open requests with updateSubscriptionAuthorization().

8.3.2.1
Input message: getOpenSubscriptionsRequest

	Part name
	Part type
	Optional
	Description

	presentity
	xsd:anyURI
	No
	The presentity who wants to get watchers to subscribe to his or her presence data.

8.3.2.2
Output message: getOpenSubscriptionsResponse

	Part name
	Part type
	Optional
	Description

	result
	SubscriptionRequest [0..unbounded]
	Yes
	Any open requests

8.3.2.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

8.3.3
Operation: updateSubscriptionAuthorization

The presentity answers with this operation to watcher subscriptions for which no authorization policy exists. The answer consists of the attribute and the watcher involved and the permissions for each attribute. Subscription requests that are not answered are assumed pending.

The operation can be used by the presentity to change anytime the authorization for a certain watcher or group to monitor one or several attributes.

If the watcher did not try to subscribe the attribute - i.e. there is not pending subscription from this watcher to an attribute in the decisions array, a PresenceException will be raised and the entire authorization request ignored.

8.3.3.1
Input message: updateSubscriptionAuthorizationRequest

	Part name
	Part type
	Optional
	Description

	presentity
	xsd:anyURI
	No
	Presentity who wants to update his or her subscriber’s authrization.

	Watcher
	xsd:anyURI
	No
	watcher or group of watchers

	Decisions
	PresencePermission [1..unbounded]
	No
	The answers to open requests

8.3.3.2
Output message updateSubscriptionAuthorizationResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.3.3.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

· SVC0004: No valid addresses.

· SVC0220: NoSubscriptionRequest.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

8.3.4
Operation: getMyWatchers

Returns an array of watching identities that are subscribed to the presentity's attributes. They are not necessarily users of the notification system, the mere fact that they are allowed to see the presentity's attributes is enough to be on this list.

8.3.4.1
Input message: getMyWatchersRequest

	Part name
	Part type
	Optional
	Description

	presentity
	xsd:anyURI
	No
	Presentity who wants to know his or her watchers.

8.3.4.2
Output message: getMyWatchersResponse

	Part name
	Part type
	Optional
	Description

	Result
	xsd:anyURI [0..unbounded]
	Yes
	The list of identities who currently have access to the presentity's attributes.

8.3.4.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

8.3.5
Operation: getSubscribedAttributes

Returns an array of attributes that a specific watcher has subscribed.

8.3.5.1
Input message: getSubscribedAttributesRequest

	Part name
	Part type
	Optional
	Description

	presentity
	xsd:anyURI
	No
	The presentity who wants to know attributes that his or her watcher has subscribed

	Watcher
	xsd:anyURI
	No
	The watcher whose subscriptions the presentity wants to know

8.3.5.2
Output message: getSubscribedAttributesResponse

	Part name
	Part type
	Optional
	Description

	Result
	PresenceAttributeType [0..unbounded]
	Yes
	The attributes the watcher is subscribed to.

8.3.5.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0004: No valid addresses.

· SVC0221: Not a watcher - if the URI in the field watcher is not a watcher of the presentity.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

8.3.6
Operation: blockSubscription

With this operation the presentity can block entirely the flow of presence information to a certain subscribed watcher by cancelling the subscription. The watcher will be notified with an subscriptionEnded() message.

8.3.6.1
Input message: blockSubscriptionRequest

	Part name
	Part type
	Optional
	Description

	Presentity
	xsd:anyURI
	No
	The presentity who wants to block the watcher.

	Watcher
	xsd:anyURI
	No
	The watcher whose subscriptions the presentity wants to cancel

8.3.6.2
Output message: blockSubscriptionResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.3.6.3
Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

· SVC0001: Service error.

· SVC0002: Invalid input value.

· SVC0004: No valid addresses.

· SVC0221: Not a watcher - if the URI in the field watcher is not a watcher of the presentity.

PolicyException from 3GPP TS 29.199-1 [6]:

· POL0001: Policy error.

9
Fault definitions

9.1
ServiceException

From 3GPP TS 29.199-1 [6].

9.1.1
SVC0220: No subscription request

	Name
	Description

	Message Id
	SVC0220

	Text
	No subscription request from watcher %1 for attribute %2

	Variables
	%1 - watcher URI

%2 - type of attribute, from clause 7.1

9.1.2
SVC0221: Not a watcher

	Name
	Description

	Message Id
	SVC0221

	Text
	%1 is not a watcher

	Variables
	%1 - watcher URI

10
Service policies

	Name
	Type
	Description

	MaximumNotificationFrequency
	common:TimeMetric
	Maximum rate of notification delivery (also can be considered minimum time between notifications)

	MaximumNotificationDuration
	common:TimeMetric
	Maximum amount of time a notification may be set up for

	DefaultNotificationDuration
	common:TimeMetric
	Default amount of time a notification will be set up for.

	MaximumCount
	xsd:int
	Maximum number of notifications that may be requested

	UnlimitedCountAllowed
	xsd:boolean
	Allowed to specify unlimited notification count (i.e. either by not specifying the optional Count message part in StartPresenceNotificationRequest or by specifying a value of zero)

	GroupSupport
	xsd:boolean
	Groups may be included with addresses

	NestedGroupSupport
	xsd:boolean
	Are nested groups supported in group definitions

Annex A (normative):
WSDL of Presence API

The document/literal WSDL representation of this interface specification is compliant to 3GPP TS 29.199-1 [6] and is contained in text files (contained in archive 29199-14-710-doclit.zip) which accompanies the present document.

Annex B (informative):
Bibliography

3GPP: "IETF Dependencies and Priorities". http://www.3gpp.org/tb/Other/IETF_archive_07.03.05/IETF.htm

draft-ietf-simple-event-filter-funct-05: "Functional Description of Event Notification Filtering". http://www.ietf.org/internet-drafts/draft-ietf-simple-event-filter-funct-05.txt. This version expires September 16, 2005. Also reference item #42 in 3GPP: "IETF Dependencies and Priorities".

draft-ietf-simple-rpid-10: "RPID: Rich Presence: Extensions to the Presence Information Data Format (PIDF)". http://www.ietf.org/internet-drafts/draft-ietf-simple-rpid-10.txt

. This version expires June 23, 2006. Also reference item #54 in 3GPP: "IETF Dependencies and Priorities".

draft-ietf-simple-xcap-11: "The Extensible Markup Language (XML) Configuration Access Protocol (XCAP)". http://www.ietf.org/internet-drafts/draft-ietf-simple-xcap-11.txt

. This version expires November 6, 2006. Also reference item #57 in 3GPP: "IETF Dependencies and Priorities".

Repository of information about the Extensible Messaging and Presence Protocol (XMPP), which was contributed by the Jabber Software Foundation (JSF) to the IETF. http://www.xmpp.org/
Annex C (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Cat
	Old
	New

	Sep 2004
	CN_25
	NP-040360
	--
	--
	Draft v100 submitted to TSG CN#25 for Approval.
	--
	1.0.0
	6.0.0

	Dec 2004
	CN_26
	NP-040487
	0001
	--
	Correct the Presence WSDL source code
	F
	6.0.0
	6.1.0

	Jun 2005
	CT_28
	CP-050162
	0002
	--
	Corrrection of Presence.
	F
	6.1.0
	6.2.0

	Jun 2005
	CT_28
	CP-050162
	0003
	--
	Update & Move Informative Document References to Bibliography
	D
	6.1.0
	6.2.0

	Jun 2005
	CT_28
	CP-050221
	0004
	--
	Optionals for Part 14
	F
	6.1.0
	6.2.0

	Dec 2005
	CT_30
	CP-050579
	0005
	--
	Clarify how to specify an unlimited notifications count
	F
	6.2.0
	6.3.0

	Dec 2005
	CT_30
	CP-050579
	0006
	--
	Inconsistent part naming in PX response messages
	F
	6.2.0
	6.3.0

	Dec 2005
	CT_30
	CP-050583
	0007
	--
	Parameterization for requester of Presence Web service
	B
	6.3.0
	7.0.0

	Dec 2005
	CT_30
	CP-050583
	0008
	--
	Adding communication means’ Status in Presence Web service
	B
	6.3.0
	7.0.0

	Jun 2006
	CT_32
	CP-060203
	0010
	--
	Apply Union data type element naming convention
	A
	7.0.0
	7.1.0

	
	
	
	
	
	
	
	
	

notifySubscription

can cancel it

time out; or the presentity

a subscription can either

subscriptionEnded

subscription timeout

whatever reason)

user status changes (for

... or through notifications

publish

endPresenceNotification

statusChanged

startPresenceNotification

subscriptionEnded

blockSubscription

getSubscribedAttributes

getMyWatchers

publish

check subscription policies

notifySubscription

updateSubscriptionAuthorisation

get user answer

getOpenSubscriptions

determine presence

getUserPresence

subscribePresence

presentity is necessary.

interaction with the

subscription request, no

if there is a policy for this

presence data by polling...

the watcher can access

user logs on

after a while the

:

Presentity Application

PresenceSupplier

Presence Web Service :

PresenceConsumerNotifications

Watcher Application :

PresenceConsumer

Presence Web Service :

_1156915039.doc
[image: image1.png]

presentity

client

Parlay-X Presence Web Service

PAM Parlay SCF

Parlay-X API

watcher

client

watcher

application

Policy

rules

Group

Management WS

OSA/Parlay API

Network protocols

(e.g. SIP)

Network elements

(e.g. SIP)

