3GPP TS 29.199-5 V7.1.1 (2007-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;

Open Service Access (OSA);

Parlay X Web Services;

Part 5: Multimedia messaging

(Release 7)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA, multimedia

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2007, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
Detailed service description
7
5
Namespaces
9
6
Sequence diagrams
10
6.1
Send picture
10
6.2
Send WAP push message
11
7
XML schema data type definition
11
7.1
DeliveryStatus enumeration
11
7.2
MessagePriority enumeration
12
7.3
DeliveryInformation structure
12
7.4
MessageReference structure
12
7.5
MessageURI structure
12
7.6
ScheduledDeliveryStatus enumeration
13
7.7
ScheduledDeliveryInformation structure
13
8
Web Service interface definition
13
8.1
Interface: SendMessage
13
8.1.1
Operation: SendMessage
13
8.1.1.1
Input message: SendMessageRequest
14
8.1.1.2
Output message: SendMessageResponse
14
8.1.1.3
Referenced faults
14
8.1.2
Operation: GetMessageDeliveryStatus
14
8.1.2.1
Input message: GetMessageDeliveryStatusRequest
15
8.1.2.2
Output message: GetMessageDeliveryStatusResponse
15
8.1.2.3
Referenced faults
15
8.1.3
Operation: ScheduleMessage
15
8.1.3.1
Input message: ScheduleMessageRequest
15
8.1.3.2
Output message: ScheduleMessageResponse
16
8.1.3.3
Referenced faults
16
8.1.4
Operation: CancelScheduledMessage
16
8.1.4.1
Input message: CancelScheduledMessageRequest
16
8.1.4.2
Output message : CancelScheduledMessageResponse
16
8.1.4.3
Referenced faults
16
8.1.5
Operation: GetScheduledMessageStatus
17
8.1.5.1
Input message: GetScheduledMessageStatusRequest
17
8.1.5.2
Output message: GetScheduledMessageStatusResponse
17
8.1.5.3
Referenced faults
17
8.2
Interface: ReceiveMessage
17
8.2.1
Operation: GetReceivedMessages
17
8.2.1.1
Input message: GetReceivedMessagesRequest
17
8.2.1.2
Output message: GetReceivedMessagesResponse
18
8.2.1.3
Referenced faults
18
8.2.2
Operation: GetMessageURIs
18
8.2.2.1
Input message: GetMessageURIsRequest
18
8.2.2.2
Output message: GetMessageURIsResponse
18
8.2.2.3
Referenced faults
18
8.2.3
Operation: GetMessage
18
8.2.3.1
Input message: GetMessageRequest
19
8.2.3.2
Output message: GetMessageResponse
19
8.2.3.3
Referenced faults
19
8.3
Interface: MessageNotification
19
8.3.1
Operation: NotifyMessageReception
19
8.3.1.1
Input message: NotifyMessageReceptionRequest
19
8.3.1.2
Output message: NotifyMessageReceptionResponse
19
8.3.1.3
Referenced faults
19
8.3.2
Operation: NotifyMessageDeliveryReceipt
19
8.3.2.1
Input message: NotifyMessageDeliveryReceiptRequest
20
8.3.2.2
Output message: NotifyMessageDeliveryReceiptResponse
20
8.3.2.3
Referenced faults
20
8.4
Interface: MessageNotificationManager
20
8.4.1
Operation: StartMessageNotification
20
8.4.1.1
Input message: StartMessageNotificationRequest
21
8.4.1.2
Output message: StartMessageNotificationResponse
21
8.4.1.3
Referenced Faults
21
8.4.2
Operation: StopMessageNotification
21
8.4.2.1
Input message: StopMessageNotificationRequest
21
8.4.2.2
Output message: StopMessageNotificationResponse
21
8.4.2.3
Referenced Faults
21
9
Fault definitions
23
9.1
ServiceException
23
9.1.1
Void
23
9.1.2
SVC0283: Delivery Receipt Notification not supported
23
10
Service policies
23
Annex A (normative):
WSDL for Multimedia Messaging
24
Annex B (informative):
 Description of Parlay X Web Services Part 5: Multimedia messaging for 3GPP2 cdma2000 networks
25
B.1
General Exceptions
25
B.2
Specific Exceptions
25
B.2.1
Clause 1: Scope
25
B.2.2
Clause 2: References
25
B.2.3
Clause 3: Definitions and abbreviations
25
B.2.4
Clause 4: Detailed service description
25
B.2.5
Clause 5: Namespaces
25
B.2.6
Clause 6: Sequence diagrams
26
B.2.7
Clause 7: XML Schema data type definition
26
B.2.8
Clause 8: Web Service interface definition
26
B.2.9
Clause 9: Fault definitions
26
B.2.10
Clause 10: Service policies
26
B.2.11
Annex A (normative): WSDL for Multimedia Messaging
26
Annex C (informative):
Change history
27

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

3GPP acknowledges the contribution of the Parlay X Web Services specifications from The Parlay Group. The Parlay Group is pleased to see 3GPP acknowledge and publish the present document, and the Parlay Group looks forward to working with the 3GPP community to improve future versions of the present document.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 5 of a multi-part deliverable covering the 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Open Service Access (OSA); Parlay X Web Services, as identified below:

Part 1:
"Common"
Part 2:
"Third party call"
Part 3:
"Call Notification"

Part 4:
"Short Messaging"

Part 5:
"Multimedia Messaging"

Part 6:
"Payment"
Part 7:
"Account management"
Part 8:
"Terminal Status"

Part 9:
"Terminal location"

Part 10:
"Call handling"
Part 11:
"Audio call"
Part 12:
"Multimedia conference"
Part 13:
"Address list management"
Part 14:
"Presence"

Part 15:
"Message Broadcast"

Part 16:
"Geocoding"

Part 17:
"Application driven Quality of Service (QoS)"

Part 18:
"Device management"

Part 19:
"Multimedia streaming control"

Part 20:
"Multimedia multicast session management"

1
Scope

The present document is Part 5 of the Stage 3 Parlay X Web Services specification for Open Service Access (OSA).
The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardized interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Multimedia Messaging Web Service aspects of the interface. All aspects of the Multimedia Messaging Web Service are defined here, these being:

· Name spaces.

· Sequence diagrams.

· Data definitions.

· Interface specification plus detailed method descriptions.

· Fault definitions.

· Service policies.

· WSDL Description of the interfaces.

The present document has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and The Parlay Group.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3]
3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4]
3GPP TS 22.101: "Service aspects; Service principles".

[5]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[6]
3GPP TS 29.199-1: "Open Service Access (OSA); Parlay X Web Services; Part 1: Common".

[7]
W3C Note (11 December 2001): "SOAP Messages with Attachments".

NOTE:
http://www.w3.org/TR/SOAP-attachmentsAvailable at .

[8]
3GPP TS 23.140 "Multimedia Messaging Service (MMS); Functional description; Stage 2".

[9]
RFC2822: "Internet Message Format".

NOTE:
Available at http://www.ietf.org/rfc/rfc2822.txt
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 29.199-1 [6] apply.

Additionally the following definition is needed:

Whitespace: see definition for CFWS as defined in RFC2822 [9].

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TS 29.199-1 [6] and the following apply:

EMS
Enhanced Messaging Service

IM
Instant Messaging

MMS
Multimedia Messaging Service

MMS-C
Multimedia Messaging Service - Centre

SMS
Short Message Service

4
Detailed service description

Currently, in order to programmatically receive and send Multimedia Messages, it is necessary to write applications using specific protocols to access MMS functions provided by network elements (e.g. MMS-C). This approach requires application developers to have a high degree of network expertise.

This contribution defines a Multimedia Messaging Web Service that can map to SMS, EMS, MMS, IM, E-mail, etc.

The choice is between defining one set of interfaces per messaging network or a single set common to all networks; e.g. we could define sendMMS, sendEMS, sendSMS, etc., or just use sendMessage. Although the more specific the API the easier it is to use, there are advantages to a single set of network-neutral APIs. These advantages include:

· improved service portability;

· lower complexity, by providing support for generic user terminal capabilities only.

For this version of the Parlay X specification, we provide sets of interfaces for two messaging Web Services: Short Messaging (part 7) and Multimedia Messaging (this part), which provides generic messaging features (including SMS).

Multimedia Messaging provides operations (see clause 8.1, SendMessage API) for sending a Multimedia message to the network and a polling mechanism for monitoring the delivery status of a sent Multimedia message. It also provides an asynchronous notification mechanism for delivery status (see clause 8.3, MessageNotification API).

Multimedia Messaging also allows an application to receive Multimedia messages. Both a polling (see clause 8.2, ReceiveMessage API) and an asynchronous notification mechanism (see clause 8.3, Message Notification API) are available.

Figure 4.1 shows an example scenario using sendMessage and getMessageDeliveryStatus to send data to subscribers and to determine if the data has been received by the subscriber. The application invokes a Web Service to retrieve a stock quote (1) and (2) and sends the current quote - sendMessage - using the Parlay X Interface (3) of the Multimedia Messaging Web Service. After invocation, the Multimedia Message Web Service sends the message to an MMS-C using the MM7 interface (4) for onward transmission (5) to the subscriber over the Mobile network.

Later, when the next quote is ready, the application checks to see - getMessageDeliveryStatus - if the previous quote has been successfully delivered to the subscriber. If not, it may for instance perform an action (not shown) to provide a credit for the previous message transmission. This way, the subscriber is only charged for a stock quote if it is delivered on time.

[image: image3.wmf]MMSC

-X

component

Multimedia

Message Web

Service

Parlay X I/F

MMSC

MMS-C

MM7 VASP

Interface

Mobile network

Stock Quote

Web Service

Stock Quote

Web Service

……

..

content1

=

get

StockQuote

()

…

..

Retrieve

user Profile

…

.

messageId

=

sendMessage

(

content

1

)

…

.

status

=

getMessageDeliveryStatus

(

messageId)

if

status

=Message_Waiting

…

.

fi

…

content2

=

get

StockQuote

()

messageId

=

sendMessage

(

content2

)

User

profile

1

2

3

4

5

6

Figure 4.1: Multimedia Messaging Scenario

Alternatively this service could have been built using WAP push features in the network.

Figure 4.2 shows an example scenario using sendMessage and getMessageDeliveryStatus to send a link to subscribers and to determine if the data has been received by the subscriber. The application invokes a Web Service to generate a stock quote graph (1) and (2) and sends the current quote as a WAP push link - sendMessage - using the Parlay X Interface (3) of the Multimedia Messaging Web Service. After invocation, the Multimedia Message Web Service sends the message to an SMS (4) for onward transmission (5) to the subscriber over the Mobile network. The subscriber can then open the link and access his content.

[image: image4.jpg]User.

=

Multimedia

Message Web
Service
Parlay X IF

.Y
contentl= generatetockQuok Graph)

Retrieve
user Profle

‘messageld sendMessage(lindk to conientl)

R -
N Wabing

£

content2= generateStockQuok Graph)
messageli- sendMessage (link to conent?)

Send WAP
push message

Follow link to
content

Figure 4.2: WAP push scenario

5
Namespaces

The SendMessage interface uses the namespace:

http://www.csapi.org/wsdl/parlayx/multimedia_messaging/send/v3_1

The ReceiveMessage interface uses the namespace:

http://www.csapi.org/wsdl/parlayx/multimedia_messaging/receive/v3_1

The MessageNotification interface uses the namespace:

http://www.csapi.org/wsdl/parlayx/multimedia_messaging/notification/v3_1

The MessageNotificationManager interface uses the namespace:

http://www.csapi.org/wsdl/parlayx/multimedia_messaging/notification_manager/v3_1

The data types are defined in the namespace:

http://www.csapi.org/schema/parlayx/multimedia_messaging/v3_0

The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [5]. The use of the name 'xsd' is not semantically significant.

6
Sequence diagrams

6.1
Send picture

With the advent of picture capable mobile phones, the exchange of photos to mobile phones is becoming more common place. This sequence diagram shows an application where a person can send a picture from an online photo album to a mobile phone.

[image: image5.emf] : End User : Online Photo

Album

 : Send MMS

Web Service

User logs on

User selects photo to send

User fills in send information

Send multimedia message

Message identifier

Get message status

Status

Acknowledgement page

Short wait

6.2
Send WAP push message

For mobile phones capable of receiving WAP push messages, link to content can be sent using this example. The suggested MIME type for the attachment defined by OMA is text/vnd.wap.sl for sending HTTP links or WAP links to a mobile phone. This sequence diagram shows an application where a link is sent to a mobile phone, and the mobile phone fetches the content.

[image: image6]
7
XML schema data type definition

7.1
DeliveryStatus enumeration

List of delivery status values.

	Enumeration
	Description

	DeliveredToTerminal
	Successful delivery to Terminal.

	DeliveryUncertain
	Delivery status unknown: e.g. because it was handed off to another network.

	DeliveryImpossible
	Unsuccessful delivery; the message could not be delivered before it expired.

	MessageWaiting
	The message is still queued for delivery. This is a temporary state, pending transition to one of the preceding states.

	DeliveredToNetwork
	Successful delivery to the network enabler responsible for distributing the multimedia message further in the network.

	DeliveryNotificationNotSupported
	Unable to provide delivery receipt notification. NotifyMessageDeliveryReceipt function will provide “DeliveryNotificationNotSupported” to indicate that delivery receipt for the specified address in a SendMessageRequest is not supported.

7.2
MessagePriority enumeration

List of delivery priority values.

	Enumeration
	Description

	Default
	Default message priority

	Low
	Low message priority

	Normal
	Normal message priority

	High
	High message priority

7.3
DeliveryInformation structure

Delivery status information.

	Element name
	Element type
	Optional
	Description

	Address
	xsd:anyURI
	No
	Address associated with the delivery status. The address field is coded as a URI.

	DeliveryStatus
	DeliveryStatus
	No
	Indicates delivery status for the destination address.

7.4
MessageReference structure

Message information.

	Element name
	Element type
	Optional
	Description

	messageIdentifier
	xsd:string
	Yes
	If present, contains a reference to a message stored in the Parlay X gateway. If the message is pure text, this parameter is not present.

	messageService
ActivationNumber
	xsd:string
	No
	Number associated with the invoked Message service, i.e. the destination address used by the terminal to send the message.

	senderAddress
	xsd:anyURI
	No
	Indicates message sender address.

	subject
	xsd:string
	Yes
	If present, indicates the subject of the received message. This parameter will not be used for SMS services.

	priority

	MessagePriority
	No
	The priority of the message: default is Normal.

	message
	xsd:string
	Yes
	If present, then the messageIdentifier is not present and this parameter contains the whole message. The type of the message is always pure ASCII text in this case. The message will not be stored in the Parlay X gateway.

	DateTime
	xsd:dateTime
	Yes
	Time when message was received by operator

7.5
MessageURI structure

Message location information.

	Element name
	Element type
	Optional
	Description

	bodyText
	xsd:string
	Yes
	Contains the message body if it is encoded as ASCII text.

	fileReferences
	xsd:anyURI [0..unbounded]
	Yes
	This is an array of URI references to all the attachments in the Multimedia message. These are URIs to different files, e.g. GIF pictures or pure text files.

7.6
ScheduledDeliveryStatus enumeration

List of scheduled multimedia message delivery status values

	Enumeration
	Description

	Scheduled
	The Message has been scheduled, the scheduled time has not started.

	NotSent
	Message could not be sent before end of scheduled time.

	Sent
	The Message has been sent within the scheduled time.

	Cancelled
	Message has been cancelled. Some messages may have been sent.

	Partially Sent
	Message is sent to some, but not to all the recipients.

	StatusUnavailable
	Unable to provide delivery information.

7.7
ScheduledDeliveryInformation structure

Scheduled delivery information

	Element name
	Element type
	Optional
	Description

	DeliveryStatus
	ScheduledDeliveryStatus
	No
	Indicates the delivery result for the destination address.

	NumberOf
MessagesSent
	xsd:int
	Yes
	If applicable, the number of messages already sent.

8
Web Service interface definition

8.1
Interface: SendMessage

Operations to send messages and check status on sent messages.

8.1.1
Operation: SendMessage

Request to send a Message to a set of destination addresses, returning a requestIdentifier to identify the message. The requestIdentifier can subsequently be used by the application to poll for the message status, i.e. using getMessageDeliveryStatus to see if the message has been delivered or not. The content is sent as one or more attachments as specified in SOAP Messages with Attachments [7].

addresses may include group URIs as defined in the Address List Management specification. If groups are not supported, a PolicyException (POL0006) will be returned to the application.

Optionally the application can also indicate the sender address (senderAddress), i.e. the string that is displayed on the user's terminal as the originator of the message, the message priority, the message subject, the charging information and a receiptRequest. The receiptRequest which is a SimpleReference structure indicates the application endpoint, interface used for notification of delivery receipt and a correlator that uniquely identifies the sending request. By invoking this operation with the optional receiptRequest part the application requires to receive the notification of the status of the message delivery.

If notification mechanism is not supported by a network a fault (SVC0283) will be returned to the application and the message will not be sent to the addresses specified. Notification to the application is done by invoking the notifyMessageDeliveryReceipt operation at the endpoint specified in receiptRequest.

The correlator provided in the receiptRequest must be unique for this Web Service and application at the time the notification is initiated, otherwise a ServiceException (SVC0005) will be returned to the application.

8.1.1.1
Input message: SendMessageRequest

	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Destination addresses for the Message.

	SenderAddress
	xsd:string
	Yes
	Message sender address. This parameter is not allowed for all 3rd party providers. Parlay X server needs to handle this according to a SLA for the specific application and its use can therefore result in a PolicyException.

	Subject
	xsd:string
	Yes
	Message subject. If mapped to SMS this parameter will be used as the senderAddress, even if a separate senderAddress is provided.

	Priority
	MessagePriority
	Yes
	Priority of the message. If not present, the network will assign a priority based on an operator policy.

	Charging
	Common:Charging
Information
	Yes
	Charging to apply to this message.

	ReceiptRequest
	Common:Simple
Reference
	Yes
	It defines the application endpoint, interfaceName and correlator that will be used to notify the application when the message has been delivered to terminal or if delivery is impossible.

NOTE:
The input message contains one or more attachments, with appropriate content as defined by SOAP Messages with Attachments [7].

8.1.1.2
Output message: SendMessageResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It is a correlation identifier that is used in a getMessageDeliveryStatus message invocation, i.e. to poll for the delivery status of all of the sent Messages.

8.1.1.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

· SVC0283 - Delivery Receipt Notification not supported

PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.

· POL0008 - Charging not supported.

8.1.2
Operation: GetMessageDeliveryStatus

This is a poll method used by the application to retrieve delivery status for each message sent as a result of a previous sendMessage message invocation. The requestIdentifier parameter identifies this previous message invocation.

This operation can be invoked multiple times by the application even if the status has reached a final value. However, after the status has reached a final value, status information will be available only for a limited period of time as defined by a service policy.

8.1.2.1
Input message: GetMessageDeliveryStatusRequest

	Part name
	Part type
	Optional
	Description

	RequestIdentifier
	xsd:string
	No
	Identifier related to the delivery status request.

8.1.2.2
Output message: GetMessageDeliveryStatusResponse

	Part name
	Part type
	Optional
	Description

	result
	DeliveryInformation [0..unbounded]
	Yes
	It is an array of status of the messages that were previously sent. Each array element represents a sent message: i.e. its destination address and its delivery status.

8.1.2.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

· POL0010 – Retention time interval expired

8.1.3
Operation: ScheduleMessage

Request to schedule sending a message to a set of destination addresses, returning a requestIdentifier to identify the message. The requestIdentifier can subsequently be used by the application to poll for the message status or cancel the scheduled message.

8.1.3.1
Input message: ScheduleMessageRequest

	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Destination addresses for the message.

	SenderAddress
	xsd:string
	Yes
	Message sender address. This parameter is not allowed for all 3rd party providers. Parlay X server needs to handle this according to a SLA for the specific application and its use can therefore result in a PolicyException.

	Subject
	xsd:string
	Yes
	Message subject. If mapped to SMS this parameter will be used as the senderAddress, even if a separate senderAddress is provided.

	Priority
	MessagePriority
	Yes
	Priority of the message. If not present, the network will assign a priority based on an operator policy.

	Charging
	common:Charging
Information
	Yes
	Charging to apply to this message.

	StartTime
	xsd:dateTime
	No
	Specifies the time to start sending out the scheduled message.

	StopTime
	xsd:dateTime
	No
	Specifies the time to stop sending out the message. Any message not sent before StopTime will not be sent.

NOTE:
The input message contains one or more attachments, with appropriate content as defined by SOAP Messages with Attachments [7].

8.1.3.2
Output message: ScheduleMessageResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It is a correlation identifier

8.1.3.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.

· POL0008 - Charging not supported.

8.1.4
Operation: CancelScheduledMessage

The invocation of cancelScheduledMessageRequest cancels the previously scheduled message request identified by requestIdentifier. If the period scheduled for sending the message has started, some of the messages may have been sent.

8.1.4.1
Input message: CancelScheduledMessageRequest

	Part name
	Part type
	Optional
	Description

	RequestIdentifier
	xsd:string
	No
	It identifies a specific message schedule request

8.1.4.2
Output message : CancelScheduledMessageResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.1.4.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

8.1.5
Operation: GetScheduledMessageStatus

Gets the schedule and status of a scheduled message.

8.1.5.1
Input message: GetScheduledMessageStatusRequest

	Part name
	Part type
	Optional
	Description

	RequestIdentifier
	xsd:string
	No
	It identifies a specific message schedule request

8.1.5.2
Output message: GetScheduledMessageStatusResponse

	Part name
	Part type
	Optional
	Description

	result
	ScheduledDeliveryInformation
	No
	Indicates the delivery result for the destination addresses and, if applicable, the number of messages already sent.

8.1.5.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

· POL0010 – Retention time interval expired

8.2
Interface: ReceiveMessage

Operations to retrieve messages that have been received.

8.2.1
Operation: GetReceivedMessages

This method enables the application to poll for new messages received that fulfil the criteria identified by registrationIdentifier. The priority parameter may be used by the application to retrieve references to higher priority messages, e.g. if Normal is chosen only references to high priority and normal priority messages are returned. If the priority parameter is omitted all message references are returned.

The operation returns a new list of received messages: i.e. only the received messages that the application has not retrieved by previous invocations of this operation. Moreover, each received message will be automatically removed from the server after an agreed time interval, as defined by a service policy.

8.2.1.1
Input message: GetReceivedMessagesRequest

	Part name
	Part type
	Optional
	Description

	RegistrationIdentifier
	xsd:string
	No
	Identifies the provisioning step that enables the application to receive notification of Message reception according to specified criteria.

	Priority
	MessagePriority
	Yes
	The priority of the messages to poll from the Parlay X gateway. All messages of the specified priority and higher will be retrieved. If not specified, all messages shall be returned, i.e. the same as specifying Low.

8.2.1.2
Output message: GetReceivedMessagesResponse

	Part name
	Part type
	Optional
	Description

	result
	MessageReference [0..unbounded]
	Yes
	It contains an array of messages received according to the specified filter of registrationIdentifier and priority.

8.2.1.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

· POL0010 – Retention time interval expired

8.2.2
Operation: GetMessageURIs

This method will read the different parts of the message, create local files in the Parlay Gateway and return URI references to them. The application can then simply read each file or just have them presented as links to the end-user. The URIs to the files will be active for as long as the message remains on the server: i.e. an agreed time interval as defined by a service policy.

8.2.2.1
Input message: GetMessageURIsRequest

	Part name
	Part type
	Optional
	Description

	MessageRefIdentifier
	xsd:string
	No
	The identity of the message to retrieve.

8.2.2.2
Output message: GetMessageURIsResponse

	Part name
	Part type
	Optional
	Description

	result
	MessageURI
	No
	It contains the complete message, i.e. the textual part of the message, if such exists, and a list of file references for the message attachments, if any.

8.2.2.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

· POL0010 – Retention time interval expired

8.2.3
Operation: GetMessage

This method will read the whole message. The data is returned as an attachment, as defined in SOAP Messages with Attachments [7], in the return message. Note that the received message is only available on the server for an agreed time interval following receipt, as defined by a service policy.

8.2.3.1
Input message: GetMessageRequest

	Part name
	Part type
	Optional
	Description

	MessageRefIdentifier
	String
	No
	The identity of the message

8.2.3.2
Output message: GetMessageResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.2.3.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

· POL0010 – Retention time interval expired.

8.3
Interface: MessageNotification

MessageNotification is the application side notification interface to which multimedia messages are delivered.

8.3.1
Operation: NotifyMessageReception

The notification is used to send a multimedia message to the application. The notification will occur only if the multimedia message fulfils the criteria specified when starting the multimedia message notification.

8.3.1.1
Input message: NotifyMessageReceptionRequest

	Part name
	Part type
	Optional
	Description

	correlator
	xsd:string
	No
	Correlator provided in request to set up this notification

	Message
	MessageReference
	No
	This parameter contains all the information associated with the received message.

8.3.1.2
Output message: NotifyMessageReceptionResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.3.1.3
Referenced faults

None.

8.3.2
Operation: NotifyMessageDeliveryReceipt

The notifyMessageDeliveryReceipt method must be implemented by a Web Service at the application side if it requires notification of message delivery receipt. It will be invoked by the Parlay X server to notify the application when a message sent by an application has been delivered to the terminal of the recipient or if delivery is impossible. The notification will occur if and only if the status of the sent message is ‘DeliveredToTerminal’ or ‘DeliveryImpossible’ and the application has specified interest in notification when sending a message by specifying the optional receiptRequest parameter. The correlator returned corresponds to the identifier specified by the application in the receiptRequest of the original sendMessage request

When a message is sent to multiple addresses, the notification from the server will send notification for each terminal as and when a message is delivered to a terminal.

The following three different message delivery status will be returned in NotifyMessageDeliveryReceiptResponse:

· 'DeliveryImpossible': unsuccessful delivery; the message could not be delivered before it expired.

· 'DeliveredToTerminal': when message has been successfully delivered to the terminal.

· ‘DeliveredNotificationNotSupported’ - If notification is supported by the network but it does not support delivery receipt for one or more addresses specified in the sendMessage message. The service will send this status for those addresses.

8.3.2.1
Input message: NotifyMessageDeliveryReceiptRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	The identifier defining the original SendRequest. This correlator was passed by the application during the SendMessage request

	DeliveryStatus
	DeliveryInformation
	No
	It lists the variations on the delivery status of the message to a terminal. Possible values are:

· DeliveryImpossible

· DeliveredToTerminal

· DeliveryNotificationNotSupported

8.3.2.2
Output message: NotifyMessageDeliveryReceiptResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	

8.3.2.3
Referenced faults

None.

8.4
Interface: MessageNotificationManager

The multimedia message notification manager enables applications to set up and tear down notifications for multimedia messages online.

8.4.1
Operation: StartMessageNotification

Start notifications to the application for a given Message Service activation number and criteria.

The Message Service activation number is an Address Data item e.g. Shortcode, as defined in 3GPP TS 29.199-1 [6].

The correlator provided in the reference must be unique for the application Web Service at the time the notification is initiated, otherwise a ServiceException (SVC0005) will be returned to the application..

If specified, criteria will be used to filter messages that are to be delivered to an application. If criteria are not provided, or are an empty string, then all messages for the MessageServiceActivationNumber will be delivered to the application. The MessageServiceActivationNumber and criteria combination must be unique. If a criteria overlaps then SVC0008 will be returned to the application and the notification will not be set up. Note that the use of criteria will allow different notification endpoints to receive notifications for the same MessageServiceActivationNumber. The combination of MessageServiceActivationNumber and criteria must be unique, so that a notification will be delivered to only one notification endpoint. If no match is found, the message will not be delivered to the application.
8.4.1.1
Input message: StartMessageNotificationRequest

	Part name
	Part type
	Optional
	Description

	Reference
	common:SimpleReference
	No
	Notification endpoint definition

	MessageServiceActivationNumber
	xsd:anyURI
	No
	the destination address of the multimedia message

	Criteria
	xsd:string
	Yes
	The text to match against to determine the application to receive the notification.

This text is matched against the first word, as defined as the initial characters after discarding any leading Whitespace and ending with a Whitespace or end of the string. The matching shall be case-insensitive.

If the subject of the multimedia message is present it shall be used as the string, if not the string is defined as the first plain/text part of the content (see 3GPP TS 23.140 [8]).

8.4.1.2
Output message: StartMessageNotificationResponse

	Part Name
	Part Type
	Optional
	Description

	none
	
	
	

8.4.1.3
Referenced Faults

ServiceException from [6]

· SVC0001 – Service error

· SVC0002 – Invalid input value

· SVC0005 – Duplicate correlator

· SVC0008 – Overlapping Criteria

PolicyException from [6]

· POL0001 – Policy error

8.4.2
Operation: StopMessageNotification

The application may end a multimedia message notification using this operation

8.4.2.1
Input message: StopMessageNotificationRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	Correlator of request to end

8.4.2.2
Output message: StopMessageNotificationResponse

	Part Name
	Part Type
	Optional
	Description

	None
	
	
	

8.4.2.3
Referenced Faults

ServiceException from [6]

· SVC0001 – Service error

· SVC0002 – Invalid input value

PolicyException from [6]

· POL0001 – Policy error

9
Fault definitions

9.1
ServiceException

9.1.1
Void

The fault code (SVC0230) is reserved and shall not be used.

9.1.2
SVC0283: Delivery Receipt Notification not supported

	Name
	Description

	Message Id
	SVC0283

	Text
	Delivery Receipt Notification not supported

	Variables
	

10
Service policies

Table: Service policies for this service

	Name
	Type
	Description

	GroupSupport
	xsd:Boolean
	Groups may be included with addresses

	NestedGroupSupport
	xsd:Boolean
	Are nested groups supported in group definitions

	ChargingSupported
	xsd:Boolean
	Charging supported for send message operation

	StatusRetentionTime
	common:TimeMetric
	A time interval that begins after the status of a message delivery request has reached a final value. During this interval, the delivery status information remains available for retrieval by the application.

	MessageRetentionTime
	common:TimeMetric
	A time interval that begins after the receipt of a message. During this interval, the message remains available for retrieval by the application.

Annex A (normative):
WSDL for Multimedia Messaging

The document/literal WSDL representation of this interface specification is compliant to 3GPP TS 29.199-1 [6] and is contained in text files (contained in archive 29199-05-710-doclit.zip) which accompanies the present document.

Annex B (informative):
Description of Parlay X Web Services Part 5: Multimedia messaging for 3GPP2 cdma2000 networks

This annex is intended to define the OSA Parlay X Web Services Stage 3 interface definitions and it provides the complete OSA specifications. It is an extension of OSA Parlay X Web Services specifications capabilities to enable operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1]
3GPP2 X.S0011-D: “cdma2000 Wireless IP Network Standard ", Version 1.1

[2]
3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems", Version 3.0
[3]
3GPP2 X.S0013-A: "All-IP Core Network Multimedia Domain"
These requirements are expressed as additions to and/or exclusions from the 3GPP Release 7 specification.
The information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP OSA specifications.

B.1
General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used (3GPP TR 21.905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions or exclusions required.

CAMEL mappings are not applicable for cdma2000 systems.

B.2
Specific Exceptions

B.2.1
Clause 1: Scope

There are no additions or exclusions.

B.2.2
Clause 2: References

There are no additions or exclusions.

B.2.3
Clause 3: Definitions and abbreviations
There are no additions or exclusions.
B.2.4
Clause 4: Detailed service description

There are no additions or exclusions.

B.2.5
Clause 5: Namespaces
There are no additions or exclusions.

B.2.6
Clause 6: Sequence diagrams

There are no additions or exclusions.

B.2.7
Clause 7: XML Schema data type definition

There are no additions or exclusions.

B.2.8
Clause 8: Web Service interface definition

There are no additions or exclusions.

B.2.9
Clause 9: Fault definitions

There are no additions or exclusions.

B.2.10
Clause 10: Service policies

There are no additions or exclusions.

B.2.11
Annex A (normative):
WSDL for Multimedia Messaging
There are no additions or exclusions.

Annex C (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Cat
	Old
	New

	Dec 2006
	CT_34
	CP-060601
	0009
	--
	Add support for Scheduled Multimedia Messages
	B
	6.6.0
	7.0.0

	Mar 2007
	CT_35
	CP-070045
	0011
	--
	Add OSA Parlay Web Services support for 3GPP2 networks
	A
	7.0.0
	7.1.0

	Mar 2007
	--
	--
	--
	--
	Editorial: Aligned 5
Namespaces
	--
	7.1.0
	7.1.1

Get message status

Send MMS

Web Service

Send multimedia message

Message identifier

Status

Short wait

Add attachments

Content

Mobile

Phone

User enjoys content

Mobile phone processes message

Link sent to mobile phone

Access link

Service provider

_953458302.unknown

_1107096053.doc
[image: image1.emf][image: image2.emf]

MMSC

-X

component

Multimedia Message Web Service

Parlay X I/F

MMSC

MMS-C

MM7 VASP

Interface

Mobile network

Stock Quote

Web Service

Stock Quote

Web Service

……

..

content1

=

get

StockQuote

()

…

..

Retrieve

user Profile

…

.

messageId

=

sendMessage

(

content1

)

…

.

status

=

getMessageDeliveryStatus

(

messageId)

if

status=Message_Waiting

…

.

fi

…

content2

=

get

StockQuote

()

messageId

=

sendMessage

(

content2

)

User

profile

1

2

3

4

5

6

