Page 1

3GPP TS 29.198-3 V9.0.0 (2009-12)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API);

Part 3: Framework

(Release 9)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

©2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

13Foreword

Introduction
13
1
Scope
15
2
References
15
3
Definitions, symbols and abbreviations
16
3.1
Definitions
16
3.2
Abbreviations
16
4
Overview of the Framework
16
5
The Base Interface Specification
17
5.1
Interface Specification Format
17
5.1.1
Interface Class
18
5.1.2
Method descriptions
18
5.1.3
Parameter descriptions
18
5.1.4
State Model
18
5.2
Base Interface
18
5.2.1
Interface Class IpInterface
18
5.3
Service Interfaces
18
5.3.1
Overview
18
5.4
Generic Service Interface
19
5.4.1
Interface Class IpService
19
5.4.1.1
Method setCallback()
19
5.4.1.2
Method setCallbackWithSessionID()
19
6
Framework Access Session API
20
6.1
Sequence Diagrams
20
6.1.1
Trust and Security Management Sequence Diagrams
20
6.1.1.1
Initial Access
20
6.1.1.2
Framework Terminates Access
22
6.1.1.3
Application Terminates Access
23
6.1.1.4
Non-API level Authentication
23
6.1.1.5
API Level Authentication
24
6.2
Class Diagrams
26
6.3
Interface Classes
27
6.3.1
Trust and Security Management Interface Classes
27
6.3.1.1
Interface Class IpClientAPILevelAuthentication
27
6.3.1.1.1
Method abortAuthentication()
28
6.3.1.1.2
Method authenticationSucceeded()
28
6.3.1.1.3
Method challenge()
28
6.3.1.2
Interface Class IpClientAccess
29
6.3.1.2.1
Method terminateAccess()
30
6.3.1.3
Interface Class IpInitial
30
6.3.1.3.1
Method initiateAuthenticationWithVersion()
31
6.3.1.4
Interface Class IpAuthentication
32
6.3.1.4.1
Method requestAccess()
32
6.3.1.5
Interface Class IpAPILevelAuthentication
33
6.3.1.5.1
Method abortAuthentication()
33
6.3.1.5.2
Method authenticationSucceeded()
34
6.3.1.5.3
Method selectAuthenticationMechanism()
34
6.3.1.5.4
Method challenge()
34
6.3.1.6
Interface Class IpAccess
36
6.3.1.6.1
Method obtainInterface()
36
6.3.1.6.2
Method obtainInterfaceWithCallback()
36
6.3.1.6.3
Method listInterfaces()
37
6.3.1.6.4
Method selectSigningAlgorithm()
37
6.3.1.6.5
Method terminateAccess()
38
6.3.1.6.6
Method relinquishInterface()
38
6.4
State Transition Diagrams
39
6.4.1
Trust and Security Management State Transition Diagrams
39
6.4.1.1
State Transition Diagrams for IpInitial
39
6.4.1.2
State Transition Diagrams for IpAPILevelAuthentication
39
6.4.1.2.1
Idle State
40
6.4.1.2.2
Authenticating Framework State
40
6.4.1.2.3
Framework Authenticated State
41
6.4.1.2.4
Authenticating Client State
41
6.4.1.2.5
Client Authenticated State
41
6.4.1.2.6
Idle State
42
6.4.1.2.7
Authenticating Framework State
42
6.4.1.2.8
Framework Authenticated State
42
6.4.1.2.9
Authenticating Client State
43
6.4.1.2.10
Client Authenticated State
43
6.4.1.3
State Transition Diagrams for IpAccess
43
6.4.1.3.1
Active State
44
7
Framework-to-Application API
44
7.1
Sequence Diagrams
44
7.1.1
Event Notification Sequence Diagrams
44
7.1.1.1
Enable Event Notification
44
7.1.2
Integrity Management Sequence Diagrams
45
7.1.2.1
Load Management: Suspend/resume notification from application
45
7.1.2.2
Load Management: Framework queries load statistics
46
7.1.2.3
Load Management: Framework callback registration and Application load control
47
7.1.2.4
Load Management: Application reports current load condition
48
7.1.2.5
Load Management: Application queries load statistics
49
7.1.2.6
Load Management: Application callback registration and load control
50
7.1.2.7
Heartbeat Management: Start/perform/end heartbeat supervision of the application
51
7.1.2.8
Fault Management: Framework detects a Service failure
52
7.1.2.9
Fault Management: Application requests a Framework activity test
53
7.1.3
Service Discovery Sequence Diagrams
54
7.1.3.1
Service Discovery
54
7.1.4
Service Agreement Management Sequence Diagrams
56
7.1.4.1
Service Selection
56
7.2
Class Diagrams
58
7.3
Interface Classes
61
7.3.1
Service Discovery Interface Classes
61
7.3.1.1
Interface Class IpServiceDiscovery
61
7.3.1.1.1
Method listServiceTypes()
62
7.3.1.1.2
Method describeServiceType()
62
7.3.1.1.3
Method discoverService()
63
7.3.1.1.4
Method listSubscribedServices()
64
7.3.2
Service Agreement Management Interface Classes
64
7.3.2.1
Interface Class IpAppServiceAgreementManagement
64
7.3.2.1.1
Method signServiceAgreement()
65
7.3.2.1.2
Method terminateServiceAgreement()
65
7.3.2.2
Interface Class IpServiceAgreementManagement
66
7.3.2.2.1
Method signServiceAgreement()
66
7.3.2.2.2
Method terminateServiceAgreement()
67
7.3.2.2.3
Method selectService()
68
7.3.2.2.4
Method initiateSignServiceAgreement()
68
7.3.3
Integrity Management Interface Classes
69
7.3.3.1
Interface Class IpAppFaultManager
69
7.3.3.1.1
Method activityTestRes()
69
7.3.3.1.2
Method appActivityTestReq()
70
7.3.3.1.3
Method <<deprecated>> fwFaultReportInd()
70
7.3.3.1.4
Method <<deprecated>> fwFaultRecoveryInd()
70
7.3.3.1.5
Method <<deprecated>> fwUnavailableInd()
70
7.3.3.1.6
Method activityTestErr()
71
7.3.3.1.7
Method appUnavailableInd()
71
7.3.3.1.8
Method svcAvailStatusInd()
71
7.3.3.1.9
Method generateFaultStatisticsRecordRes()
71
7.3.3.1.10
Method generateFaultStatisticsRecordErr()
72
7.3.3.1.11
Method generateFaultStatisticsRecordReq()
72
7.3.3.1.12
Method fwAvailStatusInd()
72
7.3.3.2
Interface Class IpFaultManager
73
7.3.3.2.1
Method activityTestReq()
73
7.3.3.2.2
Method appActivityTestRes()
74
7.3.3.2.3
Method svcUnavailableInd()
74
7.3.3.2.4
Method appActivityTestErr()
74
7.3.3.2.5
Method appAvailStatusInd()
75
7.3.3.2.6
Method generateFaultStatisticsRecordReq()
75
7.3.3.2.7
Method generateFaultStatisticsRecordRes()
76
7.3.3.2.8
Method generateFaultStatisticsRecordErr()
76
7.3.3.3
Interface Class IpAppHeartBeatMgmt
76
7.3.3.3.1
Method enableAppHeartBeat()
77
7.3.3.3.2
Method disableAppHeartBeat()
77
7.3.3.3.3
Method changeInterval()
77
7.3.3.4
Interface Class IpAppHeartBeat
77
7.3.3.4.1
Method pulse()
78
7.3.3.5
Interface Class IpHeartBeatMgmt
78
7.3.3.5.1
Method enableHeartBeat()
78
7.3.3.5.2
Method disableHeartBeat()
79
7.3.3.5.3
Method changeInterval()
79
7.3.3.6
Interface Class IpHeartBeat
79
7.3.3.6.1
Method pulse()
79
7.3.3.7
Interface Class IpAppLoadManager
80
7.3.3.7.1
Method loadLevelNotification()
80
7.3.3.7.2
Method resumeNotification()
80
7.3.3.7.3
Method suspendNotification()
81
7.3.3.7.4
Method createLoadLevelNotification()
81
7.3.3.7.5
Method destroyLoadLevelNotification()
81
7.3.3.7.6
Method queryAppLoadStatsReq()
81
7.3.3.7.7
Method queryLoadStatsRes()
81
7.3.3.7.8
Method queryLoadStatsErr()
82
7.3.3.8
Interface Class IpLoadManager
82
7.3.3.8.1
Method reportLoad()
83
7.3.3.8.2
Method createLoadLevelNotification()
83
7.3.3.8.3
Method destroyLoadLevelNotification()
84
7.3.3.8.4
Method resumeNotification()
84
7.3.3.8.5
Method suspendNotification()
84
7.3.3.8.6
Method queryLoadStatsReq()
85
7.3.3.8.7
Method queryAppLoadStatsRes()
85
7.3.3.8.8
Method queryAppLoadStatsErr()
86
7.3.3.9
Interface Class IpOAM
86
7.3.3.9.1
Method systemDateTimeQuery()
86
7.3.3.10
Interface Class IpAppOAM
87
7.3.3.10.1
Method systemDateTimeQuery()
87
7.3.4
Event Notification Interface Classes
87
7.3.4.1
Interface Class IpAppEventNotification
87
7.3.4.1.1
Method reportNotification()
88
7.3.4.1.2
Method notificationTerminated()
88
7.3.4.2
Interface Class IpEventNotification
88
7.3.4.2.1
Method createNotification()
89
7.3.4.2.2
Method destroyNotification()
89
7.4
State Transition Diagrams
89
7.4.1
Service Discovery State Transition Diagrams
89
7.4.1.1
State Transition Diagrams for IpServiceDiscovery
89
7.4.1.1.1
Active State
90
7.4.2
Service Agreement Management State Transition Diagrams
90
7.4.3
Integrity Management State Transition Diagrams
90
7.4.3.1
State Transition Diagrams for IpLoadManager
90
7.4.3.1.1
Idle State
91
7.4.3.1.2
Notification Suspended State
91
7.4.3.1.3
Active State
91
7.4.3.2
State Transition Diagrams for LoadManagerInternal
91
7.4.3.2.1
Normal load State
92
7.4.3.2.2
Application Overload State
92
7.4.3.2.3
Internal overload State
92
7.4.3.2.4
Internal and Application Overload State
92
7.4.3.3
State Transition Diagrams for IpOAM
93
7.4.3.3.1
Active State
93
7.4.3.4
State Transition Diagrams for IpFaultManager
93
7.4.3.4.1
Framework Active State
94
7.4.3.4.2
Framework Faulty State
94
7.4.3.4.3
Framework Activity Test State
94
7.4.3.4.4
Service Activity Test State
94
7.4.4
Event Notification State Transition Diagrams
94
7.4.4.1
State Transition Diagrams for IpEventNotification
94
8
Framework-to-Service API
95
8.1
Sequence Diagrams
95
8.1.1
Service Discovery Sequence Diagrams
95
8.1.2
Service Registration Sequence Diagrams
95
8.1.2.1
New SCF Sub Type Registration
95
8.1.2.2
New SCF Registration
96
8.1.3
Service Instance Lifecycle Manager Sequence Diagrams
98
8.1.3.1
Sign Service Agreement
98
8.1.4
Integrity Management Sequence Diagrams
99
8.1.4.1
Load Management: Service callback registration and load control
99
8.1.4.2
Load Management: Framework callback registration and service load control
100
8.1.4.3
Load Management: Client and Service Load Balancing
101
8.1.4.4
Heartbeat Management: Start/perform/end heartbeat supervision of the service
102
8.1.4.5
Fault Management: Service requests Framework activity test
103
8.1.4.6
Fault Management: Service requests Application activity test
104
8.1.4.7
Fault Management: Application requests Service activity test
104
8.1.4.8
Fault Management: Application detects service is unavailable
106
8.1.5
Event Notification Sequence Diagrams
106
8.2
Class Diagrams
106
8.3
Interface Classes
110
8.3.1
Service Registration Interface Classes
110
8.3.1.1
Interface Class IpFwServiceRegistration
110
8.3.1.1.1
Method registerService()
110
8.3.1.1.2
Method announceServiceAvailability()
111
8.3.1.1.3
Method unregisterService()
112
8.3.1.1.4
Method describeService()
112
8.3.1.1.5
Method unannounceService()
113
8.3.1.1.6
Method registerServiceSubType()
113
8.3.2
Service Instance Lifecycle Manager Interface Classes
114
8.3.2.1
Interface Class IpServiceInstanceLifecycleManager
114
8.3.2.1.1
Method createServiceManager()
115
8.3.2.1.2
Method destroyServiceManager()
115
8.3.3
Service Discovery Interface Classes
116
8.3.3.1
Interface Class IpFwServiceDiscovery
116
8.3.3.1.1
Method listServiceTypes()
116
8.3.3.1.2
Method describeServiceType()
117
8.3.3.1.3
Method discoverService()
117
8.3.3.1.4
Method listRegisteredServices()
118
8.3.4
Integrity Management Interface Classes
118
8.3.4.1
Interface Class IpFwFaultManager
118
8.3.4.1.1
Method activityTestReq()
119
8.3.4.1.2
Method svcActivityTestRes()
120
8.3.4.1.3
Method appUnavailableInd()
120
8.3.4.1.4
Method svcActivityTestErr()
120
8.3.4.1.5
Method svcAvailStatusInd()
121
8.3.4.1.6
Method generateFaultStatisticsRecordReq()
121
8.3.4.1.7
Method generateFaultStatisticsRecordRes()
121
8.3.4.1.8
Method generateFaultStatisticsRecordErr()
122
8.3.4.2
Interface Class IpSvcFaultManager
122
8.3.4.2.1
Method activityTestRes()
123
8.3.4.2.2
Method svcActivityTestReq()
123
8.3.4.2.3
Method <<deprecated>> fwFaultReportInd()
124
8.3.4.2.4
Method <<deprecated>> fwFaultRecoveryInd()
124
8.3.4.2.5
Method <<deprecated>> fwUnavailableInd()
125
8.3.4.2.6
Method svcUnavailableInd()
125
8.3.4.2.7
Method activityTestErr()
125
8.3.4.2.8
Method appAvailStatusInd()
125
8.3.4.2.9
Method generateFaultStatisticsRecordRes()
126
8.3.4.2.10
Method generateFaultStatisticsRecordErr()
126
8.3.4.2.11
Method generateFaultStatisticsRecordReq()
127
8.3.4.2.12
Method fwAvailStatusInd()
127
8.3.4.3
Interface Class IpFwHeartBeatMgmt
127
8.3.4.3.1
Method enableHeartBeat()
128
8.3.4.3.2
Method disableHeartBeat()
128
8.3.4.3.3
Method changeInterval()
128
8.3.4.4
Interface Class IpFwHeartBeat
129
8.3.4.4.1
Method pulse()
129
8.3.4.5
Interface Class IpSvcHeartBeatMgmt
129
8.3.4.5.1
Method enableSvcHeartBeat()
130
8.3.4.5.2
Method disableSvcHeartBeat()
130
8.3.4.5.3
Method changeInterval()
130
8.3.4.6
Interface Class IpSvcHeartBeat
131
8.3.4.6.1
Method pulse()
131
8.3.4.7
Interface Class IpFwLoadManager
131
8.3.4.7.1
Method reportLoad()
132
8.3.4.7.2
Method createLoadLevelNotification()
133
8.3.4.7.3
Method destroyLoadLevelNotification()
133
8.3.4.7.4
Method suspendNotification()
133
8.3.4.7.5
Method resumeNotification()
134
8.3.4.7.6
Method queryLoadStatsReq()
134
8.3.4.7.7
Method querySvcLoadStatsRes()
134
8.3.4.7.8
Method querySvcLoadStatsErr()
135
8.3.4.8
Interface Class IpSvcLoadManager
135
8.3.4.8.1
Method loadLevelNotification()
136
8.3.4.8.2
Method suspendNotification()
136
8.3.4.8.3
Method resumeNotification()
136
8.3.4.8.4
Method createLoadLevelNotification()
137
8.3.4.8.5
Method destroyLoadLevelNotification()
137
8.3.4.8.6
Method querySvcLoadStatsReq()
137
8.3.4.8.7
Method queryLoadStatsRes()
137
8.3.4.8.8
Method queryLoadStatsErr()
138
8.3.4.9
Interface Class IpFwOAM
138
8.3.4.9.1
Method systemDateTimeQuery()
138
8.3.4.10
Interface Class IpSvcOAM
139
8.3.4.10.1
Method systemDateTimeQuery()
139
8.3.5
Event Notification Interface Classes
140
8.3.5.1
Interface Class IpFwEventNotification
140
8.3.5.1.1
Method createNotification()
140
8.3.5.1.2
Method destroyNotification()
140
8.3.5.2
Interface Class IpSvcEventNotification
141
8.3.5.2.1
Method reportNotification()
141
8.3.5.2.2
Method notificationTerminated()
142
8.4
State Transition Diagrams
142
8.4.1
Service Registration State Transition Diagrams
142
8.4.1.1
State Transition Diagrams for IpFwServiceRegistration
142
8.4.1.1.1
SCF Registered State
143
8.4.1.1.2
SCF Announced State
143
8.4.2
Service Instance Lifecycle Manager State Transition Diagrams
143
8.4.3
Service Discovery State Transition Diagrams
143
8.4.4
Integrity Management State Transition Diagrams
144
8.4.4.1
State Transition Diagrams for IpFwLoadManager
144
8.4.4.1.1
Idle State
144
8.4.4.1.2
Notification Suspended State
144
8.4.4.1.3
Active State
144
8.4.4.2
State Transition Diagrams for IpFwFaultManager
145
8.4.4.2.1
Framework Active State
145
8.4.4.2.2
Framework Activity Test State
145
8.4.4.2.3
Application Activity Test State
145
8.4.4.2.4
Framework Faulty State
145
8.4.5
Event Notification State Transition Diagrams
145
8a
Framework‑to‑Enterprise Operator API
146
8a.1
Sequence Diagrams
150
8a.1.1
Event Notification Sequence Diagrams
150
8a.1.2
Service Subscription Sequence Diagrams
150
8a.1.2.1
Service Discovery and Subscription Scenario
150
8a.1.2.2
Enterprise Operator and Client Application Subscription Management Sequence Diagram
152
8a.2
Class Diagrams
153
8a.3
Interface Classes
155
8a.3.1
Event Notification Interface Classes
155
8a.3.1.1
Interface Class IpClientEventNotification
155
8a.3.1.1.1
Method reportNotification()
156
8a.3.1.1.2
Method notificationTerminated()
156
8a.3.1.2
Interface Class IpEventNotification
156
8a.3.1.2.1
Method createNotification()
156
8a.3.1.2.2
Method destroyNotification()
157
8a.3.2
Service Subscription Interface Classes
157
8a.3.2.1
Interface Class IpClientAppManagement
157
8a.3.2.1.1
Method createClientApp()
158
8a.3.2.1.2
Method modifyClientApp()
158
8a.3.2.1.3
Method deleteClientApp()
159
8a.3.2.1.4
Method createSAG()
159
8a.3.2.1.5
Method modifySAG()
159
8a.3.2.1.6
Method deleteSAG()
159
8a.3.2.1.7
Method addSAGMembers()
160
8a.3.2.1.8
Method removeSAGMembers()
160
8a.3.2.1.9
Method requestConflictInfo()
161
8a.3.2.2
Interface Class IpClientAppInfoQuery
161
8a.3.2.2.1
Method describeClientApp()
162
8a.3.2.2.2
Method listClientApps()
162
8a.3.2.2.3
Method describeSAG()
162
8a.3.2.2.4
Method listSAGs()
163
8a.3.2.2.5
Method listSAGMembers()
163
8a.3.2.2.6
Method listClientAppMembership()
163
8a.3.2.3
Interface Class IpServiceProfileManagement
164
8a.3.2.3.1
Method createServiceProfile()
164
8a.3.2.3.2
Method modifyServiceProfile()
164
8a.3.2.3.3
Method deleteServiceProfile()
165
8a.3.2.3.4
Method assign()
165
8a.3.2.3.5
Method deassign()
165
8a.3.2.3.6
Method requestConflictInfo()
166
8a.3.2.4
Interface Class IpServiceProfileInfoQuery
166
8a.3.2.4.1
Method listServiceProfiles()
167
8a.3.2.4.2
Method describeServiceProfile()
167
8a.3.2.4.3
Method listAssignedMembers()
167
8a.3.2.5
Interface Class IpServiceContractManagement
168
8a.3.2.5.1
Method createServiceContract()
168
8a.3.2.5.2
Method modifyServiceContract()
169
8a.3.2.5.3
Method deleteServiceContract()
169
8a.3.2.6
Interface Class IpServiceContractInfoQuery
169
8a.3.2.6.1
Method describeServiceContract()
170
8a.3.2.6.2
Method listServiceContracts()
170
8a.3.2.6.3
Method listServiceProfiles()
170
8a.3.2.7
Interface Class IpEntOpAccountManagement
171
8a.3.2.7.1
Method modifyEntOpAccount()
171
8a.3.2.7.2
Method deleteEntOpAccount()
171
8a.3.2.8
Interface Class IpEntOpAccountInfoQuery
172
8a.3.2.8.1
Method describeEntOpAccount()
172
8a.4
State Transition Diagrams
172
8a.4.1
Event Notification State Transition Diagrams
172
8a.4.2
Service Subscription State Transition Diagrams
172
9
Service Properties
173
9.1
Service Super and Sub Types
173
9.2
Service Property Types
173
9.3
General Service Properties
175
9.3.1
Service Name
176
9.3.2
Service Version
176
9.3.3
Service ID
176
9.3.4
Service Description
176
9.3.5
Product Name
176
9.3.6
Product Version
176
9.3.7
Void
177
9.3.8
Operation Set
177
9.3.9
Compatible Service
177
9.3.10
Backward Compatibility Level
178
9.3.11
Migration Required
179
9.3.12
Data Migrated
179
9.3.13
Migration Date And Time
180
9.3.14
Support for Regular Expressions in Address Range
180
10
Data Definitions
180
10.1
Common Framework Data Definitions
181
10.1.1
TpClientAppID
181
10.1.2
TpClientAppIDList
181
10.1.3
TpDomainID
181
10.1.4
TpDomainIDType
181
10.1.5
TpEntOpID
181
10.1.6
TpPropertyName
182
10.1.7
TpPropertyValue
182
10.1.8
TpProperty
182
10.1.9
TpPropertyList
182
10.1.10
TpEntOpIDList
182
10.1.11
TpFwID
182
10.1.12
TpService
182
10.1.13
TpServiceList
182
10.1.14
TpServiceDescription
182
10.1.15
TpServiceID
183
10.1.16
TpServiceIDList
183
10.1.17
TpServiceInstanceID
183
10.1.18
TpServiceTypeProperty
183
10.1.19
TpServiceTypePropertyList
183
10.1.20
TpServiceTypePropertyMode
183
10.1.21
TpServicePropertyTypeName
183
10.1.22
TpServicePropertyName
183
10.1.23
TpServicePropertyNameList
184
10.1.24
TpServicePropertyValue
184
10.1.25
TpServicePropertyValueList
184
10.1.26
TpServiceProperty
184
10.1.27
TpServicePropertyList
184
10.1.28
TpServiceSupplierID
184
10.1.29
TpServiceTypeDescription
184
10.1.30
TpServiceTypeName
185
10.1.31
TpServiceTypeNameList
185
10.1.32
TpSubjectType
185
10.1.33
TpServiceTypePropertyValue
186
10.1.34
TpServiceTypePropertyValueList
186
10.2
Event Notification Data Definitions
186
10.2.1
TpFwEventName
186
10.2.2
TpFwEventCriteria
187
10.2.3
TpFwEventInfo
187
10.2.4
TpFwMigrationServiceAvailableInfo
187
10.2.5
TpMigrationAdditionalInfo
188
10.2.6
TpMigrationAdditionalInfoType
188
10.2.7
TpMigrationAdditionalInfoSet
189
10.2.8
TpFwAgreementInfo
189
10.3
Trust and Security Management Data Definitions
189
10.3.1
TpAccessType
189
10.3.2
TpAuthType
189
10.3.3
Void
190
10.3.4
Void
190
10.3.5
Void
190
10.3.6
TpAuthDomain
190
10.3.7
TpInterfaceName
190
10.3.8
TpInterfaceNameList
190
10.3.9
TpServiceToken
190
10.3.10
TpSignatureAndServiceMgr
191
10.3.11
TpSigningAlgorithm
191
10.3.12
TpSigningAlgorithmCapabilityList
191
10.3.13
TpAuthMechanism
192
10.3.14
TpAuthMechanismList
192
10.4
Integrity Management Data Definitions
192
10.4.1
TpActivityTestRes
192
10.4.2
TpFaultStatsRecord
192
10.4.3
TpFaultStats
192
10.4.4
TpFaultStatisticsError
193
10.4.5
TpFaultStatsSet
193
10.4.6
TpActivityTestID
193
10.4.7
TpInterfaceFault
193
10.4.8
Void
193
10.4.9
TpFwUnavailReason
193
10.4.10
TpLoadLevel
193
10.4.11
TpLoadThreshold
194
10.4.12
TpLoadInitVal
194
10.4.13
TpLoadPolicy
194
10.4.14
TpLoadStatistic
194
10.4.15
TpLoadStatisticList
194
10.4.16
TpLoadStatisticData
194
10.4.17
TpLoadStatisticEntityID
195
10.4.18
TpLoadStatisticEntityType
195
10.4.19
TpLoadStatisticInfo
195
10.4.20
TpLoadStatisticInfoType
195
10.4.21
TpLoadStatisticError
195
10.4.22
TpSvcAvailStatusReason
196
10.4.23
TpAppAvailStatusReason
196
10.4.24
TpLoadTestID
196
10.4.25
TpFaultStatsErrorList
196
10.4.26
TpFaultReqID
196
10.4.27
TpFwAvailStatusReason
197
10.5
Service Subscription Data Definitions
197
10.5.1
TpPropertyName
197
10.5.2
TpPropertyValue
197
10.5.3
TpProperty
197
10.5.4
TpPropertyList
197
10.5.5
TpEntOpProperties
197
10.5.6
TpEntOp
198
10.5.7
TpServiceContractID
198
10.5.8
TpServiceContractIDList
198
10.5.9
TpPersonName
198
10.5.10
TpPostalAddress
198
10.5.11
TpTelephoneNumber
198
10.5.12
TpEmail
198
10.5.13
TpHomePage
198
10.5.14
TpPersonProperties
198
10.5.15
TpPerson
199
10.5.16
TpServiceStartDate
199
10.5.17
TpServiceEndDate
199
10.5.18
TpServiceRequestor
199
10.5.19
TpBillingContact
199
10.5.20
TpServiceSubscriptionProperties
199
10.5.21
TpServiceContract
199
10.5.22
TpServiceContractDescription
200
10.5.23
TpClientAppProperties
200
10.5.24
TpClientAppDescription
200
10.5.25
TpSagID
200
10.5.26
TpSagIDList
200
10.5.27
TpSagDescription
200
10.5.28
TpSag
201
10.5.29
TpServiceProfileID
201
10.5.30
TpServiceProfileIDList
201
10.5.31
TpServiceProfile
201
10.5.32
TpServiceProfileDescription
202
10.5.33
TpSagProfilePair
202
10.5.34
TpAddSagMembersConflict
202
10.5.35
TpAddSagMembersConflictList
203
10.5.36
TpAssignSagToServiceProfileConflict
203
10.5.37
TpAssignSagToServiceProfileConflictList
203
11
Exception Classes
204
Annex A (normative):
OMG IDL Description of Framework
205
Annex B (informative):
W3C WSDL Description of Framework
206
Annex C (informative):
Java™ API Description of the Framework
207
Annex D (informative):
Description of the Framework for 3GPP2 cdma2000 networks
208
D.1
General Exceptions
208
D.2
Specific Exceptions
208
D.2.1
Clause 1: Scope
208
D.2.2
Clause 2: References
208
D.2.3
Clause 3: Definitions and abbreviations
208
D.2.4
Clause 4: Overview of the Framework
208
D.2.5
Clause 5: The Base Interface Specification
208
D.2.6
Clause 6: Framework Access Session API
209
D.2.7
Clause 7 Framework-to-Application Sequence Diagrams
209
D.2.8
Clause 8: Framework-to-Service API
209
D.2.9
Clause 9: Service Properties
209
D.2.10
Clause 10: Data Definitions
209
D.2.11
Clause 11: Exception Classes
209
D.2.12
Annex A (normative): OMG IDL Description of the Framework
209
D.2.13
Annex B (informative): W3C WSDL Description of the Framework
209
D.2.14
Annex C (informative): Java™ API Description of the Framework
209
Annex E (informative):
Change history
210

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 3 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1:
"Overview";

Part 2:
"Common Data Definitions";

Part 3:
"Framework";

Part 4:
"Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";
(new in 3GPP Release 8)

Part 5:
"User Interaction SCF";

Part 6:
"Mobility SCF";

Part 7:
"Terminal Capabilities SCF";

Part 8:
"Data Session Control SCF";

Part 9:
"Generic Messaging SCF";
(not part of 3GPP Release 8)

Part 10:
"Connectivity Manager SCF";
(new in 3GPP Release 8)
Part 11:
"Account Management SCF";

Part 12:
"Charging SCF".

Part 13:
"Policy Management SCF";

Part 14:
"Presence and Availability Management SCF";

Part 15:
"Multi Media Messaging SCF";

Part 16:
"Service Broker SCF".
The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above. A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

	OSA API specifications 29.198-family
	OSA API Mapping - 29.998-family

	29.198-01
	Overview
	29.998-01
	Overview

	29.198-02
	Common Data Definitions
	29.998-02
	Not Applicable

	29.198-03
	Framework
	29.998-03
	Not Applicable

	Call Control (CC) SCF
	29.198-04-1

Common CC data definitions
	29.198-04-2

Generic CC SCF
	29.198-04-3

Multi-Party CC SCF
	29.198-04-4 Multi-media CC SCF
	29.198-04-5 Conf CC SCF
	29.998-04-1
	Generic Call Control – CAP mapping

	
	
	
	
	
	
	29.998-04-2
	Generic Call Control – INAP mapping

	
	
	
	
	
	
	29.998-04-3
	Generic Call Control – Megaco mapping

	
	
	
	
	
	
	29.998-04-4
	Multiparty Call Control – ISC mapping

	29.198-05
	User Interaction SCF
	29.998-05-1
	User Interaction – CAP mapping

	
	
	29.998-05-2
	User Interaction – INAP mapping

	
	
	29.998-05-3
	User Interaction – Megaco mapping

	
	
	29.998-05-4
	User Interaction – SMS mapping

	29.198-06
	Mobility SCF
	29.998-06-1
	User Status and User Location – MAP mapping

	
	
	29.998-06-2
	User Status and User Location – SIP mapping

	29.198-07
	Terminal Capabilities SCF
	29.998-07
	Not Applicable

	29.198-08
	Data Session Control SCF
	29.998-08
	Data Session Control – CAP mapping

	29.198-09
	Generic Messaging SCF
	29.998-09
	Not Applicable

	29.198-10
	Connectivity Manager SCF
	29.998-10
	Not Applicable

	29.198-11
	Account Management SCF
	29.998-11
	Not Applicable

	29.198-12
	Charging SCF
	29.998-12
	Not Applicable

	29.198-13
	Policy Management SCF
	29.998-13
	Not Applicable

	29.198-14
	Presence & Availability Management SCF
	29.998-14
	Not Applicable

	29.198-15
	Multi-media Messaging SCF
	29.998-15
	Not Applicable

	29.198-16
	Service Broker SCF
	29.998-16
	Not Applicable

1
Scope

The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the present document, these being:

· Sequence Diagrams;

· Class Diagrams;

· Interface specification plus detailed method descriptions;

· State Transition diagrams;

· Data definitions;

· IDL Description of the interfaces.

· WSDL Description of the interfaces

· Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and The Parlay Group, in co-operation with a number of JAIN™ Community member companies.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

[2]
3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3]
3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4]
IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996].

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4
Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating applications.

The Framework API contains interfaces between the Application Server and the Framework, between Network Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these interfaces are represented by the yellow circles in the figure below). The description of the Framework in the present document separates the interfaces into three distinct sets: Framework to Application interfaces, Framework to Enterprise Operator interfaces and Framework to Service interfaces.

[image: image3.wmf]

Registered Services

Client Application

Framework

Call

Control

Mobility

 UI

Enterprise Op

erator

Operator

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once an off-line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy decision for the application whether it must authenticate the framework or not. It is a policy decision for the framework whether it allows an application to authenticate it before it has completed its authentication of the application.

-
Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of determining what a previously authenticated application is allowed to do. Authentication shall precede authorisation. Once authenticated, an application is authorised to access certain SCFs.

-
Discovery of Framework and network SCFs: After successful authentication, applications can obtain available Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

-
Establishment of service agreement: Before any application can interact with a network SCF, a service agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is allowed to access any network SCF.

-
Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs or service data for any API method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server (SCS):

· Registering of network SCFs:. SCFs offered by a SCS can be registered at the Framework. In this way the Framework can inform the Applications upon request about available SCFs (Discovery). For example, this mechanism is applied when installing or upgrading an SCS.

Basic mechanism between Framework and Enterprise Operator:

‑
Service Subscription function: This function represents a contractual agreement between the Enterprise Operator and the Framework. In this subscription business model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself acts in the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:

· The sequence diagrams give the reader a practical idea of how the Framework is implemented.

· The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

· The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

· The State Transition Diagrams (STD) show the transition between states in the Framework. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The data definitions clause shows a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the common data types part of the present document (29.198-2).

An implementation of this API which supports or implements a method described in the present document, shall support or implement the functionality described for that method, for at least one valid set of values for the parameters of that method. Where a method is not supported by an implementation of a Framework or Service interface, the exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not supported by an implementation of an Application interface, a call to that method shall be possible, and no exception shall be returned.

5
The Base Interface Specification

5.1
Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

5.1.1
Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

5.1.2
Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3
Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

5.1.4
State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2
Base Interface

5.2.1
Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

5.3
Service Interfaces

5.3.1
Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4
Generic Service Interface

5.4.1
Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1
Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2
Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

6
Framework Access Session API

6.1
Sequence Diagrams

6.1.1
Trust and Security Management Sequence Diagrams

6.1.1.1
Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it is to initiate the authentication process with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion method to allow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces provided by the Framework.

[image: image4.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

1:
Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be supported. Note however that the framework need not accept this algorithm.

3:
The client authenticates the Framework, issuing a challenge in the challenge() method.

4:
The client provides an indication if authentication succeeded.

5:
The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies a challenge and the client returns the correct response. The Framework could authenticate the client before the client authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8:
The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9:
The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface that supports the required framework functionality, such as service discovery, integrity management, service subscription etc.

6.1.1.2
Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service instances. This type of termination is unusual, but possible with the terminateAccess method. Note that if at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

[image: image5.wmf]AppLogic

 :

IpClientAccess

 :

IpAppServiceAgreementManagement

 : IpAccess

 :

IpServiceAgreementManagement

 : IpMultiPartyCallControlManager

 : IpUserLocationCamel

1: signServiceAgreement()

2: signServiceAgreement()

3: createNotification()

4: triggeredLocationReportingStartReq()

5: terminateAccess()

1:
Following successful authentication and service discovery, the client initiates the service agreement signing process (not shown). This is completed when the client invokes signServiceAgreement on the Framework's IpServiceAgreementManagement interface, and a reference to an instance of a service manager interface is returned.

2:
The client (application) had initiated service agreement signing process for a second service agreement (not shown), and when the client signs this second service agreement, a reference to an instance of another service manager, for another service type, is returned.

3:
The application starts to use the new service manager interface.

4:
The application starts to use the other new service manager interface.

5:
The framework decides to terminate the application's access session, and to terminate all its service agreements. This is an unusual and drastic step, but could be e.g. due to violation or expiry of the application's service agreements, or some problem within the framework itself. The framework will also destroy each of the service managers the application was using (not shown). The application is now no longer authenticated with the framework, and all Framework and service interfaces it was using are destroyed.

6.1.1.3
Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This type of termination is unusual, but possible with the terminateAccess method.

[image: image6.wmf]App Logic

 :

IpClientAccess

 : IpAccess

 :

IpMultiPartyCallControlManager

 :

IpUserLocationCamel

1: destroyNotification()

2: triggeredLocationReportingStop()

3: terminateAccess()

1:
The application terminates its use of the multi-party call control service manager in a controlled manner.

2:
The application ceases to use the user location camel SCF.

3:
The application decides to terminate its access session and all its service agreements in one go. The framework will also destroy each of the service managers the application was using (not shown). The application is now no longer authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The application could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the Framework's IpServiceAgreementManager interface, and then invoked terminateAccess on the Framework's IpAccess interface, which would have been a more controlled shutdown.

6.1.1.4
Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have mutually authenticated one another using an underlying distribution technology mechanism, or the client and the framework recognise each other as a trusted party, not requiring authentication.

[image: image7.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology Mechanism is used for application

identification and authentication, or both the client and the Framework

recognise each other as trusted parties not requiring API level

authentication. There is no requirement as to when authentication should

take place using the Underlying Distribution Technology Mechanism:

before initiateAuthenticationWithVersion is invoked, after requestAccess is

invoked, or between the two.

3: selectSigningAlgorithm()

1:
The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the API.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. This returns a reference to the framework Access interface that is unique for the client.

3:
If the authentication was successful, the client and the framework can negotiate, on the framework's Access interface, the signing algorithm to be used for any signed exchanges.

4:
The client can now invoke obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface such as service discovery, integrity management, service subscription etc.

6.1.1.5
API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthenticationWithVersion method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for example CHAP prescribes the MD5 hashing algorithm as the minimum to be supported, however the framework need not accept this algorithm.

3)
The application and Framework interact to authenticate each other by using the challenge method. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact two authentication processes: authentication of the client performed by the Framework , and authentication of the Framework performed by the client. Mutual authentication is achieved by both these processes terminating successfully. Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to authenticate the Framework. There is also no required order for the execution of these two authentication processes, however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

[image: image8.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

4: challenge()

5: challenge()

7: challenge()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

6.2
Class Diagrams

[image: image9.wmf]IpInitial

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

listInterfaces()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
6.3
Interface Classes

6.3.1
Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for a client to access a Framework provider;

-
the authentication methods for the client and Framework provider to perform an authentication protocol;

-
the client with the ability to select a service capability feature to make use of;

-
the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication;

3)
Access to Framework and Service Capability Features.

6.3.1.1
Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.
If the IpClientAPILevelAuthentication interface is implemented by a client, challenge(), abortAuthentication() and authenticationSucceeded() methods shall be implemented.

	<<Interface>>

IpClientAPILevelAuthentication

	

	abortAuthentication () : void

authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1
Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework. This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again, however).

Parameters

No Parameters were identified for this method.

6.3.1.1.2
Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.

Parameters

No Parameters were identified for this method.

6.3.1.1.3
Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1.
Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's challenge parameter

2.
Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP Challenge

3.
Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4.
Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1.
Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP Response. If it does not, authentication fails.

2.
Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original challenge value

3.
Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4.
Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.
Steps for constructing the challenge octet set:
1.
Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.
2.
Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in the Value field within the CHAP Challenge.
Returns

TpOctetSet

6.3.1.2
Interface Class IpClientAccess

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session. This interface and the terminateAccess() method shall be implemented by a client.

	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

6.3.1.2.1
Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as a result of the client access termination. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
6.3.1.3
Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface and the initiateAuthenticationWithVersion() method shall be implemented by a Framework.

	<<Interface>>

IpInitial

	

	initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1
Method initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for each requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to associate them together as independent sessions under the same TpClientAppID.
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
6.3.1.4
Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a minimum requirement. The requestAccess() method shall be implemented in each.

	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

6.3.1.4.1
Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework. The access reference provided is unique to the requesting client.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE
6.3.1.5
Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used to initiate the authentication process.

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectAuthenticationMechanism(), challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

	<<Interface>>

IpAPILevelAuthentication

	

	abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1
Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the framework responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client again, however).

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.2
Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.3
Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication. The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
6.3.1.5.4
Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1.
Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's challenge parameter

2.
Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP Challenge

3.
Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4.
Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1.
Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP Response. If it does not, authentication fails.

2.
Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original challenge value

3.
Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4.
Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.
Steps for constructing the challenge octet set:
1.
Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.
2.
Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in the Value field within the CHAP Challenge.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6
Interface Class IpAccess

Inherits from: IpInterface.
This interface shall be implemented by a Framework. As a minimum requirement the obtainInterface() and obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

listInterfaces () : TpInterfaceNameList

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm

terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

6.3.1.6.1
Method obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
6.3.1.6.2
Method obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE
6.3.1.6.3
Method listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework makes available.

Parameters

No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6.4
Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session. However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.
Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM
6.3.1.6.5
Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE
6.3.1.6.6
Method relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the digitalSignature parameter requires a terminationText to sign.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the interface is released, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME
6.4
State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

6.4.1
Trust and Security Management State Transition Diagrams
6.4.1.1
State Transition Diagrams for IpInitial

[image: image10.wmf]Active

initiateAuthenticationWithVersion / return new

IpAuthentication

Figure : State Transition Diagram for IpInitial

6.4.1.2
State Transition Diagrams for IpAPILevelAuthentication

[image: image11.wmf]Idle

IpInitial.initiateAuthenticationWithVersion

Authenticating

Framework

selectAuthenticationMechanism

challenge / Client

challenges FW

selectAuthenticationMechanism

Framework

Authenticated

FW Aborts

^IpClientAPILevelAuthentication.

abortAuthentication

authenticationSucceeded / Client

satisfied with FW response

selectAuthenticationMechanism

challenge / Client

re-challenges Framework

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.1
Idle State

When the client has invoked the IpInitial initiateAuthenticationWithVersion method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.2.2
Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge method on the Framework. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.3
Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework by calling the challenge method, resulting in a transition back to Authenticating Framework state. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.4
Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge method on the client. When the Framework has processed the response from the authenticate request or challenge on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.5
Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
[image: image12.wmf]Idle

requestAccess

^P_ACCESS_DENIED

IpInitial.initiateAuthenticationWithVersion

Authenticating

Client

requestAccess

^P_ACCESS_DENIED

selectAuthenticationMechanism

selectAuthenticationMechanism

FW challenges Client

^IpClientAPILevelAuthentication.challenge

Invalid Client Response

abortAuthentication

/ Client Aborts

Client

Authenticated

FW satisfied with Client response

^IpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectAuthenticationMechanism

FW re-challenges Client

^IpClientAPILevelAuthentication.challenge

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6
Idle State

When the client has invoked the IpInitial initiateAuthenticationWithVersion method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.2.7
Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge method on the Framework. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.8
Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework by calling the challenge method, resulting in a transition back to Authenticating Framework state. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.9
Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge method on the client. When the Framework has processed the response from the authenticate request or challenge on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.10
Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.3
State Transition Diagrams for IpAccess

[image: image13.wmf]Active

IpAuthentication.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

application initiated access termination

terminateAccess / destroy all interface objects used by the client

network operator initiated access termination

 / destroy all interface objects used by the client

 ^IpClientAccess.terminateAccess

listInterfaces

selectSigningAlgorithm

relinquishInterface

Figure : State Transition Diagram for IpAccess

6.4.1.3.1
Active State

When the client requests access to the Framework on the IpAuthentication (IpAPILevelAuthentication) interface, an object implementing the IpAccess interface is created. The client can now request other Framework interfaces, including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be used during the access session in cases where a digital signature is required. When the client is no longer interested in using the interfaces it calls the terminateAccess method. This results in the destruction of all interface objects used by the client. In case the network operator decides that the client has no longer access to the interfaces the same will happen.
7
Framework-to-Application API

7.1
Sequence Diagrams

7.1.1
Event Notification Sequence Diagrams

7.1.1.1
Enable Event Notification

[image: image14.wmf]AppLogic

 : IpAppEventNotification

 : IpAccess

 : IpEventNotification

2: obtainInterfaceWithCallback()

3: new()

1: new()

4: createNotification()

5: reportNotification()

1:
This message is used to create an object implementing the IpAppEventNotification interface.

2:
This message is used to receive a reference to the object implementing the IpEventNotification interface and set the callback interface for the framework.

3:
If there is currently no object implementing the IpEventNotification interface, then one is created using this message.

4:
createNotification(eventCriteria : in TpFwEventCriteria) : TpAssignmentID.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the application is informed of the availability of a list of SCFs. The differences are:

·
in the case of invoking listServiceTypes, the application has to take the initiative, but it is informed of ALL SCFs available

·
in the case of using the event notification mechanism, the application needs not take the initiative to ask about the availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5:
The application is notified of the availability of new SCFs of the requested type(s).

7.1.2
Integrity Management Sequence Diagrams

7.1.2.1
Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

[image: image15.wmf] : IpAppLoadManager

 : IpLoadManager

1: load change detection and policy evaluation

2: suspendNotification()

3: load change detection and policy evaluation

4: resumeNotification()

5: reportLoad()

This is

implementation

detail

Load balancing service

makes a decision based

on pre-defined policy

Application provides

initial load report on

notification

resumption

7.1.2.2
Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

[image: image16.wmf] : IpLoadManager

 : IpAppLoadManager

1: queryAppLoadStatsReq()

2: get load information

3: queryAppLoadStatsRes()

This is the

implementation

detail

7.1.2.3
Load Management: Framework callback registration and Application load control

This sequence diagram shows how the framework registers itself and the application invokes load management function to inform the framework of application load.

[image: image17.wmf] :

IpAppLoadManager

 :

IpLoadManager

1: createLoadLevelNotification()

3: load change detection

4: reportLoad()

5: load change detection

6: reportLoad()

7: destroyLoadLevelNotification()

Application detects a load

condition change and

reports to Framework.

The Framework may take

appropriate load control

action - implementation

detail.

This is implementation

detail. The Application

may take appropriate

load control action.

This is implementation

detail. The Application

may take appropriate

load control action.

2: reportLoad()

Application reports its

initial load condition on

notification creation

7.1.2.4
Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

[image: image18.wmf] : IpAppLoadManager

 : IpLoadManager

2: evaluate policy

This is the implementation

detail

1: reportLoad()

7.1.2.5
Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

[image: image19.wmf] : IpAppLoadManager

 : IpLoadManager

1: queryLoadStatsReq()

This is the

implementation

detail

2: get load information

3: queryLoadStatsRes()

7.1.2.6
Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy.

[image: image20.wmf] : IpAppLoadManager

 : IpLoadManager

1: createLoadLevelNotification()

Framework detects a load

condition change

and notifies the

application. The

application may take

appropriate load control

action - implementation

detail.

4: loadLevelNotification()

3: load change detection & policy evaluation

This is Framework

implementation detail.

The Framework may take

appropriate load control

action.

6: loadLevelNotification()

7: destroyLoadLevelNotification()

5: load change detection & policy evaluation

This is Framework

implementation detail. The

Framework may take

appropriate load control

action.

2: loadLevelNotification()

Framework reports its

initial load condition on

notification creation

7.1.2.7
Heartbeat Management: Start/perform/end heartbeat supervision of the application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat mechanism. If the heartbeat was not received from the application within the specified interval, the framework can decide that the application has failed the heartbeat and can then perform some recovery action.
[image: image21.wmf]Framework

 : IpHeartBeat

 : IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

4: disableAppHeartBeat()

At a certain point of

time the framework

decides to stop

heartbeat supervision

7.1.2.8
Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The framework informs the client application.

[image: image22.wmf]Client Application : IpAppFaultManager

Framework : IpFaultManager

The framework should detect if a service instance

fails, for example via an unreturned heartbeat. The

framework should inform the application that is

using that service instance, with the reason:

SVC_UNAVAILABLE_NO_RESPONSE.

1: svcAvailStatusInd()

The application may wait until

it receives SVC_AVAILABLE

1:
The framework informs the client application that is using the service instance that the service is unavailable. The client application may wait to receive a new call to the svcAvailStatusInd with the reason SVC_AVAILABLE when the Service has become available again. The different Unavailability reasons used by the Framework (TpSvcAvailStatusReason) guides the client application developers to make the decision.

7.1.2.9
Fault Management: Application requests a Framework activity test

[image: image23.wmf]Client Application : IpAppFaultManager

Framework : IpFaultManager

Client application asks framework to

carry out an activity test. The

framework is denoted as the target by

an empty string value for svcId

parameter value.

Framework carries out test and

returns result to client application.

2: activityTestRes()

1: activityTestReq()

1:
The client application asks the framework to do an activity test. The client identifies that it would like the activity test done for the framework, rather then a service, by supplying an empty string value for the svcId parameter.

2:
The framework does the requested activity test and sends the result to the client application.

7.1.3
Service Discovery Sequence Diagrams

7.1.3.1
Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even applications that have already used the OSA API of a certain network know that the operator may upgrade it any time; this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

Discovery can be a three-step process. The first two steps have to be performed initially, but can subsequently be skipped (if the service type and its properties are already known, the application can invoke discoverService() without having to re-invoke the list/discoverServiceType methods).

[image: image24.wmf] : IpServiceDiscovery

Application

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

 : IpAccess

1: obtainInterface()

2:
Discovery: first step - list service types.

In this first step the application asks the Framework what service types that are available from this network. Service types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what SCFs are supported by the network.

The following output is the result of this first discovery step:

·
out listTypes.

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization (e.g. "P_MPCC").

3:
Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it is interested in, among those listed in the first step.

The following input is necessary:

·
in name.

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC") .

And the output is:

·
out serviceTypeDescription.

The description of the specified SCF type. The description provides information about:

·
the property names associated with the SCF;

·
the corresponding property value types;

·
the corresponding property mode (mandatory or read only) associated with each SCF property;

·
the names of the super types of this type; and

·
whether the type is currently enabled or disabled.

4:
Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e. assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the identifier this network operator has assigned to the SCF version described in terms of those service properties. This is the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to accept).

Input parameters are:

·
in serviceTypeName.

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").

·
in desiredPropertyList.

This is again a list like the one used for service registration, but where the value of the service properties have been fine tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework).

The following parameter is necessary as input:

·
in max.

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

And the output is:

·
out serviceList.

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the service property list.

7.1.4
Service Agreement Management Sequence Diagrams

7.1.4.1
Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

[image: image25.wmf] :

IpServiceAgreementManagement

 :

IpAppServiceAgreementManagement

Application

Framework

1: selectService()

3: signServiceAgreement()

4: signServiceAgreement()

2: initiateSignServiceAgreement()

1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application an identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID.

This identifies the SCF required.

And output:

·
out serviceToken.

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement. An application (identifiable by a given TpClientAppID) may select the same service on more than one occasion in which case the same serviceToken, that identifies the relationship between the Application and the network, and the service agreement that applies, shall be returned.

2:
Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's IpAppServiceAgreementManagement interface before the application calls signServiceAgreement on the frameworks's IpServiceAgreementManagement, is the only sequence permitted.

Input:

·
in serviceToken.

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

·
in agreementText.

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm.

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr.

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given TpClientAppID) attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise an exception to the client indicating that this request is denied.

7.2
Class Diagrams

[image: image26.wmf]IpAppEventNotification

reportNotification()

notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram
[image: image27.wmf]IpAppFaultManager

activityTestRes()

appActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailableInd()

activityTestErr()

appUnavailableInd()

svcAvailStatusInd()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

generateFaultStatisticsRecordReq()

fwAvailStatusInd()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

appActivityTestErr()

appAvailStatusInd()

generateFaultStatisticsRecordReq()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

loadLevelNotification()

resumeNotification()

suspendNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

queryAppLoadStatsReq()

queryLoadStatsRes()

queryLoadStatsErr()

<<Interface>>

IpLoadManager

reportLoad()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

queryLoadStatsReq()

queryAppLoadStatsRes()

queryAppLoadStatsErr()

<<Interface>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image28.wmf]IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image29.wmf]IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

listInterfaces()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image30.wmf]IpAppServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

selectService()

initiateSignServiceAgreement()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview
7.3
Interface Classes

7.3.1
Service Discovery Interface Classes
7.3.1.1
Interface Class IpServiceDiscovery

Inherits from: IpInterface.
The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and what service "properties" are applicable to each service type. The listServiceTypes() method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service discovery APIs are invoked by the enterprise operators or client applications. They are described below.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods.

	<<Interface>>

IpServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.1.1.1
Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method. If a sub type of a service is registered, this method returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters

No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED
7.3.1.1.2
Method describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information about:

· the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples;
· the names of the super types of this service type; and

· whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.
· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
7.3.1.1.3
Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services that meet its requirements. The client application passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the client application provided. The service properties returned form a complete view of what the client application can do with the service, as per the service level agreement. If the framework supports service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service trading". It is the basis for type safe interactions between the service exporters (via registerService) and service importers (via discoverService). By stating a service type, the importer implies the service type and a domain of discourse for talking about properties of service.
· If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service of a specific subtype. The framework will not return the corresponding supertype(s) in this case.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service property {name, mode and value list} tuples that the discovered set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
The desiredPropertyList only contains service properties that are relevant for the application. If an application is not interested in the value of a certain service property, this service property shall not be included in the desiredPropertyList.
P_INVALID_PROPERTY is raised when an application includes an unknown service property name or invalid service property value.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
Returns

TpServiceList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_INVALID_PROPERTY
7.3.1.1.4
Method listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns a list of subscribed services. Each service is characterised by its service ID and a list of service properties {name and value list} associated with the service.

Parameters

No Parameters were identified for this method.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ACCESS_DENIED
7.3.2
Service Agreement Management Interface Classes
7.3.2.1
Interface Class IpAppServiceAgreementManagement

Inherits from: IpInterface.
This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an application.

	<<Interface>>

IpAppServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

7.3.2.1.1
Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the framework to request that the client application sign an agreement on the service. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Returns <digitalSignature> : This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the framework. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token). If the serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is thrown.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM
7.3.2.1.2
Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the P_INVALID_SERVICE_TOKEN exception will be thrown.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
7.3.2.2
Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and initiateSignServiceAgreement() methods shall be implemented by a Framework.

	<<Interface>>

IpServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1
Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement interface, this method is used by the client application to request that the framework sign the service agreement, which allows the client application to use the service. A reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the response of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface has completed, a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one used by the framework when invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM, P_SERVICE_ACCESS_DENIED
7.3.2.2.2
Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
7.3.2.2.3
Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the terminateAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS_DENIED
7.3.2.2.4
Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be invoked following the application's call to selectService(), and before the signing of the service agreement can take place. If the client application is not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS_DENIED) is thrown.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception (P_INVALID_SERVICE_TOKEN) is thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED
7.3.3
Integrity Management Interface Classes
7.3.3.1
Interface Class IpAppFaultManager

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailableInd (serviceID : in TpServiceID) : void

svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsErrorList, serviceIDs : in TpServiceIDList) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1
Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
7.3.3.1.2
Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly. The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
7.3.3.1.3
Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
7.3.3.1.4
Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified. The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
7.3.3.1.5
Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
7.3.3.1.6
Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.
7.3.3.1.7
Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not responding.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.
7.3.3.1.8
Method svcAvailStatusInd()

The framework invokes this method to inform the client application about the Service instance availability status, i.e. that it can no longer use its instance of the indicated service according to the reason parameter but as well information when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance). The client application can also wait for the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again.
7.3.3.1.9
Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is an empty list, then the fault statistics are for the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.
7.3.3.1.10
Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.
faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the serviceIDs parameter is an empty list, then the fault statistics error relates to the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.
7.3.3.1.11
Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for the application during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the client application.
7.3.3.1.12
Method fwAvailStatusInd()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The client application may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
7.3.3.2
Interface Class IpFaultManager

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system. The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

7.3.3.2.1
Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as there is a one to one relationship between the client application and a service, i.e. there is only one service instance of the specified service per client application, it is the obligation of the framework to determine the service instance ID from the service ID.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.2
Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
7.3.3.2.3
Method svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use its instance of the indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this request, the framework should take the appropriate corrective action.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.4
Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
7.3.3.2.5
Method appAvailStatusInd()

This method is used by the application to inform the framework of its availability status. If the Application has detected a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of all of its subscribed service instances. When the Application is working again it shall call this method again with the APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework and the Service that the Application is available again.
Raises

TpCommonExceptions
7.3.3.2.6
Method generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the client application using the generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault statistics record of the framework is returned.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.7
Method generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
7.3.3.2.8
Method generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
7.3.3.3
Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the client application by the framework.

	<<Interface>>

IpAppHeartBeatMgmt

	

	enableAppHeartBeat (interval : in TpInt32, fwInterface : in IpHeartBeatRef) : void

disableAppHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.3.1
Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
7.3.3.3.2
Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.

7.3.3.3.3
Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
7.3.3.4
Interface Class IpAppHeartBeat

Inherits from: IpInterface.
The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

	<<Interface>>

IpAppHeartBeat

	

	pulse () : void

7.3.3.4.1
Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method. If the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

7.3.3.5
Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a client application. If the IpHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.

	<<Interface>>

IpHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, appInterface : in IpAppHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.5.1
Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions
7.3.3.5.2
Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
7.3.3.5.3
Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
7.3.3.6
Interface Class IpHeartBeat

Inherits from: IpInterface.
The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

	<<Interface>>

IpHeartBeat

	

	pulse () : void

7.3.3.6.1
Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method. If the pulse() is not received within the specified interval, then the client application can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
7.3.3.7
Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpAppLoadManager

	

	loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.7.1
Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application. In addition this method shall be invoked on the application in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
7.3.3.7.2
Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method.

7.3.3.7.3
Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method.

7.3.3.7.4
Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method.

7.3.3.7.5
Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters

No Parameters were identified for this method.

7.3.3.7.6
Method queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
7.3.3.7.7
Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.
7.3.3.7.8
Method queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
7.3.3.8
Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement queryAppLoadStatsRes() and queryAppLoadStatsErr() methods in this interface.

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.8.1
Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this method shall be called by the application in order to report current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpCommonExceptions
7.3.3.8.2
Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.3
Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.4
Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.5
Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. while the application handles a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended. To suspend notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.6
Method queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or for its instances of the individual services. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.
serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.7
Method queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
7.3.3.8.8
Method queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
7.3.3.9
Interface Class IpOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The application and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. This interface and the systemDateTimeQuery() method are optional.

	<<Interface>>

IpOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1
Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
7.3.3.10
Interface Class IpAppOAM

Inherits from: IpInterface.
The OAM client application interface is used by the Framework to query the application date and time, for synchronisation purposes. This method is invoked by the Framework to interchange the framework and client application date and time.

	<<Interface>>

IpAppOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1
Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the application. The application responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (application).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.
Returns

TpDateAndTime

7.3.4
Event Notification Interface Classes
7.3.4.1
Interface Class IpAppEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the application of a generic service-related event. The Event Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpAppEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

7.3.4.1.1
Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
7.3.4.1.2
Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method.

7.3.4.2
Interface Class IpEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the application of generic service related events that have occurred. If Event Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be supported.

	<<Interface>>

IpEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

7.3.4.2.1
Method createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
7.3.4.2.2
Method destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ASSIGNMENT_ID
7.4
State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

7.4.1
Service Discovery State Transition Diagrams
7.4.1.1
State Transition Diagrams for IpServiceDiscovery

[image: image31.wmf]Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

7.4.1.1.1
Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.
7.4.2
Service Agreement Management State Transition Diagrams
There are no State Transition Diagrams defined for Service Agreement Management
7.4.3
Integrity Management State Transition Diagrams
7.4.3.1
State Transition Diagrams for IpLoadManager

[image: image32.wmf]Idle

Notification

Suspended

Active

IpAccess.obtainInterface

reportLoad

queryAppLoadStatsRes[load statistics requested by LoadManager]

queryAppLoadStatsErr[load statistics requested by LoadManager]

reportLoad

IpAccess.obtainInterfaceWithCallback

All States

IpAccess.terminateAccess

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification[all notifications

suspended]

queryLoadStatsReq

queryLoadStatsReq

"load change" ^loadLevelNotification

destroyLoadLevelNotification

resumeNotification

^loadLevelNotification

queryAppLoadStatsRes[load statistics requested by LoadManager]

queryAppLoadStatsErr[load statistics requested by LoadManager]

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1
Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.
7.4.3.1.2
Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load level notification information.
7.4.3.1.3
Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpLoadManager. The load manager can now request the application to supply load statistics information (by invoking queryAppLoadStatsReq()). Furthermore the LoadManager can request the application to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
7.4.3.2
State Transition Diagrams for LoadManagerInternal

[image: image33.wmf]Normal load

Application Overload

...

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

...

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

...

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

ALL

STATES

unregisterLoadControler

Figure : State Transition Diagram for LoadManagerInternal

7.4.3.2.1
Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.
7.4.3.2.2
Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.2.3
Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.2.4
Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.3
State Transition Diagrams for IpOAM

[image: image34.wmf]Active

systemDateTimeQuery

IpAccess.terminateAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

7.4.3.3.1
Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.
7.4.3.4
State Transition Diagrams for IpFaultManager

[image: image35.wmf]Framework

Active

Framework Faulty

entry/ ^fwAvailStatusInd to all applications with callback

exit/ ^fwAvailStatusInd to all applications with callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpAppFaultManager.activityTestRes

exit/ ^IpAppFaultManager.activityTestErr

Service Activity Test

entry/ test activity of service

exit/ ^IpAppFaultManager.activityTestRes

exit/ ^IpAppFaultManager.activityTestErr

generateFaultStatisticsRecordReq ^app.generateFaultStatisticsRecordRes / Err

svcUnavailableInd / test the service, inform service that application is not using it

'change in service availability' ^svcAvailStatusInd to all applications using the service

IpAccess.terminateAccess / remove

application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add application to fault management

fault detected in fw

no fault detected

IpAccess.terminateAccess /

Abort pending test request

fault resolved

fault detected in fw

activityTestReq[

empty string]

activityTestReq[scfID]

IpAccess.terminateAccess

service fault ^svcAvailStatusInd to all applications using the service

no fault detected

IpAccess.terminateAccess /

Abort pending test request

'change in framework availabililty (non fault)' ^fwAvailStatusInd to all applications with callback

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1
Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
7.4.3.4.2
Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwAvailStatusInd message.
7.4.3.4.3
Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwAvailStatusInd message.
7.4.3.4.4
Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcAvailStatusInd message.
7.4.4
Event Notification State Transition Diagrams
7.4.4.1
State Transition Diagrams for IpEventNotification

[image: image36.wmf]Idle

IpAccess.obtainInterface

Notification

Active

createNotification

destroyNotification

destroyNotification[no more notifications installed]

IpAccess.terminateAccess

IpAccess.obtainInterfaceWithCallback

createNotification

IpAccess.terminateAccess

Figure : State Transition Diagram for IpEventNotification

8
Framework-to-Service API

8.1
Sequence Diagrams

8.1.1
Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

8.1.2
Service Registration Sequence Diagrams

8.1.2.1
New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework. This SCF is a sub type of the standard SCF.

[image: image37.wmf] :

IpFwServiceRegistration

SCS

1: registerServiceSubType()

2: announceServiceAvailability()

1:
Registration: first step - register service sub type. For sub type registration, besides the values for the standard service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2:
Registration: second step - announce service availability. This is identical to announcing availability of super types.

8.1.2.2
New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service Registration is a two step process:

[image: image38.wmf]SCS

 :

IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1:
Registration: first step - register service.

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from different vendors. The goal is to make an association between the new SCF version, as characterized by a list of properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

·
in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

·
in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a pair of (ServicePropertyName, ServicePropertyValueList).

·
ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the SCF data definition).

·
ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:

·
out serviceID

This is a string, automatically generated by the Framework and unique within the Framework.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be identified internally in this network.

2:
Registration: second step - announce service availability.

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available. In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface reference to a lifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF version, will instantiate a lifecycle manager for it that will allow client to use it. Then it will inform the Framework of the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF (identified by the pair [serviceID, serviceInstanceLifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

·
in serviceID.

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to include the serviceID, to know which SCF it is.

·
in serviceInstanceLifecycleManagerRef.

This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will have to invoke the method createServiceManager() in this interface when a client application signs an agreement to use the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

8.1.3
Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1
Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding clauses.

[image: image39.wmf] : IpAppCallControlManager

AppLogic

 : IpInitial

 :

IpServiceAgreementManagement

 : IpCallControlManager

 :

IpAppServiceAgreementManagement

GenericCallControlService :

IpServiceInstanceLifecycleManager

1: selectService()

3: signServiceAgreement()

4: createServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The client application signs the service agreement.

3:
The framework signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The lifecycle manager creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the application client results. This service instance is assigned a serviceInstanceID by the Framework, which is provided to the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework Integrity Management functionality and operations are to be supported between the Framework and the service instance identified by the defined serviceInstanceID, it is then necessary for the new service instance to establish an access session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the service instance that relates to a particular application client. The steps required to establish a Framework access session are outlined in clause 6 of the present document.

6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientAppID may carry out the sequence, as exemplified above, multiple times.

8.1.4
Integrity Management Sequence Diagrams

8.1.4.1
Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function based on policy.

[image: image40.wmf] : IpSvcLoadManager

 : IpFwLoadManager

1: createLoadLevelNotification()

3: load change detection & policy evaluation

4: loadLevelNotification()

5: load change detection & policy evaluation

6: loadLevelNotification()

7: destroyLoadLevelNotification()

This is Framework

implementation detail. The

Framework may take

appropriate load control action.

Framework detects a load

condition change and notifies

the service. The service may

take appropriate load control

action - implementation

detail.

This is Framework

implementation detail. The

Framework may take

appropriate load control action.

2: loadLevelNotification()

Framework reports its

initial load condition on

notification creation

8.1.4.2
Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registers itself and the service invokes load management function to inform the framework of service load.

[image: image41.wmf] :

IpFwLoadManager

 :

IpSvcLoadManager

1: createLoadLevelNotification()

3: load change detection

4: reportLoad()

5: load change detection

6: reportLoad()

7: destroyLoadLevelNotification()

Service detects a load condition

change and reports to

Framework. The Framework

may take appropriate load

control action - implementation

detail.

This is Service implementation

detail. The Service may take

appropriate load control action.

This is Service implementation

detail. The Service may take

appropriate load control action.

2: reportLoad()

Service reports its

initial load condition on

notification creation

8.1.4.3
Load Management: Client and Service Load Balancing

[image: image42.wmf]Application :

IpAppLoadManager

Service :

IpSvcLoadManager

Framework :

IpLoadManager

 :

IpFwLoadManager

Framework checks

application load.

Depending on the load, the

framework may choose to stop

sending notifications to the

application, to allow its load to

reduce.

The framework may then check

the load on the service, and take

action if (according to the load

balancing policy) if required.

1: queryAppLoadStatsReq()

2: queryAppLoadStatsRes()

3: querySvcLoadStatsReq()

4: querySvcLoadStatsRes()

8.1.4.4
Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval. The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the heartbeat was not received from the service within the specified interval, the framework can decide that the service has failed the heartbeat and can then perform some recovery action.

[image: image43.wmf]Framework

 :

IpFwHeartBeat

 :

IpSvcHeartBeatMgmt

1: enableSvcHeartBeat()

2: pulse()

3: pulse()

4: disableSvcHeartBeat()

At a certain point of

time the framework

decides to stop

heartbeat supervision

8.1.4.5
Fault Management: Service requests Framework activity test

[image: image44.wmf]Framework :

IpFwFaultManager

Service :

IpSvcFaultManager

The Service requests that the

Framework does an activity test.

1: activityTestReq()

2: activityTestRes()

1:
The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done for the framework, rather than an application, by supplying an appropriate parameter.

2:
The framework carries out the test and returns the result to the service.

8.1.4.6
Fault Management: Service requests Application activity test

[image: image45.wmf]Service :

IpSvcFaultManager

Application :

IpAppFaultManager

Framework :

IpFaultManager

 :

IpFwFaultManager

The Framework identifies the service

instance to conclude which

Application the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1: activityTestReq()

2: appActivityTestReq()

3: appActivityTestRes()

4: activityTestRes()

1:
The service instance asks the framework to invoke an activity test on the client application.

2:
The framework asks the application to do the activity test. It is assumed that there is internal communication between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client application.

3:
The application does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its application facing interface (IpFaultManager) to its service facing side, and sends the result to the service.

8.1.4.7
Fault Management: Application requests Service activity test

[image: image46.wmf]Client Application :

IpAppFaultManager

Service :

IpSvcFaultManager

 :

IpFwFaultManager

Framework :

IpFaultManager

The client application asks the

framework to carry out the

activity test on a service.

The Framework identifies which

service the test is directed at by the

svcID parameter, and

communicates internally with the

appropriate framework interface.

Which invokes the call on the

service.

Service does test and

returns the result.

Framework passes result

internally from service facing

part to application facing part,

and sends the result to the

application.

1: activityTestReq()

2: svcActivityTestReq()

3: svcActivityTestRes()

4: activityTestRes()

1:
The client application asks the framework to invoke an activity test on a service, the service is identified by the svcId parameter.

2:
The framework asks the service to do the activity test. It is assumed that there is internal communication between the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3:
The service does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application facing side, and sends the result to the client application.

8.1.4.8
Fault Management: Application detects service is unavailable

[image: image47.wmf]Client Application :

IpAppFaultManager

Service :

IpSvcFaultManager

Framework :

IpFaultManager

 :

IpFwFaultManager

The application detects that

the service is not responding,

so it informs the framework via

the svcUnavailableInd method.

The framework informs

the service.

1: svcUnavailableInd()

2: svcUnavailableInd()

1:
The client application detects that the service instance is currently not available, i.e. the service instance is not responding to the client application in the normal way, so it informs the framework.

2:
The framework informs the service instance that the client application was unable to get a response from it and can no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether there is a general problem with the service instance that requires further action.

8.1.5
Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

8.2
Class Diagrams

[image: image48.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image49.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

unannounceService()

registerServiceSubType()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview
[image: image50.wmf]IpInitial

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

listInterfaces()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image51.wmf]IpServiceInstanceLifecycleManager

createServiceManager()

destroyServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Instance Lifecycle Manager Package Overview
[image: image52.wmf]IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

queryLoadStatsReq()

querySvcLoadStatsRes()

querySvcLoadStatsErr()

<<Interface>>

IpSvcLoadManager

loadLevelNotification()

suspendNotification()

resumeNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

querySvcLoadStatsReq()

queryLoadStatsRes()

queryLoadStatsErr()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailableInd()

svcUnavailableInd()

activityTestErr()

appAvailStatusInd()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

generateFaultStatisticsRecordReq()

fwAvailStatusInd()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

svcActivityTestErr()

svcAvailStatusInd()

generateFaultStatisticsRecordReq()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image53.wmf]IpFwEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

reportNotification()

notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
8.3
Interface Classes

8.3.1
Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous clause enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

8.3.1.1
Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework. This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and unannounceService() shall be implemented by a Framework.

	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServiceID

8.3.1.1.1
Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

This method should be used for registration of service super types only. For registering service sub types, the registerServiceSubType() method should be used.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

If a service is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the Framework shall notify all applications using instances of services identified by this property, using the P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE
8.3.1.1.2
Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID, P_INVALID_INTERFACE_TYPE
8.3.1.1.3
Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
8.3.1.1.4
Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
8.3.1.1.5
Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
8.3.1.1.6
Method registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE exception is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the registerService () method should be used.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs corresponding to the service properties applicable to the standard service. They describe the service being registered.
If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.
If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised.
If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
extendedServicePropertyList : in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter is a list of property name, mode, type, and property value tuples corresponding to the service properties applicable to the extended standard service. They describe the service being registered.
If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE
8.3.2
Service Instance Lifecycle Manager Interface Classes
The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g. the generic call control service uses the IpCallControlManager interface.

8.3.2.1
Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances. This interface and the createServiceManager() and destroyServiceManager() methods shall be implemented by a Service.

	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

8.3.2.1.1
Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and serviceInstanceID this reference is returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.
Returns

IpServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY
8.3.2.1.2
Method destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being unable to use the service manager any more.

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.
Raises

TpCommonExceptions
8.3.3
Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" method returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values", by using the "discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values, by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has previously registered.

8.3.3.1
Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.
This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods.

	<<Interface>>

IpFwServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

8.3.3.1.1
Method listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters

No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions
8.3.3.1.2
Method describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information about: the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples, the names of the super types of this service type, and whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
8.3.3.1.3
Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values". The service supplier passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the service supplier provided.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
Returns

TpServiceList

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_INVALID_PROPERTY
8.3.3.1.4
Method listRegisteredServices()

Returns a list of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns a list of registered services. Each service is characterised by its service ID and a list of service properties {name and value list} associated with the service.

Parameters

No Parameters were identified for this method.

Returns

TpServiceList

Raises

TpCommonExceptions
8.3.4
Integrity Management Interface Classes
8.3.4.1
Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

8.3.4.1.1
Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).
Raises

TpCommonExceptions
8.3.4.1.2
Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.1.3
Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On receipt of this indication, the framework must act to inform the client application.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.1.4
Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.1.5
Method svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use according to the provided reason and as well to inform the Framework when the Service instance becomes available again. The framework should inform the client applications that are currently using this service instance that it is unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions
8.3.4.1.6
Method generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions
8.3.4.1.7
Method generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
8.3.4.1.8
Method generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
8.3.4.2
Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented. If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1
Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.2
Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
8.3.4.2.3
Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
8.3.4.2.4
Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
8.3.4.2.5
Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
Raises

TpCommonExceptions
8.3.4.2.6
Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.2.7
Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.8
Method appAvailStatusInd()

The framework invokes this method to inform the service instance that the client application is no longer available using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that the Application is available again.
Raises

TpCommonExceptions
8.3.4.2.9
Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.4.2.10
Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.4.2.11
Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.4.2.12
Method fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The service instance may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
8.3.4.3
Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.

	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.3.1
Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
8.3.4.3.2
Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.3.3
Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
8.3.4.4
Interface Class IpFwHeartBeat

Inherits from: IpInterface.
 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and the pulse() method.

	<<Interface>>

IpFwHeartBeat

	

	pulse () : void

8.3.4.4.1
Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.5
Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.

	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.5.1
Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
8.3.4.5.2
Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.5.3
Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
8.3.4.6
Interface Class IpSvcHeartBeat

Inherits from: IpInterface.
The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Service is capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the pulse() method.

	<<Interface>>

IpSvcHeartBeat

	

	pulse () : void

8.3.4.6.1
Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.7
Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.

If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall implement querySvcLoadStatsRes() and querySvcLoadStatsErr() methods in this interface.

	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLoadStatisticError) : void

8.3.4.7.1
Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In addition this method shall be called by the service instance in order to report current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions
8.3.4.7.2
Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions
8.3.4.7.3
Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions
8.3.4.7.4
Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended.
Raises

TpCommonExceptions
8.3.4.7.5
Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.
Raises

TpCommonExceptions
8.3.4.7.6
Method queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
8.3.4.7.7
Method querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.7.8
Method querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
8.3.4.8
Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If a Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement queryLoadStatsRes() and queryLoadStatsErr() methods in this interface.

	<<Interface>>

IpSvcLoadManager

	

	loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

8.3.4.8.1
Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
8.3.4.8.2
Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.3
Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.4
Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service instance. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.5
Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.6
Method querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
8.3.4.8.7
Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.8.8
Method queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
8.3.4.9
Interface Class IpFwOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The service and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of this API. This interface and the systemDateTimeQuery() method are optional.

	<<Interface>>

IpFwOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.9.1
Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
8.3.4.10
Interface Class IpSvcOAM

Inherits from: IpInterface.
This interface and the systemDateTimeQuery() method are optional.

	<<Interface>>

IpSvcOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.10.1
Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
8.3.5
Event Notification Interface Classes
8.3.5.1
Interface Class IpFwEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the service of generic events that have occurred. If Event Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be supported.

	<<Interface>>

IpFwEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8.3.5.1.1
Method createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA
8.3.5.1.2
Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
8.3.5.2
Interface Class IpSvcEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the service of a generic event. The Event Notification Framework will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and notificationTerminated() methods shall be supported.

	<<Interface>>

IpSvcEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8.3.5.2.1
Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service can use the assignment id to associate events with event specific criteria and to act accordingly.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
8.3.5.2.2
Method notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.4
State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

8.4.1
Service Registration State Transition Diagrams
8.4.1.1
State Transition Diagrams for IpFwServiceRegistration

[image: image54.wmf]SCF

Registered

registerService

SCF

Announced

describeService

unannounceService

announceServiceAvailability

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

8.4.1.1.1
SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this SCF, that will be used to identify it by both sides.
An SCF may be unregistered, the service ID then being no longer associated with the SCF.
8.4.1.1.2
SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no longer available for discovery.
8.4.2
Service Instance Lifecycle Manager State Transition Diagrams
There are no State Transition Diagrams defined for Service Instance Lifecycle Manager
8.4.3
Service Discovery State Transition Diagrams
There are no State Transition Diagrams defined for Service Discovery
8.4.4
Integrity Management State Transition Diagrams
8.4.4.1
State Transition Diagrams for IpFwLoadManager

[image: image55.wmf]Idle

Notification

Suspended

Active

All States

reportLoad

querySvcLoadStatsRes[load statistics requested by LoadManager]

querySvcLoadStatsErr[load statistics requested by LoadManager]

destroyLoadLevelNotification

queryLoadStatsReq

reportLoad

querySvcLoadStatsRes[load statistics requested by LoadManager]

querySvcLoadStatsErr[load statistics requested by LoadManager]

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

^loadLevelNotification

queryLoadStatsReq

"load change" ^loadLevelNotification

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.terminateAccess

Figure : State Transition Diagram for IpFwLoadManager

8.4.4.1.1
Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.
8.4.4.1.2
Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level notification information.
8.4.4.1.3
Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics information (by invoking querySvcLoadStatsReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
8.4.4.2
State Transition Diagrams for IpFwFaultManager

[image: image56.wmf]Framework

Active

Framework Activity Test

entry/ test activity of framework

exit/ ^IpSvcFaultManager.activityTestRes

exit/ ^IpSvcFaultManager.activityTestErr

Application Activity Test

entry/ test activity of application

exit/ ^IpSvcFaultManager.activityTestRes

exit/ ^IpSvcFaultManager.activityTestErr

Framework Faulty

entry/ ^fwAvailStatusInd to all services with callback

exit/ ^fwAvailStatusInd to all services with callback

IpAccess.obtainInterfaceWithCallback("FaultManagement")

/ add service to fault management

generateFaultStatisticsRecordReq ^svc.generateFaultStatisticsRecordRes / Err

appUnavailableInd / test the application, inform application that service is not using it

'change in application availability' ^appAvailStatusInd to all services used by application

'change in framework availability (non fault)' ^fwAvailStatusInd to all services with callback

no fault detected

fault detected in fw

IpAccess.terminateAccess /

Abort pending test request

activityTestReq[framework]

IpAccess.terminateAccess

fault detected in fw

activityTestReq[client]

fault resolved

IpAccess.terminateAccess / remove

service from load management

application fault ^appAvailStatusInd to all

services used by the application

no fault detected

IpAccess.terminateAccess /

Abort pending test request

Figure : State Transition Diagram for IpFwFaultManager

8.4.4.2.1
Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and service capability features.
8.4.4.2.2
Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fault management callbacks are notified through an fwAvailStatusInd message.
8.4.4.2.3
Application Activity Test State

In this state, the framework is performing a test on one client application. If the application is faulty, services that are used by the application and that have provided fault management callbacks are notified accordingly through an appAvailStatusInd message.
8.4.4.2.4
Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, services with fault management callbacks will be notified via a fwAvailStatusInd message.
8.4.5
Event Notification State Transition Diagrams
There are no State Transition Diagrams defined for Event Notification
8a
Framework‑to‑Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly subscribe to the services before the client applications can access those services. To accomplish this, they use the service subscription function of the Framework for subscribing or un‑subscribing to services. Subscription represents a contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in the role of users or consumers of services. The framework itself acts in the role of retailer of services. The following examples illustrate these roles:

· Service (to be subscribed): Call Centre Service, Mobility Service, etc.

· Framework Operator: AT&T, BT, etc.

· Enterprise Operator: A Financial institution such as a Bank or Insurance Company, or possibly an Application Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks" to its peer in the Framework).

· User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before a client application of the enterprise can use the new service. In general, the service subscription is performed after an off‑line negotiation of a set of services and the associated price between the framework operator and the enterprise operator. The service subscription is performed online by the enterprise operator in the frame of an existing off‑line negotiated contract between the framework operator and the enterprise. The on‑line service subscription function is used for subscriber, client application, and service contract management. The following clause describes a service subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service subscription process. The subscription process involves the enterprise operator (which acts in the role of service subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through a retailer, such as the Framework. An enterprise operator represents an organisation or a company which will be hosting client applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about the service usage with the Framework, using an on‑line subscription interface provided by the Framework. The Framework provides the service according to the service contract. The Enterprise Operator authorises the client application in his/her domain for the service usage. Finally a subscribed service can be used by a particular client application.

[image: image57.wmf]Enterprise Operator (In the role

of Service Subscriber)

Framework (In the

role

of Service Retailer)

Client Application (In the role

of

User or Consumer of Services)

Signs contract about service usage

Uses service

Authorises

Figure: Subscription Business Model

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object is identified by a unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator in the Framework domain. It is created by the Framework Operator during the pre‑subscription off‑line negotiation of services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise operator domain has one or more client applications associated with it. The enterprise operator may group a sub‑set of client applications in its domain in order to assign the same set of service features to the group. Such a group is called a Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGs in its domain. A SAG relates a client application to the features of a service. A client application may be a member of multiple SAGs, one for each service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each service. Each service subscription is described by a service contract which defines the conditions for the service provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the SAG's needs. A service profile is therefore a restriction of the service contract in order to provide restricted service features to a SAG. It is identified by a unique ID (within the framework domain) and contains a set of service properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

[image: image58.wmf]

ca1,

ca2,

ca3

 ca4,

ca5, ca6,

ca7, ca8,

ca9

SAG2

ca10, ca11,

ca12,

ca12, ca13,

SAG3

Client Applications and SAGs in the Enterprise Domain

SC1

SC2

SC3

SC4

Service Contracts for Individual Services

Subscrib

ed by Enterprise Operator

SP1

SP2

SP3

SP5

SP4

Service Profiles in a Service Contract

Assignment of ClientApps/ SAGs to Service Profiles

SAG1

Figure: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client application is represented in the Framework domain as a clientApp object. The clientApp object is identified by a unique ID and contains a set of client application properties describing the client application relevant information for subscription. Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service contracts and service profiles.

An enterprise operator may not want to grant all client applications in its domain the same service characteristics and usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service Profile to each group. A client application can be assigned to more than one service profile for a given service, as long as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to two SAGs. One of these SAGs uses ServiceProfile1 to control access to service 1. The other uses ServiceProfile3 to control access to service 1. If the dates in the two service profiles overlap, as is the case here, then it cannot be determined when the client signs the service agreement which service profile should be used. For example, if the client application signed the service agreement on February the 8th, then it could not be determined which of service profile 1 or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of the service profiles to use. A SAG may have multiple service profiles, one for each subscribed service, associated with it.

[image: image59.emf]

 ServiceProfile1 Start: 02, Feb End: 10, Feb ServiceID: 1

Client App.2

SAG 2

SAG 1

Client App.1 Client App.3

Client App.1

ServiceProfile2 Start: 02, Feb End: 10, Feb ServiceID: 2 ServiceProfile3 Start: 08, Feb End: 30, Feb ServiceID: 1

Figure: Overlapping date fields in service profiles

[image: image60.emf]

Client App 7 Client App 6

Framework

Enterprise Operator 1

Enterprise Operator 3

Enterprise Operator 2

Client App 3 Client App 4

Client App 5

Client App 2 Client App 1

Figure: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator (if the services offered through the framework belong to a single network – it is even possible that the network operator will be the only enterprise operator). It is possible, however, that each service registered with the framework could actually be in a different network. The client application IDs have to be unique within the framework. The framework operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription‑related functions. The service subscription interfaces are classified in the following categories:

· Enterprise Operator Account Management.

· Enterprise Operator Account Query.

· Service Contract Management.

· Service Contract Query.

· Service Profile Management.

· Service Profile Query.

· Client Application Management.

· Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8a.1
Sequence Diagrams

8a.1.1
Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

8a.1.2
Service Subscription Sequence Diagrams

8a.1.2.1
Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services provided by the framework using the IpServiceDiscovery interface. Initially, the enterprise operator obtains a list of service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a particular service type. Subsequently it invokes discoverService() to discover the services of a given type which supports the desired set of property values. The discoverService() method returns a list of "serviceIDs" and their associated property values. The service discovery phase is followed by the service subscription phase. The enterprise operator uses the IpServiceContractManagement and IpServiceProfileManagement interfaces to perform service subscription.
The enterprise operator invokes the createServiceContract() on IpServiceContractManagement interface to subscribe to a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by their "serviceID" or by their service type. In the former case only the specific service can be used by the enterprise operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise operator may create multiple service profiles (each of which are a restriction of the service contract) by invoking createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different service privileges to different client application groups. During the life time of a service contract, the enterprise operator may perform service contract and service profile management functions, such as modifying the service profiles (modifyServiceProfile()) and service contract (modifyServiceContract()), re‑assigning the service profiles to a SAG (assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles (deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the client applications, can at any time obtain a list of currently subscribed services by invoking listSubscribedServices() method on the IpServiceDiscovery interface. This method returns a list of serviceIDs of the set of subscribed services. The service contract ceases to exist after the specified end date. The deleteServiceContract deletes the service contract object held in the framework. It is up to the discretion of the Framework operator to allow the enterprise operator to delete a service contract before its specified end date.
After the service subscription is performed the client applications can access and use the set of subscribed services in addition to the set of freely available services. In order to start a service, the interface reference of the service is required. The discoverService() method or the listSubscribedServices() method, described above, return the "serviceID". The interface reference of the service is obtained in the service access phase. The service access phase begins with the client applications selecting the service, via the selectService() method, and signing a service agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to identify the service that it wants to initiate. The input to the selectService() is the "serviceID" returned by the discoverService() or the listSubscribedServices() and the output is a "serviceToken". The serviceToken is free format text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed by the enterprise operator, then a "service not subscribed" exception is raised. The signServiceAgreement() is invoked by the client application on the framework to sign an agreement on the service. The input to this method is the service token returned by the selectService() method. The sign service agreement is used as a way of non‑repudiation of the intention to use the service by the client application. The successful completion of the signServiceAgreement() returns the interface reference to the service (or to its service manager). The client application can then use this interface reference to start the service.
[image: image61.wmf]:

EnterpriseOperator

:

ClientApplication

 : IpAccess

 : IpServiceDiscovery

 : IpServiceContractManagement

 : IpServiceContractInfoQuery

 : IpServiceProfileManagement

 : IpServiceProfileInfoQuery

Auth. phase

followed by

1: obtainInterface()

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

Find desired

Services

5: obtainInterface()

6: createServiceContract(in TpServiceContractDescription)

Subscribe

the Services

7: createServiceProfile()

create more

SPs in SC

8: assign()

9: modifyServiceProfile()

10: assign()

11: describeServiceProfile()

12: deleteServiceProfile()

13: modifyServiceContract(in TpServiceContract)

14: listSubscribedServices()

15: listSubscribedServices()

16: describeServiceContract()

17: createServiceContract(in TpServiceContractDescription)

8a.1.2.2
Enterprise Operator and Client Application Subscription Management Sequence Diagram

The first step in the service subscription process is the creation of an account for the enterprise operator. The creation of enterprise operator accounts is performed by the Framework Operator via interfaces outside of the present document. When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator (acting in the role of service subscriber) can then create accounts within the framework for all of the client applications in its domain. The enterprise operator obtains the reference to the IpEntOpManagement interface by invoking obtainInterface() on the IpAccess interface. The enterprise operator at any time may inspect its subscription account by invoking describeEntOpAccount on the IpEntOpAccountInfoQuery interface and modify the subscriber‑related information contained in its subscription account by invoking modifyEntOpAccount() on IpEntOpAccountManagement interface.
An enterprise operator usually has many client applications in its enterprise domain. These client applications must be registered within the framework so that the set of services subscribed to by the enterprise operator (through createServiceContract()) can be assigned to these client applications by associating a service profile (a restriction of service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create an account for individual client applications, the enterprise operator invokes createClientApp() on IpClientAppManagement interface. The enterprise operator groups a related set of client applications in a SAG so that the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(), modifySAG(), listSAGs(), listSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.
[image: image62.wmf]Enterprise

Operator

Framework

Operator

 : IpAccess

 :

IpEntOpAccountManagement

 :

IpEntOpAccountInfoQuery

 :

IpClientAppManagement

 :

IpClientAppInfoQuery

The Enterprise Operator

account has already been created.

Auth. Phase followed by:

1: obtainInterface()

2: describeEntOpAccount()

3: modifyEntOpAccount()

4: obtainInterface()

5: createClientApp()

Create more client

apps

6: createSAG()

7: addSAGMembers()

8: modifyClientApp()

9: modifySAG()

10: deleteClientApp()

11: removeSAGMembers()

12: modifySAG()

13: obtainInterface()

14: listSAGs()

15: listSAGMembers()

16: deleteEntOpAccount()

8a.2
Class Diagrams

[image: image63.wmf]IpClientEventNotification

reportNotification()

notificationTerminated()

(from Client Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
[image: image64.wmf]IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

listInterfaces()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image65.wmf]IpClientAppInfoQuery

describeClientApp()

listClientApps()

describeSAG()

listSAGs()

listSAGMembers()

listClientAppMembership()

(from Framework interfaces)

<<Interface>>

IpClientAppManagement

createClientApp()

modifyClientApp()

deleteClientApp()

createSAG()

modifySAG()

deleteSAG()

addSAGMembers()

removeSAGMembers()

requestConflictInfo()

(from Framework interfaces)

<<Interface>>

IpEntOpAccountInfoQuery

describeEntOpAccount()

(from Framework interfaces)

<<Interface>>

IpEntOpAccountManagement

modifyEntOpAccount()

deleteEntOpAccount()

(from Framework interfaces)

<<Interface>>

IpServiceContractInfoQuery

describeServiceContract()

listServiceContracts()

listServiceProfiles()

(from Framework interfaces)

<<Interface>>

IpServiceContractManagement

createServiceContract()

modifyServiceContract()

deleteServiceContract()

(from Framework interfaces)

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles()

describeServiceProfile()

listAssignedMembers()

(from Framework interfaces)

<<Interface>>

IpServiceProfileManagement

createServiceProfile()

modifyServiceProfile()

deleteServiceProfile()

assign()

deassign()

requestConflictInfo()

(from Framework interfaces)

<<Interface>>

Figure: Service Subscription Package Overview
8a.3
Interface Classes
8a.3.1
Event Notification Interface Classes

8a.3.1.1
Interface Class IpClientEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the client of a generic event. The Event Notification Framework will invoke methods on the Event Notification Client Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpClientEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8a.3.1.1.1
Method reportNotification()

This method notifies the client of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo
Specifies specific data associated with this event.
assignmentID : in TpAssignmentID
Specifies the assignment id which was returned by the framework during the createNotification() method. The client can use assignment id to associate events with event specific criteria and to act accordingly.
8a.3.1.1.2
Method notificationTerminated()

This method indicates to the client that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method.

8a.3.1.2
Interface Class IpEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the client of generic events that have occurred. If Event Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be supported.

	<<Interface>>

IpEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8a.3.1.2.1
Method createNotification()

This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentID>: Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the client to define the event required.
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
8a.3.1.2.2
Method destroyNotification()

This method is used by the client to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID
Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ASSIGNMENT_ID
8a.3.2
Service Subscription Interface Classes

8a.3.2.1
Interface Class IpClientAppManagement

Inherits from: IpInterface.
If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator must use the client application management interface, to which (s)he can subscribe as a privileged user. The client application management interface is intended for cases where an organisation wants to allow several client applications to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client applications and SAGs, delete them and to modify subscription related information concerning the client applications and the SAGs. Client applications use the subscribed services in the enterprise operator's name. The main task of client application management is to register, modify and delete client applications (Client Application Management), and manage groups of client applications, called Subscription Assignment Groups (SAG Management).

	<<Interface>>

IpClientAppManagement

	

	createClientApp (clientAppDescription : in TpClientAppDescription) : void

modifyClientApp (clientAppDescription : in TpClientAppDescription) : void

deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void

removeSAGMembers (sagID : in TpSagID, clientAppIDList : in TpClientAppIDList) : void

requestConflictInfo () : TpAddSagMembersConflictList

8a.3.2.1.1
Method createClientApp()

A client application is represented in the Framework domain as a "clientApp object". This method creates a new clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other subscription related client application's properties stored in it.

Parameters

clientAppDescription : in TpClientAppDescription
The "clientAppDescription" parameter contains the clientApp ID that is to be associated with the newly created clientApp object and the subscription‑related "client application properties". The clientApp ID must be a unique ID across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client application properties are a list of name/value pairs. The client application properties are an item for bi‑lateral agreement between the enterprise operator and the framework operator.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.1.2
Method modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

clientAppDescription : in TpClientAppDescription
The "clientAppDescription" parameter contains the modified client application information. If the clientApp ID does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.1.3
Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client application currently has an access session with the framework then this will be terminated, along with any service instances it may have created. An exception of "P_TASK_REFUSED" will be raised if a non‑associated enterprise operator invokes this method.

Parameters

clientAppID : in TpClientAppID
The "clientAppID" parameter identifies the client application that is to be deleted. If the clientAppID does not exist, a "P_INVALID_CLIENT_APP_ID" exception will be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.1.4
Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object is identified by a SAG ‑ ID and contains SAG ‑ specific description.

Parameters

sag : in TpSag
The "sag" parameter contains the SAG‑ID and SAG‑specific description. This sagID is particular to the SAG, and must be unique across framework. If the sagID supplied already exists, an exception of type "P_INVALID_SAG_ID" would be raised.

clientAppIDs : in TpClientAppIDList
The "clientAppIDs" parameter contains the list of client application IDs that are to be associated with the newly created SAG.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID
8a.3.2.1.5
Method modifySAG()

Modify the description of an existing SAG associated with the enterprise operator. An exception of "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sag : in TpSag
The "sag" parameter contains the modified SAG‑specific description. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.1.6
Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG that is to be deleted. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" is raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.1.7
Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise operator associated with the SAG is allowed to assign members to it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method. Each client application may be assigned to a service only through a single service profile at a particular moment in time. If this condition is violated, a "P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed. The enterprise operator can query further information about this invalid addition using the method requestConflictInfo().

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs : in TpClientAppIDList
The "clientAppIDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The clientApp objects are first created using the createClientApp() method. If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID, P_INVALID_ADDITION_TO_SAG
8a.3.2.1.8
Method removeSAGMembers()

Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList : in TpClientAppIDList
The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG. If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID
8a.3.2.1.9
Method requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method addSagMembers() on this interface (i.e. Information about the invocation of addSagMembers() that raised a P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through a single service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG, where both, the client application and the SAG are already assigned to the same service through different service profiles. As this may happen in one method call for multiple client applications, a conflict list is generated.

It is only possible to retrieve information about the last conflicting addSagMembers() method call; information about previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList>: The list of conflicts of the last invocation of addSagMembers() that raised a P_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a.
The conflict generating client application.

b.
The SAG and the service profile through which the conflict generating client application is already assigned to the conflict generating service. It includes the current service profile.

c.
The SAG, to which the conflict generating client application should be added. However, this SAG is already assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client application may be assigned to a service only through a single service profile at a particular moment in time.

d.
The conflict generating service.

Parameters

No Parameters were identified for this method.

Returns

TpAddSagMembersConflictList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.2
Interface Class IpClientAppInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain information about them.

	<<Interface>>

IpClientAppInfoQuery

	

	describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription

listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientAppIDList

listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

8a.3.2.2.1
Method describeClientApp()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription>: The "clientAppDescription" parameter contains the clientApp description.

Parameters

clientAppID : in TpClientAppID
The "clientAppID" parameter identifies the clientApp object whose description is requested.
Returns

TpClientAppDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.2.2
Method listClientApps()

Get a list of all client applications belonging to an enterprise operator.

Returns <clientAppIDs>: The "clientAppIDs" parameter identifies the list of client applications in the enterprise operator domain.

Parameters

No Parameters were identified for this method.

Returns

TpClientAppIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.2.3
Method describeSAG()

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription>: The "sagDescription" parameter returns the SAG‑specific description.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG whose description is required.
Returns

TpSagDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.2.4
Method listSAGs()

Get a list of all SAGs associated with an enterprise operator.

Returns <SagIDList>: The "sagIDList" parameter returns the list of the identifiers of the SAGs associated with the enterprise operator.

Parameters

No Parameters were identified for this method.

Returns

TpSagIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.2.5
Method listSAGMembers()

Get a list of all client applications associated with the specified SAG.

Returns <clientAppIDList>: The "clientAppIDList" parameter returns the list of the client applications associated with the SAG.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG whose clientAppID list is required.
Returns

TpClientAppIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.2.6
Method listClientAppMembership()

Obtain a list of the SAGs of which the specified client application is a member.

Returns <sags>: The SAGs of which the client application is a member.

Parameters

clientAppID : in TpClientAppID
The "clientAppID" parameter identifies the clientApp object whose membership details are requested.
Returns

TpSagIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.3
Interface Class IpServiceProfileManagement

Inherits from: IpInterface.
This interface is used by the enterprise operator for the management of Service Profiles, which are defined for every subscribed service, and to assign/de ‑ assign the Service Profiles to SAGs.

	<<Interface>>

IpServiceProfileManagement

	

	createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfileID

modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfileID : in TpServiceProfileID) : void

assign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

deassign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

requestConflictInfo () : TpAssignSagToServiceProfileConflictList

8a.3.2.3.1
Method createServiceProfile()

Creates a new Service Profile for the specified service contract. The service properties within the service profile restrict the service to meet the client application requirements. A Service Profile is a restriction of the corresponding service contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfileID>: The service profile ID, generated by the framework, will be used to uniquely identify the service profile within the framework.

Parameters

serviceProfileDescription : in TpServiceProfileDescription
The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract information and which may further restrict the value ranges of the service subscription properties.
Returns

TpServiceProfileID
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.3.2
Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceProfile : in TpServiceProfile
The modified Service Profile. If the serviceProfileID specified in the serviceProfile parameter does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.3.3
Method deleteServiceProfile()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then they will be terminated. Only the enterprise operator associated with the particular service profile is allowed to delete it, a "P_TASK_REFUSED" exception will be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile that is to be deleted. If the serviceProfileID does not exist, a "P_INVALID_SERVICE_PROFILE_ID" exception will be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.3.4
Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfileID is allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method. Each client application may be assigned to a service only through a single service profile at a particular moment in time. If this condition is violated, a "P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of this method is performed. The enterprise operator can query further information about this invalid assignment using the method requestConflictInfo().

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG to which Service Profile is to be assigned. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfileID does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID, P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT
8a.3.2.3.5
Method deassign()

De‑assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the serviceProfileID is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG whose Service Profile is to be de‑assigned. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile that is to be de‑assigned. If the serviceProfileID does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.3.6
Method requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method assign() on this interface (i.e. Information about the invocation of assign () that threw a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG to a service profile of a given service. If one or more client applications in this SAG are already assigned to service profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular moment in time. As this is prohibited, a conflict list is generated.

It is only possible to retrieve information about the last conflicting assign() method call; information about previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList>: The description of the conflicts occurring at the latest invocation of assign() that raised a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the following elements:

a.
The conflict generating client application.

b.
The SAG and the service profile through which the conflict generating client application is already assigned to the conflict generating service. It includes the current service profile.

c.
The conflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters

No Parameters were identified for this method.

Returns

TpAssignSagToServiceProfileConflictList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.4
Interface Class IpServiceProfileInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to obtain information about individual Service Profiles, to find out which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given client application or SAG.

	<<Interface>>

IpServiceProfileInfoQuery

	

	listServiceProfiles () : TpServiceProfileIDList

describeServiceProfile (serviceProfileID : in TpServiceProfileID) : TpServiceProfileDescription

listAssignedMembers (serviceProfileID : in TpServiceProfileID) : TpSagIDList

8a.3.2.4.1
Method listServiceProfiles()

Get a list of all service profiles created by the enterprise operator.

Returns <serviceProfileIDList>: The "serviceProfileIDList" is a list of the service profiles associated with the enterprise operator.

Parameters

No Parameters were identified for this method.

Returns

TpServiceProfileIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.4.2
Method describeServiceProfile()

Query information about a single service profile.

Returns <serviceProfileDescription>: The "serviceProfileDescription" parameter is a structured data type which contains a description for the specified service profile.

Parameters

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile whose description is being requested.
Returns

TpServiceProfileDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.4.3
Method listAssignedMembers()

Get a list of SAGs assigned to the specified service profile.

Returns <sagIDList>: The "sagIDs" parameter is the list of the SAG IDs that are assigned to the specified service profile.

Parameters

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile. If the serviceProfileID is not recognised by the framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.5
Interface Class IpServiceContractManagement

Inherits from: IpInterface.
The enterprise operator uses this interface for service contract management, such as create, modify, and delete service contracts.

	<<Interface>>

IpServiceContractManagement

	

	createServiceContract (serviceContractDescription : in TpServiceContractDescription) : TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

8a.3.2.5.1
Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract description. This contract should conform to the previously negotiated high ‑ level agreement (regarding the services, their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the appropriate exception is raised by the framework. When the description has been validated, a service contract ID will be generated.

Returns <serviceContractID>: The service contract ID will be used to uniquely identify the service contract within the framework.

Parameters

serviceContractDescription : in TpServiceContractDescription
The "serviceContractDescription" parameter provides the information contained in the service contract. The service contract is a structured data type, which contains the following information:

a.
information about the service requestor, i.e. the enterprise operator;

b.
information about the billing contact (person);

c.
service start date;

d.
service end date;

e.
service type (e.g. obtained from listServiceType() method);

f.
service ID (e.g. obtained from discoverService() method). For certain services, service type information is sufficient and service ID may not be required. This implies that any service of the type specified above is subscribed and hence accessible to the enterprise operator or to its client applications;

g.
list of service subscription properties and their value ranges (service profiles further restrict these value ranges).

Returns

TpServiceContractID
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID
8a.3.2.5.2
Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre‑existing off‑line negotiated high‑level agreement between the enterprise operator and the framework operator. Only the enterprise operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceContract : in TpServiceContract
The "serviceContract" parameter provides the modified service contract. If the serviceContractID does not exist, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.5.3
Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there are any service instances running that are governed by this contract, or any of the profiles associated with it, then they will be terminated. Only the enterprise operator associated with the serviceContract is allowed to delete it, a "P_TASK_REFUSED" exception will be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceContractID : in TpServiceContractID
The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete. If the serviceContractID does not exist, a "P_INVALID_SERVICE_CONTRACT_ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.6
Interface Class IpServiceContractInfoQuery

Inherits from: IpInterface.
The enterprise operator uses this interface to query information about a given service contract.

	<<Interface>>

IpServiceContractInfoQuery

	

	describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription

listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

8a.3.2.6.1
Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain information that is stored in the specified service contract. The enterprise operator can only obtain information about the service contracts that it has created.

Returns <serviceContractDescription>: The "serviceContract" parameter contains the description for the specified service contract.

Parameters

serviceContractID : in TpServiceContractID
The "serviceContractID" parameter identifies the service whose description is being requested.
Returns

TpServiceContractDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.6.2
Method listServiceContracts()

Returns a list of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractIDs>: The "serviceContractIDs" parameter will contain a list of IDs for service contracts that the enterprise operator has created.

Parameters

No Parameters were identified for this method.

Returns

TpServiceContractIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.6.3
Method listServiceProfiles()

The enterprise operator invokes this operation to obtain a list of service profiles that are associated with a particular service contract.

Returns <serviceProfileIDs>: This contains the service profiles associated with a particular service contract.

Parameters

serviceContractID : in TpServiceContractID
The "serviceContractID" parameter identifies the service contract. If the serviceContractID is not recognised by the framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Returns

TpServiceProfileIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.7
Interface Class IpEntOpAccountManagement

Inherits from: IpInterface.
The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise operator subscription accounts, such as modify and delete enterprise operator accounts. The EntOpID will be decided in an off‑line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more meaningful than a random number. The EntOp account, consisting of the EntOpID, along with the list of valid properties and their modes and prescribed ranges, will be entered via a FW operator interface that is currently outside the scope of the API.

	<<Interface>>

IpEntOpAccountManagement

	

	modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void

deleteEntOpAccount () : void

8a.3.2.7.1
Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperatorProperties : in TpEntOpProperties
The "enterprise operator properties" parameter conveys the modified/populated information about the enterprise operator. The values of the "enterprise operator properties" can only be modified within the prescribed range, as negotiated earlier (an off‑line process) between the enterprise operator and the framework operator, otherwise a P_INVALID_PROPERTY exception is raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY
8a.3.2.7.2
Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete the enterprise operator account will result in a P_TASK_REFUSED exception if there are outstanding service contracts (and service profiles).

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.8
Interface Class IpEntOpAccountInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to query information related to its own subscription account as held within the framework.

	<<Interface>>

IpEntOpAccountInfoQuery

	

	describeEntOpAccount () : TpEntOp

8a.3.2.8.1
Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator>: The "enterpriseOperator" parameter conveys the information stored in the EntOp object about the enterprise operator. It contains the unique "enterprise operator ID" followed by a list of "enterprise operator properties". The enterprise operator properties is a list of name/value pairs which provide enterprise operator related information such as the name, organisation, address, phone, e‑mail, fax, payment method (credit card, bank account), etc. to the framework.

Parameters

No Parameters were identified for this method.

Returns

TpEntOp
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.4
State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

8a.4.1
Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.
8a.4.2
Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.
9
Service Properties

9.1
Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from limitations in the network. The service type of an SCF defines which properties the supplier shall provide at registration of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The Framework validates the requested properties with the registered properties and provides the application with a list of SCFs that comply to the application's request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type. This implies that the interface to the SCF remains unchanged. Also SCF sub types can be further extended. This way a hierarchy of service types can be built with the standard type being the root.

An example of a sub type is a Multy Party Call Control service that allows the application to request a certain quality-of-service level. An additional service property is added for this.

9.2
Service Property Types

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement. The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE:
This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager interface.

All property values are represented by an array of strings. The following table shows all supported service property types.

	Service Property type name
	Description
	Example value (array of strings)
	Interpretation of example value

	BOOLEAN_SET
	set of Booleans
	{"FALSE"}
	The set of Booleans consisting of the Boolean "false".

	INTEGER_SET
	set of integers
	{"1", "2", "5", "7"}
	The set of integers consisting of the integers 1, 2, 5 and 7.

	STRING_SET
	set of strings
	{"Sophia", "Rijen"}
	The set of strings consisting of the string “Sophia" and the string "Rijen"

	INTEGER_INTERVAL
	interval of integers
	{"5", "100"}
	The integers that are between or equal to 5 and 100.

	STRING_INTERVAL
	interval of strings
	{"Rijen", "Sophia"}
	The strings that are between or equal to the strings "Rijen" and "Sophia", in lexicographical order.

	INTEGER_INTEGER_MAP
	map from integers to integers
	{"1", "10", "2", "20", "3", "30"}
	The map that maps 1 to 10, 2 to 20 and 3 to 30.

	XML_ADDRESS_RANGE_SET
	set of values of TpAddressRange. Values of TpAddressRange are described using XML. An XML schema is provided below for this purpose.
	{"<AddressRangeSet>

<AddressRange>

<Plan>P_ADDRESS_PLAN_E164</Plan>

<AddrString>123*</AddrString>

</AddressRange>

<AddressRange>

<Plan>P_ADDRESS_PLAN_E164</Plan>

<AddrString>456*</AddrString>

</AddressRange>

</AddressRangeSet>"}

	In case P_REGEX_SUPPORT_FOR_ADDRESS_RANGE is TRUE: Any addresses containing 123 or containing 456 in the E.164 Address Plan.

In case P_REGEX_SUPPORT_FOR_ADDRESS_RANGE is FALSE: Any addresses starting with 123 or starting with 456 in the E.164 Address Plan.

	FLOAT_SET
	set of values of TpFloat.
	{"0.1", “.2”, “0.1e+3}

	The set of floats containing floating point numbers 0.1, 0.2 and 100

	FLOAT_INTERVAL
	interval of TpFloat values
	{“-1.1”, “5.0”}
	The floating point numbers that are between or equal to –1.1 and 5.0

The bounds of the string interval, integer interval and float interval types may hold the reserved value "UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as value for service properties of type BOOLEAN_SET.

The value of XML_ADDRESS_RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="AddressRangeSet">

<xs:complexType>

<xs:sequence>

<xs:element name="AddressRange" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>

<xs:element name="AddrString" type="xs:string"/>

<xs:element name="Name" type="xs:string" minOccurs="0"/>

<xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

An example usage could be:

{"<?xml version="1.0" encoding="UTF-8"?>

<AddressRangeSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="xml_address_range_set.xsd">

<AddressRange>

<Plan>P_ADDRESS_PLAN_E164</Plan>

<AddrString>789*</AddrString>

</AddressRange>

<AddressRange>

<Plan>P_ADDRESS_PLAN_ANY</Plan>

<AddrString>123*</AddrString>

</AddressRange>

<AddressRange>

<Plan>P_ADDRESS_PLAN_SIP</Plan>

<AddrString><sip:*@parlay.org></AddrString>

<Name/>

</AddressRange>

</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:*@parlay.org>.

9.3
General Service Properties

Each service instance has the following general properties:

· Service Name
· Service Version
· Service ID
· Service Description
· Product Name
· Product Version
· Operation Set
· Compatible Service

· Backward Compatibility Level

· Migration Required

· Data Migrated

· Migration Date and Time

· Support for Regular Expressions in Address Range

The following sections describe these general service properties in more detail. The values for the mode are defined in the type TpServiceTypePropertyMode.

9.3.1
Service Name

	Property
	Type
	Mode
	Description

	P_SERVICE_NAME
	STRING_SET
	MANDATORY_READONLY
	This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency” or “UserStatus”.

9.3.2
Service Version

	Property
	Type
	Mode
	Description

	P_SERVICE_VERSION
	STRING_SET
	MANDATORY
	This property contains the version of the APIs, to which the service is compliant. It is a set of strings as specified in the TpVersion type.

9.3.3
Service ID

	Property
	Type
	Mode
	Description

	P_SERVICE_ID
	STRING_INTERVAL
	READONLY
	This property uniquely identifies a specific service. Note that the Framework generates this property value when the Service Supplier registers the service. This property should not be confused with the serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager

9.3.4
Service Description

	Property
	Type
	Mode
	Description

	P_SERVICE_DESCRIPTION
	STRING_SET
	MANDATORY_READONLY
	This property contains a textual description of the service. It should not be interpreted as a description of a Service Instance (as identified by a serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager).

9.3.5
Product Name

	Property
	Type
	Mode
	Description

	P_PRODUCT_NAME
	STRING_SET
	READONLY
	This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

9.3.6
Product Version

	Property
	Type
	Mode
	Description

	P_PRODUCT_VERSION
	STRING_SET
	READONLY
	This property contains the version of the product that provides the service, e.g. “3.1.11”.

9.3.7
Void

9.3.8
Operation Set

	Property
	Type
	Mode
	Description

	P_OPERATION_SET
	STRING_SET
	MANDATORY
	Specifies set of the operations the SCS supports.

The notation to be used is : {“Interface1.operation1”,”Interface1.operation2”, “Interface2.operation1”}, e.g.:

{“IpCall.createCall”,”IpCall.routeReq”}.

9.3.9
Compatible Service

	Property
	Type
	Mode
	Description

	P_COMPATIBLE_WITH_SERVICE
	STRING_SET
	READONLY
	Specifies the Set of Services, identified by their ServiceIDs, with which this new service is compatible.

This property should at least be accompanied with the properties P_BACKWARD_COMPATIBILITY_LEVEL, P_MIGRATION_REQUIRED.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties like Migration Required, Data Migrated, etc.

For all these properties the order of the Services shall be identical.

9.3.10
Backward Compatibility Level

	Property
	Type
	Mode
	Description

	P_BACKWARD_COMPATIBILITY_LEVEL
	BOOLEAN_SET
	READONLY
	Specifies if the new service is completely backwards compatible with each service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: Service is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.3.11
Migration Required

	Property
	Type
	Mode
	Description

	P_MIGRATION_REQUIRED
	BOOLEAN_SET
	READONLY
	Specifies if the new service is replacing the service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: new service is replacing the existing one – migration is required before the date/time indicated in P_MIGRATION_DATE_AND_TIME property.

Value = FALSE: new service is not replacing the existing one – migration not required, the existing service is retained.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property. If the value set of P_MIGRATION_REQUIRED contains TRUE, P_DATA_MIGRATED and P_MIGRATION_DATE_AND_TIME properties shall also to be present.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.3.12
Data Migrated

	Property
	Type
	Mode
	Description

	P_DATA_MIGRATED
	BOOLEAN_SET
	READONLY
	Indicates if the data (e.g. notifications) from the existing service identified in the P_COMPATIBLE_WITH_SERVICE property is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of P_COMPATIBLE_WITH_SERVICE and the P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.3.13
Migration Date And Time

	Property
	Type
	Mode
	Description

	P_MIGRATION_DATE_AND_TIME
	STRING_SET
	READONLY
	This property contains the date and time, in the format described in TpDateAndTime, by which point applications shall have migrated from existing services to this new service.

Migration to the new service requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this property may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

Only one value of TpDateAndTime is permitted to be present in this property at service registration.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE, P_MIGRATION_REQUIRED and P_DATA_MIGRATED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical. For those services for which migration is not required (P_MIGRATION_REQUIRED set to FALSE), the corresponding value of this property shall be ignored.

9.3.14
Support for Regular Expressions in Address Range

	Property
	Type
	Mode
	Description

	P_REGEX_SUPPORT_FOR_ADDRESS_RANGE
	BOOLEAN_SET
	READONLY
	Indicates if the AddrString and SubAddressString fields of TpAddressRange are expressed as regular expressions (TRUE) or not (FALSE)

10
Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:


Data type, that shows the name of the data type;


Description, that describes the data type;


Tabular specification, that specifies the data types and values of the data type;


Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in 3GPP TS 29.198-2.

10.1
Common Framework Data Definitions

10.1.1
TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.1.2
TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

10.1.3
TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity attempting to access the Framework.

	
	Tag Element Type
	

	
	TpDomainIDType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_FW
	TpFwID
	FwID

	P_CLIENT_APPLICATION
	TpClientAppID
	ClientAppID

	P_ENT_OP
	TpEntOpID
	EntOpID

	P_SERVICE_INSTANCE
	TpServiceInstanceID
	ServiceID (See Note)

	P_SERVICE_SUPPLIER
	TpServiceSupplierID
	ServiceSupplierID

	Note: The Choice Element Name ServiceID of TpDomainID refers to a service instance.

10.1.4
TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

	Name
	Value
	Description

	P_FW
	0
	The Framework

	P_CLIENT_APPLICATION
	1
	A client application

	P_ENT_OP
	2
	An enterprise operator

	P_SERVICE_INSTANCE
	3
	A service instance

	P_SERVICE_SUPPLIER
	4
	A service supplier

10.1.5
TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service Capability Feature (SCF).

10.1.6
TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.1.7
TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.1.8
TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data type consisting of the following {name,value} pair:

	Sequence Element

Name
	Sequence Element

Type

	PropertyName
	TpPropertyName

	PropertyValue
	TpPropertyValue

10.1.9
TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.1.10
TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

10.1.11
TpFwID

This data type is identical to TpString and identifies the Framework.

10.1.12
TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceID
	TpServiceID
	

	ServiceDescription
	TpServiceDescription
	This field contains the description of the service

10.1.13
TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.1.14
TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceTypeName
	TpServiceTypeName
	

	ServicePropertyList
	TpServicePropertyList
	

10.1.15
TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF interface. The string is automatically generated by the Framework.

10.1.16
TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

10.1.17
TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a registered SCF interface. The string is automatically generated by the Framework.

10.1.18
TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service property’s name and mode, but also defines the list of values assigned to it.

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServicePropertyName
	

	ServiceTypePropertyMode
	TpServiceTypePropertyMode
	

	ServicePropertyTypeName
	TpServicePropertyTypeName
	

10.1.19
TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.1.20
TpServiceTypePropertyMode

This type defines SCF property modes.

	Name
	Value
	Documentation

	NORMAL
	0
	The value of the corresponding SCF property type may optionally be provided

	MANDATORY
	1
	The value of the corresponding SCF property type shall be provided at service registration time

	READONLY
	2
	The value of the corresponding SCF property type is optional, but once given a value it can not be modified/restricted by a service level agreement

	MANDATORY_READONLY
	3
	The value of the corresponding SCF property type shall be provided but can not subsequently be modified/restricted by a service level agreement.

10.1.21
TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property type name. Valid service property type names are detailed in 10.1.

10.1.22
TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name. The valid service property names are detailed in 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service properties (used for service sub types) are possible.

10.1.23
TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

10.1.24
TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

10.1.25
TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

10.1.26
TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServicePropertyName
	

	ServicePropertyValueList
	TpServicePropertyValueList
	

10.1.27
TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

10.1.28
TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is identical to TpString.

10.1.29
TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceTypePropertyList
	TpServiceTypePropertyList
	a sequence of property name and property mode tuples associated with the SCF type

	ServiceTypeNameList
	TpServiceTypeNameList
	the names of the super types of the associated SCF type

	AvailableOrUnavailable
	TpBoolean
	an indication whether the SCF type is available (true) or unavailable (false)

10.1.30
TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF name

	P_GENERIC_CALL_CONTROL
	The name of the Generic Call Control SCF

	P_MULTI_PARTY_CALL_CONTROL
	The name of the MultiParty Call Control SCF

	P_MULTI_MEDIA_CALL_CONTROL
	The name of the MultiMedia Call Control SCF

	P_CONFERENCE_CALL_CONTROL
	The name of the Conference Call Control SCF

	P_USER_INTERACTION
	The name of the User Interaction SCFs

	P_USER_INTERACTION_ADMIN
	The name of the User Interaction Administration SCF

	P_TERMINAL_CAPABILITIES
	The name of the Terminal Capabilities SCF

	P_USER_BINDING
	The name of the User Binding SCF

	P_USER_LOCATION
	The name of the User Location SCF

	P_USER_LOCATION_CAMEL
	The name of the Network User Location SCF

	P_USER_LOCATION_EMERGENCY
	The name of the User Location Emergency SCF

	P_USER_STATUS
	The name of the User Status SCF

	P_EXTENDED_USER_STATUS
	The name of Extended User Status SCF

	P_DATA_SESSION_CONTROL
	The name of the Data Session Control SCF

	P_GENERIC_MESSAGING
	The name of the Generic Messaging SCF

	P_CONNECTIVITY_MANAGER
	The name of the Connectivity Manager SCF

	P_CHARGING
	The name of the Charging SCF

	P_ACCOUNT_MANAGEMENT
	The name of the Account Management SCF

	P_POLICY_PROVISIONING
	The name of the Policy Management provisioning SCF

	P_POLICY_EVALUATION
	The name of the Policy Management policy evaluation SCF

	P_PAM_ACCESS
	The name of PAM presentity SCF

	P_PAM_EVENT_MANAGEMENT
	The name of PAM watcher SCF

	P_PAM_PROVISIONING
	The name of PAM provisioning SCF

	P_MULTI_MEDIA_MESSAGING
	The name of the Multimedia Messaging SCF

	P_SERVICE_BROKER
	The name of the Service Broker SCF

10.1.31
TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.1.32
TpSubjectType

Defines the subject of a query/notification request/result.

	Name
	Value
	Description

	P_SUBJECT_UNDEFINED
	0
	The subject is neither the framework nor the client application

	P_SUBJECT_CLIENT_APP
	1
	The subject is the client application

	P_SUBJECT_FW
	2
	The subject is the framework

10.1.33
TpServiceTypePropertyValue

This data type is a Sequence of Data Elements which describes a service property associated with a service. It defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It is similar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to register values for known service properties only.

	Sequence ElementName
	Sequence ElementType
	Documentation

	ServicePropertyName
	TpServicePropertyName
	The name of the service property.

	ServiceTypePropertyMode
	TpServiceTypePropertyMode
	The mode of the service property.

	ServicePropertyTypeName
	TpServicePropertyTypeName
	The type of the service property.

	ServicePropertyValueList
	TpServicePropertyValueList
	The Value-list of the service property.

10.1.34
TpServiceTypePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServiceTypePropertyValue.

10.2
Event Notification Data Definitions

10.2.1
TpFwEventName

Defines the name of event being notified.

	Name
	Value
	Description

	P_EVENT_FW_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_FW_SERVICE_AVAILABLE
	1
	Notification of SCS(s) available

	P_EVENT_FW_SERVICE_UNAVAILABLE
	2
	Notification of SCS(s) becoming unavailable

	P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
	3
	Notification of a backwards compatible SCS becoming available, to which the application can migrate.

	P_EVENT_FW_APP_SESSION_CREATED
	4
	Notification of an application<->FW access session created. (See note 1)

	P_EVENT_FW_APP_SESSION_TERMINATED
	5
	Notification of an application<->FW access session terminated. (See note 1)

	P_EVENT_FW_APP_AGREEMENT_SIGNED
	6
	Notification that a service agreement has been signed. (See note 1)

	P_EVENT_FW_APP_AGREEMENT_ENDED
	7
	Notification that a service agreement has been ended/terminated. (See note 1)

	NOTE:
These events can only be requested by enterprise operators. If requested by any other entity then the method will throw the P_INVALID_CRITERIA exception.

10.2.2
TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specifies the criteria for an event notification to be generated.

	
	Tag Element Type
	

	
	TpFwEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_FW_NAME_UNDEFINED
	TpString
	EventNameUndefined

	P_EVENT_FW_ SERVICE_AVAILABLE
	TpServiceTypeNameList
	ServiceTypeNameList

	P_EVENT_FW_SERVICE_UNAVAILABLE
	TpServiceTypeNameList
	UnavailableServiceTypeNameList

	P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
	TpServiceTypeNameList
	CompatibleServiceTypeNameList

	P_EVENT_FW_APP_SESSION_CREATED
	TpClientAppIDList
	SessionCreatedList

	P_EVENT_FW_APP_SESSION_TERMINATED
	TpClientAppIDList
	SessionTerminatedList

	P_EVENT_FW_APP_AGREEMENT_SIGNED
	TpClientAppIDList
	AgreementSignedList

	P_EVENT_FW_APP_AGREEMENT_ENDED
	TpClientAppIDList
	AgreementEndedList

10.2.3
TpFwEventInfo

Defines the Tagged Choice of Data Elements that specifies the information returned to the client in an event notification.

	
	Tag Element Type
	

	
	TpFwEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_FW_NAME_UNDEFINED
	TpString
	EventNameUndefined

	P_EVENT_FW_ SERVICE_AVAILABLE
	TpServiceIDList
	ServiceIDList

	P_EVENT_FW_SERVICE_UNAVAILABLE
	TpServiceIDList
	UnavailableServiceIDList

	P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
	TpFWMigrationServiceAvailableInfo
	MigrationServiceAvailable

	P_EVENT_FW_APP_SESSION_CREATED
	TpClientAppID
	AppSessionCreated

	P_EVENT_FW_APP_SESSION_TERMINATED
	TpClientAppID
	AppSessionTerminated

	P_EVENT_FW_APP_AGREEMENT_SIGNED
	TpFwAgreementInfo
	AppAgreementSigned

	P_EVENT_FW_APP_AGREEMENT_ENDED
	TpFwAgreementInfo
	AppAgreementEnded

10.2.4
TpFwMigrationServiceAvailableInfo

Defines the information to be supplied when an SCS becomes available.

	Sequence ElementName
	Sequence ElementType
	Documentation

	ServiceType
	TpServiceTypeName
	Type of SCS that has become available

	ServiceID
	TpServiceID
	ID of the SCS that has become available

	CompatibleServiceID
	TpServiceID
	ID of the SCS with which this new SCS is compatible with.

	BackwardCompatibilityLevel
	TpBoolean
	Specifies if the new SCS is completely backwards compatible with the currently used SCS.

Value = TRUE: SCS is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible. Contact the Framework operator for more information.on how to migrate.

	MigrationRequired
	TpBoolean
	Specifies if the new SCS is replacing the existing SCS

Value = TRUE: new SCS is replacing the existing one - migration is required before the date/time indicated in MigrationDateAndTime field

Value = FALSE: new SCS is not replacing the existing one, but is provided in addition.

All migration to the new SCS, whether required or not, shall involve the application terminating the existing service agreement and signing a new one.

	DataMigrated
	TpBoolean
	Indicates whether all the data the application set in the previous SCS (e.g. notifications) is also available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g. notifications) related to the old SCS and the application needs to reset all the previous data.

Value = TRUE: the new SCS has obtained data (e.g. notifications) related to the old SCS, the application can use the new SCS without resetting data.

	MigrationDataAndTime
	TpDateAndTime
	Indicates the date and time before which applications shall have migrated from existing the existing SCS to this new SCS.

Migration to the new SCS requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this field may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

The value of this parameter, if present, shall be ignored if MigrationRequired is set to FALSE

	MigrationAdditionalInfo
	TpMigrationAdditionalInfoSet
	Contains additional migration information. This is initially provided to permit addition of information in later releases without impacting backwards compatibility.

10.2.5
TpMigrationAdditionalInfo

Defines the Tagged Choice of Data Elements that specify additional migration-related information.

	
	Tag Element Type
	

	
	TpMigrationAdditionalInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_MIGRATION_INFO_UNDEFINED
	NULL
	Undefined

10.2.6
TpMigrationAdditionalInfoType

Defines the type of migration-related additional information.

	Name
	Value
	Description

	P_MIGRATION_INFO_UNDEFINED
	0
	Undefined

10.2.7
TpMigrationAdditionalInfoSet

Defines a Numbered Set of Data Elements of TpMigrationAdditionalInfo.

10.2.8
TpFwAgreementInfo

Defines the Sequence of Data Elements that specifies the information returned to the enterprise operator application in an event notification.

	Sequence Element Name
	Sequence Element Type
	Description

	ClientApplicationID
	TpClientAppID
	The ID of the client application

	ServiceID
	TpServiceID
	The ID of the service for whom the agreement was signed/terminated

	ServiceContractID
	TpServiceContractID
	The ID of the service contract related to the agreement if available, an empty string otherwise.

	ServiceProfileID
	TpServiceProfileID
	The ID of the service profile related to the agreement if available, an empty string otherwise.

10.3
Trust and Security Management Data Definitions

10.3.1
TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following value is defined:

	String Value
	Description

	P_OSA_ACCESS
	Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2
TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

	String Value
	Description

	P_OSA_AUTHENTICATION
	Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication

	P_AUTHENTICATION
	Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

10.3.3
Void

10.3.4
Void

10.3.5
Void

10.3.6
TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a reference to the authentication interface of the domain.

	Sequence Element

Name
	Sequence Element

Type
	Description

	DomainID
	TpDomainID
	Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

	AuthInterface
	IpInterfaceRef
	Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intends to access another.

10.3.7
TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	P_DISCOVERY
	The name for the Discovery interface.

	P_EVENT_NOTIFICATION
	The name for the Event Notification interface.

	P_OAM
	The name for the OA&M interface.

	P_LOAD_MANAGER
	The name for the Load Manager interface.

	P_FAULT_MANAGER
	The name for the Fault Manager interface.

	P_HEARTBEAT_MANAGEMENT
	The name for the Heartbeat Management interface.

	P_SERVICE_AGREEMENT_MANAGEMENT
	The name of the Service Agreement Management interface.

	P_REGISTRATION
	The name for the Service Registration interface.

	P_ENT_OP_ACCOUNT_MANAGEMENT
	The name for the Service Subscription: Enterprise Operator Account Management interface.

	P_ENT_OP_ACCOUNT_INFO_QUERY
	The name for the Service Subscription: Enterprise Operator Account Information Query interface.

	P_SVC_CONTRACT_MANAGEMENT
	The name for the Service Subscription: Service Contract Management interface.

	P_SVC_CONTRACT_INFO_QUERY
	The name for the Service Subscription: Service Contract Information Query interface.

	P_CLIENT_APP_MANAGEMENT
	The name for the Service Subscription: Client Application Management interface.

	P_CLIENT_APP_INFO_QUERY
	The name for the Service Subscription: Client Application Information Query interface.

	P_SVC_PROFILE_MANAGEMENT
	The name for the Service Subscription: Service Profile Management interface.

	P_SVC_PROFILE_INFO_QUERY
	The name for the Service Subscription: Service Profile Information Query interface.

10.3.8
TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9
TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the Framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or Framework invokes the terminateAccess method on the other's corresponding access interface.

10.3.10
TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element

Name
	Sequence Element

Type

	DigitalSignature
	TpOctetSet

	ServiceMgrInterface
	IpServiceRef

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

10.3.11
TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit modulus. The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_RSASSA_PKCS1_v1_5_SHA1_1024
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is then used to generate the signature value, following the process defined in section 8 of RFC 2437 and format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit modulus.

	P_SHA1_DSA
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is then used to generate the signature value. The signature generation follows the process and format defined in section 7.2.2 of RFC 2459.

10.3.12
TpSigningAlgorithmCapabilityList

This data type is identical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,) as the separation character.

10.3.13
TpAuthMechanism

This data type is identical to a TpString. It identifies an authentication mechanism to be used for API Level Authentication. The following values are defined:

	String Value
	Description

	P_OSA_MD5
	Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a shared secret and a challenge received via challenge() method. The capability to use this algorithm is required to be supported when using CHAP (RFC 1994) but its use is not recommended.

	P_OSA_HMAC_SHA1_96
	Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response based on a shared secret and a challenge received via challenge() method.

	P_OSA_HMAC_MD5_96
	Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response based on a shared secret and a challenge received via challenge() method.

10.3.14
TpAuthMechanismList

This data type is identical to a TpString. It is a string of multiple TpAuthMechanism concatenated using a comma (,) as the separation character.

10.4
Integrity Management Data Definitions

10.4.1
TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available” or “Unavailable”.

10.4.2
TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

	Sequence Element

Name
	Sequence Element

Type

	Period
	TpTimeInterval

	FaultStatsSet
	TpFaultStatsSet

10.4.3
TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

	Sequence Element

Name
	Sequence Element

Type
	Description

	Fault
	TpInterfaceFault
	

	Occurrences
	TpInt32
	The number of separate instances of this fault

	MaxDuration
	TpInt32
	The number of seconds duration of the longest fault

	TotalDuration
	TpInt32
	The cumulative duration (all occurrences)

	NumberOfClientsAffected
	TpInt32
	The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the Framework.

10.4.4
TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault statistics information.

	Name
	Value
	Description

	P_FAULT_INFO_ERROR_UNDEFINED
	0
	Undefined error

	P_FAULT_INFO_UNAVAILABLE
	1
	Fault statistics unavailable

10.4.5
TpFaultStatsSet
This data type defines a Numbered Set of Data Elements of type TpFaultStats
10.4.6
TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.4.7
TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected

10.4.8
Void

10.4.9
TpFwUnavailReason

Defines the reason why the Framework is unavailable.

	Name
	Value
	Description

	FW_UNAVAILABLE_UNDEFINED
	0
	Undefined

	FW_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	FW_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	FW_UNAVAILABLE_OVERLOADED
	3
	The Framework is fully overloaded

	FW_UNAVAILABLE_CLOSED
	4
	The Framework has closed itself (e.g. to protect from fraud or malicious attack)

	FW_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed

10.4.10
TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

	Name
	Value
	Description

	LOAD_LEVEL_NORMAL
	0
	Normal load

	LOAD_LEVEL_OVERLOAD
	1
	Overload

	LOAD_LEVEL_SEVERE_OVERLOAD
	2
	Severe Overload

10.4.11
TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

	Sequence Element

Name
	Sequence Element

Type

	LoadThreshold
	TpFloat

10.4.12
TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

	Sequence Element

Name
	Sequence Element

Type

	LoadLevel
	TpLoadLevel

	LoadThreshold
	TpLoadThreshold

10.4.13
TpLoadPolicy

Defines the load balancing policy.

	Sequence Element Name
	Sequence Element Type

	LoadPolicy
	TpString

10.4.14
TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. Framework, service or application) at a specific date and time.

	Sequence Element Name
	Sequence Element Type

	LoadStatisticEntityID
	TpLoadStatisticEntityID

	TimeStamp
	TpDateAndTime

	LoadStatisticInfo
	TpLoadStatisticInfo

10.4.15
TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.4.16
TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information.

	Sequence Element Name
	Sequence Element Type

	LoadValue (see Note)
	TpFloat

	LoadLevel
	TpLoadLevel

	NOTE:
LoadValue is expressed as a percentage.

10.4.17
TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or Framework) providing load statistics.

	
	Tag Element Type
	

	
	TpLoadStatisticEntityType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_LOAD_STATISTICS_FW_TYPE
	TpFwID
	FrameworkID

	P_LOAD_STATISTICS_SVC_TYPE
	TpServiceID
	ServiceID

	P_LOAD_STATISTICS_APP_TYPE
	TpClientAppID
	ClientAppID

10.4.18
TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

	Name
	Value
	Description

	P_LOAD_STATISTICS_FW_TYPE
	0
	Framework-type load statistics

	P_LOAD_STATISTICS_SVC_TYPE
	1
	Service-type load statistics

	P_LOAD_STATISTICS_APP_TYPE
	2
	Application-type load statistics

10.4.19
TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

	
	Tag Element Type
	

	
	TpLoadStatisticInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_LOAD_STATISTICS_VALID
	TpLoadStatisticData
	LoadStatisticData

	P_LOAD_STATISTICS_INVALID
	TpLoadStatisticError
	LoadStatisticError

10.4.20
TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

	Name
	Value
	Description

	P_LOAD_STATISTICS_VALID
	0
	Valid load statistics

	P_LOAD_STATISTICS_INVALID
	1
	Invalid load statistics

10.4.21
TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

	Name
	Value
	Description

	P_LOAD_INFO_ERROR_UNDEFINED
	0
	Undefined error

	P_LOAD_INFO_UNAVAILABLE
	1
	Load statistics unavailable

10.4.22
TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service Instance availability.

	Name
	Value
	Description

	SVC_UNAVAILABLE_UNDEFINED
	0
	Undefined. A permanent failure. See Note 1.

	SVC_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed. A permanent failure. See Note 1.

	SVC_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed. A permanent failure. See Note 1.

	SVC_UNAVAILABLE_OVERLOADED
	3
	The Service Instance is fully overloaded. A temporary problem. See Note 2.

	SVC_UNAVAILABLE_CLOSED
	4
	The Service Instance has closed itself (e.g. to protect from fraud or malicious attack). A permanent failure. See Note 1.

	SVC_UNAVAILABLE_NO_RESPONSE
	5
	The Framework has detected that a Service Instance has failed: e.g. non-response from an activity test, failure to return heartbeats. A permanent failure. See Note 1.

	SVC_UNAVAILABLE_SW_UPGRADE
	6
	The Service Instance is unavailable due to software upgrade or other similar maintenance. A permanent failure. See Note 1.

	SVC_AVAILABLE
	7
	The Service has become available again

	Note 1:
The client application must act to reset its use of the specified service instance (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance).

Note 2:
The "expected" recovery time could be defined within the SLA.

10.4.23
TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

	Name
	Value
	Description

	APP_UNAVAILABLE_UNDEFINED
	0
	Undefined. A permanent failure. See Note 1.

	APP_UNAVAILABLE_LOCAL_FAILURE
	1
	A local failure in the Application has been detected. A permanent failure. See Note 1.

	APP_UNAVAILABLE_REMOTE_FAILURE
	2
	A remote failure to the application has been detected, e.g. a database is not working. A permanent failure. See Note 1.

	APP_UNAVAILABLE_OVERLOADED
	3
	The Application is fully overloaded. A temporary problem. See Note 2.

	APP_UNAVAILABLE_CLOSED
	4
	The Application has closed itself (e.g. to protect from fraud or malicious attack) . A permanent failure. See Note 1.

	APP_UNAVAILABLE_NO_RESPONSE
	5
	The Framework has detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats. A permanent failure. See Note 1.

	APP_UNAVAILABLE_SW_UPGRADE
	6
	The Application is unavailable due to SW upgrade or other similar maintenance. A permanent failure. See Note 1.

	APP_AVAILABLE
	7
	The Application has become available

	Note 1:
The client application is unable (or does not wish) to continue using the service instance.

Note 2:
The "expected" recovery time could be defined within the SLA.

10.4.24
TpLoadTestID

This data type is identical to a TpInt32, and is used as a token to match load statistics requests with their results.

10.4.25
TpFaultStatsErrorList

Defines a Numbered List of Data Elements of type TpFaultStatisticsError.

10.4.26
TpFaultReqID

This data type is identical to a TpInt32, and is used as a token to match fault statistics requests with their results.

10.4.27
TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

	Name
	Value
	Description

	FRAMEWORK_UNAVAILABLE_UNDEFINED
	0
	Undefined. A permanent failure. See Note 1.

	FRAMEWORK_UNAVAILABLE_LOCAL_FAILURE
	1
	A local failure in the Framework has been detected. A permanent failure. See Note 1.

	FRAMEWORK_UNAVAILABLE_REMOTE_FAILURE
	2
	A remote failure to the Framework has been detected, e.g. a database is not working. A permanent failure. See Note 1.

	FRAMEWORK_UNAVAILABLE_OVERLOADED
	3
	The Framework is fully overloaded. A temporary problem. See Note 2.

	FRAMEWORK_UNAVAILABLE_CLOSED
	4
	The Framework has closed itself (e.g. to protect from fraud or malicious attack) . A permanent failure. See Note 1.

	FRAMEWORK_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The Framework has detected that the protocol used between client and framework has failed. A permanent failure. See Note 1.

	FRAMEWORK_UNAVAILABLE_SW_UPGRADE
	6
	The Framework is unavailable due to SW upgrade or other similar maintenance. A permanent failure. See Note 1.

	FRAMEWORK_AVAILABLE
	7
	The Framework has become available

	Note 1:
The Framework is unable (or does not wish) to continue using the client or service instance.

Note 2:
The 'expected' recovery time could be part of the Framework's local policies.

10.5
Service Subscription Data Definitions

10.5.1
TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.5.2
TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.5.3
TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data type consisting of the following {name,value} pair:

	Sequence Element

Name
	Sequence Element

Type

	PropertyName
	TpPropertyName

	PropertyValue
	TpPropertyValue

10.5.4
TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.5.5
TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g. name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

10.5.6
TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

	Sequence Element

Name
	Sequence Element

Type

	EntOpID
	TpEntOpID

	EntOpProperties
	TpEntOpProperties

10.5.7
TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the Framework, for the use of an OSAservice by the enterprise.

10.5.8
TpServiceContractIDList

This data type defines a Numbered List of Data Elements of type TpServiceContractID.

10.5.9
TpPersonName

This data type is identical to TpString. It is the name of a generic “person”.

10.5.10
TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic “person”.

10.5.11
TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic “person”.

10.5.12
TpEmail

This data type is identical to TpString. It is the email address of a generic “person”.

10.5.13
TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

10.5.14
TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that can be associated with a generic “person”.

10.5.15
TpPerson

This data type is a Sequence of Data Elements which describes a generic “person”: e.g. a billing contact, a service requestor. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type

	PersonName
	TpPersonName

	PostalAddress
	TpPostalAddress

	TelephoneNumber
	TpTelephoneNumber

	Email
	TpEmail

	HomePage
	TpHomePage

	PersonProperties
	TpPersonProperties

10.5.16
TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.17
TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.18
TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise operator.

10.5.19
TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s use of an OSA service.

10.5.20
TpServiceSubscriptionProperties

This is of type TpServicePropertyList. It specifies a subset of all available service properties and service property values that apply to an enterprise’s use of an OSA service.

10.5.21
TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type

	ServiceContractID
	TpServiceContractID

	ServiceContractDescription
	TpServiceContractDescription

10.5.22
TpServiceContractDescription

This data type is a Sequence of Data Elements which describes a service contract. This contract should conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type

	ServiceRequestor
	TpServiceRequestor

	BillingContact
	TpBillingContact

	ServiceStartDate
	TpServiceStartDate

	ServiceEndDate
	TpServiceEndDate

	ServiceTypeName
	TpServiceTypeName

	ServiceID
	TpServiceID

	ServiceSubscriptionProperties
	TpServiceSubscriptionProperties

	InUse
	TpBoolean (See note)

	Note:
The InUse flag indicates if the contract, or one of its associated profiles, is currently in use by a service instance and will be returned in describeServiceContract(). This flag will be ignored if it is passed in to createServiceContract().

10.5.23
TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agreement between the enterprise operator and the Framework.

10.5.24
TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client application. It is a structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

	Sequence Element

Name
	Sequence Element

Type

	ClientAppID
	TpClientAppID

	ClientAppProperties
	TpClientAppProperties

	HasAccessSession
	TpBoolean (See note 1)

	HasServiceInstances
	TpBoolean(See note 2)

	Note 1:
The HasAccessSession flag indicates if the client application currently has an access session active with the framework and will be returned in describeClientApp(). This flag will be ignored if it is passed in to createClientApp().

Note 2:
The HasServiceInstances flag indicates if the client application currently has service instances active and will be returned in describeClientApp(). This flag will be ignored if it is passed in to createClientApp(). This flag must be false if hasAccessSession is false.

10.5.25
TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client applications within an enterprise.

10.5.26
TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

10.5.27
TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client applications, the purpose of the “grouping”.

10.5.28
TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

	Sequence Element

Name
	Sequence Element

Type

	SagID
	TpSagID

	SagDescription
	TpSagDescription

10.5.29
TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an enterprise SAG uses an OSA service.

10.5.30
TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

10.5.31
TpServiceProfile

This data type is a Sequence of Data Elements which represents a Service Profile. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type

	ServiceProfileID
	TpServiceProfileID

	ServiceProfileDescription
	TpServiceProfileDescription

10.5.32
TpServiceProfileDescription

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type

	ServiceContractID
	TpServiceContractID

	ServiceStartDate
	TpServiceStartDate

	ServiceEndDate
	TpServiceEndDate

	ServiceTypeName
	TpServiceTypeName (See note 1)

	ServiceSubscriptionProperties
	TpServiceSubscriptionProperties

	InUse
	TpBoolean (See note 2)

	ServiceID
	TpServiceID (See note 3)

	Note 1:
When the Framework returns a TpServiceProfileDescription to the enterprise operator, it should set the ServiceTypeName field to the same value as the corresponding field of the service contract; When the enterprise operator passes a TpServiceProfileDescription to the Framework, the Framework should ignore the value sent in the ServiceTypeName field to ensure interoperability; The enterprise operator should be required to set the ServiceTypeName field to the correct value when passing a TpServiceProfileDescription to the Framework.

Note 2:
The InUse flag indicates if the profile is currently in use by a service instance and will be returned in describeServiceProfile(). This flag will be ignored if it is passed in to createServiceProfile().

Note 3:
The ServiceID field is used to restrict a service type-based service contract to a specific service. When the TpServiceProfileDescription is passed to the Framework by an enterprise operator, the Framework should ensure that the ServiceID field, if not empty, contains a service which is of the service type specified in the service contract. If the corresponding contract is for a service ID then the Framework should ignore this field.
When a TpServiceProfileDescription is returned to the enterprise operator, the contents of this field will depend on the associated service contract. If the contract is for a service ID, then this field should be populated with the correct value. If the contract is for a service type, and the profile is restricted to a specific service ID then this field should be populated with the correct value. Otherwise, it should contain an empty string.

10.5.33
TpSagProfilePair

This data type is a Sequence of Data Elements which describes a pair of aSAG and a Service Profile. It is a structured data type which consists of:

	Sequence Element Name
	Sequence Element Type

	Sag
	TpSagID

	ServiceProfile
	TpServiceProfileID

10.5.34
TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are added to a SAG - see method addSagMembers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is already assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes another SAG, to which the client application should be added, and the corresponding service profile, through which the client application is also connected to this service. This creates a conflict, as there may exist only a single service profile for each service.

The TpAddSagMembersConflict is a structured data type which consists of:

	Sequence Element Name
	Sequence Element Type

	ClientApplication
	TpClientAppID

	ConflictGeneratingSagProfilePair
	TpSagProfilePair

	AlreadyAssignedSagProfilePair
	TpSagProfilePair

	Service
	TpServiceID

10.5.35
TpAddSagMembersConflictList

This data type defines a Numbered List of Data Elements of type TpAddSagMembersConflict.

10.5.36
TpAssignSagToServiceProfileConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when a SAG is assigned to a Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is already assigned to the service.

The TpAssignSagToServiceProfileConflict is a structured data type which consists of:

	Sequence Element Name
	Sequence Element Type

	ClientApplication
	TpClientAppID

	AlreadyAssignedSagProfilePair
	TpSagProfilePair

	Service
	TpServiceID

10.5.37
TpAssignSagToServiceProfileConflictList

This data type defines a Numbered List of Data Elements of type TpAssignSagToServiceProfileConflict.

11
Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ACCESS_DENIED
	The client is not currently authenticated with the framework

	P_DUPLICATE_PROPERTY_NAME
	A duplicate property name has been received

	P_ILLEGAL_SERVICE_ID
	Illegal Service ID

	P_ILLEGAL_SERVICE_TYPE
	Illegal Service Type

	P_INVALID_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_INVALID_ACTIVITY_TEST_ID
	ID does not correspond to a valid activity test request

	P_INVALID_ADDITION_TO_SAG
	A client application cannot be added to the SAG because this would imply that the client application has two concurrent service profiles at a particular moment in time for a particular service.

	P_INVALID_AGREEMENT_TEXT
	Invalid agreement text

	P_INVALID_ENCRYPTION_CAPABILITY
	Invalid encryption capability

	P_INVALID_AUTH_TYPE
	Invalid type of authentication mechanism

	P_INVALID_CLIENT_APP_ID
	Invalid Client Application ID

	P_INVALID_DOMAIN_ID
	Invalid client ID

	P_INVALID_ENT_OP_ID
	Invalid Enterprise Operator ID

	P_INVALID_PROPERTY
	The framework does not recognise the property supplied by the client

	P_INVALID_SAG_ID
	Invalid Subscription Assignment Group ID

	P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT
	A SAG cannot be assigned to the service profile because this would imply that a client application has two concurrent service profiles at a particular moment in time for a particular service.

	P_INVALID_SERVICE_CONTRACT_ID
	Invalid Service Contract ID

	P_INVALID_SERVICE_ID
	Invalid service ID

	P_INVALID_SERVICE_PROFILE_ID
	Invalid service profile ID

	P_INVALID_SERVICE_TOKEN
	The service token has not been issued, or it has expired.

	P_INVALID_SERVICE_TYPE
	Invalid Service Type

	P_INVALID_SIGNATURE
	Invalid digital signature

	P_INVALID_SIGNING_ALGORITHM
	Invalid signing algorithm

	P_MISSING_MANDATORY_PROPERTY
	Mandatory Property Missing

	P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
	No encryption mechanism, which is acceptable to the framework, is supported by the client

	P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
	No authentication mechanism, which is acceptable to the framework, is supported by the client

	P_NO_ACCEPTABLE_SIGNING_ALGORITHM
	No signing algorithm, which is acceptable to the framework, is supported by the client

	P_PROPERTY_TYPE_MISMATCH
	Property Type Mismatch

	P_SERVICE_ACCESS_DENIED
	The client application is not allowed to access this service.

	P_SERVICE_NOT_ENABLED
	The service ID does not correspond to a service that has been enabled

	P_SERVICE_TYPE_UNAVAILABLE
	The service type is not available according to the Framework.

	P_UNKNOWN_SERVICE_ID
	Unknown Service ID

	P_UNKNOWN_SERVICE_TYPE
	Unknown Service Type

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl, fw_if_app.idl, fw_if_service.idl contained in archive 2919803V800IDL.ZIP) which accompany the present document.
Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of this interface specification is contained in zip file 2919803V800WSDL.ZIP, which accompanies the present document.

Annex C (informative):
Java™ API Description of the Framework

The Java™ API realisation of this interface specification is produced in accordance with the Java™ Realisation rules defined in Part 1 of this specification series. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™, contained in archive 2919803V800J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™, contained in archive 2919803V800J2EE.ZIP that accompanies the present document.

Annex D (informative):
Description of the Framework for 3GPP2 cdma2000 networks
This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in

[1]
3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000;

[2]
3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems", Version 2.0, May 14, 2002;

[3]
3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 8 specification. The information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP OSA specifications.

D.1
General Exceptions

The term UMTS is not applicable for the cdma2000 family of standards. Nevertheless the term UMTS is used in 3GPP TR 21.905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2
Specific Exceptions

D.2.1
Clause 1: Scope

There are no additions or exclusions.

D.2.2
Clause 2: References
Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3
Clause 3: Definitions and abbreviations
There are no additions or exclusions.

D.2.4
Clause 4: Overview of the Framework
There are no additions or exclusions.

D.2.5
Clause 5: The Base Interface Specification
There are no additions or exclusions.

D.2.6
Clause 6: Framework Access Session API
There are no additions or exclusions.

D.2.7
Clause 7 Framework-to-Application Sequence Diagrams
There are no additions or exclusions.

D.2.8
Clause 8: Framework-to-Service API
There are no additions or exclusions.

D.2.9
Clause 9: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be turned always off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

D.2.10
Clause 10: Data Definitions
There are no additions. P_USER_LOCATION_CAMELvalue of TpServiceTypeName is not required to be supported in the 3GPP2 networks.

D.2.11
Clause 11: Exception Classes

There are no additions or exclusions.

D.2.12
Annex A (normative): OMG IDL Description of the Framework
There are no additions or exclusions.

D.2.13
Annex B (informative): W3C WSDL Description of the Framework
There are no additions or exclusions.

D.2.14
Annex C (informative): Java™ API Description of the Framework
There are no additions or exclusions.

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Jun 2006
	CT-32
	CP-060205
	0133
	--
	Remove deprecated items from Trust and Security Management interfaces
	6.6.1
	7.0.0

	Jun 2006
	CT-32
	CP-060205
	0134
	--
	Remove deprecated items from Integrity Management: Fault and Load Management
	6.6.1
	7.0.0

	Sep 2006
	--
	--
	--
	--
	Added missing code attachments J2EE and J2SE.
	7.0.0
	7.0.1

	Dec 2006
	CT-34
	CP-060721
	0136
	1
	Remove unintended limitation on the support of regular expressions within TpAddressRange
	7.0.1
	7.1.0

	Dec 2006
	CT-34
	CP-060596
	0137
	--
	Add TpServiceTypeName to include name of Service Broker SCF
	7.0.1
	7.1.0

	May 2008
	CT-40
	CP-080254
	0138
	--
	Transfer of missing items from ETSI TISPAN OSA Framework specification
	7.1.0
	8.0.0

	2009-12
	-
	-
	-
	-
	Update to Rel-9 version (MCC)
	8.0.0
	9.0.0

_1051101660.doc
[image: image1.png]

[image: image2.png]

[image: image3.png]

Enterprise Operator (In the role of Service Subscriber)

Framework (In the role of Service Retailer)

Client Application (In the role of User or Consumer of Services)

Signs contract about service usage

Uses service

Authorises

_1098709019.doc

ca1, ca2, ca3

SAG1

 ca4,

ca5, ca6,

ca7, ca8,

ca9

SAG2

ca10, ca11, ca12,

ca12, ca13,

SAG3

Client Applications and SAGs in the Enterprise Domain

SC1

SC2

SC3

SC4

Service Contracts for Individual Services

Subscribed by Enterprise Operator

SP1

SP2

SP3

SP5

SP4

Service Profiles in a Service Contract

Assignment of ClientApps/ SAGs to Service Profiles

_1099216806.doc
[image: image1.wmf]

ServiceProfile1

Start: 02, Feb

End: 10, Feb

ServiceID: 1

Client

App.2

SAG

2

SAG

1

Client

App.1

Client

App.3

Client

App.1

ServiceProfile2

Start: 02, Feb

End: 10, Feb

ServiceID: 2

ServiceProfile3

Start: 08, Feb

End: 30, Feb

ServiceID: 1

_1099216945.doc

Client

App 1

Client

App 2

Client

App 5

Client

App 4

Client

App 3

Enterprise Operator 2

Enterprise Operator 3

Enterprise Operator 1

Framework

Client

App 6

Client

App 7

_1066658228.doc
[image: image1.wmf]

Registered Services

Client Application

Framework

Call

Control

Mobility

 UI

Enterprise Op

erator

Operator

_953458302.unknown

