3GPP TR 26.981 V0.0.3 (2016-07)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

MBMS Extensions for Provisioning and Content Ingestion;

(Release 14)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, Symbols and Abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
6
4
Examples for Styles
6
4.1
Heading Styles
6
4.2
Other common styles
6
"TSG <Name>" on the front page
7
Page setup parameters
7
Pro-forma copyright release text block
9
Abstract Test Suite (ATS) text block
10
<x1>
The TTCN Graphical form (TTCN.GR)
10
<x2>
The TTCN Machine Processable form (TTCN.MP)
10
Annex <A>:
<Annex title>
11
A.1
Heading levels in an annex
11
Annex <X>:
Change history
13

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document has been created as part of the study item on “MBMS Extensions on Provisioning and Content Ingestion”. The intention is to identify key functionality of an interface from external application service/content providers to the BM-SC for provisioning and content ingestion in order to leverage all delivery methods and procedures through the interface. Mechanisms that would be suitable for delivery of multimedia content from external application service/content providers to the BM-SC should be identified. The provisioning and content ingestion interface definition should be aligned with the Client side APIs for MBMS (TRAPI) and the study on Enhanced TV Services.
1
Scope

This clause shall start on a new page.

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 22.246: "Multimedia Broadcast/Multicast Service (MBMS) user services; Stage 1".
[3]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs ".

3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

BM-SC
Broadcast Multicast Service Center
MBMS
Multimedia Broadcast/Multicast Service
4
Use-Cases
4.1
Live Video from multiple cameras angles into a stadium

4.1.1
Use-Case Description

A content provider wants to offer multiple camera angles of a sports match into stadiums. The role of the content provider and the role of the network operator may be in the same organization. When the roles are separated across companies, the procedure remains the same and additional authorization and security functions may be added.

The content provider wants to offer for example four live feeds and a statistics channel around the ongoing match into the stadium.

Only devices inside of the stadium are supposed to receive the content streams.

The content provider negotiates service related aspects like the broadcast areas (i.e. locations of the stadiums), the broadcast times (i.e. times of the matches) and the media quality (i.e. desire bitrates, etc) with the operator.

Editor’s Note: The usage of the Provisioning Interface should be described in the use case.
4.1.2
Recommended requirements and working assumption

Editor’s Note: Requirements and working assumptions are ffs.
4.2
Nation-Wide TV channels

4.2.1
Use-Case Description

A content provider wants to offer nation-wide TV channels. The content provider negotiates with the operator the media quality and the service area (i.e. nation-wide).

The content provider does not control the precise delivery option, i.e. unicast bearers or MBMS bearers. The operator selects the mode of transmission, e.g. based on current popularity or based on predictions from past events. The complexity of switching between unicast and MBMS is hidden from the content provider.

The content provider receives consumption statistics and / or quality of experience statistics from the operator.

The operator may have an agreement with multiple content providers so that a certain set of TV channels can be provided.

Editor’s Note: The usage of the Provisioning Interface should be described in the use case.
4.2.2
Recommended requirements and working assumption
Editor’s Note: Requirements and working assumptions are ffs.
4.3
VOD prepositioning

4.3.1
Use-Case Description

A content provider wants to preposition VoD clips on the device. The content provider negotiates distribution areas and the distribution duration with the operator. The content provider estimates the VoD clip size so that the needed transmission resources for the target duration can be assessed.

The content provider plans transmission sessions in the desired geographical area and for the desired time. The content provider may use a self-service portal or the operator may configure the transmission sessions on behave of the content provider.

The content provider wants to decide just before the actual transmission, which VOD Clips should be distributed. So, the content provider provisions the system at a later stage.

Before time is due, the content provider instructs the BM-SC to load the VoD clips into the memory in order to execute file partitioning and FEC calculation. When time is due for the MBMS transmission, the BM-SC triggers MBMS bearer establishment and starts sending the content.

The content provider provides a dedicated App, which handles the reception of the VoD clips and offers the prepositioned clips to the user. The App may also offer additional VOD clips, which are not pre-positioned in order to increase the choice. However, prepositioned clips are marked, since consumption is independent from network connectivity or network availability.

Editor’s Note: The usage of the Provisioning Interface should be described in the use case.
4.3.2
Recommended requirements and working assumption
Editor’s Note: Requirements and working assumptions are ffs.
4.4
Software Update

4.4.1
Use-Case Description

The use-case is similar to the VoD prepositioning use-case with the difference, that a binary software packet is distributed. The content provider is the provider of either the App software or the operating software, thus, is authorized to provide the software updates. The content provider also provides an software update management App.

The software update management App utilizes the TRAPI APIs and interacts with the MBMS client. The software update management App is also able to identify the correct software version for the device and can also verify correct reception.
Editor’s Note: The usage of the Provisioning Interface should be described in the use case.
4.4.2
Recommended requirements and working assumption
Editor’s Note: Requirements and working assumptions are ffs.
5
Architecture Considerations
5.1
Introduction

The Content Provider uses reference point towards the BM-SC for all control plane signalling (e.g., initiation and termination of MBMS user services, status notification etc.) and data plane transfer of content. Based on the signalling from the Content Provider, BM-SC converts the signalling requests to corresponding procedures onto the SGmb/Sgi-mb interface to the MBMS GW.
5.2
Reference Model

As shown in Figure 5.2.1, the reference point between Content Provider and BM-SC is called the “Xm” interface. Using the Xm reference point, user service provider can invoke procedures supported by BM-SC and vice versa to setup and manage user service sessions from BM-SC to the end users. BM-SC defines an endpoint with all supported procedures on the Xm interface, which can then be converted to SGmb procedures for the interface between BM-SC and MBMS GW (not depicted).
Editor’s Note: The name of the reference point (i.e. Xm) enables unique identification and is ffs.

[image: image3.emf]OperationsContent SourceMDFMBMS ClientContent Receiver (APP)APIs (TRAPI)Content Provider/Multicast Broadcast SourceSAFBM-SCADFUEXm-UXm-CContent via MBMS DownloadTS 26.346TS 26.347Scope

Figure 5.2.1: The Xm reference model
Editor’s Note: Content Ingestion for unicast delivery (e.g. PSS ingestion) is ffs.
The BM-SC substructure relevant for the Xm interface is

· SAF: User Service Discovery / Announcement Function
· MDF: MBMS (Download & Streaming) Delivery Function
· ADF: Associated Delivery Function

5.3
Provisioning Procedures

Editor’s Note: Requirements and working assumptions are ffs.
[image: image4.png]
Figure 5.3.1: Provisioning Procedure example (using HTTP REST here)
Note: The example procedure in Figure 5.3.1 acts as guiding example for the provisioning procedure. HTTP REST is one realization example and should be removed.
6

Interface Design
7
Security aspects
 Editor’s Note: Security aspects will be sorted out in collaboration with SA3

8

Survey of Existing Protocols for a Provisioning Interface
The interface specification can be described in two different ways:

· programmatic interface, in which case the interface specification can be described as a set of procedures and functions of the server application that the client application can invoke in its program (e.g., as a library). For this kind of interface specification, the IDL representation presented in sections 7 and 8 can be mapped directly to the target language as that of the client application.

· remote interface, in which case the interface specification can be described as a set of messages that carry message content with method names, and resources to access or modify. For this kind of interface specification, we need an interface specification protocol that can used by the client application to exchange messages with the server application and invoke the procedures included in the remote interface

In this section, we present a list of protocols that can be used to specify the interface. We describe all the protocols in brief and then make a recommendation.

1. Hypertext Transfer Protocol (HTTP):

HTTP is an application-level protocol for distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol which can be used for many tasks beyond its use for hypertext, such as name servers and distributed object management systems, through extension of its request methods, error codes and headers [3]. The HTTP/1.1 specification describes methodologies for message syntax and routing, semantics and content, conditional request, range requests, caching, and authentication.

HTTP protocol can be used a generic application level protocol for communication between any two Internet systems (commonly referred to as client and server in client server computing model). This protocol is used as request response protocol where the requests are issued by the client and the server serves those requests and responds back to the client as response messages. In this way, the client and server exchange different HTTP messages for varied tasks such as session control, payload exchange, capability queries, data population and binding, security, routing etc.

As a generic application level protocol, HTTP can be used an interface specification protocol for the interface. With its wide set of capabilities, the interface can be defined using HTTP protocol to specify the control and data plane functions of the interface.

2. Diameter:

The Diameter base protocol [10] provides Authentication, Authorization, and Accounting framework for network applications (commonly referred to as Diameter applications). The base protocol specifies the message format, transport, error reporting, and security services to be used by Diameter applications. Further, base protocol provides support for failover, transmission-level security, reliable transport, agent support, server-initiated messages, transition support, capability negotiation, peer discovery and configuration.

Diameter applications exchange commands (command requests and answer pairs) to realize a service. Each command represents a specific action the Diameter client wants the Diameter server to perform. All data delivered by the protocol is in the form of AVPs. The base protocol defines a set of common Diameter commands and AVPs as part of the specification.

Diameter applications can extend the base protocol by defining additional commands and AVPs. With this flexibility, Diameter can be seen as a generic request response protocol where the Diameter client and the Diameter server communicate with each other to carry out necessary tasks to perform a service. Due to this generic behaviour, Diameter can be used as an interface specification protocol to define the set of methods, message formats, and agent behaviour for the interface.

3. EXtensible Markup Language (XML):

XML [4][5] is a text based encoding format for representing structured information such as documents, data, configuration etc. It is a simplified format for sharing information between networked systems, computer programs, and even humans. With detailed markup, representation, parsing, editing, and searching of data becomes considerably easier. Some of the advantages of XML include redundancy, self-describing, and simplicity.

With the capabilities to represent structured data, XML can be used to describe message and payload formats for communication between two networked systems. However, since XML is a data markup language, it is often used with other control protocols (e.g., HTTP) when two entities are communicating with each other. While the control protocols are used for session management purposes (e.g., setup and termination of sessions), XML could be used for data formats to represent data exchanged during those interactions.

Due to above reasons XML cannot be used as an interface specification protocol to specify the interface, but it can be used with an interface specification protocol to describe the data that is exchanged.

4. Representational State Transfer (REST):

REST [6] is an architecture style for designing networked applications. This architectural style is based on six constraints – that the architecture should have a client server interface, the communication should be stateless, responses should be cacheable, it should be a layered system (with ability to have intermediate systems between client and server), code on demand (where the server can temporarily extend the functionality of a client by transfer of executable code), and a uniform interface (which facilitates familiarity, interoperability, and scalability). Almost all the time, REST client and server use HTTP protocol for their communication needs.

With REST, the application components are modelled as “resources”, and the interaction between a REST client and a REST server often involves reading, creating, or updating the state of the said resources. By modelling application components as resources, the application can expose “RESTful APIs” that specify the available methods to interact with the server application. All these APIs can be invoked using standard HTTP methods such as GET, PUT, POST, DELETE, HEAD, and OPTIONS. As a result, the interactions between REST client and server become much simpler and lightweight.

The interface between MBMS service provider and BM-SC can be specified as RESTful API by modelling the application components at BM-SC as RESTful resources. With RESTful APIs for interacting with BM-SC, the transport protocol between the service provider and BM-SC would be HTTP, and the client at the service provider would use HTTP methods to invoke operations on the RESTful resources using the above RESTful APIs.

5. Simple Object Access Protocol (SOAP):

SOAP is a protocol for exchanging structured information between peers in a distributed environment. SOAP uses XML for message format and application layer protocols such as HTTP or SMTP etc. as a base transport protocol. SOAP protocol mainly defines three parts – a message envelop that describes message format and rules for processing it, encoding rules for representing application data, and a convention for representing remote procedure calls and responses [7][8].

A SOAP sender and a SOAP receiver can exchange SOAP messages (encoded using XML) and thereby implement a pattern of requests and responses. The request and response protocol is based on a defined programing interface published by the SOAP receiver. However, unlike in REST architecture where the APIs exposed are for manipulation (create, delete, and update) of application resources (data), the programing interface in SOAP is primarily based on the procedures supported at the receiver that drive application logic. As a result, the sender has to have detailed knowledge of the receiver’s interface, which could become an issue if the receiver’s interface is complex and the sender is forced to perform multiple intermediate steps to realize a service.

The interface can be specified using SOAP where the procedures supported could be exposed as an interface for the SOAP client at service provider to use. The client at the service provider would then use SOAP to interact with the SOAP receiver to execute the services provided by the receiver’s interface procedures.

Recommendation: After surveying the probable set of protocols that could be used as interface specification protocols, we recommend RESTful APIs to provide the interface specification for the interface. The benefits of RESTful APIs outweigh the complexities of other protocols. RESTful APIs not only simplify the interface specification, but also simplifies implementation tasks and has lesser overhead compared to other protocols.

Editor’s Note: Protocols for Content Ingestion should be added.
10
Conclusions and Recommendations

Annex A: Provisioning Procedure Overview

A.1
Service, Session and Content Provisioning Overview

Note: This annex contains one example for a provisioning procedure. This example does not consider provisioning for MooD enabled services.
The entire workflow is sub-divided into three provisioning steps, being Service, Session and content provisioning.

The following figure illustrates how Service Provisioning is undertaken once (defining the Service and the planned APP(s)) and Session and Content provisioning are repeated, depending on the number of Delivery Sessions appropriate to the Service and thus defined in Service Provisioning.

[image: image5.emf]Content Provider (CP_OPS)Operator (RAN_OPS, BM-SC_OPS)There may be one or many delivery sessions in an eMBMS User ServiceSession Provisioning 2Service Provisioning 13Content Provisioning

Figure 2 Illustrating the Main Provisioning Workflow

For example, if the planned user service defines a UE application requiring 3 DASH Streaming feeds and 2 on-demand file download content sources, then the Session and Content provisioning steps are run 5 times.

A simple but generic actor grouping is defined that would suit the business requirements both today and into the foreseeable future. The actors we have chosen here are the Content Provider operations people and the Operator operations people.

Depending on the business relationships these people may either be fulfilling a role within the operator’s business (meaning both actor groups are operator trusted employees but from different organizations), or may be people employed by separate, different and several businesses in their own right, but with a business affiliation with the operator to deliver their content over the operator’s transport network.

The separation of the provisioning steps and the actors is independent whether the content provider is an “internal content provider” or an “external / 3rd Party content provider”. The security and privacy procedures surrounding the operations may differ, simply put – the operator trusts his employees, the operator may have varying trust with different Content Providers and Content Providers are unlikely to trust each other (i.e. 3rd Party Content Providers should be shielded against each other).

A.1.1
Service Provisioning
The Service Provisioning phase is largely concerned with negotiation concerning the planned service. It includes a lot of Service design and iterative discussion which takes place in meetings, phone calls, emails etc. This stage would include APP design and allocation of ServiceClass, ServiceID information.

There comes a point when the transport aspects of the service design must be checked and “committed” towards the Content Provider. This will involve Network Analysis - running RAN capacity analysis to determine if the service could be committed (resources available and no collisions exist in the Broadcast Area (i.e. MBMS Service Area, represented as a SAI list) arising from (collisions) other committed broadcasts services using resource allocation in those areas.

The Network Analysis includes assessment of the RAN site in order to establish the MBMS Single Frequency Network (MBSFN). In particular suitable Modulation and Coding Schemes (MCS) should be identified in combination with an amount of Application Layer FEC to reach the negotiated service quality. The feasible Modulation and Coding Schemes with AL-FEC for the MBSFN defines feasible service layer bitrates (GBR).

When the bitrates in the protential broadcast areas can be committed, then an agreement can be made between the operator and Content Provider followed by the Service Layer and RAN, Packet Core provisioning of SAIs.

There is no traffic transmission associated with this process – it is purely provisioning.

A.1.2
Session Provisioning
This is the main provision procedure which has to be repeated for each Delivery Session specified in the Service provisioning process. It requires a number of steps in order to setup all the required eMBMS and Delivery Session Instances. It involves checking the negotiated content bit rate budget negotiated in Service Provisioning is not exceeded and it also involves providing content ingestion points towards Content Provider.

As for Service Provisioning, there is no traffic transmission associated with this process. Individual delivery session instances are planned and potentially already announced on the Service Announcement Channel.

The content provider may indicate during session provisioning, whether QoE or consumption reporting feedback is expected. The operator may activate QoE and / or consumption reporting independently from the content provider selection in order to understand the service quality.

The content provider selects the content ingestion procedure during Session Provisioning. Different types of ingestion procedures are possible, depending on the Use-Case:

· WebDAV (HTTP) for continuous data like media segments or other small files. Here, the BM-SC forwards each file immediately via the MBMS download delivery session, which is associated to the WebDAV folder. During Session Provisioning, the BM-SC provides a unique WebDAV Folder URL as content ingestion point description to the content provider.
· CacheAdd & AddContent for large files in case of on-request transactions: during in case of large files, where the download duration or the file partitioning duration or the FEC redundancy duration is of unknown duration, the content provider should have a separate cache procedure (i.e. CacheAdd) and send procedure (AddContent to delivery session instance). During session provisioning, the BM-SC provides a unique delivery session instance id to the content provider, so that subsequence Cache and Add commands can be uniquely associated to the a delivery session instance.
A.1.3
Content Provisioning
This provisioning step targets the correct content to the correct transmission BM-SC(s) and then ensuring ingested the traffic flow using the content ingestion points provided to the Content Provider during Session Provisioning.

There are different types of provisioning for live DASH and on-request ingestion and delivery, requiring differing ingestion and transmission. The content provider received the content ingestion point identifies (e.g. a WebDAV Folder URL or a delivery session instance id) during the session provisioning step.

For on-request delivery of large files like binary data or VOD clips, the content provider may define a transmission start time or may provide a relative sequence for each file in the delivery session instance. The start time may be provided with the AddContent command.

Content Provisioning is traffic related and requires the corresponding availability and reliability.
Annex B: Abstract Representation of API using IDL

B.1
Introduction

This section describes abstract representation of protocol interface API using the chosen IDL

For describing the interface, we present different interface description languages that are in use today. In section 4.1, we present the most commonly used interface description languages with a recommendation. In section 4.2, we briefly describe the recommended IDL which we then use to describe the interface.
B.2
Survey of Interface Description Languages

An IDL is a specification language for describing the programming interface of a system. For describing the interface, we can use a protocol independent IDL to abstractly describe the capabilities and services of the interface. In this section, we present commonly used IDL languages, and we end the section by providing a recommended IDL for describing the interface.

1. Protocol Buffers:

Protocol Buffers [12] is an IDL for describing structured data and programs for generating software code that can translate the description to an actual software implementation, which can then be used to parse the above structured data. The client and server share the data structures (called messages) and data formats represented by Protocol Buffers IDL. Upon program invocation, the IDL representation of messages and data formats are translated to program code that both the client and server understand and use them for their communication needs.

For the interface, Protocol Buffers IDL can be used to represent the message and data formats that all entities clearly understand and have decoding logic to parse those messages and data.

2. Apache Thrift:

Apache Thrift is an IDL to define “Thrift” types based on the services and interfaces implemented by the server. The Thrift IDL description is then converted to software code using the Thrift code generator which can then be used by the client to call the server implemented services. As a result, the server supported services, represented using Thrift IDL, can be translated to software interfaces which can then be invoked by the client.

All entities can use Thrift IDL to describe their supported services which can then be translated into software interfaces that the other parties can invoke using a message protocol such as HTTP.
3. Apache Avro:
Avro is a higher level IDL used to describe protocol definitions. Each protocol definition describes a set of types (data) and messages (for interaction between the agents). Avro enables definition of user defined data types (e.g., based on enumeration, primitive types, and reference types) and messages (RPC messages, message formats etc.). Different agents in the system provide and share protocol definitions so all agents have a common interface to access services and interfaces provided by other agents.

All entities can use Avro to describe their protocol definitions (data types, messages, message formats etc.) so each party has the detailed descriptions of the services supported by the other party.

4. Web IDL:
Web IDL is an interface definition language that is used to define interfaces for APIs in the web platform. The APIs in the web platform include one or more IDL fragments that describe the interfaces (state and behaviour that objects can exhibit). IDL fragments allows for description of different kinds of definitions such as interfaces, partial interface definitions, dictionaries, partial dictionary definitions, exceptions, typedefs and implements statements [14]. Different objects in the system can provide IDL fragments to describe such kinds of definitions.

All entities modelled as web applications can provide IDL fragments describing their interfaces to specify the state and behaviour they exhibit. With this kind of IDL representation, the two entities are aware of each other’s web API (interface) and therefore can interact with each other using a web message protocol such as HTTP.

5. WSDL:
WSDL is a description language for defining web services. It uses XML protocol and often used with SOAP to describe the web services supported by a web application. WSDL describes web services as a set of end points operating on messages encoded using XML documents. The service end point definitions (e.g., messages and operations on those messages) are abstractly described so any client can fetch the service definition using network protocols and use the service. WSDL also provides extensibility where related end points can be grouped to form an abstract endpoint (services) [15].

If SOAP is being used as an interface specification language to specify the interface, then WSDL can be used as a service description language to describe the web service endpoints supported by the entities. Based on end point service definitions (services), the service provider entities will be able to fetch the definitions and use a network message protocol (e.g., HTTP with SOAP) to consume those services.

6. OMG IDL:
OMG is an interface description language [16] that allows for interface specification which the clients can use to call in their programs. The object implementations on the server are abstracted in the interface description, but provide sufficient information for the client (e.g., number and type of parameters, method name, return type etc.) to call the methods given in the description.

The protocol interface can use OMG IDL to describe the methods and procedures supported by the interface. These methods and procedures can be abstractly described using OMG IDL without specifying implementation details. With such kind of an interface description, all entities will be able to invoke the procedures described in OMG IDL for the protocol interface.

Recommendation: After surveying all the available interface description languages, we believe that using OMG IDL as the interface description language for describing the interface is appropriate. OMG IDL descriptions can be provided at the API level with detailed information about the APIs to the client without burdening the client with implementation details of the said APIs. Further, since the OMG IDL interface description can be mapped to almost all of the client implementation languages, it is easy for the client to understand and start using the above interface.

Editor’s Note: Add a consideration, that OMG IDL is also used to define the APIs in the TRAPI work item (TS 26.347)

B.3
OMG IDL (Object Management Group Interface Description Language)

OMG IDL is a description language [16] that allows for interface specification which the clients can use to call in their programs. The server system’s identifiers (e.g., variables) and procedures (e.g., functions and parameters) are defined using the OMG IDL interface specification using which the client application developers can build the client applications.

OMG IDL provides all the constructs to describe an interface (e.g., literals, attributes, types, grammar, specification rules etc.). OMG IDL also provides capabilities for general language level features (e.g., inheritance, type declaration, exception handling etc.) while generating the interface description. Once the interface description is generated (or written), the interface can then be mapped to a language that the client can understand so the interface methods can be invoked during client execution.

An application’s IDL specification is usually built using one or more modules. Each module provides a description of the set of identifiers and procedures of different participants involved in the architecture. For example, a basic module on a server application can be defined as follows:

module ExampleModule {

// Identifiers and procedures of different participants in the system

}

Within the EampleModule module described above, we can define a set of interfaces with each interface corresponding to a participant in the system. For example, the two interfaces “Client” and “Server” describe the identifiers and procedures by the client system and server system respectively in a traditional client server model.

module ExampleModule {

interface Client {

//Identifiers and procedures of client system

};

Interface Server {

// Identifiers and procedures of server system

};

}

Each of the Client and Server interfaces in the IDL description above can individually define the identifiers and procedures for the respective application/system. For example, the Client interface can define identifiers and procedures as shown below:

interface Client {

long a;

// identifier/ variable

long sum (in long b, in long c);

// procedure that returns the sum of two numbers

};

In addition to defining basic interfaces, OMG provides capabilities for:

· extending the interfaces to generate derived interfaces (using the inheritance mechanism)

· different types of abstract and local interfaces

· different types of declarations such as value declarations, constant declarations, type declarations, exception declarations, operation declarations, attribute declarations, event declarations, and component declarations

· scoping rules and name resolution

Once, all the interfaces are defined and the IDL description is completed, the description can be mapped to client and/or server’s language. The mapped description can then be used directly by the client in its implementation without complete understanding of the detailed server’s implementation. As a results, this enables the client and server development to progress in parallel as long as they adhere to the agreed upon interface description and specification.

Annex C. MB2 Reference Point
C.1 Introduction

As part of Release 13, 3GPP developed and specified the Group Communication System Enabler for LTE (GCSE_LTE) and MB2 reference point in 3GPP TS 23.468[19]. The MB2 control and data plane interfaces (MB2-C and MB2-U respectively) enable a Group Communication Service Application Server (GCS AS) to establish a connection with a BM-SC and feed data into the BM-SC to be transmitted over MBMS broadcast. The GCS AS acts as an external content provider using the BM-SC for broadcasting content to the users.

The MB2 reference point between the GCS AS and BM-SC provides the ability:

· To the GCS AS application to request for allocation of a set of new TMGIs or renewal of expiration time for already allocated TMGIs

· To the GCS AS application to request for de-allocation of a set of TMGIs (and their corresponding bearers) irrespective of their expiration time

· To the GCS AS application to request for activation, deactivation, and modification of MBMS bearers and their corresponding resources

· To BM-SC to notify the GCS AS application of status of MBMS bearers

· To BM-SC to notify the GCS AS application regarding the timer expiry of a TMGI

Based on the procedures requested by the GCS AS using the MB2 interface, the BM-SC invokes corresponding procedures on the SGmb/Sgi-mb interface to the MBMS GW.

C.2
Shortcomings of MB2

The MB2 reference point between the GCS AS and BM-SC provides capabilities for TMGI management (allocation/deallocation/modification), MBMS bearer control (activation/deactivation/modification) and status notification procedures. However, there are clear drawbacks/limitations to the MB2 reference point such as the following:

· MB2 only allows for setup of MBMS services using group delivery method. Other different delivery methods such as download delivery and streaming delivery are not supported.

· The procedures defined for the MB2 reference point do not allow the GCS AS to benefit from some of the functionality that is offered by the BM-SC to monitor and improve the QoS over the broadcast channel such as QoE reporting, consumption reporting etc. The GC1 interface, which is not defined in the specification 3GPP TS 23.468[19], may have to be overloaded with similar functionality, leading to redundancy and inefficiency.
· The procedures defined for the MB2 reference point do not allow the GCS AS to delegate responsibility of some functions to BM-SC that are already supported at BM-SC. Instead these functions are duplicated at GCS AS further complicating the GCS AS functionality. For example, functions that could be delegated include FEC activation, service announcement etc.
· Further, it is left to the GCS AS and the GCS application on the UE to implement new features/enhancements (e.g., FEC). Based on this design, many GCS AS and GCS applications on the UE may have to implement the same set of features instead of using features already provided at the BM-SC
Editor’s Note: GCS realizes Service Announcement over GC1. A Service Announcement Channel (SACH) as defined in Annex L2, L3 of 26.346 or other Service Announcement / Discovery functions are not used.
In addition to the above, the MB2 reference point was developed keeping in mind the basic requirements for a group communication service. However, the detailed requirements of different group communication services differ and cannot be accommodated with the procedures supported by MB2 reference point. For example, the requirements for a group communication service such as MCPTT (for public safety) will be different from that of broadcast TV. It is difficult to extend the MB2 reference point to support the varied set of requirements, particularly in presence of group communication services with different criticalities.

Also, the MB2 reference point is based on Diameter Base protocol [31]. A protocol which is simpler, dynamic, and flexible than Diameter could be an ideal protocol for defining the interface between the external content provider and the BM-SC.

Annex <X>:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	
	
	
	
	
	
	
	

_1528879631.vsd

_1527579954.vsd
Service Provisioning

1

There may be one or many delivery sessions in an eMBMS User Service

Session Provisioning

