
3GPP TS 26.204 V7.0.0 (2007-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Speech codec speech processing functions;

Adaptive Multi-Rate - Wideband (AMR-WB) speech codec;
ANSI-C code

(Release 7)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

GSM, UMTS, codec

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2007, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

5Foreword

1
Scope
6
2
References
6
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
C code structure
7
4.1
Contents of the C source code
7
4.2
Program execution
7
4.3
Code hierarchy
8
4.4
Variables, constants and tables
13
4.4.1
Description of fixed tables used in the C-code
14
4.4.2
Static variables used in the C-code
15
5
Homing procedure
18
6
File formats
19
6.1
Speech file (encoder input/decoder output)
19
6.2
Mode control file (encoder input)
19
6.3
Parameter bitstream file (encoder output/decoder input)
19
Annex A (informative):
Change history
20

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document contains an electronic copy of the ANSI‑C code for the Floating-point Adaptive Multi-Rate Wideband codec. This floating-point codec specification is mainly targeted to be used in multimedia applications or in packet-based applications. The bit-exact fixed-point ANSI-C code in 3GPP TS 26.173 remains the preferred implementation for all applications, but the floating-point codec may be used instead of the fixed-point codec when the implementation platform is better suited for a floating-point implementation. It has been verified that the fixed-point and floating-point codecs interoperate with each other without any artifacts.

The floating-point ANSI‑C code in the present document is the only standard conforming non-bit-exact implementation of the Adaptive Multi-Rate Wideband speech transcoder (3GPP TS 26.190 [2]), Voice Activity Detection (3GPP TS 26.194 [6]), comfort noise generation (3GPP TS 26.192 [4]), and source controlled rate operation (3GPP TS 26.193 [5]). The floating-point code also contains example solutions for substituting and muting of lost frames (3GPP TS 26.191 [3]).

The fixed-point specification in 26.173 shall remain the only allowed implementation for the 3G AMR-WB speech service and the use of the floating-point codec is strictly limited to other services.

The floating-point encoder in the present document is a non-bit-exact implementation of the fixed-point encoder producing quality indistinguishable from that of the fixed-point encoder. The decoder in the present document is functionally a bit‑exact implementation of the fixed-point decoder, but the code has been optimized for speed and the standard fixed-point libraries are not used as such.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 26.174: "AMR speech codec, wideband; Test sequences".

[2]
3GPP TS 26.190: "Mandatory Speech Codec speech processing functions AMR Wideband speech codec; Transcoding functions".

[3]
3GPP TS 26.191: "AMR speech codec, wideband; Error concealment of lost frames".

[4]
3GPP TS 26.192: "Mandatory Speech Codec speech processing functions AMR Wideband Speech Codec; Comfort noise aspects".

[5]
3GPP TS 26.193: "AMR speech codec, wideband; Source controlled rate operation".

[6]
3GPP TS 26.194: "Mandatory Speech Codec speech processing functions AMR Wideband speech codec; Voice Activity Detector (VAD)".

[7]
RFC 3267 “A Real-Time Transport Protocol (RTP) Payload Format and File Storage Format for Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs, June 2002.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TS 26.190 [2], TS 26.191 [3], TS 26.192 [4], TS 26.193 [5] and TS 26.194 [6].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

AMR-WB
Adaptive Multi-Rate WideBand

ANSI
American National Standards Institute

GSM
Global System for Mobile communications

I/O
Input/Output

RAM
Random Access Memory

ROM
Read Only Memory

4
C code structure

This clause gives an overview of the structure of the bit‑exact C code and provides an overview of the contents and organization of the C code attached to the present document.

The C code has been verified on the following systems:

-
IBM PC/AT compatible computers with Windows NT40 and Microsoft Visual C++ v.6.0 compiler.

-
IBM PC/AT compatible computers with Windows NT40 and Intel C/C++ v.4.0 compiler.
ANSI‑C was selected as the programming language because portability was desirable.

4.1
Contents of the C source code

The C code distribution has all files in the root level.

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM data is contained in "rom" files with suffix "c".

Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is installed, this directory will have a compiled version of encoder and decoder and all the object files.

4.2
Program execution

The Adaptive Multi-Rate Wideband codec is implemented in two programs:

-
(encoder) speech encoder;

-
(decoder) speech decoder.

The programs should be called like:

-
encoder [encoder options] <speech input file> <parameter file>;

-
decoder <parameter file> <speech output file>.

The speech files contain 16-bit linear encoded PCM speech samples and the parameter files contain encoded speech data and some additional flags.

The encoder and decoder options will be explained by running the applications without input arguments. See the file readme.txt for more information on how to run the encoder and decoder programs.

4.3
Code hierarchy

Tables 1 and 2 are call graphs that show the functions used in the speech codec, including the functions of VAD, DTX, and comfort noise generation.

Each column represents a call level and each cell a function. The functions contain calls to the functions in rightwards neighbouring cells. The time order in the call graphs is from the top downwards as the processing of a frame advances. All standard C functions: memcpy(), fwrite(), etc. have been omitted. The initialization of the static RAM (i.e. calling the _init functions) is also omitted.

Table 1: Speech encoder call structure

	E_MAIN_encode
	E_UTIL_decim_12k8
	E_UTIL_down_samp
	E_UTIL_interpol
	

	
	E_UTIL_decim_12k8
	
	
	

	
	E_UTIL_hp50_12k8
	
	
	

	
	E_UTIL_hp50_12k8
	
	
	

	
	E_UTIL_f_preemph
	
	
	

	
	E_DTX_vad
	E_DTX_filter_bank
	E_DTX_filter5
	

	
	
	
	E_DTX_filter3
	

	
	
	
	E_DTX_level_calculation
	

	
	
	E_DTX_decision
	E_DTX_noise_estimate_update
	E_DTX_update_cntrl

	
	
	
	E_DTX_hangover_addition
	

	
	
	E_DTX_speech_estimate
	
	

	
	E_DTX_tx_handler
	
	
	

	
	E_DTX_reset
	E_LPC_isf_init
	
	

	
	E_MAIN_parm_store
	
	
	

	
	E_UTIL_autocorr
	
	
	

	
	E_LPC_lag_wind
	
	
	

	
	E_LPC_lev_dur
	
	
	

	
	E_LPC_a_isp_conversion
	E_LPC_chebyshev
	
	

	
	E_LPC_f_int_isp_find
	E_LPC_f_isp_a_conversion
	E_LPC_f_isp_pol_get
	

	
	E_LPC_isp_isf_conversion
	
	
	

	
	E_GAIN_clip_isf_test
	
	
	

	
	E_LPC_a_weight
	
	
	

	
	E_UTIL_residu
	
	
	

	
	E_UTIL_deemph
	
	
	

	
	E_GAIN_lp_decim2
	
	
	

	
	E_GAIN_open_loop_search
	
	
	

	
	E_GAIN_olag_median
	E_GAIN_sort
	
	

	
	E_DTX_pitch_tone_detection
	
	
	

	
	E_GAIN_open_loop_search
	
	
	

	
	E_GAIN_olag_median
	
	
	

	
	E_DTX_pitch_tone_detection
	
	
	

	
	E_UTIL_residu
	
	
	

	
	E_DTX_buffer
	
	
	

	
	E_DTX_exe
	E_DTX_frame_indices_find
	
	

	
	
	E_DTX_isf_history_aver
	
	

	
	
	E_DTX_isf_q
	E_LPC_isf_sub_vq
	

	
	
	
	E_LPC_isf_noise_d
	E_LPC_f_isf_reorder

	
	
	E_DTX_dithering_control
	
	

	
	
	E_UTIL_random
	
	

	
	E_MAIN_reset
	E_GAIN_clip_init
	
	

	
	
	E_DTX_reset
	
	

	
	
	E_DTX_vad_reset
	
	

	
	E_LPC_isf_2s3s_quantise
	E_LPC_stage1_isf_vq
	
	

	
	
	E_LPC_isf_sub_vq
	
	

	
	
	E_LPC_stage1_isf_vq
	
	

	
	
	E_LPC_isf_sub_vq
	
	

	
	
	E_LPC_isf_2s3s_decode
	E_LPC_isf_reorder
	

	
	E_LPC_isf_2s5s_quantise
	E_LPC_stage1_isf_vq
	
	

	
	
	E_LPC_isf_sub_vq
	
	

	
	
	E_LPC_isf_2s5s_decode
	E_LPC_isf_reorder
	

	
	E_LPC_isf_isp_conversion
	
	
	

	
	E_LPC_int_isp_find
	E_LPC_isp_a_conversion
	E_LPC_isp_pol_get
	E_UTIL_l_extract

	
	
	
	
	E_UTIL_mpy_32_16

	
	
	
	E_UTIL_l_extract
	

	
	
	
	E_UTIL_mpy_32_16
	

	
	E_UTIL_residu
	
	
	

	
	E_DTX_buffer
	
	
	

	
	E_UTIL_residu
	
	
	

	
	E_UTIL_synthesis
	
	
	

	
	E_LPC_a_weight
	
	
	

	
	E_UTIL_residu
	
	
	

	
	E_UTIL_deemph
	
	
	

	
	E_UTIL_f_preemph
	
	
	

	
	E_LPC_a_weight
	
	
	

	
	E_UTIL_synthesis
	
	
	

	
	E_UTIL_residu
	
	
	

	
	E_LPC_a_weight
	
	
	

	
	E_UTIL_synthesis
	
	
	

	
	E_UTIL_deemph
	
	
	

	
	E_GAIN_closed_loop_search
	E_GAIN_norm_corr
	E_UTIL_f_convolve
	

	
	
	E_GAIN_norm_corr_interpolate
	
	

	
	E_GAIN_clip_test
	
	
	

	
	E_GAIN_adaptive_codebook_excitation
	
	
	

	
	E_UTIL_convolve
	
	
	

	
	E_ACELP_xy1_corr
	
	
	

	
	E_ACELP_codebook_target_update
	
	
	

	
	E_UTIL_convolve
	
	
	

	
	E_ACELP_xy1_corr
	
	
	

	
	E_ACELP_codebook_target_update
	
	
	

	
	E_UTIL_f_preemph
	
	
	

	
	E_GAIN_f_pitch_sharpening
	
	
	

	
	E_ACELP_xh_corr
	
	
	

	
	E_ACELP_2t
	
	
	

	
	E_ACELP_4t
	E_ACELP_h_vec_corr1
	
	

	
	
	E_ACELP_h_vec_corr2
	
	

	
	
	E_ACELP_2pulse_search
	
	

	
	
	E_ACELP_quant_1p_N1
	
	

	
	
	E_ACELP_quant_2p_2N1
	
	

	
	
	E_ACELP_quant_3p_3N1
	E_ACELP_quant_2p_2N1
	

	
	
	
	E_ACELP_quant_1p_N1
	

	
	
	E_ACELP_quant_4p_4N
	E_ACELP_quant_4p_4N1
	E_ACELP_quant_2p_2N1

	
	
	
	E_ACELP_quant_1p_N1
	

	
	
	
	E_ACELP_quant_3p_3N1
	

	
	
	
	E_ACELP_quant_2p_2N1
	

	
	
	
	E_ACELP_quant_3p_3N1
	

	
	
	E_ACELP_quant_5p_5N
	E_ACELP_quant_3p_3N1
	

	
	
	
	E_ACELP_quant_2p_2N1
	

	
	
	E_ACELP_quant_6p_6N_2
	E_ACELP_quant_5p_5N
	

	
	
	
	E_ACELP_quant_1p_N1
	

	
	
	
	E_ACELP_quant_4p_4N
	

	
	
	
	E_ACELP_quant_2p_2N1
	

	
	
	
	E_ACELP_quant_3p_3N1
	

	
	E_UTIL_preemph
	
	
	

	
	E_GAIN_pitch_sharpening
	
	
	

	
	E_ACELP_xy2_corr
	
	
	

	
	E_ACELP_gains_quantise
	E_UTIL_dot_product12
	E_UTIL_saturate_31
	

	
	
	
	E_UTIL_norm_l
	

	
	
	E_UTIL_normalized_inverse_sqrt
	
	

	
	
	E_UTIL_l_extract
	
	

	
	
	E_UTIL_saturate
	
	

	
	
	E_UTIL_mpy_32_16
	
	

	
	
	E_UTIL_log2_32
	E_UTIL_norm_l
	

	
	
	
	E_UTIL_normalized_log2
	

	
	E_UTIL_signal_up_scale
	
	
	

	
	E_UTIL_signal_down_scale
	
	
	

	
	E_GAIN_clip_pit_test
	
	
	

	
	E_UTIL_signal_down_scale
	
	
	

	
	E_GAIN_voice_factor
	E_UTIL_dot_product12
	
	

	
	
	E_UTIL_norm_l
	
	

	
	
	E_UTIL_norm_s
	
	

	
	E_UTIL_norm_s
	
	
	

	
	E_UTIL_synthesis
	
	
	

	
	E_UTIL_enc_synthesis
	E_UTIL_synthesis
	
	

	
	
	E_UTIL_deemph
	
	

	
	
	E_UTIL_hp50_12k8
	
	

	
	
	E_UTIL_random
	
	

	
	
	E_UTIL_hp400_12k8
	
	

	
	
	E_LPC_a_weight
	
	

	
	
	E_UTIL_synthesis
	
	

	
	
	E_UTIL_bp_6k_7k
	
	

	
	
	E_UTIL_bp_6k_7k
	
	

Table 2: Speech decoder call structure

	D_MAIN_decode
	D_DTX_rx_handler
	D_LPC_isf_noise_d
	D_LPC_isf_reorder
	

	
	D_DTX_exe
	D_DTX_cn_dithering
	D_UTIL_random
	

	
	
	D_UTIL_pow2
	
	

	
	
	D_UTIL_norm_l
	
	

	
	
	D_UTIL_random
	
	

	
	
	D_UTIL_dot_product12
	D_UTIL_norm_l
	

	
	
	D_UTIL_normalized_inverse_sqrt
	
	

	
	D_LPC_isf_isp_conversion
	
	
	

	
	D_LPC_isp_a_conversion
	D_LPC_isp_pol_get
	D_UTIL_l_extract
	

	
	
	
	D_UTIL_mpy_32_16
	

	
	
	D_UTIL_l_extract
	
	

	
	
	D_UTIL_mpy_32_16
	
	

	
	D_UTIL_dec_synthesis
	D_UTIL_synthesis_32
	
	

	
	
	D_UTIL_deemph_32
	D_UTIL_saturate
	

	
	
	D_UTIL_hp50_12k8
	D_UTIL_l_extract
	

	
	
	D_UTIL_oversamp_16k
	D_UTIL_up_samp
	D_UTIL_interpol

	
	
	D_UTIL_random
	
	

	
	
	D_UTIL_signal_down_scale
	
	

	
	
	D_UTIL_dot_product12
	
	

	
	
	D_UTIL_normalized_inverse_sqrt
	
	

	
	
	D_UTIL_hp400_12k8
	D_UTIL_l_extract
	

	
	
	D_UTIL_norm_l
	
	

	
	
	D_LPC_isf_extrapolation
	D_UTIL_norm_s
	

	
	
	
	D_UTIL_l_extract
	

	
	
	
	D_UTIL_mpy_32
	

	
	
	
	D_LPC_isf_isp_conversion
	

	
	
	D_LPC_isp_a_conversion
	
	

	
	
	D_LPC_a_weight
	
	

	
	
	D_UTIL_synthesis
	
	

	
	
	D_LPC_a_weight
	
	

	
	
	D_UTIL_synthesis
	
	

	
	
	D_UTIL_bp_6k_7k
	
	

	
	
	D_UTIL_hp_7k
	
	

	
	D_MAIN_reset
	D_GAIN_init
	
	

	
	
	D_GAIN_lag_concealment_init
	
	

	
	
	D_DTX_reset
	
	

	
	D_LPC_isf_2s3s_decode
	D_LPC_isf_reorder
	
	

	
	D_LPC_isf_2s5s_decode
	D_LPC_isf_reorder
	
	

	
	D_LPC_isf_isp_conversion
	
	
	

	
	D_LPC_int_isp_find
	D_LPC_isp_a_conversion
	
	

	
	D_GAIN_lag_concealment
	D_GAIN_sort_lag
	D_GAIN_insert_lag
	

	
	
	D_UTIL_random
	
	

	
	D_GAIN_adaptive_codebook_excitation
	
	
	

	
	D_UTIL_random
	
	
	

	
	D_ACELP_decode_2t
	
	
	

	
	D_ACELP_decode_4t
	D_ACELP_decode_1p_N1
	
	

	
	
	D_ACELP_add_pulse
	
	

	
	
	D_ACELP_decode_2p_2N1
	
	

	
	
	D_ACELP_decode_3p_3N1
	D_ACELP_decode_2p_2N1
	

	
	
	
	D_ACELP_decode_1p_N1
	

	
	
	D_ACELP_decode_4p_4N
	D_ACELP_decode_4p_4N1
	D_ACELP_decode_2p_2N1

	
	
	
	
	D_ACELP_decode_2p_2N1

	
	
	
	D_ACELP_decode_1p_N1
	

	
	
	
	D_ACELP_decode_3p_3N1
	

	
	
	
	D_ACELP_decode_2p_2N1
	

	
	
	D_ACELP_decode_5p_5N
	D_ACELP_decode_3p_3N1
	

	
	
	
	D_ACELP_decode_2p_2N1
	

	
	
	D_ACELP_decode_6p_6N_2
	D_ACELP_decode_5p_5N
	

	
	
	
	D_ACELP_decode_1p_N1
	

	
	
	
	D_ACELP_decode_4p_4N
	

	
	
	
	D_ACELP_decode_2p_2N1
	

	
	
	
	D_ACELP_decode_3p_3N1
	

	
	D_UTIL_preemph
	
	
	

	
	D_GAIN_pitch_sharpening
	
	
	

	
	D_GAIN_decode
	D_UTIL_dot_product12
	
	

	
	
	D_UTIL_normalized_inverse_sqrt
	
	

	
	
	D_GAIN_median
	
	

	
	
	D_UTIL_l_extract
	
	

	
	
	D_UTIL_pow2
	
	

	
	
	D_UTIL_mpy_32_16
	
	

	
	
	D_UTIL_log2
	D_UTIL_norm_l
	

	
	
	
	D_UTIL_normalized_log2
	

	
	D_UTIL_signal_up_scale
	D_UTIL_saturate
	
	

	
	D_UTIL_signal_down_scale
	
	
	

	
	D_GAIN_find_voice_factor
	D_UTIL_dot_product12
	
	

	
	
	D_UTIL_norm_l
	
	

	
	
	D_UTIL_norm_s
	
	

	
	D_UTIL_norm_s
	
	
	

	
	D_UTIL_l_extract
	
	
	

	
	D_ACELP_phase_disper
	
	
	

	
	D_UTIL_mpy_32_16
	
	
	

	
	D_UTIL_l_extract
	
	
	

	
	D_GAIN_adaptive_control
	D_UTIL_norm_l
	
	

	
	
	D_UTIL_inverse_sqrt
	
	

	
	D_UTIL_dec_synthesis
	D_UTIL_saturate
	
	

	
	D_UTIL_signal_down_scale
	
	
	

	
	D_DTX_activity_update
	D_UTIL_log2
	
	

4.4
Variables, constants and tables

The data types of variables and tables used in the floating-point implementation are signed integers in 2's complement representation, defined by:

Word8
8 bit variable
UWord8
8 bit unsigned variable
Word16
16 bit variable
Word16
16 bit unsigned variable
Word32
32 bit variable

Floating-point numbers use the IEEE (Institute of Electrical and Electronics Engineers) format:

Float32
8 bit exponent, 23 bit mantissa, 1 bit sign
Float64
11 bit exponent, 52 bit mantissa, 1 bit sign

4.4.1
Description of fixed tables used in the C-code

This clause contains a listing of all fixed tables declared in enc_rom.c and dec_rom.c files.

Table 3: Encoder fixed tables

	Format
	Table name
	Size
	Description

	Word16
	E_ROM_cdown_unusable
	7
	Attenuation factors for codebook gain in lost frames

	Word16
	E_ROM_cdown_usable
	7
	Attenuation factors for codebook gain in bad frames

	Float32.
	E_ROM_corrweight
	199
	Weighting of the correlation function in open loop LTP search

	Word16
	E_ROM_cos
	129
	Table of cos(x)

	Float32
	E_ROM_dico1_isf
	9*256
	1st ISF quantizer of the 1st stage

	Float32
	E_ROM_dico1_isf_noise
	2*64
	1st ISF quantizer for comfort noise

	Float32
	E_ROM_dico21_isf
	3*64
	1st ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Float32
	E_ROM_dico21_isf_36b
	5*128
	1st ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Float32
	E_ROM_dico22_isf
	3*128
	2nd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Float32
	E_ROM_dico22_isf_36b
	4*128
	2nd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Float32
	E_ROM_dico23_isf
	3*128
	3rd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Float32
	E_ROM_dico23_isf_36b
	7*64
	3rd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Float32
	E_ROM_dico24_isf
	3*32
	4th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Float32
	E_ROM_dico25_isf
	4*32
	5th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Float32
	E_ROM_dico2_isf
	7*256
	2nd ISF quantizer of the 1st stage

	Float32
	E_ROM_dico2_isf_noise
	3*64
	2nd ISF quantizer for comfort noise

	Float32
	E_ROM_dico3_isf_noise
	3*64
	3rd LSF quantizer for comfort noise

	Float32
	E_ROM_dico4_isf_noise
	4*32
	4th LSF quantizer for comfort noise

	Float32
	E_ROM_dico5_isf_noise
	4*32
	5th LSF quantizer for comfort noise

	Float32
	E_ROM_en_adjust
	9
	Energy scaling factor for each mode during comfort noise

	Float32
	E_ROM_f_interpol_frac
	4
	LPC interpolation coefficients

	Float32
	E_ROM_fir_6k_7k
	31
	Bandpass FIR filter coefficients for higher band generation

	Word16
	E_ROM_fir_down
	120
	Downsample FIR filter coefficients

	Float32
	E_ROM_fir_ipol
	61
	Interpol FIR filter coefficients

	Word16
	E_ROM_fir_up
	120
	Upsample FIR filter coefficients

	Float32
	E_ROM_grid
	101
	Chebyshev polynomial grid points

	Float32
	E_ROM_hamming_cos
	384
	LP analysis window

	Float32
	E_ROM_hp_gain
	16
	High band gain table for 23.85 kbit/s mode

	Float32
	E_ROM_inter4_1
	4*2*4
	Interpolation filter coefficients

	Word16
	E_ROM_inter4_2
	4*2*16
	Interpolation filter coefficients

	Word16
	E_ROM_interpol_frac
	4
	Interpolation filter coefficients

	Float32
	E_ROM_isf
	16
	ISF table for initialization

	Word16
	E_ROM_isp
	16
	ISP table for initialization

	Word16
	E_ROM_isqrt
	49
	Table used in inverse square root computation

	Float32
	E_ROM_lag_window
	16
	Lag window table

	Word16
	E_ROM_log2
	33
	Table used in logarithm computation

	Float32
	E_ROM_f_mean_isf
	16
	ISF mean

	Word16
	E_ROM_mean_isf
	16
	ISF mean

	Float32
	E_ROM_mean_isf_noise
	16
	ISF mean for comfort noise

	Word16
	E_ROM_pdown_unusable
	7
	Attenuation factors for adaptive codebook gain in lost frames

	Word16
	E_ROM_pdown_usable
	7
	Attenuation factors for adaptive codebook gain in bad frames

	Word16
	E_ROM_pow2
	33
	Table used in power of two computation

	Float32
	E_ROM_qua_gain6b
	2*64
	Gain quantization table for 6-bit gain quantization

	Float32
	E_ROM_qua_gain7b
	2*128
	Gain quantization table for 7-bit gain quantization

	Uword8
	E_ROM_tipos
	36
	Starting point for codebook search

Table 4: Decoder fixed tables

	Format
	Table name
	Size
	Description

	Word16
	D_ROM_cdown_unusable
	7
	Attenuation factors for codebook gain in lost frames

	Word16
	D_ROM_cdown_usable
	7
	Attenuation factors for codebook gain in bad frames

	Word16
	D_ROM_cos
	129
	Table of cos(x)

	Word16
	D_ROM_dico1_isf
	9*256
	1st ISF quantizer of the 1st stage

	Word16
	D_ROM_dico1_isf_noise
	2*64
	1st ISF quantizer for comfort noise

	Word16
	D_ROM_dico21_isf
	3*64
	1st ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Word16
	D_ROM_dico21_isf_36b
	5*128
	1st ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Word16
	D_ROM_dico22_isf
	3*128
	2nd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Word16
	D_ROM_dico22_isf_36b
	4*128
	2nd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Word16
	D_ROM_dico23_isf
	3*128
	3rd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Word16
	D_ROM_dico23_isf_36b
	7*64
	3rd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Word16
	D_ROM_dico24_isf
	3*32
	4th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Word16
	D_ROM_dico25_isf
	5*32
	5th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Word16
	D_ROM_dico2_isf
	7*256
	2nd ISF quantizer of the 1st stage

	Word16
	D_ROM_dico2_isf_noise
	3*64
	2nd ISF quantizer for comfort noise

	Word16
	D_ROM_dico3_isf_noise
	3*64
	3rd LSF quantizer for comfort noise

	Word16
	D_ROM_dico4_isf_noise
	4*32
	4th LSF quantizer for comfort noise

	Word16
	D_ROM_dico5_isf_noise
	4*32
	5th LSF quantizer for comfort noise

	Word16
	D_ROM_fir_6k_7k
	31
	Bandpass FIR filter coefficients for higher band generation

	Word16
	D_ROM_fir_7k
	31
	Bandpass FIR filter coefficients for higher band in 23.85 kbit/s mode

	Word16
	D_ROM_fir_down
	120
	Downsample FIR filter coefficients

	Word16
	D_ROM_fir_up
	120
	Upsample FIR filter coefficients

	Word16
	D_ROM_hp_gain
	16
	High band gain table for 23.85 kbit/s mode

	Word16
	D_ROM_inter4_2
	4*2*16
	Interpolation filter coefficients

	Word16
	D_ROM_interpol_frac
	4
	LPC interpolation coefficients

	Word16
	D_ROM_isf
	16
	ISF table for initialization

	Word16
	D_ROM_isp
	16
	ISP table for initialization

	Word16
	D_ROM_isqrt
	49
	Table used in inverse square root computation

	Word16
	D_ROM_log2
	33
	Table used in logarithm computation

	Word16
	D_ROM_mean_isf
	16
	ISF mean

	Word16
	D_ROM_mean_isf_noise
	16
	ISF mean for comfort noise

	Word16
	D_ROM_pdown_unusable
	7
	Attenuation factors for adaptive codebook gain in lost frames

	Word16
	D_ROM_pdown_usable
	7
	Attenuation factors for adaptive codebook gain in bad frames

	Word16
	D_ROM_ph_imp_low
	64
	Phase dispersion impulse response

	Word16
	D_ROM_ph_imp_mid
	64
	Phase dispersion impulse response

	Word16
	D_ROM_pow2
	33
	Table used in power of two computation

	Word16
	D_ROM_qua_gain6b
	2*64
	Gain quantization table for 6-bit gain quantization

	Word16
	D_ROM_qua_gain7b
	2*128
	Gain quantization table for 7-bit gain quantization

4.4.2
Static variables used in the C-code

In this clause two tables that specify the static variables for the speech encoder and decoder respectively are shown. All static variables are declared within a C struct.
Table 5: Speech encoder static variables

	Struct name
	Variable
	Type
	Length
	Description

	Coder_State
	mem_speech
	Float32
	384
	speech buffer

	
	mem_wsp
	Float32
	371
	buffer holding spectral weighted speech

	
	mem_hp_wsp
	Float32
	243
	highpass wsp

	
	mem_decim
	Float32
	30
	Open-loop LTP decimation filter memory

	
	mem_hf
	Float32
	30
	Estimated BP filter memory (23.85 kbit/s mode)

	
	mem_hf2
	Float32
	30
	Input BP filter memory (23.85 kbit/s mode)

	
	mem_hf3
	Float32
	30
	Input LP filter memory (23.85 kbit/s mode)

	
	mem_isp
	Float32
	16
	Old ISP vector

	
	mem_syn
	Float32
	16
	synthesis filter memory

	
	mem_syn2
	Float32
	16
	modified synthesis memory

	
	mem_syn_hf
	Float32
	16
	Higher band synthesis filter memory

	
	mem_isf
	Float32
	16
	Old ISF vector

	
	mem_hf_wsp
	Float32
	9
	Open-loop lag gain filter memory

	
	mem_sig_in
	Float32
	4
	Prefilter memory

	
	mem_sig_out
	Float32
	4
	HP filter memory in the synthesis

	
	mem_hp400
	Float32
	4
	HP filter memory

	
	mem_decim2
	Float32
	3
	Open-loop LTP decimation filter memory

	
	mem_gp_clip
	Float32
	2
	Memory of pitch clipping

	
	mem_preemph
	Float32
	1
	Preemphasis filter memory

	
	mem_deemph
	Float32
	1
	Deemphasis filter memory

	
	mem_wsp_df
	Float32
	1
	Open-loop LTP deemphasis filter memory

	
	mem_w0
	Float32
	1
	Weighting filter memory (applied to error signal)

	
	mem_ol_gain
	Float32
	1
	Open-loop gain

	
	mem_ada_w
	Float32
	1
	Weighting level depeding on open loop pitch gain

	
	mem_gc_threshold
	Float32
	1
	Noise enhancer threshold

	
	mem_gain_alpha
	Float32
	1
	Higher band gain weighting factor (23.85 kbit/s mode)

	
	mem_ol_lag
	Word32
	5
	Open loop lag history

	
	mem_T0_med
	Word32
	1
	Weighted open loop pitch lag

	
	mem_exc
	Word16
	505
	Excitation vector

	
	mem_isp_q
	Word16
	16
	Old ISP vector

	
	mem_isf_q
	Word16
	16
	Past quantized ISF prediction error

	
	mem_gain_q
	Word16
	4
	Gain quantization memory

	
	mem_subfr_q
	Word16
	4
	Scaling factor history

	
	mem_tilt_code
	Word16
	1
	Preemhasis filter memory

	
	mem_q
	Word16
	1
	Old scaling factor

	
	mem_seed
	Word16
	1
	Random generation seed

	
	*vadSt
	E_DTX_Vad_State
	1
	See below in this table

	
	*dtx_encSt
	E_DTX_State
	1
	See below in this table

	
	mem_first_frame
	UWord8
	1
	First frame indicator

	
	mem_ol_wght_flg
	UWord8
	1
	Switches lag weighting on and off

	
	mem_vad_hist
	UWord8
	1
	VAD history

	E_DTX_State
	mem_isf
	Float32
	128
	LSP history

	
	mem_distance
	Float32
	28
	ISF history distance matrix

	
	mem_distance_sum
	Float32
	8
	Sum of ISF history distances

	
	mem_log_en
	Float32
	8
	Logarithmic frame energy history

	
	mem_hist_ptr
	Word16
	1
	Pointer to the cyclic history vectors

	
	mem_log_en_index
	Word16
	1
	Index for logarithmic energy

	
	mem_cng_seed
	Word16
	1
	Comfort noise excitation seed

	
	mem_dtx_hangover_count
	Word16
	1
	DTX hangover period

	
	mem_dec_ana_elapsed_count
	Word16
	1
	Counter for elapsed speech frames in DTX

	E_DTX_Vad_State
	mem_pow_sum
	Float64
	1
	Power of previous frame

	
	mem_bckr_est
	Float32
	12
	Background noise estimate

	
	mem_ave_level
	Float32
	12
	Averaged input components for stationary estimation

	
	mem_leve
	Float32
	12
	Input levels of the previous frame

	
	mem_sub_level
	Float32
	12
	Input levels calculated at the end of a frame (lookahead)

	
	mem_a_data5
	Float32
	10
	Memory for the filter bank

	
	mem_a_data3
	Float32
	6
	Memory for the filter bank

	
	mem_sp_max
	Float32
	1
	Maximum level

	
	mem_speech_level
	Float32
	1
	Estimated speech level

	
	mem_burst_count
	Word16
	1
	Counts length of a speech burst

	
	mem_hang_count
	Word16
	1
	Hangover counter

	
	mem_stat_count
	Word16
	1
	Stationary counter

	
	mem_vadreg
	Word16
	1
	Flags for intermediate VAD decisions

	
	mem_pitch_tone
	Word16
	1
	Flags for pitch and tone detection

	
	mem_sp_est_cnt
	Word16
	1
	Counter for speech level estimation

	
	mem_sp_max_cnt
	Word16
	1
	Counts frames that contains speech

Table 6: Speech decoder static variables

	Struct name
	Variable
	Type
	Length
	Description

	Decoder_State
	mem_gc_thres
	Word32
	1
	Threshold for noise enhancer

	
	mem_exc
	Word16
	505
	INTERPOL]; /* old excitation vector

	
	mem_isf_buf
	Word16
	48
	ISF buffer(frequency domain)

	
	mem_hf
	Word16
	30
	HF band-pass filter memory

	
	mem_hf2
	Word16
	30
	HF band-pass filter memory

	
	mem_hf3
	Word16
	30
	HF band-pass filter memory

	
	mem_oversamp
	Word16
	24
	Synthesis oversampled filter memory

	
	mem_gain
	Word16
	23
	Gain decoder memory

	
	mem_syn_hf
	Word16
	20
	HF synthesis memory

	
	mem_isp
	Word16
	16
	Old ISP (immittance spectral pairs)

	
	mem_isf
	Word16
	16
	Old ISF (frequency domain)

	
	mem_isf_q
	Word16
	16
	Past ISF quantizer

	
	mem_syn_hi
	Word16
	16
	Modified synthesis memory (MSB)

	
	mem_syn_lo
	Word16
	16
	Modified synthesis memory (LSB)

	
	mem_ph_disp
	Word16
	8
	Phase dispersion memory

	
	mem_sig_out
	Word16
	6
	Hp50 filter memory for synthesis

	
	mem_hp400
	Word16
	6
	Hp400 filter memory for synthesis

	
	mem_lag
	Word16
	5
	LTP lag history

	
	mem_subfr_q
	Word16
	4
	Old maximum scaling factor

	
	mem_tilt_code
	Word16
	1
	Tilt of code

	
	mem_q
	Word16
	1
	Old scaling factor

	
	mem_deemph
	Word16
	1
	Speech deemph filter memory

	
	mem_seed
	Word16
	1
	Random memory for frame erasure

	
	mem_seed2
	Word16
	1
	Random memory for HF generation

	
	mem_seed3
	Word16
	1
	Random memory for lag concealment

	
	mem_T0
	Word16
	1
	Old pitch lag

	
	mem_T0_frac
	Word16
	1
	Old pitch fraction lag

	
	mem_vad_hist
	UWord16
	1
	VAD history

	
	dtx_decSt
	D_DTX_State
	1
	See below in this table

	
	mem_bfi
	UWord8
	1
	Previous BFI

	
	mem_state
	UWord8
	1
	BGH state machine memory

	
	mem_first_frame
	UWord8
	1
	First frame indicator

	dtx_decState
	mem_isf_buf
	Word16
	128
	ISF vector history (8 frames)

	
	mem_isf
	Word16
	16
	ISF vector

	
	mem_isf_prev
	Word16
	16
	Previous ISF vector

	
	mem_log_en_buf
	Word16
	8
	Logarithmic frame energy history

	
	mem_true_sid_period_inv
	Word16
	1
	Inverse of true SID update rate

	
	mem_log_en
	Word16
	1
	Logarithmic frame energy

	
	mem_log_en_prev
	Word16
	1
	Previous logarithmic frame energy

	
	mem_cng_seed
	Word16
	1
	Comfort noise excitation seed

	
	mem_hist_ptr
	Word16
	1
	Index to beginning of LSF history

	
	mem_dither_seed
	Word16
	1
	Comfort noise dithering seed

	
	mem_cn_dith
	Word16
	1
	Background noise stationarity information

	
	mem_since_last_sid
	Word16
	1
	Number of frames since last SID frame

	
	mem_dec_ana_elapsed_count
	UWord8
	1
	Counts elapsed speech frames after DTX

	
	mem_dtx_global_state
	UWord8
	1
	DTX state flags

	
	mem_data_updated
	UWord8
	1
	Flags CNI updates

	
	mem_dtx_hangover_count
	UWord8
	1
	Counts down in hangover period

	
	mem_sid_frame
	UWord8
	1
	Flags SID frames

	
	mem_valid_data
	UWord8
	1
	Flags SID frames containing valid data

	
	mem_dtx_hangover_added
	UWord8
	1
	Flags hangover period at end of speech

5
Homing procedure

The principles of the homing procedures are described in [2]. The present document only includes a description of the 9 decoder homing frames. For each AMR-WB codec mode, the corresponding decoder homing frame has a fixed set of speech parameters. Table 7 shows the homing frame speech parameters for different modes.

Table 7: Table values for the decoder homing frame parameters for different modes

	Mode
	Speech Parameters

	0
	0, 49, 131,
 84, 5, 50,
29, 2015, 8,0, 2061, 8,1, 3560, 8,0, 2981, 8

	1
	0, 49, 131,
55, 49, 38,
26, 29, 29,
3, 15, 7,15, 8, 16,
13, 7, 17,16, 8, 0,
16, 20, 16,
27, 8, 23,0, 27, 0,
27, 8

	2
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 7, 63,127, 15, 70, 37, 1, 209, 210, 224, 96, 31, 7, 1, 256, 260, 271, 443, 31, 47, 0, 400, 238, 436, 347, 31

	3
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 3847, 3845, 63, 127, 70, 34, 0, 3128, 4517, 192, 96, 0, 2, 1, 4160, 8036, 267, 443, 31, 46, 0, 3840, 7091, 432, 395, 31

	4
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 3847, 3845, 3847, 3843, 70, 31, 0, 3648, 4764, 824, 2864, 0, 6, 1, 4160, 5220, 4319, 7131, 31, 47, 0, 112, 3764, 219, 211, 31

	5
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 3, 2, 3, 2, 7223, 703, 7223, 703, 70, 0, 1, 3, 2, 2, 3, 9475, 9483, 3090, 8737, 0, 0, 1, 0, 0, 2, 0, 4112, 4400, 8415, 14047, 31, 38, 0, 2, 1, 3, 1, 91, 426, 13545, 12955, 0

	6
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 161, 759, 3, 2, 127, 516, 6167, 447, 70, 11, 1, 264, 641, 2, 3, 123, 562, 8347, 4354, 0, 1, 1, 264, 408, 3, 0, 256, 308, 9487, 14047, 31, 46, 0, 320, 885, 2, 2, 464, 439, 11347, 12739, 0

	7
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 1154, 1729, 1154, 1761, 447, 1519, 959, 495, 70, 27, 1, 1800, 1253, 665, 1960, 546, 164, 1043, 335, 0, 28, 1, 580, 196, 1187, 383, 1031, 1052, 359, 1531, 31, 45, 1, 1024, 893, 1272, 1920, 101, 876, 203, 1119, 31

	8
	0, 49, 131, 55, 49, 38, 26, 29, 58, 1, 1729, 1154, 1761, 1154, 1519, 959, 495, 447, 70, 3, 42, 1, 580, 1436, 1362, 1250, 901, 714, 24, 45, 0, 0, 0, 1, 68, 708, 1212, 383, 1048, 1611, 1756, 1467, 31, 1, 23, 0, 1536, 1460, 861, 1554, 410, 1368, 1008, 594, 31, 0

6
File formats

This clause describes the file formats used by the encoder and decoder programs. The test sequences defined in [1 also use the file formats described here.

6.1
Speech file (encoder input/decoder output)

Speech files read by the encoder and written by the decoder consist of 16-bit words where each word contains a 14-bit, left aligned speech sample. The byte order depends on the host architecture (e.g. MSByte first on SUN workstations, LSByte first on PCs etc.). Both the encoder and the decoder program process complete frames (of 320 samples) only.

This means that the encoder will only process n frames if the length of the input file is n*320 + k words, while the files produced by the decoder will always have a length of n*320 words.

6.2
Mode control file (encoder input)

The encoder program can optionally read in a mode control file which specifies the encoding mode for each frame of speech processed. The file is a text file containing one number per speech frame. Each line contains one of the mode numbers 0-8.

6.3
Parameter bitstream file (encoder output/decoder input)

The files produced by the speech encoder/expected by the speech decoder are described in RFC 3267 [7], sections 5.1 and 5.3.

By using a preprocessor definition encoder/decoder can optionally use format described in TS26.201 that defines an octet-aligned frame format (Interface format 2) for the AMR-WB codec.

Annex A (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2002-03
	15
	SP-020073
	
	
	Presented at TSG SA#15 for approval
	2.0.0
	5.0.0

	2003-03
	19
	SP-030090
	001
	1
	Correction to log(0) error in VAD decision with low SNR input signals
	5.0.0
	5.1.0

	2003-03
	19
	SP-030090
	002
	1
	Correction to decoder with input of long sequence of NO_DATA frames
	5.0.0
	5.1.0

	2003-03
	19
	SP-030090
	003
	1
	Correction to "D_UTIL_pow2" function to be bitexact with TS26.173 counterpart
	5.0.0
	5.1.0

	2003-03
	19
	SP-030090
	004
	1
	MMS compatible i/o format option
	5.0.0
	5.1.0

	2003-03
	19
	SP-030090
	005
	
	Correction for handling of RX_NO_DATA frames
	5.0.0
	5.1.0

	2003-03
	19
	SP-030090
	006
	1
	Ambiguous expressions in the AMR-WB Floating-point C-Code
	5.0.0
	5.1.0

	2003-09
	21
	SP-030447
	008
	
	Possible decoder LPC coefficients overflow
	5.1.0
	5.2.0

	2004-12
	26
	SP-040844
	009
	1
	Incorrect definition of vector nb_of_bits
	5.2.0
	6.0.0

	2007-03
	35
	SP-070029
	0011
	
	Maintaining bit-exactness with TS 26.173 after Correction in AMR decoder to avoid division by zero in RX-DTX Handling
	6.0.0
	7.0.0

	2007-03
	35
	SP-070029
	0012
	
	Bug fix to SID frame signaling in decoder
	6.0.0
	7.0.0

_953458302.unknown

