3GPP TS 26.119 V0.3.0 (2022-08)
14
Release 18

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: issueDate]3GPP TS 26.119 V0.3.0 (2022-08)

	[bookmark: spectype2]Technical Specification




	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Media Capabilities for Augmented Reality
[bookmark: specRelease](Release 18)

		

	[image: ]
	[image: ]

	

	[bookmark: warningNotice]The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.





	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org


	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2021, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association



[bookmark: tableOfContents]
Contents
Foreword	5
Introduction	6
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	8
3.3	Abbreviations	8
4	Prerequisites	9
4.1	XR concepts	9
4.1.1	General	9
4.1.2	XR Runtime	9
4.1.2.1	General	9
4.1.2.2	XR session and rendering loop (informative)	10
4.1.3	XR system capabilities	11
4.2	Media pipelines and rendering loop	15
4.2.1	General	15
4.2.2	Basic media pipeline	16
4.2.3	Advanced media mipelines	16
4.2.4	Rendering capabilities	16
4.3	Application and service provider view	16
4.4	Structure of the specification	16
5	Device reference architecture and interfaces	16
5.1	Architecture	16
5.2	Description of the functional blocks	17
5.3	Interfaces and APIs	17
6	General and systems functions and capabilities	18
6.1	Device API	18
6.2	Metadata formats	18
6.2.1	General	18
6.2.2	Pose prediction format	18
6.2.3	Action format	20
6.2.4	Available Visualization Space format	20
7	Visual functions and capabilities	22
7.1	Decoding capabilities	22
7.1.1	Video decoding	22
7.1.2	Concurrent decoding capabilities	22
7.2	Encoding capabilities	22
7.2.1	Video encoding	22
7.3	Scene processing capabilities	22
7.4	Capability exchange	22
8	Audio functions and capabilities	23
9	QoE metrics	23
9.1	Metrics and Observation Points	23
9.1.1	Overview	23
9.1.2	Observation Point 1: XR Runtime information	23
9.1.3	Observation Point 2	24
9.1.4	Observation Point 3	24
9.1.5	Observation Point 4	24
10	Device types and media profiles	24
10.1	Introduction	24
10.2	Device type 1: Thin AR glasses	24
10.2.1	General	24
10.2.2	XR System support	25
10.2.3	Media capabilities support	25
10.3	Device type 2: AR glasses	25
10.3.1	General	25
10.3.2	XR System support	25
10.3.3	Media capabilities support	26
10.4	Device type 3: XR phone	26
10.4.1	General	26
10.4.2	XR System support	26
10.4.3	Media capabilities support	26
10.5	Device type 4: XR HMD	26
10.5.1	General	26
10.5.2	XR System support	26
10.5.3	Media capabilities support	27
Annex A (informative/normative): KPIs for AR/MR	28
A.1	Introduction	28
Annex B (informative):  Usage of OpenXR [and WebXR] as XR Runtime	28
B.1	Introduction	28
B.2	Capability mapping to OpenXR	28
B.2.1	XR views and rendering loop	28
B.2.2	Available Visualization Space implementation	30
B.2.2.1	Using OpenXR_XR_FB	30
B.2.2.2	Using xrComputeNewSceneMSFT	30
[B.3	Capability mapping to WebXR]	30
Annex <X> (informative): Change history	31



[bookmark: foreword][bookmark: _Toc143790627]Foreword
[bookmark: spectype3]This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc143790628]Introduction
The present document provides technologies for the deployment of Augmented Reality (AR) services and the execution of Augmented Reality applications on targeted devices.
On the spectrum of eXtended Reality (XR) experiences, Augmented Reality overlay virtual information on top of the user’s perception of the real environment. Those virtual and real components of the scene seamlessly blend together from the user’s perspective. Additionally, some AR experiences can enable interactivity between the user and the virtual components of the scene.
In the present document, the focus lies in the definition of the media capabilities of AR devices, including format, codecs, encapsulation, processing functions and related minimum required performances, that enable AR services and applications. However, those services and applications are not defined here but rather in external specifications.
As basis for the specification, the present document also provides prerequisites that relate to generic XR functions. Nevertheless, only AR experiences are targeted by the present document.
[bookmark: scope][bookmark: _Toc143790629]
1	Scope
The present document defines the supported media formats, codecs, processing functions per AR device category. The present document addresses the interoperability gaps identified in the conclusions of TR 26.998 [3].
[bookmark: references][bookmark: _Toc143790630]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TR 26.928: "Extended Reality (XR) in 5G".
[3]	3GPP TR 26.998: "Support of 5G glass-type Augmented Reality / Mixed Reality (AR/MR) devices".
[4]	3GPP TR 26.857: "5G Media Service Enablers".
[5]	Khronos, "The OpenXR Specification", https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html.
[6]	3GPP TS 26.506: "5G Real-time Media Communication Architecture (Stage 2)".
[7]	ITU-T Recommendation H.264 (08/2021): "Advanced video coding for generic audiovisual services".
[8]	ITU-T Recommendation H.265 (08/2021): "High efficiency video coding".

[bookmark: definitions][bookmark: _Toc143790631]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc143790632]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Frame of Reference: an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points 
Reference Points: geometric points whose position is identified both mathematically and physically.
XR Application: application running on an XR Device which offers an XR experience based on an XR Runtime
XR Device: a device capable of offering an XR experience.
XR Runtime: Set of functions provided by the XR Device to the XR Application in order to create XR experiences.
XR Runtime API: the API to communicate with an XR Runtime
XR Session: an application’s intention to present XR content to the user.
XR System: a collection of resources and capabilities from the XR Runtime exposed to the XR Application for the duration of the XR Session.
XR View: a rendered view of the scene generated by the XR Application and passed on to the XR Runtime during a running XR Session
[bookmark: _Toc143790633]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc143790634]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
AR	Augmented Reality
MR	Mixed Reality
VR	Virtual Reality
XR		eXtended Reality




[bookmark: clause4][bookmark: _Toc143790635]4	Prerequisites
[bookmark: _Toc143790636]4.1	XR concepts
[bookmark: _Toc143790637]4.1.1	General
Extended Reality (XR) refers to a continuum of experiences combine real-a and- virtual combined environments in which the user is immersed through one or more devices capable of audio, visual and haptics rendering generated by computers through human-machine interaction. XR encompasses technologies associated with Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) which constitute the so-called XR continuum. A detailed overview of definitions, concepts and background on XR and AR is provided in TR 26.928 [2] and TR 26.998 [3], respectively.
The clause 4 documents the core assumptions for a device capable of offering an XR experience. In the context of this document, such a device will be referred to an XR Device. An XR Device is assumed to have one or several displays, speakers, sensors, cameras, microphones, actuators, controllers and/or other peripherals that allow to create XR experiences, i.e. experiences for which the user interacts with the content presented in virtual world and/or augmented to the real-world. Example of XR Devices are AR Glasses, a VR/MR Head-Mounted Display (HMD) or a regular smartphone, etc.
An application which offers an XR experience by making use of the hardware capabilities, including media capabilities, of the XR Device it runs on as well as the network connectivity to retrieve the asset being used by the application is referred to as an XR Application. In the context of this specification, it is primarily assumed that access to the network is provided by 5G System functionalities. 
To enable XR experiences, the hardware on an XR Device typically offers a set of functions to perform commonly required XR operations. These operations include, but are not limited to: 
-	accessing controller/peripheral state, 
-	getting current and/or predicted tracking positions and pose information of the user,
-	receiving or generating pre-rendered views of the scene for final presentation to the user, taking into account the latest user position and pose. Adaptation to the latest user position and pose is also referred to as warping.
[bookmark: _Toc143790638]4.1.2	XR Runtime
[bookmark: _Toc143790639]4.1.2.1	General
XR Runtime provides a set of functionalities to XR applications including but not limited to peripheral management, runtime functions as tracking, SLAM, composition and warping etc. The functions are accessible to the XR Application via an API exposed by the XR Runtime referred to as the XR Runtime Application Programming Interface (API). The XR Runtime typically handles functionalities such as composition, peripheral management, tracking, Spatial Localization and Mapping (SLAM), capturing and audio-related functions. Further, it is assumed that the hardware and software capabilities of the XR Device are accessible through well-defined device APIs, and in particular the media capabilities are accessible through media APIs. 
In the remainder of the specification, the XR prefix with Runtime or Application or other defined XR-prefixed terms may be omitted for better readability.
An overview of an XR Device logical components is shown in Figure 4.1.2-1.
 [image: ]
Figure 4.1.2-1 Logical components of an XR Device
The primary scope of this specification is the definition of a minimum amount of media capabilities that an XR Application can rely on when deployed targeting a certain category of XR Device. Media capabilities include, but are not limited to, media encoders and decoders, parsing and writing of media encapsulation format, security functions, synchronization information, spatial alignment information, metadata formats, graphics capabilities, etc. 
The logic and behaviour of the XR Application is not specified in this specification,. The media capabilities may also be referenced as part of a Media Session Enabler as defined in TR 26.857 [4].
This specification relies on a hypothetical XR Runtime and its API in order to define the media capabilities. This way, different implementation of XR runtimes may be compatible with this specification. However, for the purpose of developing this specification, the minimal set of expected functionalities of the XR Runtime has been aligned with the core Khronos’ OpenXR specification [5]. Support for other XR Runtime environments is not precluded by this approach. Lastly, a mapping of general functionalities to OpenXR is provided in Annex B.
[bookmark: _Toc143790640]4.1.2.2	XR session and rendering loop (informative)
At startup, the XR Application creates an XR Session via the XR Runtime API and allocates the necessary resources from the available resources on the XR Device. Upon success, the XR Runtime begins the life cycle of the XR Session whose cycle is typically made of several states. The purpose of those states is to synchronise the rendering operations controlled by the XR Application with the display operations controlled by the XR Runtime. The rendering loop is thus a task jointly executed by the XR Runtime and the XR Application and synchronised via the states of the XR Session.
The XR Application is responsible of generating a rendered view of the scene from the perspective of the user. To this end, the XR Application produces XR Views which are passed to the XR Runtime at iterations of the rendering loop. The XR Views are generated for one or more poses in the scene for which the XR application can render images. From those views, the view corresponding to the viewer’s pose is typically called the primary view. There may be other XR Views defined in the scene, for instance for spectators.
The XR Views are configured based on the display properties of the XR Device. A typical head-mounted XR System has a stereoscopic view configuration, i.e. two views, while a handheld XR Device has a monoscopic view configuration, i.e. a single view. Other view configurations may exist. At the start of session, the XR Application configures the view type based on those device properties which remains the same for the duration of the XR Session.
A XR View may also comprise one more composition layers associated with an image buffer. Those layers are then composed together by the XR Runtime to form the final rendered images.
In addition to layers containing visual data, an XR View may be complemented with a layer provided depth information of the scene associated with this XR View. This additional information may help the XR Runtime to perform pose correction when generating the final display buffer. Another type of layer can be an alpha channel layer useful for blending the XR View with the real environment for video-see through XR devices, e.g. which is the case for AR applications running on smartphones.
For the XR Application to render the XR Views, the XR Runtime provides the viewer pose as well as projection parameters which are typically taken into account by applications to render those different XR Views. The viewer pose and projection parameters are provided for a given display time in the near future. The XR Runtime accepts repeated calls for prediction updates of the pose, which may not necessarily return the same result for the same target display time. Instead, the prediction gets increasingly accurate as the function is called closer to the given time for which a prediction is made. This allows an application to prepare the predicted views early enough to account for the amount of latency in the rendering while at the same time minimising the prediction error when pre-rendering the views. 
In addition, the XR Application communicates with input devices in order to collect actions. Actions are created at initialization time and later used to request input device state, create action spaces, or control haptic events. Input action handles represent ‘actions’ that the application is interested in obtaining the state of, not direct input device hardware.
 [image: ]
Figure 4.1.4-1 Rendering loop for visual data
[bookmark: _Toc143790641]4.1.3	XR system capabilities
The XR Runtime comprises functions and hardware components present on the XR Device. However, those functions and hardware components are not directly exposed to the XR Application. Instead, the XR Runtime offers its functions and hardware components via an XR System. A single XR Runtime may expose more than one XR Systems for targeting different purposes, e.g., a handheld device may have two XR Systems, one when the user holds the device and one when the device is inserted into an HMD. At the start of the XR Application, the XR Application is expected to query what XR Systems are available on the XR Device and select one of them to create the XR Session.
Table 4.1.3-1 provides capabilities for XR Runtimes exposed through an XR System. This table does not prescribe support for any specific capabilities of an XR System. The support of XR System capabilities is defined per device category in clause 10. A mapping of these high-level capabilities to XR frameworks are provided in Annex B.
Table 4.1.3-1	XR System capabilities
	Capability
	Description
	Parameters
	Value type
	Parameter definitions

	Create a XR System
	An application can create a XR System from an XR Runtime.
	xrSystemIdentifier
	integer
	Identifier of a given XR System exposed by a XR Runtime.

	Query XR System’s graphics properties
	An application can query an XR System about its graphics capabilities.
	swapchainSupported
	boolean
	Indicates whether the XR System supports the swapchains.

	
	
	maxSwapchainImageHeight 
	integer
	The maximum swapchain image pixel height supported by this XR system.

	
	
	maxSwapchainImageWidth 
	integer
	The maximum swapchain image pixel height supported by this XR system.

	
	
	maxLayerCount
	integer
	The maximum number of composition layers supported by this XR system

	Query XR System’s tracking properties
	An application can query an XR System on the tracking capabilities.
	orientationTracking
	boolean
	Indicates whether the XR System supports orientational tracking of the view pose(s), or not.

	
	
	positionTracking
	boolean
	Indicates whether the XR system supports positional tracking of the view pose(s),

	Enumerate XR System’s  supported environment blend modes
	An application can query an XR System about its supported environment blend modes, see clause [xxx].
	blendMode
	['opaque', 'additive', 'alpha_blend']
	Indicates the type of blend mode supported by the XR System.
The value 'opaque' relates to the opaque blend mode, the value 'additive' to the additive blend mode and 'alpha_blend' to the alpha blend mode.

	Enumarate supported view configuration types
	An application can query an XR System about the its supported primary view configurations.
	viewConfigurationPrimary
	['monoscopic', 'stereoscopic', 'other']
	Indicates the type of primary view configuration of the XR System.
The value 'monoscopic' relates to a single view, the value 'stereoscopic' to the left and right-eye views and 'other' to a type undefined in the scope of this specification.

	Enumerate the view configuration properties
	An application can list the properties associated with different view configurations advertised by an XR System.
	recommendedImageRectWidth
	integer
	The optimal width of imageRect to use when rendering this view into a swapchain.

	
	
	maxImageRectWidth
	integer
	The maximum width of imageRect supported when rendering this view into a swapchain.

	
	
	recommendedImageRectHeight
	integer
	The optimal height of imageRect to use when rendering this view into a swapchain

	
	
	maxImageRectHeight
	integer
	The maximum height of imageRect supported when rendering this view into a swapchain.

	
	
	recommendedSwapchainSampleCount
	integer
	The recommended number of sub-data element samples to create for each swapchain image that will be rendered into for this view.

	
	
	maxSwapchainSampleCount
	integer
	The maximum number of sub-data element samples supported for swapchain images that will be rendered into for this view.

	Enumerate reference space types
	An application can query an XR System about the supported reference space types, described in [xxx].
	referenceSpaceView 
	['view', 'local', 'stage', 'unbounded', 'user_defined']
	Indicates the type of reference spaces supported by the XR System.
The value 'view' relates to view reference space, the value 'local' to the local reference space, the value 'stage' to the stage reference space, the value 'unbounded'.

	Query the spatial range boundaries
	An application can query the spatial ranges in which an XR experience may be rendered.
	2DSpatialRangeBoundaries
	tbd
	Provides the rectangle centered on the origin of a given reference space in which the user can freely move.

	Enumerate swapchain image formats
	An application can query the swapchain image formats supported by an XR System.
	swapchainImageFormatIdentifier
	enumeration
	Provides an identifier of a swapchain image format that the XR System supports.

	Enumerate swapchain images
	An application can list the swapchain images allocated to a swapchain.
	numberSwapchainImages
	enumeration
	Provides the number of images allocated for a given swapchain.

	
	
	swapchainImages
	object
	Provide the implementation-specific swapchain image objects for a given swapchain.

	Enumerate composition layer type
	An application can list the composition layer types supported by an XR System.
	compositionLayerProjection
	['projection', 'quad', 'cylinder', 'cube', 'equirectangular', 'depth']
	Indicates the type of composition layers supported by the XR Systems supports.
The value 'projection' represents planar projected images, one rendered for each eye using a perspective projection.
The value 'quad' represents quad composition layers which are useful for rendering user interface elements or 2D content on a planar area in the world.
The value 'cylinder' represents cylinder composition layers which maps the texture onto the inside of a cylinder section.
The value 'cube' represents cube composition layer which consists of a cube map with six views to be rendered by the application.
The value 'equirectangular' represents equirectangular composition layers which consists of an equirectangular image that is mapped onto the inside of a sphere in the world.
The value 'depth' represents depth composition layers which allows submitting depth maps as an extra composition layer to be used by the XR Runtime for pose correction.



[Add a table of capabilities of the XR Runtime and what is expected to available and what is optional needs to be queried.
Basic concept of specification:
-	Capability query
-	[Editor’s note: Description of the pipelines, sensors, AR runtime, decoders… identify for what entities capabilities are defined]
Collected Requirements]
[bookmark: _Toc143790642]4.2	Media pipelines and rendering loop 
[Editor’s note: Description of the pipelines, sensors, AR runtime, decoders… identify for what entities capabilities are defined]
[bookmark: _Toc134709882][bookmark: _Toc143790643]4.2.1	General
In the context of this specification, media to be rendered and displayed by the XR Device through the XR Runtime is typically available in an compressed form on the device. In contrast, media is accessed using a 5G System, decoded in the device using media capabilities, and the decoded media is rendered to then be provided through swapchains to the XR Runtime as shown in Figure 4.2.1-1.


Figure 4.2.1-1 Media pipelines: Access, decoding and rendering
The rendering function is responsible to adapt the content to be presentable by the XR Runtime by making use of a rendering loop and using swapchains. The application configures pipeline of different processes, namely the media access, the decoding and the rendering. The static information provided to the rendering step needs to be sufficient to configure the number of layers as well as each layer appropriately including:
-	View configuration
-	Blend modes 
-	XR spaces 
-	swap chain formats and images
-	projection layer types
[Frame rates: https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_FB_display_refresh_rate
Rendering supported by the XR runtime
-	Visual
-	Audio]
[bookmark: _Toc134709883][bookmark: _Toc143790644]4.2.2	Basic media pipeline
[Single media type
Access & Media decoder + Metadata + Render pose + Display time -> Swap Chain -> XR Runtime Composition (+ time warping), SEI Messages
Rendering is Conversion to RGB]
[bookmark: _Toc134709884][bookmark: _Toc143790645]4.2.3	Advanced media pipelines
[Multiple decoders, VDI 
Composition of multiple layers
Advanced Rendering (GPU Supported) – Scene Rendering (3D Rendering): 
-	Scene (Media decoder + Metadata) -> Vulkan API -> GPU + render pose è->Swap Chain -> XR Runtime Composition
Optional and mandatory formats – XR Runtime API supports capability query.]
[bookmark: _Toc134709885][bookmark: _Toc143790646]4.2.4	Rendering capabilities
[To be defined]
[bookmark: _Toc134709886][bookmark: _Toc143790647]4.3	Application and service provider view
[Usage of Capabilities in different delivery environments]
[bookmark: _Toc134709887][bookmark: _Toc143790648]4.4	Structure of the specification
[Ed note: how to read this spec]
[ET: Probably arriving too late, before clause 4?]

[bookmark: _Toc143790649]5	Device reference architecture and interfaces
[bookmark: _Toc132137233][bookmark: _Toc134709889][bookmark: _Toc143790650]5.1	Architecture
The XR Baseline Client represents the functionalities, the peripherals, and the interfaces that are present on a generic XR UE. The actual device may be realized by a single device, or a combination of devices linked together. The details on how to instantiate an XR Baseline Client in the context of a service or deployment scenario is left for the respective Work Items and Study Items to define.
[image: Une image contenant diagramme

Description générée automatiquement]
Figure 4.3.1-1 - XR Baseline terminal architecture
[bookmark: _Toc132137234][bookmark: _Toc134709890][bookmark: _Toc143790651]5.2	Description of the functional blocks
In terms of functionalities, an XR Baseline Client is composed of:
-	An XR Application: a software application that integrates audio-visual content into the user’s real-world environment
-	An XR Runtime: a set of functions that interface with a platform to perform commonly required operations, such as accessing the controller/peripheral state, getting current and/or predicted tracking positions, performing spatial computing, as well as submitting rendered frames to the display processing unit and rendered audio to the speakers with a late stage re-projection to the latest pose.
-	An XR Source Management: management of data sources provided through the XR runtime such as microphones, cameras, trackers, etc, for instance, making the information available to the XR application or providing it to the MAF for sending in the uplink.
-	A Media Access Function: A set of functions that enables access to media and other XR-related data that is needed in the Scene manager or XR Runtime to provide an XR experience as well to create delivery formats for information provided by the XR Source Management.
-	A Scene Manager: a set of functions that supports the application in arranging the logical and spatial representation of a multisensorial scene based on support from the XR Runtime. 
-	A Presentation Engine: a set of composite renderers, rendering the component of the scenes, based on the input from the Scene Manager.
-	A Media Session Handler: a set of functions responsible for handling all 5G control plane operations, such as requesting network assistance, discovering and allocating edge resources, etc. This may be realized as a 5G-RTC MSH, 5GMS Media Session Handler, or any other function. In addition, those functional blocks are integrated together via interfaces. Interfaces may be made of APIs and/or data formats and collectively act as a contract between the two sides of the interface.
In addition, those functional blocks are integrated together via interfaces. Interfaces may be made of APIs and/or data formats and collectively act as a contract between the two sides of the interface.
[bookmark: _Toc134709891][bookmark: _Toc143790652]5.3	Interfaces and APIs
The XR Baseline Client contains the following interfaces:
-	IF-1 lies between the XR Runtime on one side and the Application (1a), the XR Source Management (1b) and the Presentation Engine (1c). IF-1 is implemented as an API (API-1) that exposes functions provided by the XR Runtime. An example of this API is the Khronos OpenXR API.
-	IF-2 describes the functions exposed by the XR Source Management that can be accessed and controlled by the XR application, or possibly other functions in the device. IF-2 is typically implemented as an API. 
-	IF-3 lies between the XR Source Management and the Media Access Function and provides serialized information accessible on XR Runtime to the MAF.
-	IF-4 lies between the Media Access Function and the 5G System for user plane data.
-	IF-5 lies between the UE and the 5G System, implementing control sessions (such as 5G Media Streaming, IMS). This interface provides for instance the functionality of the RTC-5 interface as defined by TS 26.506 [6].
-	IF-6 lies between the Media Session Handler and the Application/MAF. It offers the tools for them to activate 5G media functionality such as network assistance and edge resource discovery. The IF-6 is realized through an API (API-6).
-	IF-7 lies between the XR Application and the Media Access function to configure Media Access. This is typically implemented as an API (API-7) that exposes functions of the MAF.
-	IF-8 is an interface that allows the XR application to make use of 5G System connectivity.
-	IF-9 lies between the Scene Manager and the Media Access Function.
-	IF-10 lies between the Scene Manager and the XR Application.

[bookmark: _Toc132967035][bookmark: _Toc134709892][bookmark: _Toc143790653]6	General and systems functions and capabilities
[Ed note: Description of general functions such as sensors, runtime and their different capabilities, same for system aspects including protocols…]
[bookmark: _Toc143790654]6.1	Device API
[Ed note: possible API to be supported here, e.g. for decoder management. To be clear, no OpenXR support here.]
[bookmark: _Toc130832420][bookmark: _Toc132137244][bookmark: _Toc134709893][bookmark: _Toc143790655]6.2	Metadata formats
[bookmark: _Toc130832421][bookmark: _Toc132137245][bookmark: _Toc134709894][bookmark: _Toc143790656]6.2.1	General
TBD
[bookmark: _Toc130832422][bookmark: _Toc132137246][bookmark: _Toc134709895][bookmark: _Toc143790657]6.2.2	Pose prediction format
The split rendering client on the XR device may periodically transmit a set of pose predictions to the split rendering server. The type of the message shall be set to “urn:3gpp:split-rendering:v1:pose”.
Each predicted pose shall contain the associated predicted display time and an identifier of the XR space that was used for that pose. 
Depending on the view configuration of the XR session, there could be different pose information for each view. 
The payload of the message shall be as follows:
Table 5.1.2-1 - Pose Prediction Format
	Name
	Type
	Cardinality
	Description

	poseInfo
	Object
	1..n
	An array of pose information objects, each corresponding to a target display time and XR space. 

	  displayTime
	number
	1..1
	The time for which the current view poses are predicted.

	  xrSpace
	number
	0..1
	An identifier for the XR space in which the view poses are expressed. The set of XR spaces are agreed on between the split rendering client and the split rendering server at the setup of the split rendering session.

	  viewPoses
	Object
	0..n
	An array that provides a list of the poses associated with every view. The number of views is determined during the split rendering session setup between the split rendering client and server, depending on the view configuration of the XR session.

	     pose
	Object
	1..1
	An object that carries the pose information for a particular view.

	        orientation
	Object
	1..1
	Represents the orientation of the view pose as a quaternion based on the reference XR space.

	             x
	number
	1..1
	Provides the x coordinate of the quaternion.

	             y
	number
	1..1
	Provides the y coordinate of the quaternion.

	             z
	number
	1..1
	Provides the z coordinate of the quaternion.

	             w
	number
	1..1
	Provides the w coordinate of the quaternion.

	        position
	Object
	1..1
	Represents the location in 3D space of the pose based on the reference XR space.

	             x
	number
	1..1
	Provides the x coordinate of the position vector.

	             y
	number
	1..1
	Provides the y coordinate of the position vector.

	             z
	number
	1..1
	Provides the z coordinate of the position vector.

	     fov
	Object
	1..1
	Indicates the four sides of the field of view used for the projection of the corresponding XR view.

	        angleLeft
	number
	1..1
	The angle of the left side of the field of view. For a symmetric field of view this value is negative.

	        angleRight
	number
	1..1
	The angle of the right side of the field of view.

	        angleUp
	number
	1..1
	The angle of the top part of the field of view.

	        angleDown
	number
	1..1
	The angle of the bottom part of the field of view. For a symmetric field of view this value is negative.


[bookmark: _Toc130832423][bookmark: _Toc132137247][bookmark: _Toc134709896][bookmark: _Toc143790658]6.2.3	Action format
Actions are grouped into action sets, which may be activated and deactivated during the lifetime of an XR session. The action sets and actions are negotiated at the start of the split rendering session. 
The split rendering client may report any changes to action state as soon as it occurs by sending a message of the type “urn:3gpp:split-rendering:v1:action”.
The content of the action message type shall follow the following format:
Table 5.1.3-1 - Action Format
	Name
	Type
	Cardinality
	Description

	actionSets
	Object
	1..n
	An array of active action sets, for which there is at least an action that has a state change. 

	     actions
	Object
	1..n
	An array of objects that conveys information about the actions of the parent action set.

	         identifier
	string
	1..1
	A unique identifier of the action that was agreed upon during split rendering session setup.

	         subactionPath
	string
	1..1
	The sub-action path for which the state has changed. It abstracts a binding between an action and the hardware input associated to it by the XR runtime.

	         state
	object
	1..1
	The state of the action that had a change in state.

	            lastChangeTime
	number
	1..1
	The timestamp of the last change to the state of this action.

	            currentStateBool
	Bool
	0..1
	The current Boolean state of the action

	            currentStateNum
	number
	0..1
	The current numerical state of the action.

	            currentStateVec2
	Array
	0..1
	An array of numerical state values for the action.



[bookmark: _Toc143790659]6.2.4	Available Visualization Space format
The XR Application may define a three-dimensional space within the user’s real-word space that is suitable for rendering virtual objects called the Available Visualization Space. Such a space is defined with a shape which is either cube or sphere with the corresponding size and coordinates. In the case that the virtual scene is rendered by a remote entity (e.g. split rendering), this Available Visualization Space may be transmitted to this remote entity so that the composed AR objects remain within the defined Available Visualization Space. The method of calculating the Available Visualization Space is out of the scope of this document. 
The content of the availableVisualizationSpace type shall follow the format defined in Table 6.2.4-1.
Table 6.2.4-1 – Available Visualization Space
	Name
	Type
	Cardinality
	Description

	availableVisualizationSpace
	Object
	0..1
	An object defining the coordinate of the available visualization space.

	  cuboid
	Object
	0..1*
	The available visualization space in form of cuboid

	    x
	float
	1
	Offset of the available visualization space starting point in the x direction ias defined by the Open XR coordinate system in meters. 
The value is in meters.

	    y
	float
	1
	Offset of the available visualization space starting point in the y direction as defined by the Open XR coordinate system. 
The value is in meters.

	    z
	float
	1
	Offset of the available visualization space starting point in the z direction as defined by the Open XR coordinate system. 
The value is in meters.

	    width
	float
	1
	The width of available visualization space in the x direction as defined by the Open XR coordinate system. 
The value is in meters.

	    height
	float
	1
	The height of available visualization space in the y direction as defined by the Open XR coordinate system. 
The value is in meters.

	    depth
	float
	1
	The depth of available visualization space in the z direction as defined by the Open XR coordinate system. 
The value is in meters.

	  sphere
	Object
	0..1*
	The available visualization space in form of cuboid

	    x
	float
	1
	Offset of the available visualization space center in the x direction as defined by the Open XR coordinate system. 
The value is in meters.

	    y
	float
	1
	Offset of the available visualization space center in the y direction as defined by the Open XR coordinate system. 
The value is in meters.

	    z
	float
	1
	Offset of the available visualization space center in the z direction as defined by the Open XR coordinate system. 
The value is in meters.

	    radius
	float
	1
	The radius of available visualization space as defined by the Open XR coordinate system.
The value is in meters.

	*Only one of cuboid or sphere object shall exists.



With this Available Visualization Space, a user may for instance avoid the virtual objects to be occluding other real objects in the scene, e.g. TV sets, people, etc., since an AR experience is achieved by the integration of visual objects into the user environment.
[bookmark: _Toc143790660]7	Visual functions and capabilities
[Ed note: eg description of video formats and codecs, same for GPU capabilities and formats]
[bookmark: _Toc132967042][bookmark: _Toc134709898][bookmark: _Toc143790661]7.1	Decoding capabilities
[bookmark: _Toc130832417][bookmark: _Toc132137251][bookmark: _Toc134709899][bookmark: _Toc143790662]7.1.1	Video decoding
AVC-FullHD-Dec: the capability to decode H.264 (AVC) Progressive High Profile Level 4.0 [7] bitstreams, with the chroma format being 4:2:0; and the bit depth being 8 bit.
HEVC-FullHD-Dec: the capability to decode H.265 (HEVC) Main10 Profile, Main Tier, Level 4.1[8] bitstreams that have general_progressive_source_flag equal to 1, general interlaced_source_flag equal to 0, with the chroma format
[bookmark: _Toc130832419][bookmark: _Toc132137253][bookmark: _Toc134709900][bookmark: _Toc143790663]7.1.2	Concurrent decoding capabilities
AVC-HEVC-2-Dec: the capability to support two concurrent video decoding instances from any of the following profiles that are AVC-FullHD-Dec  and HEVC-FullHD-Dec.
AVC-HEVC-4-Dec: the aggregate simultaneous processing of four video decoding instances of HEVC-UHD-Dec and HEVC-8k-Dec.
[bookmark: _Toc134709901][bookmark: _Toc143790664]7.2	Encoding capabilities
[bookmark: _Toc130832418][bookmark: _Toc132137252][bookmark: _Toc134709902][bookmark: _Toc143790665]7.2.1	Video encoding
AVC-FullHD-Enc: the capability to encode H.264 (AVC) Progressive High Profile Level 4.2 [7] bitstreams, with the chroma format being 4:2:0; and the bit depth being 8 bit.
HEVC-FullHD-Enc: the capability to encode a video signal to a bitstream that is decodable by a decoder that is HEVC-FullHD-Dec capable as defined in clause 6.1
[bookmark: _Toc132967048][bookmark: _Toc134709903][bookmark: _Toc143790666]7.3	Scene processing capabilities
[bookmark: _Toc134709904][bookmark: _Toc143790667]7.4	Capability exchange

[bookmark: _Toc143790668]8	Audio functions and capabilities
[Ed note: eg description of audio formats and codecs and their associated capabilities]

[bookmark: _Toc143790669]9	QoE metrics
[Editor’s note: related WID objectives
Identify which QoE metrics from VR QoE metrics can be reused or enhanced for AR media (e.g., resolution per eye, Field of view (FOV), round-trip interaction delay, etc.) and define relevant KPIs that are dedicated to AR/MR
Specify additional relevant KPIs and simple QoE Metrics for AR media]
[bookmark: _Toc143790670]9.1	Metrics and Observation Points
[bookmark: _Toc143790671]9.1.1	Overview
The Observation Points (OPs) are defined to support the definition of the corresponding metrics. This specification defines four observation points as shown in Figure 9.1.1-1. The metrics collection function, as part of the Media Session Handler, is responsible of collecting specific information observed at each OP in order to generate the metrics. This function has also access to the 5G System such that the metrics can be reported to an external entity.  
[image: ]
Figure 9.1.1-1 - Observation Points in the XR Baseline Client
[bookmark: _Toc143790672]9.1.2	Observation Point 1: XR Runtime information
Observation point 1 (OP-1) is derived from the XR Runtime API. The OP-1 observes information exchanged between the XR Runtime on one side and the XR Source Management, the Presentation Engine and the application on the other side, i.e. on IF-1.
On observation point 1, the following observed information is defined:
[Editor’s note: define the observed information that is later used in the metrics definition]
[bookmark: _Toc143790673]9.1.3	Observation Point 2
Observation point 2 (OP-2) observes information at the input of the Scene Manager, i.e. on IF-9 for data received from the Media Access Function and the IF-10 for information exchanged between the Scene Manager and the application.
On observation point 2, the following observed information is defined:
[Editor’s note: define the observed information that is later used in the metrics definition]
[bookmark: _Toc143790674]9.1.4	Observation Point 3
Observation point 3 (OP-3) is derived from the API which exchanges information between the XR Source Management and the Media Access Functions. It corresponds to the IF-3 interface.
On observation point 3, the following observed information is defined:
[Editor’s note: define the observed information that is later used in the metrics definition]
[bookmark: _Toc143790675]9.1.5	Observation Point 4
Observation point 4 (OP-4) observes information between the Media Access Function and the 5G System, i.e. on IF-4 interface.
On observation point , the following observed information is defined:
[Editor’s note: define the observed information that is later used in the metrics definition]
[bookmark: _Toc143790676]10	Device types and media profiles
[bookmark: _Toc134709908][bookmark: _Toc143790677]10.1	Introduction
AR experiences may be running on a variety of devices which have different characteristics and capabilities. Certain capabilities may be common to several devices while other capabilities may be unique to a specific device. Therefore, the present specification enables interoperability by collecting the media capabilities and profiles, defined in clauses 6 and 7, per device type. The four device types defined are:
-	Device type 1: Thin AR glasses (see clause 10.2)
-	Device type 2: AR glasses (see clause 10.3)
-	Device type 3: XR phone (see clause 10.4)
-	Device type 4: XR HMD (see clause 10.5)
NOTE:	A given physical device may be compliant to more than one device types.
[bookmark: _Toc134709909][bookmark: _Toc143790678]10.2	Device type 1: Thin AR glasses
[Editor’s note: For each device type, it is expected that rendering capabilities will also be added before completing the TS.]
[bookmark: _Toc143790679]10.2.1	General
The thin AR glasses device type represents a type of device which is considered to be power-constrained and with limited computing power with respect to the other device types. These limitations typically come from the requirement to design a device with a small and lightweight form factor. Regarding rendering capacity, this device type is expected to rely on remote rendering to be able display complex scenes to the user. For example, such device type may run a split rendering session where the split rendering server delivers pre-rendered views of the scene. However, devices in this category can still operate without external support for applications that do not require complex rendering capabilities, for instance, text messaging, 2D video communication, etc. Lastly, the thin AR glasses offers AR experiences to the user via optical see-through display.
[bookmark: _Toc143790680]10.2.2	XR System support 
An XR Device complying to the thin AR glasses device has an XR System with at least the following capabilities:
-	orientationTracking is 'true'
-	positionTracking is 'true'
-	Value 'additive' of the enumeration blendMode
-	Values 'monoscopic' and 'stereoscopic' of the enumeration viewConfigurationPrimary
-	Values 'view', 'local' and 'stage' of the enumeration referenceSpace
-	If swapchainSupported is 'true', numberSwapchainImages is equal to 2
-	Values 'projection' and 'quad' of the enumeration compositionLayer
NOTE:	For the definition of those capabilities, please refer to clause 4.1.3.
[Editor’s note: This list of capabilities is a starting point and more can be added after being defined in clause 4.1.3]
[bookmark: _Toc143790681]10.2.3	Media capabilities support
TBD
[bookmark: _Toc134709910][bookmark: _Toc143790682]10.3	Device type 2: AR glasses
[bookmark: _Toc143790683]10.3.1	General
The AR glasses device type represents a type of device which is considered to have higher computation power compared to the thin AR glasses device type. As a result, this device type has higher rendering capacities and is generally expected to be capable of rendering scenes without external support, even though remote rendering is not precluded to lower the power consumption on the device or enable the display of scenes beyond the device’s rendering capability. Lastly, the AR glasses offers AR experiences to the user via optical see-through display.
[bookmark: _Toc143790684]10.3.2	XR System support 
An XR Device complying to the AR glasses device type has offers XR System with at least the following capabilities:
-	orientationTracking is 'true'
-	positionTracking is 'true'
-	Value 'additive' of the enumeration blendMode
-	Value 'stereoscopic' of the enumeration viewConfigurationPrimary
-	Values 'view', 'local' and 'stage' of the enumeration referenceSpace
-	If swapchainSupported is 'true', numberSwapchainImages is equal to 2
-	Values 'projection' and 'quad' of the enumeration compositionLayer
NOTE:	For the definition of those capabilities, please refer to clause 4.1.3.
[Editor’s note: This list of capabilities is a starting point and more can be added after being defined in clause 4.1.3]
[bookmark: _Toc143790685]10.3.3	Media capabilities support
TBD
[bookmark: _Toc134709911][bookmark: _Toc143790686]10.4	Device type 3: XR phone
[bookmark: _Toc143790687]10.4.1	General
The XR phone device type represents a type of device which corresponds to a smartphone with capacities and resources sufficient to offer AR experiences. As a result, this device type is capable of rendering scenes without external support. Lastly, the XR phone offers AR experiences to the user via video see-through display.
[bookmark: _Toc143790688]10.4.2	XR System support 
An XR Device complying to the XR phone device type offers an XR System with at least the following capabilities:
-	orientationTracking is 'true'
-	positionTracking is 'true'
-	Values 'opaque' and 'alpha_blend' of the enumeration blendMode
-	Values 'monoscopic' and 'stereoscopic' of the enumeration viewConfigurationPrimary
-	Values 'view', 'local' and 'stage' of the enumeration referenceSpace
-	If swapchainSupported is 'true', numberSwapchainImages equal to 2
-	Values 'projection' and 'quad' of the enumeration compositionLayer
NOTE:	For the definition of those capabilities, please refer to clause 4.1.3.
[Editor’s note: This list of capabilities is a starting point and more can be added after being defined in clause 4.1.3]
[bookmark: _Toc143790689]10.4.3	Media capabilities support
TBD
[bookmark: _Toc134709912][bookmark: _Toc143790690]10.5	Device type 4: XR HMD
[bookmark: _Toc143790691]10.5.1	General
The XR HMD device type represents a type of device which corresponds to HMDs capable of offering at least AR experiences but not precluding other types of XR experiences. This device type is expected to be capable of rendering scenes without external support. Lastly, the XR phone offers AR experiences to the user via video see-through display.
[bookmark: _Toc143790692]10.5.2	XR System support 
An XR Device complying to the XR HMD device type offers an XR System with at least the following capabilities:
-	orientationTracking is 'true'
-	positionTracking is 'true'
-	Value 'additive' or values 'opaque' and 'alpha_blend' of the enumeration blendMode
-	Values 'monoscopic' and 'stereoscopic' of the enumeration viewConfigurationPrimary
-	Values 'view', 'local' and 'stage' of the enumeration referenceSpace
-	If swapchainSupported is 'true', numberSwapchainImages is equal to 2
-	Values 'projection' and 'quad' of the enumeration compositionLayer

NOTE	For the definition of those capabilities, please refer to clause 4.1.3.
[Editor’s note: This list of capabilities is a starting point and more can be added after being defined in clause 4.1.3]
[bookmark: _Toc143790693]10.5.3	Media capabilities support
TBD
[bookmark: tsgNames]



[bookmark: startOfAnnexes][bookmark: _Toc143790694]
Annex A (informative/normative):
KPIs for AR/MR
[bookmark: _Toc143790695]A.1	Introduction
[Editor’s note: related WID objectives
Identify which QoE metrics from VR QoE metrics can be reused or enhanced for AR media (e.g., resolution per eye, Field of view (FOV), round-trip interaction delay, etc.) and define relevant KPIs that are dedicated to AR/MR
Specify additional relevant KPIs and simple QoE Metrics for AR media]
[bookmark: _Toc134709915][bookmark: _Toc143790696]Annex B (informative): 
Usage of OpenXR [and WebXR] as XR Runtime

[bookmark: _Toc134709916][bookmark: _Toc143790697]B.1	Introduction

[bookmark: _Toc134709917][bookmark: _Toc143790698]B.2	Capability mapping to OpenXR
[bookmark: _Toc134709918][bookmark: _Toc143790699]B.2.1	Mapping overview
	Capability
	Corresponding 
OpenXR capability
	Parameters
	Corresponding 
OpenXR object

	Create an XR System
	xrGetSystem()
	xrSystemIdentifier
	XrSystemId*     systemId;

	Query XR System’s graphics properties
	xrGetSystemProperties()
	swapchainSupported
	Implicit, since the OpenXR specification support of swapchain by design.

	
	
	maxSwapchainImageHeight 
	uint32_t    maxSwapchainImageHeight;

	
	
	maxSwapchainImageWidth 
	uint32_t    maxSwapchainImageWidth;

	
	
	maxLayerCount
	uint32_t    maxLayerCount;

	Query XR System’s tracking properties
	xrGetSystemProperties()
	orientationTracking
	XrBool32    orientationTracking;

	
	
	positionTracking
	XrBool32    positionTracking;

	Enumerate XR System’s  supported environment blend modes
	xrEnumerateEnvironmentBlendModes()
	Value 'opaque' of blendMode
	XrEnvironmentBlendMode*                     environmentBlendModes;
There is one element of environmentBlendModes whose value is equal to XR_ENVIRONMENT_BLEND_MODE_OPAQUE.

	
	
	Value 'additive' of blendMode
	XrEnvironmentBlendMode*                     environmentBlendModes;
There is one element of environmentBlendModes whose value is equal to XR_ENVIRONMENT_BLEND_MODE_ADDITIVE.

	
	
	Value 'alpha_blend' of blendMode
	XrEnvironmentBlendMode*                     environmentBlendModes;
There is one element of environmentBlendModes whose value is equal to XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND.

	Enumerate supported view configuration types
	xrEnumerateViewConfigurations()
	Value 'monoscopic' of viewConfigurationPrimary 
	XrViewConfigurationType*                    viewConfigurationTypes;
There is one element of viewConfigurationTypes whose value is equal to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO.

	
	
	Value 'stereoscopic' of viewConfigurationPrimary
	XrViewConfigurationType*                    viewConfigurationTypes;
There is one element of viewConfigurationTypes whose value is equal to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO.

	
	
	Value 'other' of viewConfigurationPrimary
	XrViewConfigurationType*                    viewConfigurationTypes;
There is one element of viewConfigurationTypes whose value is strictly greater than XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO and strictly lower than XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM.

	Enumerate the view configuration properties
	xrEnumerateViewConfigurationViews()
	recommendedImageRectWidth
	uint32_t           recommendedImageRectWidth;

	
	
	maxImageRectWidth
	uint32_t maxImageRectWidth;

	
	
	recommendedImageRectHeight
	uint32_t recommendedImageRectHeight;

	
	
	maxImageRectHeight
	uint32_t maxImageRectHeight;

	
	
	recommendedSwapchainSampleCount
	uint32_t recommendedSwapchainSampleCount;

	
	
	maxSwapchainSampleCount
	uint32_t maxSwapchainSampleCount;

	Enumerate reference space types
	xrEnumerateReferenceSpaces()
	Value 'view' of referenceSpace
	XrReferenceSpaceType*    spaces;
There is one element of spaces  whose value is equal to XR_REFERENCE_SPACE_TYPE_VIEW.

	
	
	Value 'local' of referenceSpace
	XrReferenceSpaceType*    spaces;
There is one element of spaces  whose value is equal to XR_REFERENCE_SPACE_TYPE_LOCAL.

	
	
	Value 'stage' of referenceSpace
	XrReferenceSpaceType*    spaces;
There is one element of spaces  whose value is equal to XR_REFERENCE_SPACE_TYPE_STAGE.

	
	
	Value 'unbounded' of referenceSpace
	XrReferenceSpaceType*    spaces;
There is one element of spaces  whose value is equal to XR_REFERENCE_SPACE_TYPE_UNBOUNDED_MSFT.
[Editor’s note: This requires the extension  XR_MSFT_unbounded_reference_space ]

	
	
	Value 'user_defined' of referenceSpace
	[Editor’s note: This doesn’t seem to be mappable in OpenXR]

	Query the spatial range boundaries
	xrGetReferenceSpaceBoundsRect()
	2DSpatialRangeBoundaries
	XrExtent2Df*    bounds;

	Enumerate swapchain image formats
	xrEnumerateSwapchainFormats
	swapchainImageFormatIdentifier
	int64_t*    formats;

	Enumerate swapchain images
	xrEnumerateSwapchainImages()
	numberSwapchainImages
	uint32_t*    imageCountOutput;

	
	
	swapchainImages
	XrSwapchainImageBaseHeader* images;

	Enumerate composition layer type
	N/A
	Value 'projection' of compositionLayer
	Part of the core specification

	
	
	Value 'quad' of compositionLayer
	Part of the core specification

	
	xrEnumerateInstanceExtensionProperties()
	Value 'cylinder' of compositionLayer
	XrStructureType    type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR.

	
	
	Value 'cube' of compositionLayer
	XrStructureType    type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_CUBE_KHR.

	
	
	Value 'equirectangular' of compositionLayer
	XrStructureType    type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR or XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR.

	
	
	Value 'depth' of compositionLayer
	XrStructureType    type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR.


B.2.2	XR views and rendering loop
Those composition layers are drawn in a specified order, with the 0th layer drawn first. Layers are drawn with a “painter’s algorithm,” with each successive layer potentially overwriting the destination layers whether or not the new layers are virtually closer to the viewer. Composition layers are subject to blending with other layers. Blending of layers can be controlled by the alpha channel information present in the image buffer of each layer. In addition, the image buffer of the layer may be limited by a maximum width and a maximum height when rendering them such that they fit into the capabilities of the swapchains.
For visual rendering, the following applies: 
1)	To present images to the user, the runtime provides images organized in swapchains for the application to render into. 
2)	The XR Runtime may support different swapchain image formats and the supported image formats may be provided to the application through the runtime API. XR Runtimes typically support at least sRGB formats. Details may depend on the graphics API specified when creating the session. 
3) 	Swapchain images may be 2D or 2D Array. Arrays allow to extract a subset of the 2D images for rendering. Multiple swapchain handles may exist simultaneously, up to some limit imposed by the XR runtime. Swap chain parameters include:
-	texture format identifier, a graphics API specific version of a format, for example sRGB.
-	width and height, expressing the pixel count of the images sent to the swapchain
-	faceCount, being the number of faces, which can be either 6 (for cubemaps) or 1
-	indication whether the swapchain is dynamic, i.e. updated as part of the XR rendering loop or static, i.e. the application releases only one image to this swapchain over its entire lifetime.
-	access protection, indicating that the swapchain’s images are protected from CPU access
4)	Once a session is running and in focussed state as introduced in clause 4.1.2, the following rendering loop is executed following Figure 4.1.4
a)	The XR Application retrieves the action state, e.g. the status of the controllers and their associated pose. The application also establishes the location of different trackables.
b)	Before an application can begin writing to a swapchain image, it first waits on the image to avoid writing to it before the Compositor has finished reading from it. Then an XR application synchronizes its rendering loop to the runtime. In the common case that an XR application has pipelined frame submissions, the application is expected to compute the appropriate target display time using both the predicted display time and predicted display interval. An XR Runtime is expected to provide and operate a swapchain that supports a specific frame rate.
c) 	Once the wait time completes, the application initiates the rendering process. In order to support the application in rendering different views the XR Runtime provides access to the viewer pose and projection parameters that are needed to render the different views. The view and projection info is provided for a particular display time within a specified XR space. Typically, the target/predicted display time for a given frame.
d)	the application then performs its rendering work. Rendering work may be very simple, for example just directly copying data from the application into the swap chain or may be complex, for example iterating over the scene graph nodes and rendering complex objects. Once all views/layers are rendered, the application sends them to the XR Runtime for final compositing including the expected display time as well as the associated render pose.
e) 	An XR Runtime typically supports (i) planar projected images rendered from the eye point of each eye using a perspective projection, typically used to render the virtual world from the user’s perspective, and (ii) quad layer type describing a posable planar rectangle in the virtual world for displaying two-dimensional content. Other projection types such as cubemaps, equirectangular or cylindric projection may also be supported.
f)	The XR application offloads the composition of the final image to an XR Runtime-supplied compositor. By this, the rendering complexity is significantly lower since details such as frame-rate interpolation and distortion correction are performed by the XR Runtime. It is assumed that the XR Runtime provides a compositor functionality for device mapping. A Compositor in the runtime is responsible for taking all the received layers, performing any necessary corrections such as pose correction and lens distortion, compositing them, and then sending the final frame to the display. An application may use multiple composition layers for its rendering. Composition layers are drawn in a specified order, with the 0th layer drawn first. Layers are drawn with a “painter’s algorithm,” with each successive layer potentially overwriting the destination layers whether or not the new layers are virtually closer to the viewer. Composition layers are subject to blending with other layers. Blending of layers can be controlled by layer per-texel source alpha. Layer swapchain textures may contain an alpha channel. Composition and blending is done in RGBA.
g)	After the compositor has blended and flattened all layers, it then presents this image to the system’s display. The composited image is then blend with the user’s view of the physical world behind the displays in one of three modes, based on the application’s chosen environment blend mode: 
-	OPAQUE. The composition layers are displayed with no view of the physical world behind them. The composited image is interpreted as an RGB image, ignoring the composited alpha channel. This is the typical mode for VR experiences, although this mode can also be supported on devices that support video passthrough.
-	ADDITIVE: The composition layers are additively blended with the real world behind the display. The composited image is interpreted as an RGB image, ignoring the composited alpha channel during the additive blending. This is the typical mode for an AR experience on a see-through headset with an additive display, although this mode can also be supported on devices that support video passthrough.
-	ALPHA_BLEND. The composition layers are alpha-blended with the real world behind the display. The composited image is interpreted as an RGBA image, with the composited alpha channel determining each pixel’s level of blending with the real world behind the display. This is the typical mode for an AR experience on a phone or headset that supports video passthrough.
h)	Meanwhile, while the XR Runtime uses the submitted frame for compositing and display, a new rendering process may be kicked off for a different swap chain image.
[bookmark: _Toc143790700]B.2.2	Available Visualization Space implementation
[bookmark: _Toc143790701]B.2.2.1	Using OpenXR_XR_FB
The openXR XR_FB_scene extension allows to define the boundary room and also boundary space and objects in the space:
1. xrGetSpaceBoundingBox3DFB provides the defined rectangular cube XrRect3DfFB by defining the offset XrOffset3DfFB values x,y, z and the extend XrExtent3DfFB values width, height and depth in the x,y,z dimensions.
2. xrGetSpaceSemanticLabelsFB optionally provides a way to describe the semantic meaning of an space entity. It is recommended to use the label “3GPP-AvailableVisualizationSpace” when it is used to describe available visualization space.
[bookmark: _Toc143790702]B.2.2.2	Using xrComputeNewSceneMSFT
The XR_MSFT_scene_understanding extension allows defining the bounding volume in 3 forms:
1.  XrSceneSphereBoundMSFT for defining a spherical available visualization space
2.  XrSceneOrientedBoxBoundMSFT for defining a cuboid available visualization space. Note that the bounding box is defined by its center and its edge to edge dimensions around its center. Therefore, these values shall be translated to the values defined in 6.2.4.
Also note that the scene components outside of the available visualization space may be excluded from rendering by the runtime.

[bookmark: _Toc134709919][bookmark: _Toc143790703][B.3	Capability mapping to WebXR]



[bookmark: _Toc143790704][bookmark: historyclause]
Annex <X> (informative):
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-04
	SA4#118e
	S4-220504
	
	
	
	Draft TS sekeleton from the editor
	0.1.0

	2023-05
	SA4#124
	S4-231042
	
	
	
	Introduction, Prerequisites including XR device architecture, metadata formats, visual capabilities, device types description, OpenXR annex (S4-230920)
	0.2.0

	2023-08
	SA4#125
	S4-231559
	
	
	
	QoE Metrics (S4-231457), visualization space (S4-231454), clarifications (S4-231548), XR system capabilities (S4-231540), Device types (S4-231542)
	0.3.0


 

3GPP
image2.png
=

A GLOBAL INITIATIVE




image3.emf



 



XR Device
XR Runtime



Cameras



Sensors



Displays



Composition and 
Warping



Runtime functions 
(tracking, SLAM)



Audio Subsystem



Speakers



Microphones



Network 
connectivity



(5G System Uu)
XR Application



Actuators



Device Hardware and Software Capabilities



Controllers



Capturing
Media Capabilities



peripheral 
management



XR
 



Ru
nt



im
e 



AP
I



Media APIsDevice APIs



Synchronization 
and Spatial 
Alignment










 

XR Device

XR Runtime

Cameras

Sensors

Displays

Composition and 

Warping

Runtime functions 

(tracking, SLAM)

Audio Subsystem

Speakers

Microphones

Network 

connectivity

(5G System Uu)

XR Application

Actuators

Device Hardware and Software Capabilities

Controllers

Capturing

Media Capabilities

peripheral 

management

X

R

 

R

u

n

t

i

m

e

 

A

P

I

Media APIs Device APIs

Synchronization 

and Spatial 

Alignment


image4.emf



 XR Device



XR ApplicationXR Runtime



Cameras



Sensors



Displays
Composition and 



Warping



Runtime functions 
(tracking, SLAM)



Controllers



peripheral 
management



Swapchain
Rendering Loop Rendering



Actions



Composition Layers
+ display time



+ render pose@XRSpace



Viewer pose at expected display time 










 

XR Device

XR Application

XR Runtime

Cameras

Sensors

Displays

Composition and 

Warping

Runtime functions 

(tracking, SLAM)

Controllers

peripheral 

management

Swapchain

Rendering Loop

Rendering

Actions

Composition Layers

+ display time

+ render pose@XRSpace

Viewer pose at expected display time 


image5.emf
XR Device

Media Capabilities

XR Runtime

Cameras

Sensors

Displays

Composition and 

Warping

Runtime functions 

(tracking, SLAM)

Audio Subsystem

Speakers

Microphones

Actuators

Controllers

Capturing

peripheral 

management

Synchronization 

and Spatial 

Alignment

Swapchain

Rendering Loop

Rendering Decoding Access

5G System 

(Uu)

XR Application

Viewer Pose

Media APIs


Microsoft_Visio_Drawing2.vsdx
XR Device
Media Capabilities
XR Runtime
Cameras
Sensors
Displays
Composition and Warping
Runtime functions (tracking, SLAM)
Audio Subsystem
Speakers
Microphones
Actuators
Controllers
Capturing
peripheral management
Synchronization and Spatial Alignment
Swapchain
Rendering Loop
Rendering
Decoding
Access
5G System (Uu)
XR Application
Viewer Pose
Media APIs



image6.png
XR Baseline Client

Presentation engine

Audio
Subsystem





image7.emf



 



XR Baseline Client



User input



Media Access Function



XR Runtime



Cameras



Sensor



Displays



Presentation 
Engine



Composition



Runtime 
functions 
(tracking, 



SLAM)



Visual Renderer 



Audio Renderer 
Audio 



SubsystemSpeakers



Scene 
Manager



Video Codecs



Audio Codecs



Metadata Formats



XR Source 
Management



XR Application



Actuators



IF-1a



IF-3



IF-9



IF-8



Content Delivery Protocols



Media Session 
Handler



IF-5



IF-6IF-2 IF-7



Metrics collection & 
reporting 



5G
 S



ys
te



m
 (U



u)



Microphones



AP
I-1



API-2



API-7



API-6IF-10



IF-1b



IF-1c
IF-4



API-6



IF-7 IF-6
OP-2



OP-3



OP-4



OP-1










 

XR Baseline Client

User input

Media Access Function

XR Runtime

Cameras

Sensor

Displays

Presentation 

Engine

Composition

Runtime 

functions 

(tracking, 

SLAM)

Visual Renderer 

Audio Renderer 

Audio 

Subsystem

Speakers

Scene 

Manager

Video Codecs

Audio Codecs

Metadata Formats

XR Source 

Management

XR Application

Actuators

IF-1a

IF-3

IF-9

IF-8

Content Delivery Protocols

Media Session 

Handler

IF-5

IF-6 IF-2

IF-7

Metrics collection & 

reporting 

5

G

 

S

y

s

t

e

m

 

(

U

u

)

Microphones

A

P

I

-

1

API-2

API-7

API-6

IF-10

IF-1b

IF-1c

IF-4

API-6

IF-7

IF-6

OP-2

OP-3

OP-4

OP-1


image1.png
~

5G




