3GPP TR 23.742 V0.2.0 (2018-06)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Enhancements to the Service-Based Architecture
(Release 16)
[image: image20.png]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2018, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

1
Scope
7
2
References
7
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
8
4
Architectural Requirements, Principles and Assumptions
8
4.1
Architectural Requirements
8
4.2
Architectural Principles
8
4.3
Architectural Assumptions
8
4.4
Service Definitions and Principles
8
5
Key Issues
9
5.1
Key Issue 1: Optimal modularization of the system
9
5.1.1
Description
9
5.2
Key Issue 2: Extend Service Concept into User Plane
10
5.2.1
Description
10
5.3
Key Issue 3: Improvements to service framework related aspects
10
5.3.1
Description
10
5.4
Key Issue 4: Architectural support for highly reliable deployments
11
5.4.1
Description
11
5.5
Key Issue 5: SBA backward and forward compatibility
11
5.5.1
Description
11
5.6
Key Issue 6: system flexibility and service provisioning
11
5.6.1
Definition
11
5.6.2
Description
11
5.X
Key Issue X: <Key Issue Title>
12
5.X.1
Description
12
6
Solutions
12
6.1
Solutions for key issue 1
12
6.2
Solutions for key issue 2
12
6.3
Solutions for key issue 3
12
6.3.1
Solution 3.1: Amendments to Service Interaction model
12
6.3.1.1
Introduction
12
6.3.1.2
High-level Description
12
6.3.1.2.1
Reduction of service complexity
13
6.3.1.2.2
Reliability improvements
13
6.3.1.2.3
 Solution Preconditions, Assumptions and Requirements
13
6.3.1.2.4
High-level Solution’s Architecture
14
6.3.1.2.4.1
SAPo (Service Access Points) and SAPA (Service Access Point API)
15
6.3.1.2.4.2
Registration- Discovery and Authorization Management
15
6.3.1.2.4.3
Communication Mechanism
15
6.3.1.2.4.4
Policy Enforcement
15
6.3.1.2.4.5
Load Balancing
16
6.3.1.2.4.6
Failover Management
16
6.3.1.3
Illustrated Procedures
16
6.3.1.3.1
Registration and de-registration of NF instances/NF service instances
16
6.3.1.3.2
Delivery of messages
17
6.3.1.3.3
Failover Handling Procedures
17
6.3.1.4
Impacts on existing NFs/NF services and interfaces
17
6.3.1.5
Evaluation of the Solution
17
6.3.2
Solution 3.2: Distributed Service Framework
18
6.3.2.1
Introduction
18
6.3.2.2
High level description
18
6.3.2.3
Services and illustrated Procedures
19
6.3.2.4
Impacts on existing Services and Interfaces
19
6.3.2.5
Evaluation of the Solution
19
6.4
Solutions for key issue 4
19
6.4.1
Solution 4.1: SBA with stateless and unsticky services
19
6.4.1.1
Introduction
19
6.4.1.2
High level description
19
6.4.1.2.1
Solution aspects
19
6.4.1.2.2
Issues related to long-living bindings between NFs / NF services
20
6.4.1.2.3
Issues related to stateful NFs
21
6.4.1.2.4
Solution Preconditions, Assumptions and Requirements
21
6.4.1.2.5
High-level Solution Architecture
21
6.4.1.3
Services and illustrated Procedures
22
6.4.1.4
Impacts on existing Services and Interfaces
22
6.4.1.5
Evaluation of the Solution
22
6.4.2
Solution 4.2: Support for highly reliable deployments
22
6.4.2.1
Introduction
22
6.4.2.2
High-level Description
22
6.4.2.3
Services and Illustrated Procedures
23
6.4.2.3.1
Registration Services
23
6.4.2.3.2
Communication Services and Shared Data Layer
23
6.4.2.4
Impacts on existing services and interfaces
25
6.4.2.5
Evaluation
25
6.4.3
Solution 4.3: Temporary bindings between the service instances
25
6.4.3.1
Introduction
25
6.4.3.2
High-level Description
26
6.4.3.3
Illustrated Procedures
27
6.4.3.4
Impacts on existing NFs, NF services and interfaces
29
6.4.3.5
Evaluation
29
6.4.4
Solution 4.4: NF/NF services Reliability
29
6.4.4.1
Introduction
29
6.4.4.2
High-level Description
29
6.4.4.3
Illustrated Procedures
30
6.4.4.4
Impacts on existing NFs, NF services and interfaces
30
6.4.4.5
Evaluation
30
6.4.5
Solution 4.5: 5GC Reliability
30
6.4.5.1
Introduction
30
6.4.5.2
High-level Description
30
6.4.5.3
Illustrated Procedures
30
6.4.5.4
Impacts on existing NFs, NF services and interfaces
30
6.4.5.5
Evaluation
30
6.5
Solutions for key issue 5
30
6.6
Solutions for key issue 6
31
6.6.1
Solution 6.1: Utilize System Feature to enable system flexibility and service provisioning
31
6.6.1.1
Introduction
31
6.6.1.2
High-level Description
31
6.6.1.3
Illustrated Procedures
31
6.6.1.4
Impacts on existing NFs, NF services and interfaces
31
6.6.1.5
Evaluation
31
7
Evaluation
32
8
Conclusions
32
Annex A: 3GPP SBA and ETSI NFV concepts
33
A.1
Introduction
33
A.2
Architecture perspectives
33
A.2.1
3GPP Rel-15 architecture
33
A.2.2
ETSI NFV including MANO
33
A.3
The relationships
35
A.3.1
3GPP Network Function vs ETSI VNF
35
A.3.2
Microservice implementations and 3GPP Rel-15 SBA and ETSI NFV
36
A.4
Lifecycle management
36
Annex B: Example of System Features
38
Annex C: Change history
39

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

This technical report studies and evaluates architecture enhancements on potential optimizations to the Release 15 Service-Based Architecture (SBA) in order to provide higher flexibility and better modularization of the 5G System for the easier definition of different network slices and to enable better re-use of the defined services. Moreover, the technical report considers mechanisms in order to better support automation and high reliability of network function service(s). The following aspects are covered:

-
Optimizing the modularization of the system to improve its agility.
-
Extending the service concept from 5GC control plane to the user plane function(s).
-
Further improvements to service framework related aspects.
-
Architectural support for highly reliable deployments, considering.
-
Study backward and forward compatibility implications resulting from the above bullets.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format (EW)

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

Abbreviation format (EW)

<ACRONYM>
<Explanation>

4
Architectural Requirements, Principles and Assumptions
Editor's note:
This clause will list general architectural requirements, principles and assumptions for this study.
4.1
Architectural Requirements

Editor's note:
This clause will list general architectural requirements for this study.
Services shall be fully self-contained, reusable, and shall have independent life-cycle management (e.g. for scaling, healing, etc.).
The services deployed within a Network Slice shall be able to communicate efficiently with minimal information about the Network Slice configuration.

4.2
Architectural Principles
Editor's note:
This clause will list general architectural principles for this study.
-
For interaction between UE/RAN and 5GC, the NF services interactions within 5GC have no impact on NG-RAN or UE, and 5GC interacts with UE and RAN via the specified Reference Point(s).

-
For interaction between EPC and 5GC, the NF services interactions within 5GC have no impact on EPC network entities, and 5GC interacts with EPC network entities via the specified Reference Point(s).
-
For interactions with the UPF, the NF services interactions within 5GC have no impact on the UP traffic processing model in UPF.
4.3
Architectural Assumptions
Editor's note:
This clause will list general architectural assumptions for this study.
The assumption is that 5GS architecture supports cloud deployments (fully virtualized) and can make use of cloud operation mechanisms, e.g. auto-scaling, self-healing in line with e.g. ETSI NFV specifications.
The implementation architecture is outside of 3GPP SA WG2 scope. For example, how 3GPP NFs/NF Services are grouped into (VNFs) and how the resources for VNFs are managed is outside of 3GPP SA WG2 scope.
4.4
Service Definitions and Principles
Editor's note:
This clause will list general service principles and assumptions for this study.

The following principles are general principles for design of services. The Principles are work in progress and will be revisited and evaluated at future meetings. Compromises on some of the principles may be required when deciding how the architecture evolve in Rel-16.

-
A service is designed to perform specific tasks, which are different from other services in the system.

-
A service has a unique identification. Services that perform different tasks have a different identification.

-
Service operations are the only way to communicate with a service.

-
Within a given communication context, a service may take the role of either service consumer or service producer. A service consumer is unaware of any internals of the service producer and vice versa.

-
A service is designed to operate on a specific set of data (data context, e.g. session data).

-
A service instance is a software executable that implements a service. Each service instance needs to be uniquely identified.

-
Service instances of the same service may share data via a shared storage resource.

-
Not all the service instances of the same service need to have access to a single, shared instantiation of the data context. This may depend on the implemented data consistency model.

5
Key Issues

5.1
Key Issue 1: Optimal modularization of the system
5.1.1
Description

Optimal modularization of the system shall:
-
enable deployment/configuration of single/separate 5GC services within a network slice or shared by a set of network slices (e.g. as for the case of AMF services) which will:
-
improve the system's agility in terms of tailoring its functionality and features, e.g. for network slicing.
-
improve flexibility in terms of dynamic addition and removal of services and independent lifecycle management of services instances within one networkslice or a set of network slices.
-
enable/enhance re-usability of single services.
-
describe principles to be used for an optimal modularization/granularity of services that enables different deployment scenarios (e.g. different levels of service modularization for different NF types)/slice types.

-
achieve appropriate service granularity, i.e. compared to Release 15 NF service definition for existing features and functionalities:
-
remove dependencies between services in order to enable independent implementation and deployment of single/separate services.

-
enable services to be deployed by their own without mandatorily relying on a certain NF, through proper service modelling.
-
clarify how generic the service design should be to enable features to be used beyond the interactions described in procedure flows.
-
study relation between services and system features (modules), e.g. identify where services should be merged where necessary.
-
clarify self-contained, reusable, and independent life-cycle management of services.
5.2
Key Issue 2: Extend Service Concept into User Plane
5.2.1
Description

In Rel-15, the Service Concept has been introduced into control plane of 5G core. This key issue will study extending the service concept from 5GC control plane to the user plane function(s), however, this key issue will focus on how to extend service concept only to the N4 interface, but not to the N3/N6/N9 interface.
This key issue study following aspects:
-
How to integrate the specific aspects of the UPF (e.g. its resources, states of PDU Sessions and user plane tunnels,etc.) into the service-based architecture model and make sure that those aspects of UPF are encompassed by existing principles of SBA and those going to be newly defined during this study.
-
What will UPF expose/consume on the service interfaces to/from SMF? e.g. service related to PDU Sessions and user plane tunnel establishment, etc.
-
Possibility of structuring and separating services into control, reporting and exposure services.
-
Any impact to the session management procedure defined in TS 23.501 [2] and TS 23.502 [3] due to UPF having a service based interface?
-
The bootstrap procedures of UPF with service interface, e.g. Whether the Procedure defined in clause 4.17 of TS 23.502 [y] can be re-used or need to define new procedures?
-
Within the mix deployment of both the UPF using PtP interface and UPF using service based interface e.g. within a single PLMN, how to handle session management procedures e.g. UPF selection, UPF relocation, etc?
NOTE:
As stated in the Objectives of the eSBA SID, impacts to User Plane traffic processing are not expected in the eSBA study. Therefore, solutions proposed to address this key issue are not expected to impact functionality handling User plane traffic processing. In addition, solutions addressing this key issue shall not impactN3/N9 tunnelling protocols defined in Rel-15.

5.3
Key Issue 3: Improvements to service framework related aspects
5.3.1
Description

Aiming to further optimize 5G service based architecture this key issue will:

-
identify the set of common service framework functionalities, i.e. that are not part of the service logic.
-
study improvements of service framework related aspects, i.e.:
-
service addressing and communication, e.g., through direct/indirect ways.
-
service discovery, registration & authorisation, in line with the optimisations in Key Issue 1.
-
selection of a service instance when more than one instance is available to process a given service operation".
-
5GC Overload Handling in coordination with CT4.
-
other communication/interaction related functionalities.
study where to place the common service framework functionalities Any solutions should aim to ensure that implementations can use current as well as possible future implementation technologies and design patterns developed by communities outside 3GPP and should also avoid lock ins to specific technologies.

5.4
Key Issue 4: Architectural support for highly reliable deployments
5.4.1
Description

When the 5GC services are deployed in a cloud environment, it is expected that the overall reliability of the system shall be at least the same as the reliability of today's non-cloud based systems. Therefore, the service-based architecture should be designed in a way that seamless replacement, addition or removal of services is possible and does not require specific (re-)configuration (e.g. point to point interfaces or UE specific binding) of both the running and the new component(s).

NOTE 1:
It is assumed that this functionality introduced for CP NFs/NF services can be an enabler for ultra-reliable communication (URLLC).

NOTE 2:
This key issue focuses on the control plane functions of the 5GC.

This key issue will study architectural aspects supporting highly reliable deployments in virtualized environments (i.e. built for cloud) including e.g. (non-exhaustive list):
-
automation to support independent life cycle management as well as failover handling of 5GC NFs and/or service instances.

-
impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances, e.g., by separating functional processing from state repository or other mechanisms.

-
support traceability and monitoring as needed to support automation.

NOTE 3:
Solutions may reuse, where applicable, the enablers for network automation studied in FS_eNA.
5.5
Key Issue 5: SBA backward and forward compatibility
5.5.1
Description

This study item analyses potential enhancements of the Rel.15 SBA. It is clear that operators who deploy the Rel. 15 SBA would need compatibility with and migration path towards a Rel.16 SBA.

While the actual backward compatibility and forward compatibility of each solution and the migration path from the Release15 baseline are expected to be part of the respective solution evaluation this key issue will
-
provide definitions for backward compatibility and forward compatibility

-
develop design principles for backward and forward compatibility and how to apply it to the design of the components of the 5GC

5.6
Key Issue 6: system flexibility and service provisioning
5.6.1
Definition
System Feature: Service (the definition of “service” refers to TR 21.905, clause 3) e.g. SMS, LCS delivered to end user and/or application by 5G system, which is enabled by a set of Network Functions and/or NF services in 5GC and NG-RAN in some cases.

5.6.2
Description
System flexibility enables the efficient support of 5G System Features in the network. The network may support multiple System Features, and these System Features may be added/updated/removed within a network in operation.

This key issue will study:

-
The principles for identifying System Features.
-
Identifying and listing the set of System Features provided by the 5G system.
-
How to associate a System Feature with the related NFs, system procedures/NF services.

-
Potential enhancements to the service framework for better support of system features e.g. service discovery.
-
How to provision a network based on System Features, including: the required NFs and/or NF services.

-
The relationship between System Features and Network Slices.
5.X
Key Issue X: <Key Issue Title>
5.X.1
Description

Editor's note:
This clause provides a short description of the key issue.
6
Solutions
6.1
Solutions for key issue 1
Void
6.2
Solutions for key issue 2
Void
6.3
Solutions for key issue 3

6.3.1
Solution 3.1: Amendments to Service Interaction model
6.3.1.1
Introduction
This solution addresses key issues 3 “Improvements to service framework related aspects”.

The service based architecture of R15 inherits aspects from the reference point based p2p interaction concepts. In this direct interaction model the services themselves have several responsibilities that are not part of the services’ business logic. Service instances have, for example, to discover other service instances as their communication peers, to select one of them, to supervise the message flow, to perform message authorization actions and to maintain the communication relationship with the selected peer for subsequent transactions. Service consumers also need to be involved in load balancing between their potential communication peers before or during a communication relationship.

This puts some redundant burden on the implementation of the services which can limit the development and deployment agility and interoperability. But even more critically, the delegation of some of these responsibilities to the services can cause limitations for automation flexibility and for customer service availability, especially in case of service failures, and therefore have a negative influence on the overall system availability and reliability.

This solution proposes a amendments to the service interaction model that addresses these issues outlined above on architectural level.

6.3.1.2
High-level Description

This solution covers two main aspects which are shortly discussed in the next sub-sections:
-
Reduction of the complexity of the services.
-
Improvement to the overall system reliability and availability.

6.3.1.2.1
Reduction of service complexity

This aspect addresses the reduction of the service complexity by identification and extraction of functionality that is common to all services and placing it into a component outside of the actual service.

These common functionalities include:

-
Discovery of communication peers.
-
Selection of communication peers, including load-balancing between selectable communication peers.
-
Delivery of messages between communication peers, and matching of responses where needed.
-
Policy enforcement, authorization of the message delivery.
-
Handling of addition, removal and replacement of service instances, i.e. when new selectable peers become available or existing peers disappear form the system.
6.3.1.2.2
Reliability improvements

This aspect addresses the way how service instances communicate with each other. Today the services themselves have the responsibility for the discovery and selection of peers for inter-service communication and for keeping the state of these communication relationships alive for subsequent transactions. This behaviour is based on the assumption and pre-condition that both communication peers are highly available and reliable themselves, which is not valid anymore in a cloud based deployment environment.

In case of service failures in one service instance, each corresponding communication peer must be notified about it and perform failover strategies to find and connect to a replacement peer service instance and to restore and synchronize the communication and application state.

This solution removes the need for such failover mechanisms to be implemented as part of every service.

6.3.1.2.3
 Solution Preconditions, Assumptions and Requirements

Preconditions:

· there is no long-living binding between service instances and application context

NOTE:
This precondition can be fulfilled e.g. by separation of “compute” resources from “storage” resources.

Assumptions:

· There exists a mechanism (e.g. Service Mesh, messages oriented middleware …) to decouple communication peers from each other, in order to:

-
Remove the need for implementation of peer-discovery, -selection and -binding from each service

-
Remove the need for implementation of dedicated failover strategies from each service

· That mechanism provides an API that allows service instances to send messages to a type of peer service (not a dedicated service instance).

· That mechanism provides an API that allows service instances to receive messages from another service instance.

· That mechanism has internal functionality to perform peer-discovery and -selection on behalf of the sending service instance, i.e. it implements, or interacts with, a service repository such as the NRF.

· That mechanism can deliver messages from the sending peer to the selected receiving peer.

· That mechanism provides means to support short-lived peer-bindings, if required for certain communication patterns. Bindings may exist for a single message exchange or over a sequence of such exchanges as needed.

· That mechanism is message content agnostic, i.e. it supports any payload.

· That mechanism supports interaction between different data centers / points of presence, while hiding the deployment topology of the system from each of the service instances.

· That mechanism supports authorisation and enforcement of policies for the delivery of messages, including location affinity rules in case of distribution across multiple PoPs.

Requirements:

· The service logic must be designed to be interoperable with the selected mechanism.

· The services shall be able to use the APIs, provided by the selected mechanism.

6.3.1.2.4
High-level Solution’s Architecture

The following figure illustrates a high-level architecture, where the common functionalities are separate from the business logic of the service implementations and provided by common service framework functionalities.

 SHAPE * MERGEFORMAT

The access to the functionalities of the common service framework is offered via Service Access Point (SAPo) functional elements which provide a northbound API, the Service Access Point API (SAPA) towards the services. Multiple SAPo instances (as needed by operator deployment) may exist as shown in the diagram above. Each SAPo instance allows registration and deregistration of services as well as sending and receiving messages by the services. SAPOs may also monitor the presence of registered service instances, e.g. via a keep-alive mechanism. The SAPA is object of standardisation by 3GPP. It defines the API for the common set of service framework functionalities.

SAPA is generic in terms of the access to the common set of service framework functionalities, and agnostic of the content of messages exchanged between services. Therefore, technically speaking, any service instance can make use of any SAPo instance. However, in actual deployments, SAPos might be pooled for use by certain sets of service instances. Such configuration, and number of deployed SAPos, depends on operator deployment strategy.

The actual implementation of the service framework is implementation specific and not object of standardization by 3GPP. It is assumed that existing solutions (e.g. service mesh, enterprise message systems, …) can be leveraged to implement the proposed service framework solution. The Service Access Points (SAPo) are hiding such implementation details of the service frameworks behind a common API. Therefore, services are able to run on any service framework implementation that provides a SAPo, compatible with the 3GPP-defined SAPA.

As stated, the SAPA must be standardised on both stage2 and stage3 level so that multivendor interoperability of the services is supported. It is possible in principle that the “southbound” interface of the SAPo also uses a standard protocol, e.g. AMQP (standardised by OASIS) for enterprise message systems. In this case, it is not precluded that SAPo is integrated into a service implementation; however, this combined implementation would then only operate with AMQP-based frameworks and lose its generic interworking capability with any SAPA-based (3GPP) framework.

The intention of this architecture is to de-couple communication peers from each other, to simplify the internal structure of the services and to overcome limitations of the traditional P2P interaction concept, especially with respect to failover handling.

The functional blocks of the service framework and their role in the architecture are described in the following subsections.

NOTE:
As with the NRF in Release 15 the mentioned Service Framework Functions can be slice specific or shared across slices.

Editor's note: communication mechanism impacts to roaming are FFS.
6.3.1.2.4.1
SAPo (Service Access Points) and SAPA (Service Access Point API)

Service Access Point is a software component that acts as an adapter between the implementation specific service framework and the services that make use of service framework functionalities. The SAPA is the “contract” between services and the SAPo, which is defined, standardised and documented by 3GPP.

The implementation of the SAPo depends on the vendor specific implementation of the service framework; therefore it can be assumed that each service framework vendor will provide its own SAPo implementation. This solution proposal makes no assumption about the way how SAPo’s are implemented and provided.

6.3.1.2.4.2
Registration- Discovery and Authorization Management

The architecture figure depicts functional blocks for the registration-, authorization- and discovery- management as part of the service framework. This functionality correlates with the functionality of the Network Repository Function (NRF).

The SAPA must contain methods to perform registration, de-registration, authorization. SAPA does not require discovery (it is an implicit function of the framework).

Editor's note: It is FFS whether discovery on the SAPA is needed when backward compatibility is required.

6.3.1.2.4.3
Communication Mechanism

The Communication Mechanism is the core part of the service framework because it is in full control of the message exchange. It is responsible for the routing and forwarding of messages between consumer and producer NF instances/ NF service instances and supports the automatic establishment and destruction of temporary bindings between NF instances/NF service instances when needed. Messages are in this model addressed to types of producer NFs/NF services, not to individual producer NF instances/ NF service instances. The routing mechanism takes over the responsibility of the discovery and selection of communication peers, as well as the process of the actual delivery of messages between the peers. The internal protocols and mechanisms used by the communication mechanism for the plain message delivery are implementation specific.

NOTE 1:
 Management of temporary bindings is described in other solution proposals.
The SAPA must therefore contain methods allowing service instances to delegate message delivery and receiving to the service framework. This might also include mechanism for the notification of message delivery failures.

The Communication Mechanism shall also monitor the message delivery process and might use this information for support of load-balancing as well as for the detection of failure conditions.

NOTE 2:
Cross data center communication follows the same principles as with release 15 deployments.

6.3.1.2.4.4
Policy Enforcement

The described Communication Mechanism decouples the communication peers from each other and applies common procedures to all messages exchanged between communication peers. Amongst other things this allows for a common enforcement of communication related policies, if required.

For example, the Communication Mechanism may provide a policy enforcement mechanism to limit the message rate in receiving and sending directions up to discarding of messages in case of overload.

Another example is to handle location affinity in deployments where the service frameworks spans over multiple locations.

Editor's note: It is FFS how these policies are managed, and what shall be standardised in 3GPP.

6.3.1.2.4.5
Load Balancing

Due to the proposed monitoring of the message delivery process, the routing management component shall have a certain degree of awareness of facts like:

· message retention/delivery times,

· delivery failures for certain message types or communication peer instances,

· overall system load, etc.

Such facts, combined with potential additional implementation specific algorithms, might be used by the service framework to apply load-balancing to the message delivery process.

Editor's note: Further details on the message delivery (pushed to a producer instance by the service framework or pulled by a service instance from a “request queue) are FFS. Existing realisations of service frameworks shall be taken into account when defining the details of the solution.

6.3.1.2.4.6
Failover Management

A major point that this solution addresses is a drastically simplified management of failover situations. In the traditional P2P based interaction model with long-living bindings between communication peers (as specified in R15) the responsibility for failover handling is put on the service implementations.

The solution, described in this document proposes an implicit management of failover situations in the service framework and removes this burden from the service implementation. This is achieved by the decoupled, unsticky communication relations between the service instances in combination with a stateless service design (request messages are not sent to a specific instance of a service, but to a service type instead). This makes service instances in general replaceable without specific recovery procedures to be specified. If the communication mechanism detects certain service instances being unresponsive, then the corresponding message will be routed to another service instance that can process it without impacting the customer. This ensures that only "healthy" instances are used.

E.g. a heartbeat mechanism might be introduced that allows an early detection of failed service instances and supports the health monitoring mechanism.

6.3.1.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
6.3.1.3.1
Registration and de-registration of NF instances/NF service instances

This section describes the high-level procedures for the registration of NF instances/NF service instances at the service framework. In general, the procedures for the registration of NF/NF service (instances) are unchanged compared to R15.

Registration of NF instances/NF service instances

· the NF instances/NF service instance invokes the SAPA to register itself

· the SAPo performs all necessary actions to adapt the registration message to a format compliant with the vendor specific service framework implementation and forwards it

· the vendor specific service framework implementation performs any required steps to handle this registration

De-Registration of NF instances/NF service instances

· the NF instances/NF service instance invokes the SAPA to de-register itself

· the SAPo performs all necessary actions to adapt the de-registration message to a format compliant with the vendor specific service framework implementation and forwards it

· the vendor specific service framework implementation performs any required steps to handle this de-registration

6.3.1.3.2
Delivery of messages

Delivery of a request message from Consumer to Producer

· the consumer NF instances/NF service instance invokes the SAPA to initiate a message delivery
NOTE:
The message itself requires metadata to indicate the intended type of producer service to address.

· the SAPo performs all necessary actions to adapt the message to a format compliant with the vendor specific service framework implementation and forwards it

· the service framework might apply policies to ensure the legitimacy of that certain message transfer

· the service framework must perform all required steps to investigate and setup a routing path to a producer NF instances/NF service instance of the addressed service type

· the service framework might apply load-balancing mechanisms to influence the selection of a producer instance

· the service framework shall derive monitoring information from that message transfer

· the service framework forwards the messages to a SAPo that allows to reach the selected producer NF instances/NF service instance
· the SAPo performs all necessary actions to adapt the implementation specific message format to a format compliant with the SAPA specification and forwards it to the producer NF instances/NF service instance

Delivery of a response message from Producer to Consumer
This sequence is the same as described before except two points:

· that the roles of the producer and consumer are exchanged

· there might be no load-balancing applied, since the response shall be routed exactly to the consumer NF instances/NF instance that initiated the response.

6.3.1.3.3
Failover Handling Procedures

Due to the decoupled service communication and the implicit load-balanced distribution of messages to one of the registered producers of the same type there are no special procedures for failover foreseen.

One exception is the case when a consumer sends a message to a special service type and fails/crashes before it is able to receive and handle the corresponding response.

6.3.1.4
Impacts on existing NFs/NF services and interfaces
The procedures for registration, de-registration and update of NF instances or NF service instances do not change on Stage 2 level.

Service implementations don’t need to handle the discovery of communication peers, the maintenance and potential recovery of the communication relationship as well as the enforcement of communication related policies.

Service implementations must register/de-register, and send and receive messages via SAPA.

Note:
 Impact on granularity and therefore whether NFs or NF services or both exist is studied in key issue 1 “Optimal modularization of the system”.
Editor's note:
This clause describes impacts to existing services and interfaces.

6.3.1.5
Evaluation of the Solution
Editor's note:
This clause provides an evaluation of the solution.
6.3.2
Solution 3.2: Distributed Service Framework

6.3.2.1
Introduction

This solution addresses key issues 3 “Improvements to service framework related aspects”.

6.3.2.2
High level description

This section proposes a framework that is based on R15 and is designed as distributed manner to achieve high efficiency.

The service logics and the service framework are decoupled. A service consists of service logic and the “framework agent”. The framework contains services defined by 3GPP such as framework agent, service registration, discovery, authorization, routing control, etc., as well as other supporting services that are not defined by 3GPP.
Service logics are only responsible for the processing of business logic, and do not need to care about service discovery. When there is a service invoke request, the request will be sent to the framework agent. A service, when be introduced into the system, will register to the framework through the framework agent.

[image: image4]
Figure 6.3.2.2.1 Distributed Service Framework of eSBA

The service framework consists the following aspects:

· Framework agent: collocated with the service logic, responsible for the communication between services. The service agent enforces message invoking monitoring, select the appropriate peer service instance and the appropriate routing to communicate based on the “Routing Control” functionality of the framework.

The interface/API between service logic and framework agent is defined by 3GPP. It is expected as a simple API invoke and the agent provides general message transfer functionality and not specific for a certain service.
· Routing Control: a logical centralized service that and provides service interaction message routing policy for framework agent. The routing control may consider factors such as versions, capacities of the service instances, which are unaware by services.

Editor’s Note: whether the interface between Routing Control and Framework Agent is FFS.
· Registration, authorization and discovery. Similar as the NRF role defined in R15. Provides service registration, authorization and discovery. The discovery service may be invoked by framework agent.

The interactions between services across service framework follows R15 defined HTTP/2 based interfaces.

6.3.2.3
Services and illustrated Procedures

Editor's note:
This clause describes services and related high-level procedures for the solution.

6.3.2.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

This distributed service framework is compatible with R15 and extends the NRF based service framework.
6.3.2.5
Evaluation of the Solution

Editor's note: This clause provides an evaluation of the solution.
6.4
Solutions for key issue 4
6.4.1
Solution 4.1: SBA with stateless and unsticky services

6.4.1.1
Introduction

This solution addresses key issues 4 “Architectural Support for Highly Reliable Deployments”.
When the 5G system is deployed in the cloud, the overall reliability of the system shall be at least at the same level as non-cloud implementations / deployments. In a typical cloud environment, NFs or NF services may fail at any time and in general more frequently than traditional network nodes. For this reason, the 5G system shall be able to deal with the unexpected loss of NF instances / NF services instances in a way that avoids impact on the customer service or detrimental side effects on the network (e.g. signalling storms) when such failures occur.

Unexpected loss of NF instances/NF service instances leads to system and / or customer service impact when the failed instance has active bindings (e.g. tightly coupled UE-specific information) with other NF instances / NF service instances. This might require the standardisation of complex recovery mechanisms to return to normal operation while minimising end user service impact.

Such complex mechanisms would have to include the transfer of the failed instance’s load / service contexts to other existing instances or to newly instantiated “replacement” NF / NF service instances. This may cause limitations to network automation, e.g. when

· newly instantiated NFs / NF services that replace the failed instance need to be specifically configured to act as replacement for the failed instance

· existing NFs / NF services need to be specifically configured to integrate the newly instantiated NFs / NF services as the replacement of the failed instance

· existing NFs / NF services need to be specifically configured to take over for the failed instance

· previously existing bindings and / or service contexts have to be restored and be moved to existing or the new instance(s).

It should be noted that the restoration of pre-existing bindings or service contexts might not be possible in many cases, i.e. the recovery procedure implies the loss of the bindings or service contexts.

In the following clauses, a solution is presented that avoids the above issues and does not require the specification of complex recovery procedures that would probably have to be specific per NF / NF service type and / or failure scenario.
6.4.1.2
High level description

6.4.1.2.1
Solution aspects

The solution proposed here contains two main aspects to address the above issues.

· specifying the NFs / NF services as “unsticky” so that long-living bindings between NF / NF service instances are avoided

· specifying the NFs / NF services as “stateless” (separation of compute and storage resources), i.e. NF / NF service instances store state / service context information in an external storage layer (e.g. UDM/UDR) when the state / service context is stable (e.g. at the completion of a transaction)

Thereby, failed instances can effortlessly be replaced by newly instantiated or already existing ones, which can then promptly recover the stored state / service context from the storage layer when and as needed.

6.4.1.2.2
Issues related to long-living bindings between NFs / NF services

Today the UE gets assigned serving NFs (e.g. based on the UE’s location). The UE will continue to be served by these NF instances until a trigger to re-allocate a serving NF occurs (e.g. UE moves out of the service area of its current serving NF instance(s)). Thereby bindings are created between the UE and its serving NF instances, and orderly re-bindings (i.e. change of serving NF instance) can only occur by system procedures (e.g. mobility) specified in 3GPP.

In the Rel-15 5GC, serving instances of AMF, SMF, SMSF and PCF are selected per UE. This creates UE specific bindings between the selected AMF, SMF, SMSF and PCF NF instances.

Furthermore, the identities of the serving NFs are stored in the UDM/UDR, which creates another set of bindings in the 5GC.

Loss of any of the UE’s serving instances destroys the associated bindings and thereby breaks the UE’s service context environment in the network, causing the correlated customer service to fail.

In a cloudified 5G system, a long-living binding to a dedicated NF or NF service instance always means a long-living binding to a dedicated SW instance that represents the NF / NF service. Consequently, the above system and service impact would occur any time a SW instance is lost (e.g. due to HW failure or SW bug).

A summary of identified problems and challenges with long-living bindings in the cloud (non-exhaustive list) can be given as follows:

· complex scaling operations across the network:

· when scaling out
· make the new instances known to other services to ‘start using them’, this leads to high configuration effort

· need to transfer bindings from already existing instances to new ones, this leads to the need for complex reallocation procedures

· when scaling in

· make other instances aware that the to-be-removed instance shall no longer be used

· transfer bindings to other instances or await orderly unbinding (e.g. UE detaches)

· need for load-(re)balancing:

· with long-living bindings a load distribution for new bindings has to be done

· in case of unequal load of service instances a dedicated re-distribution of load, implying transfer of the binding(s), has to be done (additional load re-distribution mechanism needed)

· in case of failure:

· customer impact is likely in case of service instance failure

· reallocation (transfer of bindings) similar to scale-in but additional challenges need to be handled due to the “unexpected scale in”

· complex configuration or complex automation procedures

6.4.1.2.3
Issues related to stateful NFs

A typical NF / NF service is defined by its service logic (executed by a compute resource) and some service context data (located in a storage resource) on which the service logic is applied. Both the service logic and the service context data are well-defined in 3GPP specifications for the 5G system.

Historically, 3GPP network entities retain service contexts locally even when they are not used, i.e. not currently being subject to service logic processing.

If a NF / NF service instance holds unused service context information (e.g. a UE’s MM context) internally (i.e. compute and storage resources are not separated) and the instance becomes unavailable (due to HW or SW failure) the service context data is lost and the customer’s service is impacted.

Identified problems and challenges with NF / NF service internal storage of service context information in the cloud are similar to the issues listed in relation of long-living bindings, as also the service contexts need to be managed in a similar way to the bindings and case of scaling, load (re-)balancing or failure recovery. In addition, local storage of service contexts within NF instances / NF service instances limits the use of such context data by other entities as it is necessary to have knowledge about the location of the desired context data within a specific NF instance / NF service instance.

6.4.1.2.4
Solution Preconditions, Assumptions and Requirements

Preconditions:

· the 5G system is made up a suitable set of 3GPP defined “modules” (NFs and/or NF services) that allow fast spin-up and teardown of instances.

Assumptions:

· There exists a suitable storage layer that can be used by all relevant NF / NF service instances for storing and retrieving service context data.

· The service context data stored in the storage layer corresponds to the 3GPP defined NF / NF service context data that a NF / NF service processes when applying its service logic.

· Adequate reliability and availability of the storage layer can be achieved and is realised by methods internal to the storage layer.

NOTE 1:
 the existence of NFs and/or NF services in Rel-16 is determined under key issue 1.

Requirements:

· The service context information that is stored in the storage layer and necessary for multivendor interoperability between services shall be structured and standardised in 3GPP, similar to e.g. a UE context that is passed between AMFs during a relocation procedure. Deployment of the storage layer (e.g. UDR, UDSF) ensures that stored information is available as close to the requesting NF instance/NF service instance as needed.

NOTE 2:
This does not exclude any additional vendor-specific data being stored in the storage layer.

6.4.1.2.5
High-level Solution Architecture

It is proposed that

· Any available specific instance of a requested NF/NF service type within a slice or shared among available slices can handle an incoming message dedicated to that service, that means

· NF instance/NF service instances do not store other instance’s IDs for sub-sequent requests

· Requests by service consumers do not contain NF instance/NF service instance IDs but only the type of the requested service

· How the specific NF instance/NF service instance that shall handle a particular request is selected or if and by who it needs to be selected, and what information to use in the selection process, depends on the inter-NF / NF service communication method (cf. key issue 3) and is out of scope of this solution.

NOTE 3:
NF/NF service type is a unique identification of the service, i.e. are different per optional feature set.

· When the service context information reaches stable state it shall be stored in a storage layer external to the service instance; that means

· Any authorized service instance of the same or different type can access the service context data

· Any authorized 3rd party service may access that data

Examples of service context information are:

· Subscription -, policy –and application specific data.

· Mobility management data

· Session/context data (related to user subscription and its UE session-, registration-and connection state.)

· standardized or exchanged as part of standardized NF service interfaces with other NFs. Represents a stable state, that can be recovered/re-created by a NF service in failure scenarios.
Editor's note: Details on necessary context data, any race conditions to be addressed, local knowledge of data, and storage layer are subject to future contributions and therefore FFS.

Dependencies to other solutions to key issues:

· Solution 3.1 in the key issue 3 “Improvements to Service Framework” relies on the unstickiness and the statelessness of service instances (see section 6.3.1.2.3 pre-condition).

6.4.1.3
Services and illustrated Procedures

Editor's note: This clause describes services and related high-level procedures for the solution.

6.4.1.4
Impacts on existing Services and Interfaces

Editor's note: Further details regarding impacts are FFS.

6.4.1.5
Evaluation of the Solution

Editor's note: This clause provides an evaluation of the solution.

6.4.2
Solution 4.2: Support for highly reliable deployments

6.4.2.1
Introduction
To support highly reliable deployments enabling seamless replacement, addition or removal of services and new components without the need for reconfiguration of either running components or new components, separation of functional processing from state management is essential. Such an approach enables independent life cycle management as well as failover handling of NFs and Service Instances.

6.4.2.2
High-level Description

Editor's Note:

This clause outlines solution principles, assumptions and high-level architectures, etc.

Externalisation of finalised transactions carried out during the execution of a procedure is essential towards enabling separation of functional processing from state handling. In addition, the Communication Service within the Service Framework, through which messages are carried, should support registration of entities and routing of messages resilient to failover and capable of operating even when life-cycle management operations are carried out. Such common service framework functionalities need to be added to the general SBA capability of 5GS

· To enable the use of stateless NF Services, it is proposed that relevant state information of finalised transactions may be pushed to a Shared Data Layer Service (E.g., the UDSF) and hence made available to other NF Services which require the specific data for further processing.

· The Shared Data Layer Service is a repository where relevant state information may be stored and fetched as required.

· The Communication Service within the Service Framework provides routing management aligned with the availability of new service instances and reactive to topology/service failures in short term range (i.e. ms range).

6.4.2.3
Services and Illustrated Procedures

6.4.2.3.1
Registration Services

NF services register to the Service Framework using the Service Framework Registration capabilities. E.g., using NRF. Registration through the Service Framework also enables NF Services to use the Service Framework Communication services.

Editor's Note:
This clause describes services and related high-level procedures for the solution.

[image: image5.emf]NF ServiceService Framework4. Rsp: Register2. Req: Register3.Store Service Profile1. NF Service Instance becomes operative

1.
NF Service Instance consumer becomes operative for the first time

2.
The NF Service Registers with the Service Framework and provides the service profle (e.g.,Service Type and Service ID) the be used by the Service Framework for forwarding determination.

3.
The Service Framework stores the NF service information that enables routing to instances of a service.

4.
The Service Framework confirms successful registration.
6.4.2.3.2
Communication Services and Shared Data Layer

The Communication services allows the transport of messages across NF Services. Share Data Layer Services may be distributed and they may be accessed based on the Service Type, Network Slice and possible, specific users.

The Communication Services operates may operate on a single Slice or across multiple Network Slices. E.g., Using the Slice Selection Type.

[image: image6.emf]1. Incoming Request#1 from NF/Service consumer nNF Service XNF Service YService FrameworkShare Data Layer Service (e.g., eUDSF)3. SF_Routing_Incoming_Request4a. SF_RoutingReq5a. SF_RoutingReq7c.SF_Reouting4c. SF_Routing5c. SF_Routing7a. SF_RoutingReq8a. SF_Routing_Outgoing2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message6. Process Request for Service4b.Determine Service Producer Endpoint and forwards message5b.Determine Service Producer Endpoint and forwards message7b.Determine Service Producer Endpoint and forwards message8c. SF_Routing_Incoming_Request8b.Determine Service Producer Endpoint and forwards message9. Repeat steps 4-8

1.
The Service Framework receives a Request from a NF/NF Service requesting a particular Service (e.g., Session Establishment).
2.
The Service Framework determines the Endpoint of a NF Service instance capable of servicing the Request. The Service Framework may use the NRF to resolve the NF Service Instance Endpoint address

3.
The Service Framework forwards the request the available Service Instance Endpoint. To achieve this, the Service Framework maintains a list of available NF Service Instances of a particular type, capable of servicing a request

4.
 a-c. The NF Service Endpoint then retrieves necessary context information from the Shared Data Layer and it locks the context to enable processing of data before any other NF Service can access the Context data

5.
a-c. The Shared Data Layer acknowledges context locking and provides data information relevant to a specific service

6,
The NF Service process the message for the NF service using the data information retrieved from the Shared Data Layer Service

7.
a-c. The NF Service updates relevant data and it unlocks the context for use by another process

8.
a-c. The NF Service forwards the result of the execution of a NF service through the Service Framework along with any relevant information carried in the message container

9.
Steps 4-8 are used
6.4.2.4
Impacts on existing services and interfaces

Editor's Note:
This clause describes impacts to existing services and interfaces.

Relevant NF Services may expose and retrieve finalised transactions and its states for processing requests. These NF Services and its components have to register and de-register to the Registration and Discovery Service, within the Service Framework. This may be the same procedure as the NF Service to the NRF registering.

Services use the Communication Service within the Service Framework to route messages to the relevant Service Endpoint instance, without having to first retrieve its address from the NRF. The NRF functionality may be contained within the Service Framework.

6.4.2.5
Evaluation

Editor's Note:
This clause provides an evaluation of the solution
6.4.3
Solution 4.3: Temporary bindings between the service instances

6.4.3.1
Introduction
Editor's note:
This clause lists the key issue(s) addressed by this solution.
This solution is to address the Key Issue 4 and in particular the impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances.

One requirement for 5GS architecture in Release 16 is to support a design paradigm of stateless service instances; where any service instance in the cluster of instances can process the service request, and where the selected service instance after processing the task stores the session data externally (e.g. in UDSF). Thus no binding relations should exist between individual service instances. The service instances should not store the instance ID or IP address of the other service instance after the service request has been completed.

However, in 5GS some e2e signalling flows consist of a sequence of services and/or service operations between the same Network Functions. For example, in Release 15 in UE Requested PDU Session Establishment (subclause 4.3.2.2 in TS 23.502), typically four service operations are performed in sequence between AMF and SMF: Nsmf_PDUSession_CreateSMContext, Namf_Communication_N1N2MessageTransfer, Nsmf_PDUSession_UpdateSMContext and Namf_EventExposure_Subscribe. In stateless design, if the service instances would need to store and retrieve the session state (UE context) from an external storage (UDSF) between all of the above transactions, this causes unnecessary processing delay. Therefore, in scenarios where the next service operation is expected to come soon after the previous is completed, it must be possible to store the session state locally and force the counterpart service instance to re-use the same service instance of the provider for the next service operation.

This solution provides a mechanism for the service instances to create temporary bindings between the instances, and a mechanism to release such bindings.

6.4.3.2
High-level Description

Editor's note:

This clause outlines solution principles, assumptions and high-level architectures, etc.
The solution assumes that the service instances may become stateless in this case the old service instance and new service instance of the session are able to share the session data e.g. via UDSF. How do they share the data is not part of this solution.
The following figures describe the principles in the solution. The first figure describes how the service provider is able to establish a temporary binding as part of the service response.
 SHAPE * MERGEFORMAT

Figure 6.4.3.2-1: Creating the binding in Service Response
1.
Service consumer initiates a service request for Service1 (S1). As there is no prior binding between the service instances, the service consumer discovers the service instance of S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of service instance 1 (IID1). Service consumer targets the service request to IID1.

2.
Instance IID1 wants to create a temporary binding with service consumer, and returns the binding information in the service response. The binding information includes the Service S1 and the corresponding Instance ID.

3.
For the next service operation with the same service, the service consumer does not discover the service instance but instead uses the IID1 as a target for the service requests. Note that service consumer instance in step 1 can be stateless and therefore a new consumer instance is used in step 3.

4.
The Instance IID1 responds with an indication that the binding with the Service S1 can be released.

5.
As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.

6.
Next time the NF consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
The next figure describes how the service consumer is able to establish a temporary binding as part of the service request.

[image: image8]
Figure 6.4.3.2-2: Creating the binding in Service Request
1.
Service consumer initiates a service operation for Service 1 (S1). As there is no prior binding between the service instances, the service consumer discovers the instance of service provider for S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of IIDx. Service consumer targets the service request to IIDx.

As service consumer wants to establish a temporary binding with IID1, it indicates the list of services and the corresponding Instance ID of the service instance that provides this service.

2.
The IIDx sends a service response.

3.
Next time the service instance of IIDx needs to send a service operation with the indicated service in step 1, the service consumer does not discover the service instance for the S1, but instead uses the indicated service instance as a target for the service requests (IID1 in this example). Note that service provider instance in step 1 can be stateless and therefore a new service consumer instance is used in step 3.

4.
The IID1 responds with an indication that the binding to S1 can be released.

5.
As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.

6.
Next time the service consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
6.4.3.3
Illustrated Procedures

Editor's note:

This clause describes related high-level procedures for the solution.
The figure below shows an example flow how the mechanisms described in this solution can be applied to the communication between AMF and SMF in UE Requested PDU Session establishment procedure so that temporary binding can be created between the service instances of AMF and SMF.

[image: image9]
Figure 6.4.3.3-1: The solution applied to PDU Session Establishment procedure

1.
The AMF instance which was initiated to process the PDU Session Establishment Request discovers the SMF instance for PDUSession service from NRF. The NRF provides the Instance ID of the selected service instance. The AMF targets the Nsmf_PDUSession_CreateSMContext Request to the instance IID2 of the SMF. The AMF includes in the request an Instance ID and an indication of the service(s) for which this instance ID must be used. In this example the AMF indicates it wants the AMF Instance IID1 to be used to request Namf_Communication service. The SMF stores the AMF instance ID and the service(s) associated to the AMF Instance ID.

2.
The SMF responds with the Nsmf_PDUSession_CreateSMContext Response. SMF provides the SM Context identifier. The SM context identifier shall not include the IP address of the SMF service instance. The SMF includes in the response an indication that the same SMF Instance of IID2 must be used with the upcoming Nsmf_PDUSession service operations.

3.
The SMF reserves the resources from the UPF. As SMF received the AMF Instance ID (IID1) in step 1, the SMF uses the Instance ID to resolve the IP address of the AMF service instance IID1 The SMF sends Namf_Communication_N1N2MessageTransfer Request to this AMF service instance.

4.
The AMF responds with the Namf_Communication_N1N2MessageTransfer Response. In this example the AMF does not update the binding information so the binding with Instance ID provided in step 1 continues, and must be used for possible upcoming Namf_Communication service operations.

5.
The RAN responds to AMF with the N2 message including the N3 Tunnel Information. As the AMF received the SMF Instance ID in step 2, the AMF uses the Instance ID to resolve the IP address of the SMF service instance IID2. The AMF sends the Nsmf_PDUSession_UpdateSMContext Request to the corresponding IP address. In typical scenario the AMF includes an indication that the previous binding of Namf_Communication service with IID1 can now be released, so the SMF knows to use the NRF to discover the AMF instance for any further service requests for Namf_Communication service. This ensures that when the SMF needs to trigger the release of the PDU Session, the SMF targets the related Namf_Communication_N1N2MessageTransfer service operation to the AMF instance discovered via NRF, and not to the same Instance of IID1 indicated in step 1.

6.
The SMF responds with the Nsmf_PDUSession_UpdateSMContext Response. In this example the SMF indicates that the binding to Instance ID of IID2 provided in step 2 shall be released, so the AMF knows to use the NRF to discover the SMF for any further service request of Nsmf_PDUSession service.

7.
The SMF subscribes to the UE mobility event notification from the AMF (e.g. location reporting, UE moving into or out of Area Of Interest), by invoking Namf_EventExposure_Subscribe service operation. As the AMF has not provided binding for this service, the SMF targets the request to the AMF instance discovered via NRF.

8.
A new AMF instance is selected to process the subscription to the UE mobility event notification. The AMF responds with the Subscription Correlation ID, and optionally with a binding indication.

6.4.3.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.
6.4.3.5
Evaluation

Editor's note:
This clause provides an evaluation of the solution.
6.4.4
Solution 4.4: NF/NF services Reliability

6.4.4.1
Introduction

In Rel-15, enablers were introduced for AMF reliability allowing also dynamic runtime load balancing and dynamic runtime load re-balancing. AMF Set was a key concept enabling scalability up to n AMFs within an AMF Set. We propose to introduce the Set concept also for other 5GC NFs and standalone 5GC NF Services that are introduced as part of this TR.

The Concept of NF/NF Services reliability should work irrespective of whether UDSF is deployed or not. Furthermore, concept of NF/NF Services reliability should work irrespective of whether UDSF is used as a primary storage or secondary storage.

6.4.4.2
High-level Description

It is proposed to introduce the concept of NF/NF Services Set for all 5GC NFs/NF Services. The NF/NF Services instances within a given NF/NF Services Set are expected to have access to the same storage layer (e.g. UDSF and when UDSF is deployed). Thus, in principle, any NF/NF Services instance within an NF/NF Services set should be able to process the UE transaction as it has access to UE context. The NF/NF Services instances within a given NF/NF Services Set share the following characteristics:

· NF/NF Service instances support the same network slice(s). For instance, {NF/NF Service1, NF/NF Service2, NF/NF Service3} in a given Set supports the same IoT slice.

· NF/NF Service instances have access to the same storage layer (e.g. UDSF and the UDSF is deployed) that is geographically close. For instance, {NF/NF Service1, NF/NF Service2, NF/NF Service3} in a given Set supporting the same IoT slice have access to the same UDSF instance.

· NF/NF Service instances may also be geographically close to access to the same storage layer (e.g. UDSF and the UDSF is deployed).

· Peer (NF Service Consumer) NF/NF Service instance should be able to select any NF/NF service instance from NF/NF Service Set of NF Service Provider for forwarding a transaction targeted for a given UE.

· The Set of equivalent NF/NF Service Instances may be identified by a common “NF/NF Service Set ID”.

Following characteristics apply for specific 5GC NFs that are specified in TS 23.501[2]:

· In case of SMF, SMFs within the SMF Set can access the same UPFs. This is to allow any SMF within the SMF Set to be selected when user plane traffic is ongoing for a given UE for a certain PDU Session. This is explained with an example below. In a certain network, not all SMFs are able to connect to all UPFs e.g. for domain reasons.

· SMF1, SMF2, SMF3 – can connect only to UPF1, UPF2, UPF3

· SMF4, SMF5, SMF6 – can connect only to UPF4, UPF5, UPF6

UE has PDU sessions with UPF1 as PDU Session Anchor; Now, if the SMFs have to be stateless and we want the ability to select any SMF for processing a transaction for a given UE/PDU Session, then it should be able to possible to select any of the SMFs but at the same time it needs to be ensured that they are selected from set of {SMF1, SMF2, SMF2}.

Editor’s note: the solution can be updated to adopt standalone NF/NF Services depending on the outcome of the architecture decided for FS_eSBA.

6.4.4.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
6.4.4.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.4.4.5
Evaluation

Editor's note:
This clause provides an evaluation of the solution.

6.4.5
Solution 4.5: 5GC Reliability

6.4.5.1
Introduction

In Rel-15, different concepts have been adopted for reliability in various NFs. Its proposed to provide further possibilities to enhance the reliability in Rel-16. This solution proposes to define a Services Instance Set concept that can support high reliability and also has potential to improve other aspects of the 5GC architecture.

The solutions for reliability should work irrespective of whether UDSF is deployed or not.

6.4.5.2
High-level Description

It is proposed to introduce the concept of Service instance Set for 5GC. The Service instances within a given Service instance Set are expected to have access to the same data sets in a data storage entity e.g. UDSF. Thus, in principle, any Service Instance within a Service Instance set should be able to process UE transactions as it has access to UE context.

Following are the key principles for Service Instance Sets:

· A Set of the same service instances.

· All Service instances in a Set can access the same data storage e.g. UDSF.

Editor’s note: how this relates to solution in 6.1. is FFS.
6.4.5.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
6.4.5.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.4.5.5
Evaluation

Editor's note:
This clause provides an evaluation of the solution.
6.5
Solutions for key issue 5
void
6.6
Solutions for key issue 6
6.6.1
Solution 6.1: Utilize System Feature to enable system flexibility and service provisioning

6.6.1.1
Introduction

This solution addresses Key Issue 6 on system flexibility and service provisioning.
6.6.1.2
High-level Description
In 5G core network, a set of Network Functions and NF services are orchestrated to enable one system feature, and one system feature can be added/updated/removed in 5GC via deploying/updating/removing the corresponding NFs and NF services.

One System Feature can be independently deployed from other System Features in the network. The authorized System Features for a given UE can be explicitly identified by user subscription data.
Relationship between System Feature and the set of NFs/NF services enabling this System Feature is specified in Annex B. The relation between System Feature and the set of NFs/NF services enabling this system feature shall be stored in network management system.
NOTE:
one System Feature may also involve the support of NG-RAN.

When provisioning the network, one or multiple System Feature shall be deployed. The network management system determines the required NFs and/or NF services to be deployed according to the relationship of System Features and corresponding NF/NF services.

Editor’s note: the NF instances may be updated to add/update/remove the supported NF services during provisioning, and how to add/update/remove NF service in NF instance is FFS, e.g. whether it needs to be standardized depends on vendor implementation.
One Network Slice may deploy several System Features according to the service requirement, and multiple Network Slices may also separately deploy the same System Feature. The configuration information of one Network Slice includes the supported System Feature(s). When adding/updating/removing one System Feature in one Network Slice, the management system of network slice determines which NFs and/or NF services need to be added, updated or removed, and it also updates configuration information of this Network Slice.

The enhancement to service framework for better support of System Features include:

-
The network monitoring can be per System Feature to obtain monitoring information per System Feature, e.g. the statistics information of each System Feature.

Editor’s note: other enhancements to service framework are FFS.
6.6.1.3
Illustrated Procedures

Editor's note: This clause describes related high-level procedures for the solution.

6.6.1.4
Impacts on existing NFs, NF services and interfaces

Editor's note: This clause describes impacts to existing services and interfaces.
6.6.1.5
Evaluation

Editor's note: This clause provides an evaluation of the solution.
7
Evaluation
Editor's note:
This clause will provide a general evaluation of the solutions.
8
Conclusions

Editor's note:
This clause will capture conclusions from the study.

Annex A:
3GPP SBA and ETSI NFV concepts

A.1
Introduction
In this annex we aim to align the understanding and terminology around architecture concepts in 3GPP and other fora's relevant for the eSBA study. It is important to understand and separate the different perspectives of the architectural concepts. This annex clarifies the differences and relationships between the following perspectives:

-
Logical functional architecture perspective – defined in 3GPP

-
Managed Element perspective – defined by ETSI, Vendor, etc.

-
Implementation architecture – defined by Vendor (considering requirements from Network Operators)

Note that 3GPP SA5 is responsible for the management of 3GPP functions including NF LCM and the interactions with ETSI NFV MANO. This is, however, not further described in this annex.

A.2
Architecture perspectives

A.2.1
3GPP Rel-15 architecture

3GPP defines a logical functional architecture and, as a part of 3GPP Rel-15, has defined a logical functional Service Based Architecture i.e. 3GPP SBA.

The 3GPP Rel-15 SBA architecture defines a set of Logical Network Functions (NFs). Each 3GPP NF may produce and/or consume one or more service capabilities (3GPP NF Services) through a 3GPP defined Service Based Interface (SBI).

[image: image10.png]
Figure A.2.1-1: Simplified 3GPP Service based architecture according to 3GPP Rel-15

A.2.2
ETSI NFV including MANO

The ETSI NFV architecture specifies the management view of the resources required by the applications. This means that ETSI specifies how resources required by any software are managed and orchestrated via a generic management and orchestration (MANO) architecture framework. ETSI NFV specifies how the resources for a VNF instance can be life cycle managed, upgraded and inter-connected.

The VNF (Virtualised Network Function)

The term VNF is defined by ETSI NFV. A VNF is a managed element. i.e. it offers an aligned point of integration towards an Element management function and OSS/BSS, see Figure A.2.2-1. A VNF also need have clearly defined interfaces, whether standardized or proprietary, allowing it to communicate with other VNFs.

[image: image11.emf]

Figure A.2.2-1: ETSI NFV architecture (ETSI GS NFV 002 v1.2.1)

The VNFC (Virtual Network Function Component)

The VNFC is defined in the ETSI GS NFV- 003 specification and some characteristics of a VNFC are:

-
A VNF may be composed of one or multiple components, called VNFC.

-
A VNFC is a VNF Providers specific component of a VNF, and VNFC Instances (VNFCIs) are the executing constituents which make up a VNF Instance.
-
A VNF realized by a set of one or more VNFCs appear to the outside as a single, integrated system.
-
Some VNF LCM aspects can be solved with VNFC level operations (e.g. horizontal scalability, upgrade, self-healing).
So, VNFC instance runs in a VM or a container and implements either the full scope of the VNF or a subset of a VNF. A VNFC instance is considered one Unit of Deployment.

[image: image12.png]
Figure A.2.2-2: VNFC relation to VNF

A.3
The relationships

A.3.1
3GPP Network Function vs ETSI VNF

The ETSI NFV constructs of VNF and VNFC provide the flexibility of various implementation and deployment options for a 3GPP NF and its 3GPP NF Services.

A VNF can, but does not have to map 1:1 to a 3GPP NF and ETSI NFV allows also for other options, such as one VNF may be used to deploy and manage resources for multiple 3GPP NFs. In 3GPP Rel-15 5GCN the 3GPP NF is the smallest logical entity exposing multivendor interfaces.

How 3GPP NFs are grouped into managed elements (VNFs) is a task for the vendor (based on requirements to be fulfilled e.g. from operators) and it is outside of 3GPP SA WG2 scope. The grouping in Figures A.3.1-1, A.3.1-2, and A.3.1-3 are examples, not proposals, for how NFs could be grouped.
NOTE:
Depending on the eSBA work for 5GCN in Rel-16 there may be additional possibilities to group one or more services in a VNF.

[image: image13.png]
Figure A.3.1-1: 3GPP Rel 15 NF granularity of managed element deployed as a VNF

[image: image14.png]
Figure A.3.1-2: Grouping of 3GPP NFs into managed elements (VNFs)

[image: image15.png]
Figure A.3.1-3: Single managed element for entire 5GCN

A.3.2
Microservice implementations and 3GPP Rel-15 SBA and ETSI NFV

The implementation architecture is orthogonal to 3GPP SBA and is vendor specific.

The functionality and service capabilities of a 3GPP NF/NF Service will typically be realized by using several microservices.

As per ETSI NFV Release 3, a microservice can map 1:1 to VNFC but the granularity of the microservice is determined only by the implementations and deployment scenario. For example, while in some cases a full 3GPP NF Service can be implemented as a single monolithic component, in other cases implementations may use several microservices as part of the realization of the 3GPP NF Service.

Since it is application-agnostic, ETSI NFV does not have the awareness of what the 3GPP NF or the 3GPP NF Service is, nor which grouping of VNFCs or VNFs realize one 3GPP NF, or one 3GPP NF Service (this is within 3GPP SA WG5 scope).

A.4
Lifecycle management

The VNF resource LCM (Lifecycle Management) is defined by ETSI NFV, is outside 3GPP SA WG2 scope:
-
VNFs are always separately lifecycle managed i.e. they can be scaled and upgraded independently.
-
VNFCs can be upgraded independently and scaled independently.
NOTE:
This assumes ETSI NFV release 3, including ongoing/planned work. In addition, some implementations may require multiple co-located containers that are tightly coupled and share resources. Such implementations need to scale the containers and resources together as a single entity.

In ETSI NFV there are additional mechanisms available that allows the VNF provider to place constraints at the VNF to couple the LCM of several VNFs or VNFCs.
Annex B:
Example of System Features
Table B-1: Example of System Features
	R-15 system feature
	Required NF
	NF Services*

	SMS over NAS
	AMF, SMSF, UDM
	Nsmsf_SMService

Nudm_UECM

Namf_Communication

	LCS
	LMF, AMF, GMLC, UDM
	Nlmf_Location

Namf_Location

Nudm_UECM

NOTE 1:
The NF Services listed in this table are not yet complete nor exhaustive.
Annex C:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018-04
	SA2#127
	S2-184645
	-
	-
	-
	TR skeleton (approved in S2-184645)
	0.0.0

	2018-04
	SA2#127
	
	-
	-
	-
	Implemented S2-184233, 4553, 4556, 4579, 4580, 4583, 4584, 4643, 4644. With editorial changes.
	0.1.0

	2018-06
	SA2#127bis
	
	
	
	
	Implemented S2-185976, 5978, 5980, 5982, 6145, 6146, 6147, 6148, 6150, 6151, 6293. With editorial changes.
	0.2.0

[image: image1.jpg][image: image16.png][image: image17.png][image: image18.png][image: image19.png]NF Service
Service Framework
4. Rsp: Register
2. Req: Register
3.Store Service Profile

1. NF Service Instance becomes operative

1. Incoming Request#1 from NF/Service consumer n
NF Service X
NF Service Y
Service Framework
Share Data Layer Service (e.g., eUDSF)
3. SF_Routing_Incoming_Request
4a. SF_RoutingReq
5a. SF_RoutingReq
7c.SF_Reouting
4c. SF_Routing
5c. SF_Routing
7a. SF_RoutingReq
8a. SF_Routing_Outgoing
2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message
6. Process Request for Service
4b.Determine Service Producer Endpoint and forwards message
5b.Determine Service Producer Endpoint and forwards message
7b.Determine Service Producer Endpoint and forwards message
8c. SF_Routing_Incoming_
Request
8b.Determine Service Producer Endpoint and forwards message
9. Repeat steps 4-8

_1586682106.doc
[image: image1.png]

[image: image2.emf]

