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1. INTRODUCTION 

5G is being developed for an extremely mobile and hyper-connected society and to accommodate the need 
for emerging use-cases and business models. The evolution from Fourth Generation (4G) to Fifth 
Generation (5G) is significant and unlike previous evolution journeys for Communication Service Providers 
(CSP). 5G is not only affecting the consumer, enterprise and industrial space with new use cases and 
business cases allowed by enhanced capabilities, it’s also encouraging operators and vendors to re-think 
and re-architect how the network will be built and managed. 

To accommodate the myriad of divergent use-cases proposed in 5G, it is imperative that the network should 
be architected for inherent flexibility and efficiency. This might be accomplished by making network 
functions modular so that they can be quickly deployed and scaled on demand to provide service agility 
and cost-effectiveness. Cost-effectiveness can be achieved in cloud native paradign by the efficient bin-
packing  in the containers, more fault tolerance and deployment flexibilities.Efforts in this direction were 
started by adoption of Network Function Virtualization (NFV) and Software Defined Networking (SDN) 
related technologies to make Mobile Core (MC) applications cloud ready.  Along the way, valuable lessons 
have been learned. In many cases, the true potential of NFV was perhaps wasted a bit; instead of bringing 
virtual network functions to a common NFV Cloud, the mobile industry built Cloud silos dedicated to specific 
Virtual Network Functions (VNF). In some instances, physical Network Functions were ported as VNFs 
without necessarily addressing the required changes to the underlying software architecture; this resulted 
in deployment and operations complexities.  

The next phase of innovation in 5G Next Generation Core (NGC or 5GC) is focusing on adopting Cloud 
Native technologies and architecture. Ultimately, the objective of adopting Cloud Native principles and 
technologies by Service Providers is to achieve web scale and attain the economies of scale. The biggest 
motivation towards the push to Cloud Native comes from the 3GPP-proposed Service Based Architecture 
(SBA) in Release-15 (Rel-15) and enhancement to Service Based Architecture (eSBA) in Rel-16 (which 
extends the service concept from the 5GC control plane to the user plane function). Taking the cue from 
3GPP, European Telecommunications Standards Institute (ETSI) has published augmented NFV 
referenced architecture to accommodate for the Cloud Native Network Function (CNF) and enhancement 
to NFV framework to include Zero-Touch, Containers, Load Balancers and more as part of the reference 
architecture.  

With the decomposition of Network Functions and Network Services being exposed through Application 
Protocol Interfaces (API), the push towards Cloud Native in 5G Core is getting more realistic. Also, various 
use cases proposed and envisioned for 5G demand a more scalable, reliable, distributed and flexible Core 
Network making the case for adoption of Cloud Native for Service Providers stronger.  There is also a lot 
of hype and confusion surrounding Cloud Native in general and the adoption of Cloud Native architectures 
and technologies within 5G in particular. Leveraging a service-based architecture and Cloud Native Network 
functions in the 5G core has proved challenging during various proof of concept efforts. While providing 
implementation flexibility by breaking up existing network functions into microservices, Cloud Native 
Functions struggle to maintain the packet processing and latency requirements of 5G. 

While control and management plane applications are the immediate candidates for the Cloud Native 
transformation, operators and vendors are also exploring the migration of Radio Access Network (RAN) 
functions towards the cloud and container centric environment. This is targeted to help the operator develop 
a common orchestration and management model for both Core and RAN Network functions. RAN 
functionality is extremely sensitive to latency and throughput, typically addressed with custom hardware 
accelerators for performing Layer1 and Layer2 radio layer functions. Even when most parts of the RAN 
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functions will be migrated to Cloud Native platforms, some of the highly computation-oriented and latency 
sensitive components are expected to stay outside the scope of Cloud Native for some time. 

This 5G Americas whitepaper examines the road to a Cloud Native 5G core by introducing and reviewing 
the Cloud Native landscape as a technology (Sections 1 and 2).  This landscape has a rich open source-
supporting ecosystem and has enabled the Cloud Native approach to build and run applications that fully 
exploit the benefits of the cloud computing model. This model includes services architectures, 
infrastructure-as-code, automation, continuous integration/delivery pipelines, monitoring tools, and more.  

The requirements of 5G are then reviewed, and the Cloud Native model is applied to them (Section 3). 
Regardless of the fact that the Cloud Native model is an attractive direction for many good reasons, it does 
not map completely to the Communication Service Provider’s (CSP’s) mobile network operational needs.  
That said, the standardization community for 5G has adopted a modular approach to the way the 5G core 
is architected, encouraging a Cloud Native approach to its implementation.  However, there are gaps in the 
architecture, indicating that the telecommunications industry is just at the beginning of the Cloud Native 
journey. 

How Cloud Native is being implemented for 5G (Section 4) and what migration strategies will be employed 
are the next areas explored in the whitepaper.  Best practices and some predictable issues around the 
reality of deployment are developed in the report with the conclusion that there are application 
dependencies on several layers of the Cloud Native stack, particularly workflow management, container 
engine and minimal Operating System (OS) layers.  If Cloud Native is to fulfil the expectations placed on it 
by 5G implementation, these dependencies need to be overcome.  Because the latest focus of the 3GPP 
Release 17 (Rel-17) standard includes the application of 5G to enterprise and verticals, and analysts are 
offering market evidence on the adoption and timing of 5G, there is a window of three to four years during 
which the Cloud Native issues relevant to 5G need to be resolved if the required network flexibility is to truly 
unlock the (elusive) new 5G business models.  Of course, the shift to the cloud-native mind-set, especially 
for the telecom sector, will not be easy and will take a phased approach to reap full benefits. 

The objective of this whitepaper is to look beyond the hype and provide deep insight into 5G Cloud Native 
design. Best practices and deployment models for Cloud Native Network Functions, to keep processing 
latency in line with 5G requirements while providing the required robust implementation essential for service 
provider deployment, is outlined and explored. 5G and the Cloud whitepaper studies deployment models 
for Cloud Native Network Functions (CNFs) and provides reference architectures for CNFs along with 
recommendations for a solution blueprint.  

2. INTRODUCTION TO CLOUD NATIVE  

Cloud Native is a relatively new concept being introduced into the telecommunications domain. This section 
of the whitepaper provides a baseline for the Cloud Native ecosystem and the path to its current status.  

The Internet Technology (IT) and enterprise worlds have invested in technologies and methodologies for 
agility and efficiency with the result of faster and less expensive services development and deployment.  
The journey to Cloud Native started with the introduction and adoption of virtualization-related technologies 
(Xen Hypervisor, Intel VT-x, KVM hypervisor, Linux Containers, and etcetera) which led to more efficient 
usage of the system resources and an agile way to package and deliver applications (see Figure 2.1). The 
wide-spread adoption of virtualization techniques in the data center was pre-dominantly responsible for the 
genesis of Cloud as it’s known today.  
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Figure 2.1. Evolution of Cloud Native Stack.1 

Adoption of Cloud, even in the IT and Enterprise world, has been a major endeavor to move to an “as-a-
service” paradigm while bringing dynamicity, flexibility and scalability as system hosting applications 
became more transient in nature and services endpoints became more predominant. Moving to the cloud 
led to the emergence of Cloud Native as an innovative approach of building and running applications in 
such a way to reap the true benefit of cloud computing models. It is how, not where, applications are created 
and deployed; thus deploying in a Public, Private or Hybrid Cloud environment has no bearing on an 
application being Cloud Native. The key is deploying in the “cloud-way” – even if it means a re-architecture.  

About the same timeframe as the IT industry was undertaking cloud adoption, the telecommunications 
industry was also embarking on their own modernization journey. It was fueled by the publication in 2012 
of the Network Functions Virtualization – Introductory White Paper at the SDN and OpenFlow World 
Congress, Darmstadt-Germany,2 which proposed a new reference architecture based on virtualization for 
network functions moving away from proprietary hardware appliances allowing for accelerated service 
innovation.1 Network Function Virtualization (NFV) along with complementing Software Defined Networking 
(SDN) technology and adoption of an All-Internet Protocol (IP) transport network, positioned the 
telecommunications industry to be well-equipped to adopt cloud technologies to transform the network and 
build a better ecosystem to promote open innovation. Adopting Cloud Native methodologies is the next 
logical step in the evolution, with 5G demanding the future network to be more flexible, agile and robust to 
satisfy the service delivery requirements for a variety of different and new use cases.  

2.1 CLOUD NATIVE: DEFINITION AND CORE TENETS 

Defining Cloud Native can be tricky. Cloud Native is about the approach to how applications can be built 
and operated in the Cloud Computing construct. It has become prominent as more and more application 
deployments are being done in cloud. Concepts of being Cloud Native can be applications to the 
technologies, architecture and tooling.  

Cloud Native Computing Foundation (CNCF), which is an open source software foundation under the 
umbrella of Linux Foundation (LF), defines Cloud Native as: Cloud Native technologies empower 
organizations to build and run scalable applications in modern, dynamic environments such as public, 

 

1 Evolving Cloud Native Landscape, presentation by Chris Anisczyk, Cloud Native Computing Foundation. Container Days, Japan. 
December 2018. 
2 Network Functions Virtualization – Introductory White Paper. SDN and OpenFlow World Congress, Darmstadt-Germany. 22 
October 2012. 

 

https://events.linuxfoundation.org/wp-content/uploads/2018/09/Evolving-Cloud-Native-Landscape-Dec-2018-ContainerDays-Japan.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
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private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and 
declarative Application Programming Interfaces (API) exemplify this approach.3  

CNCF provides structure and constraints for being Cloud Native, requiring that the applications being 
developed and architected use microservices methodologies to be deployed as Containers. Traditional 
applications when broken down into small, reusable components are referred as “microservices.” To be 
properly classified as Cloud Native, microservices need to be “stateless” meaning there has to be 
separation of processing from the associated data and the storage of the data in Cloud. Dynamic 
Orchestration is another critical pillar of being Cloud Native. That’s where the CNCF-hosted Open Source 
container orchestrator “Kubernetes”4 plays a crucial role in actively scheduling and optimizing resource 
utilization while providing observability, resiliency and an immutable infrastructure.  

In the next subsections, the supporting characteristics and infrastructure for Cloud Native needs are 
reviewed including: the decomposition and modularization of functionality; the need for light-weight 
virtualization; the service mesh; the reliance of Development and Operations (DevOps) and Continuous 
Integration/Continuous Delivery (CI/CD), and consequently the need for an appropriate tool chain. 

2.1.1 MICROSERVICES FOR ARCHITECTURE  

Microservice architecture is a design philosophy based on a general consensus, however there are no strict 
definitions or standards bodies prescribing for the decomposition of Business requirements into Domains. 
Further decomposition breaks each domain into Services (applications) that fulfill the Business 
requirements; Business requirements are built with the objective to prevent failure. Inter-Domain 
communications are clearly and concisely defined in a bounded context. This has emerged from a Domain-
Driven-Design (DDD) architectural pattern. The term “Micro” in Microservices refers to the scope of 
functionality rather than the scale required to meet the availability and reliability required in an operational 
environment.  

Ideally, each Microservice is a single loosely coupled service (Figure 2.2) where a monolithic gateway 
network function includes a Firewall (F/W), Routing, Deep Packet Inspection (DPI), and Charging and 
Datastore.  When re-architected using microservices principles, all the functions are deployed individually 
and with clear interfaces and dependencies. As architected, the individual functions, such as Charging, can 
be scaled and managed in isolation. Each microservice, by design, needs to provide well-defined, 
Representational State Transfer (REST) software architectural style that defines a set of constraints to be 
used for creating Web services. Web services that conform to the REST architectural style, are called 
RESTful. The appropriate Restful API, to its peer, will provide a constant endpoint for the service being 
delivered by that particular microservice. This results in an easier upgrade of the specific function 
represented by each microservice compared to upgrading the complete network function allowing for a 
faster delivery model.  

 

3 “CNCF Cloud Native Definition v1.0”, Github. 19 September 2019.  
4 https://kubernetes.io/, 19 September 2019.  

https://github.com/cncf/toc/blob/master/DEFINITION.md
https://kubernetes.io/
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Figure 2.2. Evolution to Cloud Native Network Function. 

Breaking the monolithic applications into microservices can also lead to challenges in developing, deploying 
and operating many more entities. As a result, DevOps along with automation tooling is needed for 
managing the increased complexity. DevOps is an important tenet of ‘being Cloud Native’ and is explained 
in section 2.1.4. Another important point, is that Microservices Architecture does not prescribe that it has 
be a container-based virtualization to deploy the services, but Cloud Native architecture does have that 
requirement. 

2.1.2 CONTAINERS AND CONTAINER ORCHESTRATION 

Breaking down the application software monoliths into a set of smaller self-contained components, as 
shown in Figure 2.3, and as required in microservices architecture, can have drawbacks if there is no 
change to deployment and the application packaging model.  For example, if each self-contained monolithic 
application, which often has a large inherited software footprint similar to network functions, is decomposed 
and deployed as a set of virtual machines as per the microservices architecture, the new deployment may 
not be efficient.  In effect, an efficient monolithic self-contained network function with low footprint and low 
power consumption may have been traded for a sprawling distributed network function of sub-monoliths 
with many virtual machines, a larger footprint and increased power consumption. This may be viewed as 
counterproductive.  
 
To counter this, the idea of moving to operating systems virtualization techniques with much lower overhead 
seems like a natural path to take. This is where containers make an entry. As represented in Figure 2.2, it 
is evident that bringing in containers instead of Virtual Machines (VMs) reduces the overhead as the 
resource heavy hypervisor layer and the guest operating system are replaced by a container runtime to 
provide similar isolation but in a more efficient manner. Container runtime provides core primitives for: 
 

• Management of containers on the host kernel 
• Container execution  
• Supervision of container deployment state, which includes managing network interfaces, image 

management and more 
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Examples of popular container runtime are Docker,5 CRI-O,6 LXC,7 & RKT.8 

Deploying the microservices in distinct containers allows the network functions to be scaled at a much 
higher granularity than would be possible when using Virtual Machines (VM). This means the service can 
be tuned optimally to deliver the service as needed with the most efficient resource usage.  The containers 
offer portability; the container image is built once and can be potentially deployed numerous times into any 
supported runtime environment.  This allows for a rapid deployment and recovery due to its being 
lightweight compared to VMs. The concept and technologies (namespaces, cgroups, solaris zones, and 
etcetera) which support containers have existed since the early 2000s and became popular as industry 
realized that there is huge gain in performance, resource utilization, and overall efficiency if containers are 
used compared to VMs.  There are two types of containers:  
 

• system containers – which, more or less, behave like virtual machines by sharing the kernel of 
the host operating system with user space isolation, where multiple services can be deployed 
 

• applications containers - designed to be packaged and run single service, which is suited for the 
microservices architecture 

 

Figure 2.3.  Virtual Machines versus Containers. 

Using containers for deploying applications and services allows for an immutable infrastructure. Therefore, 
when applications, or the service, are deployed as containers and need to be updated, new container 
instances are spun up utilizing the updated image. The paradigm of immutable infrastructure is important 
for supporting complex network functions as it simplifies the deployment by avoiding “configuration drift” 
and simpler recovery mechanism as it only entails regressing to an older container image.  

Due to the scalable, portable and dynamic nature of the containers, managing the lifecycle becomes a 
daunting task. That’s just the law of entropy catching up. Container orchestration framework is the critical 
piece in the puzzle for solving the lifecycle management problem in the Cloud Native ecosystem. The scope 
of this framework entails: 

• Container provisioning and deployment  

 

5 https://www.docker.com.   
6 https://cri-o.io.  
7 https://linuxcontainers.org.  
8 https://coreos.com/rkt/.  

https://www.docker.com/
https://cri-o.io/
https://linuxcontainers.org/
https://coreos.com/rkt/
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• Resource allocation and placement  
• Redundancy and availability of containers 
• Horizontal scaling 
• Service discovery and load balancing  
• Health monitoring  
• Application configuration  

There are several container orchestration solutions, however, Kubernetes has the biggest momentum and 
industry support. Almost all the vendors and operators in the world consider Kubernetes as the de-facto 
container orchestrator for managing 5G workloads. Kubernetes is the Open Source container orchestration 
engine originally developed by Google. It is a cluster-based container orchestration tool consisting of a 
master (multiple masters in High Availabilities scenario) which orchestrates lifecycle of service – including 
container scaling and recovery of failed containers and workers which hosts multiple pods. Pod is the basic 
unit of deployment in Kubernetes which consists of one or more containers sharing the same IP address 
and port space. Kubernetes Service represents a logical set of Pods and enables external traffic exposure, 
load balancing and service discovery for those pods.  Details of container orchestration with relations to 
CNFs are reviewed in later sections. 

2.1.3 SERVICE MESH FOR NETWORKING MODEL 

No introduction to Cloud Native can be complete without discussing service mesh. Adopting microservices 
architecture results in complex service and application topologies as the number of components increase 
(Figure 2.4).  This leads to new set of problems in Cloud Native deployments: service discovery; traffic 
management; security and policy management; and observability.  The problems can be solved by either 
making the problem a part of the application itself, where additional logic is coded into the business logic 
of the application, or, bringing in a separate infrastructure solution called service mesh.  

“A service mesh is a dedicated infrastructure layer for handling service-to-service communication.”9 It’s 
responsible for ensuring reliability, security, intelligent routing and traceability of communication among the 
services that comprise a Cloud Native application. The service mesh manages the “east/west” traffic 
running between services by injecting a service proxy next to each application workload.  A service proxy 
is the dedicated entity to the particular workload. A collection of service proxies constitutes the “data plane” 
of the service mesh.  All intra-microservices communication messages traverse its service proxy.  The 
proxies become the source of metrics for all the requests and can be utilized to transform inter-service 
communication, providing powerful behavior, such as: retries, timeouts, circuit breaking, service discovery, 
load balancing, secure tunneling, and much more.  There is a control plane consisting of entities that live 
outside of the inter service communication path for supporting the data plane. The control plane collects 
metrics, establishes policy, and affects configuration changes to the data plane. It also provides API access 
to configure and manage the service mesh.  

 

9 “What’s a Service Mesh? Why do I need one?” William Morgan, Buoyant.io, Cloud Native Computing Foundation, 26 April 2017.  

https://www.cncf.io/blog/2017/04/26/service-mesh-critical-component-cloud-native-stack/
https://blog.buoyant.io/2017/04/25/announcing-linkerd-1.0/
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Figure 2.4.  Service to Service Communication with Service Mesh.10 

The most popular way of implementing service proxies is by using a sidecar design pattern.11  All the inter-
service communication logic is abstracted in sidecar and runs alongside the application container, as shown 
in Figure 2.4.  As now evident, service mesh implementations are based on a control plane/data plane 
architecture.  Service mesh creates an abstraction layer above the transport layer of the Transmission 
Control Protocol/Internet Protocol (TCP/IP) stack, decoupling the instrumentation and operational concerns 
of the service from the application business logic and leading to increased service velocity. The 
development of solutions for service mesh are still in their infancy stage and vying for market share are 
multiple Open Source service mesh projects, such as: Istio,12 Linkerd13 and Consul.14 Current shortcomings 
in the existing service mesh implementations include: added complexity due to introduction of infrastructure 
layer; and performance impact on application and unsuitable for heterogeneous and multi-cluster 
topologies.  However, there is momentum behind service mesh, and it will realize its potential when it 
achieves complete transparent integration with the container orchestrator. There are architectural 
implications of service mesh in 5G Core architecture (discussed in later sections) which are evolving as 
“SDN for Code.”15  

2.1.4 DEVELOPMENT AND OPERATIONS FOR PROCESS WORKFLOW 

Development and Operations (DevOps) is a philosophy and practice focused on communication, 
collaboration, automation, and agility within operations and development teams. The whole objective of 
DevOps is to attain a more aligned and synchronous development and operations team. In particular, it 
makes organizations more adaptable for technological changes to avoid technology lock-in, reduces time-
to-market and provides better team structure to support services. Although, DevOps can be equally 
applications to both monolithic and microservices architecture, DevOps practice becomes more critical for 
the success of the Cloud Native implementation, as the modularization of Cloud Native application 
increases. Organizations adopting DevOps to support Cloud Native architecture will be at a strong 

 

10  “Service Mesh for Microservices”, Kasun Indrasiri, Medium.com, 15 September 2017. 
11 https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar. 
12 https://istio.io/. 
13 https://linkerd.io/. 
14 https://www.consul.io/intro/index.html. 
15 https://glasnostic.com/blog/should-i-use-a-service-mesh. 

https://medium.com/microservices-in-practice/service-mesh-for-microservices-2953109a3c9a
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://istio.io/
https://linkerd.io/
https://www.consul.io/intro/index.html
https://glasnostic.com/blog/should-i-use-a-service-mesh
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competitive advantage as their organization will be well equipped and aligned to handle the complexities of 
the sophisticated and at-scale applications which require new tools, new processes and a product-focused 
team. This leads to the realization that Cloud Native adoption cannot succeed without implementing a 
mature DevOps practice.  

DevOps, as a philosoph,y has been evolving since its introduction a decade ago. When introduced, the 
major focus was to remove the barrier existing between the developers and operations. However, with the 
adoption of more automation, the move towards Cloud Native infrastructure and the rise of Infrastructure 
as Code (IaC), the scope of DevOps has broadened to encompass not only technical teams pertaining to 
networking and security but also non-technical teams, like marketing, business and design, focusing on 
creating workflow to maximize organizations’ core business goal. The increased operational complexity in 
Cloud Native architecture helps to bring networking and security under the purview of DevOps and is 
leading to the emergence of Development, Security and Operations (DevSecOps) and Network, 
Development and Operations (NetDevOps) practices.  

 

Figure 2.5. Alignment vs. Autonomy in Cloud Native Architectures.16 

“DevOps isn’t just about breaking down silos, but about developing skills.”17  It is about an organization’s 
appetite for adapting, re-skilling and readiness to learn from mistakes. Organizations, while adopting Cloud 
Native architecture, need to have high alignment towards the team’s objective based on the defined scope 
and have the autonomy to operate freely (Figure 2.5). A cookie cutter approach to DevOps cannot be 
applied as each organization and their requirements from DevOps is unique. They have to develop 
practices resulting in the creation of a pipeline, and tooling for automation chains that not only exclusively 
fits those practices, but also will grow and evolve along the way. The responsibility of the building of the 

 

16 https://ucaat.etsi.org/images/Presentations/2018/16---14h20---Almudena-pardo---UCAAT-2018_Almudena_Rodriguez_Pardo.pdf 
17 https://thenewstack.io/ebooks/devops/cloud-native-devops-2019/ 

https://ucaat.etsi.org/images/Presentations/2018/16---14h20---Almudena-pardo---UCAAT-2018_Almudena_Rodriguez_Pardo.pdf
https://thenewstack.io/ebooks/devops/cloud-native-devops-2019/
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pipeline with tooling to bring in automation (as prescribed by DevOps) falls on Continuous Integration and 
Continuous Delivery and/or Continuous Deployment (CI/CD).  

2.1.5 CONTINUOUS “EVERYTHING” FOR TOOLCHAIN   

Moving to Cloud Native leads to increased agility and complexity where applications are delivered as vastly 
sophisticated microservices. Cloud Native’s effectiveness is increased when CI/CD tools and practices are 
implemented.  Applications that are natively developed for the cloud platform benefit from CI/CD, since the 
software development of complex systems gets broken down into a set of smaller, more manageable 
loosely coupled microservice components, which are integrated into the application with their own delivery 
pipelines.  The greater the number of components, the greater the need for automated delivery.   

Continuous Integration (CI) is the automated process of integration of newly developed code to the main 
source code and with unit testing, this is the first step towards Continuous Delivery (Figure 2.6). It permits 
the software vendor to integrate newer component releases with existing components, thereby allowing a 
continuous incremental evolution of a software system leading to the faster introduction of new features. 
Container is the unit of the deployment in the Cloud Native construct and using it helps in consistency 
between the development and production environment. Application code wrapped with configuration in 
containers is shifting the focus to continuous delivery. Containerization of the CI/CD infrastructure allows 
for isolated builds and makes it more elastic as each build pipeline gets its own container agent. 

 

Figure 2.1.  Workflow for Continuous Integration, Delivery and Deployment.18 

Available tooling in Kubernetes, the container orchestrator, along with dynamic, composable and immutable 
infrastructure helps in reducing the complexity of implementing continuous delivery in a Cloud Native 
framework. Product teams are empowered with delivery ownership using isolated deployment pipelines. 
Cloud Native CI/CD allows for independent changes to services which can be monitored to ensure 
applications changes are working as expected in production. Deployment strategies in continuous delivery 
for Cloud Native architecture, like canary releases (phased rollout of changes to smaller subset of users) 
and blue-green deployments (previous version of live environment available for quick rollback) can help 

 

18 https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-here-is-our-story-2a4d164e9cac 

https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-here-is-our-story-2a4d164e9cac
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test new features with velocity to improve the customer experience, minimize the risk of failure and offer 
much quicker rollback to stable release in the event of failure.  

Properly implemented, a multi-stage continuous delivery pipeline should also include the test automation 
framework which helps in promoting code and artifacts from one stage to another. Test automation 
becomes critical in creating the much-needed feedback loop. It is important that creating continuous testing 
cannot be possible in all the scenarios, and thus procedures for manual intervention in the CI/CD pipelines 
must be built in. Due to the distributed design of Cloud Native architecture and the continuous nature of 
software delivery, continuous monitoring and security scanning becomes paramount. Continuous 
monitoring brings in mechanisms that can indicate the performance of the delivered software so that flaws 
can be identified promptly, and updates/patches are released continually with minimal intervention. 
Providing built-in monitoring capabilities and security scans in the CI/CD pipeline helps in enforcing security 
policies and compliance at scale. 

2.2 CLOUD NATIVE LANDSCAPE AND OPEN SOURCE FOR 5G  

The Cloud Native ecosystem is evolving and growing at a very rapid pace. Figure 2.7 shows the large 
number of critical projects and tools in Cloud Native being tracked by CNCF; their objective is to drive 
adoption of a Cloud Native paradigm by fostering and sustaining an ecosystem of Open Source, vendor-
neutral projects.19  The intent of the CNCF landscape is to categorize all the solutions in the Cloud Native 
ecosystem for: the ease of adoption, the tracking of community engagement, and tracking the code maturity 
of projects.  

CNCF provides sandbox environments for germinating new and exciting projects around Cloud Native 
technologies. Network Service Mesh, which is the concept of bringing Layer2/Layer3 networking to 
containers, is an example of a sandbox project in CNCF which is very relevant for telecommunications 
operators and vendors (and will be discussed in section 4.2.5).  

 

19 https://github.com/cncf/toc/blob/master/DEFINITION.md. 

https://github.com/cncf/toc/blob/master/DEFINITION.md
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Figure 2.2.  Cloud Native Landscape.20 

Kubernetes is the container orchestration project, notable for being one of the most rapidly developed Open 
Source projects of all time due to the community’s contribution and is often referred to as the “Linux of the 
cloud.”21  CNCF has been a hotbed for hosting Open Source Cloud Native projects contributed by web-
scale companies such as:  Kubernetes from Google,22 and Envoy from Lyft.23 

With 5G development and adoption progressing at full force, Cloud Native is central to the 5GC architecture.  
This has resulted in vendors and operators becoming active members of the CNCF community. They are 
bringing telecommunication (telco) requirements and use cases to the community and looking for projects 
in CNCF to solve their challenges in adopting Cloud Native technologies for 5G. Even the CNCF has taken 
notice of the trend and has created a “Telecom User Group” (TUG) for telco operators and vendors to 
identify CNCF projects, or projects’ specific features that are critical for Cloud Native adoption. The TUG 
tracks upstream projects development and provides recommendations on projects for feature development 
based on operators’ use cases.24  

The objective of CNCF’s TUG group is to dispel Fear, Uncertainty and Doubt (FUD) over the adoption of 
containers and Cloud Native technologies for the telco workloads.  The “noisy neighbor” problem is one 
such area of FUD.  The traditional approach to tackling this problem is to deploy containers within VMs 
which wastes most of the benefits of containerization.  MicroVMs technologies, such as Kata, gVisor, 
Firecracker, and etcetera are upcoming options for solving the noisy neighbor problem.  They can securely 

 

20 https://landscape.cncf.io/. 
21 https://opensource.com/article/18/4/what-is-cloud-native-computing-foundation-cncf. 
22 Kubernetes is based on Google’s internal project called Borg: https://storage.googleapis.com/pub-tools-public-publication-
data/pdf/44843.pdf. 
23 Envoy is the de-facto service proxy originally developed at Lyft: https://blog.envoyproxy.io/envoy-graduates-a6f71879852e 
24 https://github.com/cncf/telecom-user-group. 

https://landscape.cncf.io/
https://opensource.com/article/18/4/what-is-cloud-native-computing-foundation-cncf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44843.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44843.pdf
https://blog.envoyproxy.io/envoy-graduates-a6f71879852e
https://github.com/cncf/telecom-user-group
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run untrusted pieces of code on a cloud platform.  However, these approaches can be an overkill for telco 
use cases, since most of telco applications are 1st party (their own) or 2nd party (vendors) solutions.  These 
applications can (usually) be deployed as containers using native container orchestration (Kubernetes) 
features such as: resource limits, and QoS to constrain both compute and networking resources for the 
deployed containerized workload.   

Providing performant network connectivity for CNFs is another problem which is part of CNCF TUG’s work 
items. MULTUS,25 DANM26 and NSM27 projects hosted by CNCF are specifically focused on solving the 
CNF networking challenges. In section 2.3, possible solutions are explained in detail to understand the 
current state of Cloud Native networking technologies and provide a gap analysis.  

 

Figure 2.3.  Role of Open Source in the Transformation of Infrastructure to Support 5G.28 

The work which has started at CNCF TUG can be critical for laying the path of migration from VNF to CNF 
and outlining the Cloud Native best practices for CSPs. The journey has just started, and it will take the 
industry a few iterations of architecture evolution and infrastructure modernization to run true CNF in a 
service provider’s network. It is evident that the Open Source community, in general, and CNCF, in 
particular, are playing a very critical role this transition as shown in Figure 2.9. Adoption of Open Source 
has provided telecommunications industries with the opportunities to alleviate some problems by: lowering 
the cost barrier to bring in technologies for evaluation and rapid prototyping; preventing vendor lock-in; 
providing agility to innovate at a quicker pace; and drive innovation through collaboration and common 
Open projects/tools. All of this is helping Service Providers to gain better control of their ecosystem. Open 
Source projects provide an ideal sounding board for development of standards and protocols. The 
collaborative activities across open source projects and standards organization for the networking industry 
provide the opportunity of a quick feedback loop. Signing of Memorandums of Understanding (MoUs) 
between European Telecommunication Standards Institute (ETSI) and the Linux Foundation is good first 
step to enable collaboration for less fragmentation, faster deployments and more streamlined innovation for 
5G.29 

 

25 https://intel.github.io/multus-cni/. 
26 https://github.com/nokia/danm. 
27 https://networkservicemesh.io/. 
28 https://www.interdigital.com/white_papers/telecomtvs-2018-5g-evolved-and-defined-survey. 
29 http://www.intelligentcio.com/eu/2019/04/26/etsi-and-the-linux-foundation-sign-mou-enabling-industry-standards-and-open-
source-collaboration/. 

https://intel.github.io/multus-cni/
https://github.com/nokia/danm
https://networkservicemesh.io/
https://www.interdigital.com/white_papers/telecomtvs-2018-5g-evolved-and-defined-survey
http://www.intelligentcio.com/eu/2019/04/26/etsi-and-the-linux-foundation-sign-mou-enabling-industry-standards-and-open-source-collaboration/
http://www.intelligentcio.com/eu/2019/04/26/etsi-and-the-linux-foundation-sign-mou-enabling-industry-standards-and-open-source-collaboration/
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Figure 2.9. Current Opensource and Standard Landscape for Telecommunications.30 

2.3 BENEFIT OF ADOPTING CLOUD NATIVE 

Adopting Cloud Native application architecture and development methodologies can get complex. Thus, it 
is important to understand the value proposition of Cloud Native; adoption is strong in the enterprise and IT 
domain and recently the telecommunications industry is trending toward Cloud Native for 5G.  Key benefits 
of adopting Cloud Native computing architecture and technologies include:31   

• Agility: Microservices- and container-based applications are optimized for changes in application 
design. Cloud-native applications enable developers to rapidly change components of an 
application with minimal disruption to the overarching application structure and edifice. This ability 
to rapidly change an application enables organizations to reliably upgrade and modify applications 
to accommodate the changing needs of the business  
 

• Enablement of DevOps: Cloud-native applications illustrate the realization of DevOps because 
they automate operational processes such as scaling, monitoring, self-healing, redundancy and 
high availability. The automation of these operational processes enables development and 
operations teams to collaborate more efficiently and subsequently ship code faster 
 

• Resiliency: Cloud-native applications are architected with explicit attention to resiliency. The 
loosely coupled quality of microservices architectures, for example, ensures that the degradation 
of one microservice has minimal impact on other microservices. As a result, development teams 
can swiftly locate and restore loss of functionality specific to a degraded microservice. Moreover, 
self-healing processes specific to container orchestration frameworks automate the replacement of 
unhealthy containers with healthy containers 
 

 

30 https://www.fiercewireless.com/wireless/linux-foundation-zeros-harmonizing-open-source-standards 
31 https://www.accenture.com/us-en/blogs/blogs-miha-kralj-cloud-native-architecture-benefits 

https://www.fiercewireless.com/wireless/linux-foundation-zeros-harmonizing-open-source-standards
https://www.accenture.com/us-en/blogs/blogs-miha-kralj-cloud-native-architecture-benefits
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• Portability: Because cloud-native applications are container-based and abstract away 
dependencies on their external environment, they are more easily transported across different 
environments than other types of applications. The portability of cloud-native applications renders 
them less prone to vendor lock-in and subsequently more attractive to customers that are reluctant 
to deploy their applications to a unitary framework 
 

• Granular application scalability: Developers can automate the scalability of container-based 
applications by means of a container orchestration framework such as Kubernetes. Moreover, 
orchestration enables developers to scale the container or containers within an application that 
require scaling instead of scaling the entire infrastructure on which the application runs 
 

• Efficient resource consumption: The lightweight quality of containers allows them to be rapidly 
destroyed and created. In addition, containers can be deployed to a server with greater density 
than VMs. Containers deliver more efficient resource consumption than VMs and subsequently 
facilitate accelerated development, improved operational efficiency, and cost savings 
 

• Abstraction and Cloud Agnostic: Container and container orchestration technologies provide 
inherent abstraction as they are infrastructure and technology agnostic. This makes it much easier 
to adopt hybrid cloud strategy for Cloud Native application architecture, as an application can run 
on any cloud platform (private or public) as same set of APIs for managing container lifecycle is 
exposed and can be managed any available Cloud Native tooling 
 

• Orchestration: Due to the immutable nature of containers, it is much simpler to manage the 
lifecycle of containers than VMs. Kubernetes is the de-facto container orchestrator and has mature 
constructs available like helm charts and operators for the Create, Retrieve, Update, Delete 
(CRUD) operations for applications deployed and exposed as service endpoints. Moving to 
containerized microservices provides the ability to orchestrate the containers such that separate 
lifecycle management processes can be applications to each service, allowing for each service to 
be versioned and upgraded separately. If the application is implemented with the appropriate level 
of state separation, this process can allow for fully automated in-service upgrades and rollback of 
the containers that make up the application. 
 

3. ETSI NETWORK FUNCTION VIRTUALIZATION, CLOUD NATIVE NETWORK 
FUNCTIONS AND 5G 

To understand Cloud Native in 5G, perhaps it is worth understanding the context surrounding how Cloud 
Native arrived.  One problem of cellular systems in the past is their slowness to evolve, and consequently, 
the prevention of the cellular network from addressing (new) markets in a nimble and responsive manner.  
There are numerous reasons and involve the way that cellular networks have been architected over many 
years.  Historically, cellular networks have been architected as a collection of independent “boxes” having 
specific functionality with standardized (open) interfaces between the “boxes”.  This approach led naturally 
to having monolithic software architectures for the boxes in question.  This architecture has worked well 
over many years since the reliability and resiliency of the cellular network was well understood and led to 
well-engineered networks.  However, over recent years, a new infrastructure paradigm has emerged, 
namely cloud-based infrastructure.  In this paradigm, the infrastructure, is composed of a collection of 
general-purpose servers.  The net effect of this is that the software designed for this type of (shared) 
infrastructure had to adopt development methodologies (CI/CD) and software architectures (for example, 
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microservice) more in keeping with this type of environment.  A by-product of the adoption of these 
methodologies and architectures is that a potentially nimbler cellular network service platform results in 
being capable of addressing new cellular markets.  How the industry, 3GPP and ETSI have arrived at the 
orchestration and Service Based Architecture for cellular networks is presented in this section. 

3.1 BUSINESS DRIVERS 

Arguably, there are two perspectives on the business drivers for the adoption of Cloud Native in 5G (or any 
wireless generation for that matter).  It can be viewed from the Communications Service Provider (CSP), 
or, it can be viewed from the network function vendor perspective.  In both cases, the need to adopt Cloud 
Native approaches converge for very different reasons.  The actual motivations for adoption by the entities 
concerned are probably due to a unique set of conditions.  Following are some broad generalizations. 

From the CSP perspective, the arrival of Clould Native is an interesting path on cost optimization.  Mobile 
networks are predominantly an access and edge network.  The costliest portions of any network tend to 
occur where there are large amounts of aggregation due to numerous physical points of presence.  In 
mobile networks, this translates to the physical numbers of base stations and their necessary aggregation.  
In parallel with this, there has been intense competition between CSPs in saturated markets to gain and 
retain subscribers.  This competition led to a decline in Average Revenue Per User (ARPU) as witnessed 
in some markets.  Because of this, over many years, there have been focused efforts to bring the cost of 
access down to levels sustainable by the market subscriber ARPU. This effort has been successful. 
However, this success has exposed other areas of cost that need to be addressed.  Among these are the 
operational aspects of the network.  This motivated many to contrast and compare CSP network operation 
with network operation in parallel industries (see for example 32 33 34 35 ), namely the hyperscale public cloud 
operators, where large infrastructure has very lean operations.  In this examination, several very appealing 
facets of a cloud operation were exposed: 

• Automated operation and deployment  
• Appeal of high service availability based on common (and relatively cheap) infrastructure 

Both facets address the (newly) exposed cost reduction needs.  Moreover, these facets when matched with 
new trends in software development (such as CI/CD) also opened the prospect of delivering new and 
competitive services more quickly to their customer base, leading the potential of time-to-market advantage.  
Hence, the appeal of Cloud Native architectures. 

From a network function vendor perspective, the design and implementation of monolithic network functions 
(therefore, functions in a box) for the most part had waterfall software development methodology to which 
they were associated.  This implied that the software development process was sequential in nature, for 
example, requirements gathering, and analysis had to be complete before system design could start, 
System design had to be complete before implementation could begin, implementation had to be complete 
before testing could begin, and so on.  It could be argued, from a historical perspective, that the reason the 
waterfall model was applied to monolithic network functions was that they were delivered into a system that 

 

32 From Webscale to Telco, the Cloud Native Journey, 5G-PPP. July 2018. 
33 View on 5G Architecture, version 3.0, 5G-PPP. July 2019. 
34 5G Mobile Network Architecture for diverse services, use cases, and applications in 5G and beyond, Deliverable D2.1, 5G-
Monarch. November 2017. 
35 5G Mobile Network Architecture, for diverse services, use cases, and applications in 5G and beyond, Deliverable D2.3 - Final 
overall Architecture, 5G-Monarch. April 2019. 
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had high reliability and availability requirements (5-9's) and needed a well thought-through frontend to the 
software development process similar to waterfall methodology.  

However, there are several drawbacks to the waterfall methodology that promoted a move to more agile 
software development.  Among these are: 

• Development process was inflexible to requirements change 
• Cadence of delivery meant that new features often arrived late or had been superseded by newer 

requirements or totally different features 
• Long development cycles when addressing complex systems  

This results in two commercial effects:  

• It tied up development resources on features that, for the most part, were never really used 
• Led to release cycles that were not competitive in the market 

Both detractions are opportunity costs which are detrimental to the effective use of Research and 
Development (R&D) investment. In short, a high level of resource was being inflexibly consumed for a 
relatively low return on the engineering investment.  

These detractions speak more to the need for an agile software development process rather than per se a 
Cloud Native proccess.  However, when the target platform for the network function also changed, from a 
bespoke piece of hardware to a generalized server blade in a data center, then the agile process was 
adopted to include those development components (CI/CD) and independent modular architectures needed 
for cloud delivery. 

Given both perspectives (CSP and the network function vendor),  the question arises whether the move to 
Cloud Native has yet delivered on those business drivers.  That discussion is out of scope of this 
whitepaper. 

3.2 TECHNICAL DRIVERS 

Much of the justification for the technical drivers for the application of Cloud Native to 5G can be attributed 
to studies promoted by the Next Generation Mobile Network Alliance (NGMN),36 37 5G Infrastructure Public 
Private Partnership (5G PPP)38 and the European project 5G-MoNArch.39 40 Because of the need to enable 
new business models, there is an underlying requirement for the network to be operationally flexible enough 
to permit these new business models to develop.  Since these new business models are not (yet) known, 
then the implication is that that the underlying architecture has to be extensible enough obviating any major 
architecture upheaval to fulfil this requirement at some future date. 

The implication of the flexibility required by 5G business and operational models, combined with the need 
to place VNF/CNF onto Common Off-The-Shelf (COTS) hardware means that a modular architecture is 

 

36 5G White paper v1.0, NGMN Alliance. Rachid El Hattachi ,Editor. 17th February  2019.   
37 Service-Based Architecture in 5G v1.0, NGMN Alliance. Dan Wang Editor. 19th January 2018.   
38 From Webscale to Telco, the Cloud Native Journey, 5G-PPP Software Network Working Group. July 2018. 
39 5G Mobile Network Architecture, Deliverable D2.1, 5G-MoNArch. November 2017. 
40 5G Mobile Network Architecture, Deliverable D2.2, 5G MoNArch. July 2018. 
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required in which new functionality can be added with relative ease.  This also implies a need for a 
framework approach to the modular architecture, therefore, self-contained services, service registry, 
authentication and discovery components, and so on. 

In order to satisfy this requirement, comparisons were made with existing web-scale infrastructures (their 
architectures and operations) and studies performed to see if key characteristics would translate for use in 
future mobile network architectures.41 42  The key characteristics that have driven web scale adoption of 
Cloud Native architectures are given below with additional annotations to indicate where these 
characteristics breakdown in CSP mobile network environments:43 

1. Codebase: A single codebase properly versioned should be associated with varying application 
deployment strategies (recreate, rolling-update, blue/green, canary, A/B testing, shadow) 

a. CSP/Vendor Limitation - because of the concerns at 2.a below then this may also carry 
over to the codebase  

2. Dependencies: Dependencies (either system or between applications) should be explicitly 
declared in a dependency manifest and isolated in environments during both development and 
production stages 

a. CSP/Vendor Limitation - different H/W due to different suppliers and resulting N/W 
configurations (particular to the vendor) may cause dependency problems 

3. Configuration: The configuration that varies between deployments should be stored in the 
deployment’s environment separately from the code 

4. Backing services: Backing services are services the application consumes over the network 
(databases, messaging queues, caches and etcetera and are considered as loosely coupled 
resources attached to the application 

5. Build, release, run: Code is transformed to a deployment in three separate stages: build, during 
which a codebase is transformed to an executable with its appropriate dependencies; release, 
which combines the build with the environment configuration; and the runtime stage which 
launches the application’s processes. Such stages should be air- tight 

a. CSP Limitation - build, release, run is not part of any telco standards (for example, ETSI, 
3GPP, and etcetera) 

6. Processes: The application is executed as stateless, share-nothing processes. Persistence is 
offloaded in a stateful backing service (4). Cached data is considered volatile and not stateful. This 
is a factor that can break scalability of a cloud-native application 

7. Port binding: Services are exposed to other services through specified ports. This aspect gives 
rise to the service discovery role of an application orchestrator mechanism 

 

41 5G-PPP Software Network Working Group, From Webscale to Telco, the Cloud Native Journey, July 2018. 
42 NGMN Alliance, Service-Based Architecture in 5G v1.0, 19th Jan 2018.  Dan Wang Editor. 
43 These 12 characteristics or factors come from https://12factor.net/ and the list is quoted mostly verbatim from 5G-PPP Software 
Network Working Group, From Webscale to Telco, the Cloud Native Journey, July 2018. 

https://12factor.net/
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8. Concurrency: To scale out the application concurrency follows the process model, therefore, by 
adding more of the same processes to enable concurrency. This scalability enabler is 
complemented by the shared-nothing, stateless property of the application 

a. CSP/Vendor Limitation - the problem is that this is not the case today. Not all NFs scale 
the same way. Moreover, there is an aspect of statelessness that may not be adopted 
universally by all VNFs/CNFs.  It may take more than one generation of the VNF/CNF in 
order to comply with this factor 

9. Disposability: Processes should require minimum start-up time (to quickly fire up new processes 
and support elasticity and rapid deployment). Graceful shutdown is also a goal; a process should 
accommodate standing requests or computation before responding to a SIGTERM signal  

a. CSP Limitation - the start-up times need to be small, and the tear downs need to be 
graceful.  Currently this varies widely between VNFs.  This is a concern because it reflects 
directly on the necessary 5-9s reliability requirement of CSPs  

10. Development/production parity: A cloud-native application’s development environment should 
mimic the production environment as much as possible. More specifically, the time, personnel and 
toolset gaps between the deployment areas should be as small as possible to increase the 
effectiveness of Continuous Delivery (Deployment) of the application. This is facilitated by the use 
of containerized environments and declarative provisioning and configuration tools aiming exactly 
at shortening the time and toolset gaps  

a. CSP/Vendor Limitation - the problem is again due to concern 2a, and this may carry over 
to this factor.  In short it may make it difficult to mimic the deployment environment because 
of the uniqueness of the CSP that has historically arisen 

11. Logs: Logging should be treated as a stream of events available for monitoring all separate 
services of the application. The streams should be aggregated together to better understand the 
whole picture of the state of the application. However, the application is not involved with actual log 
analysis; this is offloaded to separate external tools 

a. CSP Limitation - Current logs tend to be particular to a given vendor, therefore, not 
heterogenous, and also the update rates vary from vendor to vendor 

12. Admin processes: Run admin/management tasks as one-off processes that are preferably 
declaratively stated against a release, using the same codebase and configuration. These tasks 
are to be shipped with application codes under their environment 

a. Vendor Limitation –in some way all CSPs are unique in this regard 

The conclusion of these comparisons is that although not all of the characteristics satisfied the demands of 
current mobile network architectures, the potential benefit of adoption of Cloud Native outweighed the 
limitations.  

In summary, the need to satisfy the requirements on flexibility are addressed through the concept of 
services as atomized capabilities with the desired characteristics of high-cohesion, loose coupling and 
independent management from other services and lend themselves to a microservices architecture.  
Moreover, given the necessary loose coupling between services, the service bus naturally falls out of this 
requirement as does the service-based interface. 
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3.3  3GPP’S TAKE ON CLOUD NATIVE   

The requirement on flexibility can be satisfied by having a modular, loosely coupled architecture.  This has 
manifested itself in 3GPP as the Service Based Architecture (SBA).   

The actual justification for SBA is a compromise between the size of a mobile service function and the 
suitability of a variety of other service-based of architectural styles, 44  for example, microservices (or 
µservice),45 Service-Oriented Architecture (SOA),46 and service-based hybrids types.47  This compromise is 
depicted in Figure 3.1. 

 

Figure 3.1.  5G-PPP Software Network Working Group view of SBA.48 

Given this compromise, the requirements on the SBA can be stated as follows:  

• Updating Production Network 

o Services operate with finer granularity than in legacy networks and are loosely coupled with 
each other allowing individual services to be upgraded with minimal impact to other services.  
A service, in this instance, refers to an atomized 5G network capability, for example policy 
control, or access management, and etcetera  

o This provides many operational benefits such as shrinking testing and integration timescales 
(moving towards continuous integration) which reduces the time to market for installing bug 
fixes and rolling out new network features and operator applications  

• Extensibility:  

 

44 Neal Ford, Mark Richards, ‘Service-Based Architectures: Structure, Engineering Practices, and Migration’, O’Reilly Media, July 
2015 
45 https://en.wikipedia.org/wiki/Microservices 
46 https://en.wikipedia.org/wiki/Service-oriented_architecture 
47 Neal Ford, ‘Comparing Service based Architectures’,  
http://nealford.com/downloads/Comparing_Service-based_Architectures_by_Neal_Ford.pdf  
48 5G-PPP Software Network Working Group, From Webscale to Telco, the Cloud Native Journey, July 2018. 
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o Each service can interact directly with other services with light-weighted service-based 
interface  

o Comparing to the legacy hop-by-hop model, the service-based interface can be easily 
extended without introducing new reference points and corresponding message flows 

• Modularity & Reusability:  

o The network is composed of modularized services, which reflects the network capabilities, and 
provides support to key 5G features such as network slicing 

o A service can be easily invoked by other services (with appropriate authorization), enabling 
each service to be reused as much as possible 

• Openness:  

o Together with some management and control functions (therefore, authentication, 
authorization, accounting), the information about a 5G network can be easily exposed to 
external users such as 3rd-parties (for example, enterprise) through a specific service without 
complicated protocol conversion 

 

Figure 3.2. 3GPP TS 23.501 5G System Architecture showing the SBA. 

For 5G, these requirements translate architecturally into the 3GPP diagram of Figure 3.2, in which the 
service modularity breaks down into the following self-contained functional components communicating via 
standardised lightweight (RESTful) interfaces:49 

• AF - Application Function(s).  These modules interact with the 5G Core in order to provide services 
to applications, such as those that influence traffic routing for an application, or access for an 
application to a given Network Exposure Function, or an applications’ need to interact with 5G Core 
policy functions 

• AMF - Access and Mobility Management Function.  This module supports all aspects of a device’s 
access and mobility management, among which are the management of: registration, connection, 
reachability, mobility, access authentication and authorization, and etcetera 

 

49 For those who are interested in greater detail on some or all of these functions, refer 3GPP TS 23.501 and 3GPP TS 38.413 for 
the protocol details.  
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• AUSF - Authentication Server Function.  This module supports authentication for access onto the 
5G network, both for 3GPP access and untrusted non-3GPP (for example, WiFi) access 

• NSSF - Network Slice Selection Function.  This module is responsible for selecting the 5G network 
slice instance serving User Equipment (UE) and which AMF, or list of AMFs, can be used by a 
device (UE) 

• NEF - Network Exposure Function.  This module supports the exposure of NF capabilities and 
events 

• NRF - Network Resource Function.  This module supports service discovery and maintains the NF 
profile of available NF instances and their supported services 

• PCF - Policy Control Function.  This module supports a unified policy framework that governs the 
5G network behaviour, provides enforceable policy rules to the control pane functions, and access 
relevant policy subscription information from the UDR 

• SMF - Session Management Function.  This module supports all aspects of session management 
of a flows between the access node and the UPF, such as the selection and control of the UPF, 
the traffic steering of the flow, the collection of charging data, and so on.  It is also responsible for 
IP functionality such as IP address allocation, DHCP, ARP, and etcetera 

• UDM - Unified Data Manager.  This module supports the following functionality: the generation of 
3GPP authentication credentials, user identification handling, support of de-concealment of 
privacy-protected subscription identifier, access authorisation based on subscription data, a 
devices (UE) current NF registration management (therefore, its current AMF and serving SMF for 
a given device PDU session). It also provides support for service/session continuity, MT SMS 
delivery, Lawful intercept, Subscription management and SMS management 

• UPF - User Plane Function.  This is the only modular function that does not reside in the control 
plane and is not currently part of SBA. This function acts as an anchor point for mobility in the 5G 
core, and performs a myriad of actions on a data flow, such as packet routing and forwarding, 
packet inspection, policy enforcement, Quality of Service (QoS) handling, legal intercept, and 
etcetera 

SBA is key to the 5G Core, and in effect lays out the base modularity for which Cloud Native 
implementations are intended.  

3.3.1 SERVICE FRAMEWORK 

The SBA relies on a service framework. At a high-level, there are three main components to the service 
framework:  

• A registration component  

Implemented based on a service registry which is a database of available (currently active) services 
and their reachability.  Services are registered in the registry once the service are activated, and of 
course, on deregistration are deactivated.  A service consumer can query this database (the 
registry) to find available services and how to access them 

• An authorisation component  

The authorisation of a service is required in order to control if a service can be called by other 
services.  This component is really necessary when (alien) third party services are using native 
services of the network 
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• A discovery component  

A service consumer queries for a specific service in the service registry. The service registry 
responds to several available services and their addresses to the consumer. Load-balancing 
mechanisms can be used to assist the appropriate selection of available services 

 

Figure 3.3. CNCF Service (left) versus SBA Services (right).50 38 

These components combine to provide a service exposure framework for the 5G SBA modules, which (as 
can be expected) is close to that employed by web-scale Cloud Native deployments.  Figure 3.3 shows the 
comparative service exposure framework for web-scale and 5G Cloud Native deployments. 

While all of these approaches are very cloud operational in nature, in the case of 5G they have a very 
specific connotation to them, meaning that it is more than likely that only other (roaming) partner’s CSP 
networks can actually avail themselves of these services.   It is unlikely that just any 3rd party can access 
these services in a direct manner, as it is common for any paying member of the public accessing AWS 
services today.  

3.3.2  THE SERVICE-BASED INTERFACE (SBI)  

Critical to the operation of SBA is communication between modules, preferably via RESTful interfaces, with 
the necessary characteristics that such communication interfaces should possess including to:  

• Use standard protocols and data models for multi-vendor interworking 
• Be light weight for efficient communication, for example, high concurrency, low latency, and 

etcetera  
• Easily exposable internally and externally for invocation or reuse 
• Be widely used with rich tools for software development 

Additionally, for the 5G SBA architecture, there are some properties of the protocol which should also be 
considered such as:  

• Extensibility: protocol needs to be easy to extend, not only in the 3GPP context, but also outside 
the standards. The protocol should support the service to be deployed and instantiated with minimal 
impact on the system 

 

50 https://www.oracle.com/a/ocom/docs/industries/communications/cloud-native-journey-telecomm-wp.pdf 

https://www.oracle.com/a/ocom/docs/industries/communications/cloud-native-journey-telecomm-wp.pdf?source=:ow:lp:pt::RC_BUMK190313P00049:LPD100789368&intcmp=:ow:lp:pt::RC_BUMK190313P00049:LPD100789368&elqTrackId=9728f1199e244b36ade84402bc0ddec0&elqaid=80969&elqat=2
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• High efficiency: support to reduce resource consumption for the protocol analysis and adopt 
efficient serialization methods for the protocol 

• Reliability: support of reliable communication between services. The protocol should support 
secure communication, in particular, service authentication, authorization, and possibly encryption, 
in particular for inter-operator communication 

• Simplicity: the number of protocols to be supported in a network should be minimized to simplify 
the implementation of the system. The selected protocol should be able to support intra- and inter-
operator interfaces  

• Functionality requirement: The protocol should enable stateless operation. While for particular 
services, the User Equipment (UE) session context should be considered for the service selection  

For Rel-15 (and onward), 3GPP considered the necessary characteristics and properties for its service-
based interfaces and concluded on the need for: HTTP/2 for application layer, TCP for transport, JSON for 
serialization, and apply the RESTful framework for the API design style whenever possible, and use 
OpenAPI51 for Interface Description Language (IDL). 

3.4  3GPP RELEASES  

Figures 3.4 and 3.5 show the 3GPP timelines for 3GPP Releases 15 and 16.  The initial deployments of 
5G with SBA and Cloud Native approaches are already being considered for commercial deployment.  
Moreover, as Rel-17 focuses on enterprise and vertical use cases, the architecture to support new business 
models and service innovation needs to be mature.  A pragmatic window of between three to four years is 
open in which to develop the required Cloud Native maturity as applications to the 5G core network. 

 

Figure 3.4. 3GPP Release 15 Timetable. 

 

51 https://github.com/OAI/OpenAPI-Specification. 
 

https://github.com/OAI/OpenAPI-Specification
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Figure 3.5. 3GPP Release 16 Timetable. 

3.5 PROPOSED ETSI NFV REFERENCE ARCHITECTURE AUGMENTATION FOR 
CLOUD NATIVE 

As a standard specification, ETSI focuses on high-level architecture, development guidelines, and 
interoperability enabled by open interfaces. Most of the specifications in ETSI Management and Network 
Orchestration Group Specification (MANO GS) continue serving the purpose when applying to the Cloud 
Native NFV. Nevertheless, augmentation is needed in some areas because of the differences between the 
VM based and Cloud Native solutions.52 

 

Figure 3.6. ETSI MANO Cloud Network Function Orchestration Architecture.53 

Cloud Network Function MicroService (CNFMS)  

• CNFMSs are the microservice containers from which a Cloud Network Function is composed 

 

52 © 2017 SCTE-ISBE and NCTA. 
53 © 2017 SCTE-ISBE and NCTA. 
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Cloud Network Function (CNF)  

• CNFs are the network functions deployed in the cloud as microservices, usually in container 
format 

Network Function Cloud Infrastructure (NFCI)  

• NFCI provides the underline physical infrastructure for the network functions. This includes the 
hardware equipment for the computer, networking, storage, as well as the containerization 
layer on top of the hardware platform. CNFs are deployed on top of the NFCI 

Cloud Infrastructure Manager (CIM)  

• CIM is responsible for controlling and managing the NFCI compute, storage and network resources, 
as well as scheduling the microservice containers in the cloud. It manages the lifecycle of the 
containers in the cloud 

• CIM also collects performance measurements in the infrastructure including container level and 
makes the data available for other functional blocks for monitoring purposes 

• Other responsibilities of CIM include virtual networking control and management, as well as the 
southbound integration with various network controllers to achieve the physical network control and 
management capabilities 

• Examples of the CIMs available in the market are Kubernetes, AWS ECS, and Docker Swarm  

Cloud Network Function Manager (CNFM)  

• CNFM focuses on the life cycle management of individual CNF instances. In the Cloud Native 
architecture, a CNF is usually composed of a set of containers that implement a network function. 
A CNF manager takes the responsibility of the management of the multiple container instances of 
the same network function. To control the lifecycle of the CNFs, CNFM works closely with CIM, 
which manages the lifecycle of the individual container of the CNF 

• CNFM also serves as an overall coordination and adaptation role for configuration and event 
reporting between the CIM and the EM systems of traditional operator architectures  

NFV Orchestrator (NFVO)  

• The NFVO continues serving the responsibility of on-boarding a new Network Service (NS) 
composed of multiple CNFs, CNF forwarding graph, Virtual Links, and, as an option, Physical 
Network Functions (PNFs). The orchestrator also controls the life cycle of the Network Service 
including instantiation, scale-in/out or up/down, performance measurements, event correlation and 
termination. Further key operational functions are global resource management, validation and 
authorization of NFCI resource request, as well as policy management of Network Service 
instances 

Cloud Network Function Forwarding Graph (CNFFG)  

• The CNFFG contains a list of CNFs and the virtual links among the CNFs and the physical 
endpoints 
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Figure 3.7. A pragmatic NFV Software Architecture in the Cloud Native Environment.54 

ETSI NFV architecture for Cloud Native environment contains the microservices for the NFV Management 
and Orchestration in both the design phase and the Runtime execution phase. The design phase generates 
the network services model to be deployed onto the target private or public cloud(s). The Runtime execution 
phase contains the microservices for the network service deployment, orchestration, lifecycle management, 
network control, monitoring, and analytics. Besides the functional services, there are a set of common 
infrastructure services for all the microservices containers in the Cloud Native architecture environment. 

4. IMPLEMENTATION AND MIGRATION STRATEGIES FOR 5G CORE 

It is critical for operators and vendors alike to devise effective strategies for migration from 4G Core to 5GC 
and to understand how Cloud Native architecture is of influence. The crux of the new architecture is the 
separation of the control plane and user plane. This is based on SDN principle of centralized control and 
distributed processing and is part of what makes the 5G core a "cloud-native" design.55 A necessary step 
in the migration path to 5GC is the implementation of Control- and User-Plane Separation (CUPS) 
introduced in Rel-14. CUPS implementation of the EPC core can provide the scale to meet increasing traffic 
demands and flexibility of edge deployment to serve low latency applications. Figure 4.1 represents the 
broad conceptual similarity in the architecture of 4G and 5G core.   

 

54 © 2017 SCTE-ISBE and NCTA 
55 https://img.lightreading.com/downloads/Service-Based-Architecture-for-5G-Core-Networks.pdf 

https://img.lightreading.com/downloads/Service-Based-Architecture-for-5G-Core-Networks.pdf
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Figure 4.1. 4G and 5G Core Architecture Comparison. 56 

5G is unique compared to other 3GPP evolutions as it allows for integration of different elements (access 
and core) from different generations. This results in the option of having two different types of configuration 
in the network, namely: 

• Standalone configuration (SA) – Only one radio access technology to be used with three 3GPP 
defined variations: Option 1, Option 2 and Option 5 

• Non-standalone configuration (NSA) – Allows for the combination of multiple radio access 
technologies (LTE and 5G NR) with three other 3GPP defined variations: Option 3, Option 4 and 
Option 7 

Figure 4.1 gives the comparison between the most popular 3GPP deployment options. The NSA options 
allow legacy operators to make the most of the current LTE core investment, with the provisions of making 
CUPS based enhancement of EPC to accommodate large NR capacity, and the adoption of 5GC core at a 
later date.  Both Option 7 (NSA) and Option 2 (SA) require a 5GC in the deployment configuration.  
Moreover, to service all the important 5G use cases, requires 5GC capabilities such as: flow based QoS 
frameworks, flexible network slicing features, and access agnosticism.  

 

56 https://img.lightreading.com/downloads/Service-Based-Architecture-for-5G-Core-Networks.pdf 
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Figure 4.2. Technical Comparison between 5G NSA and SA Options.57 

It is evident that the development of 5GC has to be “Cloud Native” in order to adhere to the 3GPP defined 
standards from Rel-16 onwards (Open API, Control-User plane separation, SBI, Harmonized protocol 
based on HTTP2/QUIC, and etcetera). Furthermore, it has to be a Cloud Native-only solution as the 
deployment infrastructure for 5GC will be in its virtualized form only.  

The Cloud-native Network Functions must be designed as loosely coupled components based on 
microservices, deployed on cloud infrastructure as workloads that can be scheduled on demand by an 
orchestrator, and that can scale in/out on demand with much greater granularity and velocity.  

4.1 MOVING FROM VIRTUAL NETWORK FUNCTION TO CLOUD NATIVE 
NETWORK FUNCTION 

In the initial phase of NFV adoption, the network function migration to a virtual platform used a “lift and shift” 
approach, resulting in disappointment for operators deploying NFV 1.0.  The touted benefits of moving to 
the virtualized cloud platform (multi-tenancy, scalability and flexibility) could not be realized. Furthermore, 
this initial approach was not as cost-effective when considering additional tooling, integration and operation 
effort required to make it operational.  Moreover, telco “way of working” led to monolithic VNF designs 
yielding in static and slow-to-respond systems.  However, the exercise of adoption for NFV has resulted in 
some important lessons learned: network functions should be "abstracted" to be technology-agnostic; the 
network should be decoupled from the application as much as possible; and applications need to be 
"stateless" rather than "stateful.  All this makes the case for building a “true Cloud Native” network function 
deployable on network cloud infrastructure.  

 

57 ..https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/Road-to-5G-Introduction-and-Migration_FINAL.pdf 

https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/Road-to-5G-Introduction-and-Migration_FINAL.pdf
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Figure 4.3.  Evolution to Cloud Native Ecosystem. 

In NFV 1.0, the network functions were deployed as VMs in conjunction with OpenStack. Operators who 
already started their NFV journey have deployed VNFs running on an OpenStack platform and probably 
made significant investment in building tooling capabilities for managing and operating the NFV platform.  
Such operators can be tempted to run Kubernetes in VMs as a quick extension to their existing OpenStack 
ecosystem to support CNFs. This approach for supporting CNFs within VMs can provide fully featured multi-
tenancy and security.  However, it comes at a huge cost of lost workload performance, complex networking, 
much lesser container density and additional workflow for managing VMs running Kubernetes (unable to 
completely utilize Cloud Native lifecycle practices).  This forces the industry to gravitate towards building 
co-existing OpenStack and Kubernetes platforms running VNFs and CNFs respectively in an independent 
fashion.  This co-existence model provides a better platform for heterogenous workload with an easy 
support framework.  However, horizontal legacy integration between CNF and VNF is challenging and lacks 
a unified resource view, leading to operational difficulties. Because of these limitations, the potential end 
state in the evolution of the Cloud Native deployment platform is Kubernetes replacing OpenStack as a 
single stack solution to manage heterogeneous workload. There are definite advantages to using 
Kubernetes stack as represented in CNF testbed results shown in Figure 4.4.58  

 

58 https://github.com/cncf/cnf-testbed/blob/master/comparison/doc/cncf-cnfs-results-summary.md 

 

https://github.com/cncf/cnf-testbed/blob/master/comparison/doc/cncf-cnfs-results-summary.md
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Figure 4.4. Performance Comparison of VNF on OpenStack and CNF on Kubernetes.59 

4.1.1 CHARACTERISTICES OF AN IDEAL CLOUD NATIVE NETWORK FUNCTION  

The telecommunications standards from 3GPP are in flux and gravitating towards Cloud Native 
architecture. As discussed in section 3, standards are not finalized for all of the 5GC CNFs to fully adhere 
to Cloud Native application architecture. For example, Rel-16 only prescribes control plane network 
functions to be of Cloud Native design.  

Current CNFs being developed can include a number of sub-optimal patterns such as:60 

Continued reliance on proprietary interfaces: The network functions, even those defined in Rel-16, will 
have proprietary interfaces based on 3GPP specific protocols which leads to design pattern not completely 
adhering Cloud Native architecture  

Stateful CNFs: In the near term, it may be hard for some of core network functions, like packet gateways, 
to be decoupled in nature.  Stringent carrier grade service level agreements also play role in applications 
being developed as stateful ones.  This is because it is hard to deliver fast, low latency storage in distributed 
architectures 

 

59 https://docs.google.com/presentation/d/1nsPINvxQwZZR_7E4mAzr-
50eFCBhbCHsmik6DI_yFA0/edit#slide=id.g5036f143e9_3_672 
60https://docs.google.com/presentation/d/1iAgzRp5eFv7LWmpR2u1Wy0LdhvB85SkKJBxXFSNH8XE/edit#slide=id.g51566346dd_1
_7. 

 

https://docs.google.com/presentation/d/1nsPINvxQwZZR_7E4mAzr-50eFCBhbCHsmik6DI_yFA0/edit#slide=id.g5036f143e9_3_672
https://docs.google.com/presentation/d/1nsPINvxQwZZR_7E4mAzr-50eFCBhbCHsmik6DI_yFA0/edit#slide=id.g5036f143e9_3_672
https://docs.google.com/presentation/d/1iAgzRp5eFv7LWmpR2u1Wy0LdhvB85SkKJBxXFSNH8XE/edit#slide=id.g51566346dd_1_7
https://docs.google.com/presentation/d/1iAgzRp5eFv7LWmpR2u1Wy0LdhvB85SkKJBxXFSNH8XE/edit#slide=id.g51566346dd_1_7
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No support for horizontal scalability: Horizontal scaling tends to be more complex than vertical scaling 
as it is fundamentally dependent on the application architecture.  This can be a challenge for transient CNFs 
as it is a break from a Cloud Native application architecture  

Proprietary installer: Installation and upgrades for CNF are being managed by proprietary scripts. These 
cannot be built into automated pipelines with configuration stored at multiple locations.  This is due to the 
application not supporting configuration management using environment variables  

Operators and their vendors should work towards defining the best practices around CNFs specifically for 
5GC, which should include following features:61 

• Compatible: CNFs should work with any Certified Kubernetes product and any Container Network 
Interface (CNI)-compatible network that meet their functionality requirements. This capability will 
allow for the CNFs to be easily deployed in a hybrid cloud due to infrastructure abstraction provided 
by the container orchestrator.  This would also enable cloud bursting capabilities if needed 

• Stateless: Handling of state separate from business logic of the CNF 
• Security: It is critical from a security perspective that all CNF-related workload containers should 

be able run with unprivileged (non-root) access. This prevents container breakout 
• Scaling: It should support horizontal scaling (across multiple machines) and vertical scaling 

(between sizes of machines) 
• Configuration and Lifecycle: Cloud Native management solutions like ConfigMaps,62 Operators,63 

or Helm64 are required to model, deploy and manage CNF workloads 
• Observability: Metrics, logs and traces should be a pillar of observability for deployed CNFs.  

Observability should comprise: 
o Monitoring: All performance metrics previously available via a proprietary interface should 

be shared through an OpenMetrics65 interface that Prometheus and other monitoring tools 
can use 

o Tracing: Support OpenTelemetry-compatible tracing 
o Logging: Support Fluentd-compatible logging 

• Hardware support: Built-in features of Kubernetes, like Extended Resource 66  and Device 
Plugins,67 should be utilized to provide extensibility for supporting high-performance hardware such 
as GPU, FPGA, NIC and InfiniBand in a unified manner for CNFs 

4.1.2 CONTAINER AS A SERVICE 

It can be gathered from the discussion regarding the best practices and features for CNFs in the previous 
section, that a lot of responsibility falls on the platform hosting them.  This is where Container-as-a-Service 
(CaaS) comes into the picture. CaaS can be considered as the latest cloud service model, somewhere 
between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS). CaaS is available as a 
complete package for supporting container infrastructure.  This allows for the management and deployment 

 

61https://docs.google.com/presentation/d/1iAgzRp5eFv7LWmpR2u1Wy0LdhvB85SkKJBxXFSNH8XE/edit#slide=id.g51566346dd_1
_13  
62 https://cloud.google.com/kubernetes-engine/docs/concepts/configmap 
63 https://kubernetes.io/docs/concepts/extend-kubernetes/operator/ 
64 https://helm.sh/ 
65 https://openmetrics.io 
66 https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#extended-resources 
67 https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/ 

https://cloud.google.com/kubernetes-engine/docs/concepts/configmap
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://helm.sh/
https://openmetrics.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#extended-resources
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
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of applications and clusters through containerization techniques hosted on any cloud platform(s) making 
up the Cloud Native infrastructure.  

The core of the CaaS is the container orchestrator solution. This provides all the functionalities and features 
for supporting complex container deployments in a production environment with support for self-healing 
(auto-starting, rescheduling and replication). Container orchestrator should be ideally hosted on an 
operating system optimized for running container workload with hardened security. RancherOS, CoreOS, 
SUSE MicroOS and RedHat Atomic are examples.  

CaaS fits the NFVI layer of the reference ETSI NFV architecture for supporting containerized workloads. 
The telecommunications industry is gravitating towards Kubernetes as their de-facto container orchestrator 
solution for CaaS. All the major telco vendors have come up with CaaS solutions of their own. RedHat’s 
OpenShift, Ericsson’s Cloud Container Distribution68 and Cisco’s Cloud Container Platform69 are examples.  
Their CaaS solutions support CNF workloads with telco-grade capabilities and have Kubernetes as the 
container orchestrator for each of their solutions. 

 

Figure 4.5. Cloud Native Telco Stack. 

The CaaS platform provides the following advantages: 

• Easier to support application’s lifecycle through providers’ API or web User Interface (UI 
• Greater degree of agility due to standardized functionality for on-premise or public clouds 
• Bundled as a turnkey solution for easy deployment and cluster management 

 

68 https://www.ericsson.com/en/portfolio/digital-services/cloud-infrastructure/cloud-container-distribution 
69 https://www.cisco.com/c/en/us/products/cloud-systems-management/container-platform/index.html 
 

https://www.ericsson.com/en/portfolio/digital-services/cloud-infrastructure/cloud-container-distribution
https://www.cisco.com/c/en/us/products/cloud-systems-management/container-platform/index.html
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• Offers all the power and leverage of standard, Open Source container technologies 

Along with the container orchestrator, Telco-grade CaaS bundles the following platform applications (Figure 
4.5):  

• an image catalog (also called the registry) 
• cluster management software, load balancer 
• pre-configured service mesh infrastructure layer 
• pre-integrated CNI plugins required for data plane acceleration 
• storage and security solutions. 

The CaaS installer creates production-ready clusters configured for high-availability. Platform applications 
are also responsible for providing observability and integration with DevOps pipelines.  All of this makes 
CaaS an uber-critical component for building a Cloud Native telco stack for hosting CNFs.  Ownership of 
the CaaS platform by the operator will make management and operation of 5G Cloud platform infrastructure 
easier, as it will allow for multi-vendor integration of CNFs on the same platform, prevent vendor lock-in and 
support vertical integration.  

4.2 CURRENT REALITY AND PROBLEMS 

While the previous section highlights the current best practices of Cloud Native applications to CNF (and 
for that matter VNF), it does not articulate the immaturity that this technology has with respect to its 
application in cellular networks. Figures 4.6 and 4.7 depict the problems currently faced with Cloud Native 
applications to network functions (let alone 5G).   

 

Figure 4.6. Cloud Native Stack: Application and Consolidation of a Cloud-Native Tooling.70 

 

70 (c) Cisco 2019 
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Figure 4.6 shows the Cloud Native stack, broken down into code, tool and infrastructure layers. It also 
shows two additional columns. The first one from the perspective of the application (in the case of 5G, the 
CNF or VNF) indicating where the application is sensitive to the Cloud Native stack. The second additional 
column represents how the multitude of tools and infrastructure could harmonize given time, in much the 
same way that Linux is viewed today.   

 

Figure 4.7. Cloud Native Stack – from a Perspective of where the Current Cloud Native Infrastructure Breaks 
Down and How it Impacts Cloud Native Applications (CNFs and VNFs).71 

Figure 4.7 also shows the Cloud Native stack and two additional columns. The first additional column shows 
where the Cloud Native stack has problems because of the need to match the Cloud Native stack to the 
variety of operational environments into which it is deployed.  The second additional column shows the 
consequential impact on the application. 

What this figure highlights, is that when cloud application developers/operators deploy into a web-scale 
public cloud, they do so once.  Meaning, that they choose their cloud platform and develop it exclusively.  
For example, they may choose Amazon Web Services (AWS) and then use the tooling provided by AWS 
to write and operate their application.  

As a result, these application developers/operators see a homogenous system.  That is not the case when 
a CNF/VNF vendor deploys into a specific Service Provider (SP) and finds a subtle variety of complex 
integration and deployment problems that need to be addressed.  How do these subtleties and complexities 
arise?  The following sections 4.2.1 and 4.2.2 offer explanations.  

4.2.1 CLOUD NATIVE PHILOSOPHY-RELATED ISSUES 

In one sense, the Cloud Native issues appear because the whole of the Cloud Native development 
philosophy has been applied without consideration of the actual deployment and operational environments.  

 

71 (c) Cisco 2019 
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In brief, the positive and negative aspects of Cloud Native from a network function perspective are 
summarized as follows: 

• Positive - Cloud Native has undeniably improved development, delivery and test, in-service 
upgrades and improved version management 

• Negative – the context in which Cloud Native was designed is being misrepresented or abused in 
two senses- 

o Cloud Native was designed for people who write and operate the applications.  In today’s 
cellular network, this clearly is not the case 

o Cloud Native was designed for applications in which long interruptions are tolerable, 
therefore, good reliability is measured in minutes of outage per month.  This is also 
clearly not the case for communications networks where the expectation is that outages 
last less than 5.26 minutes per year 

Moreover, this situation is compounded by the big and often overlooked point in the Cloud Native paradigm: 
that Cloud Native does not necessarily mean only containerization of workload.  The implication (and in a 
sense also a benefit) of containerization is that it does bring more commonality to the platform, therefore, 
the container has to bring along less for itself (the extreme of this are serverless, lambda functions, and 
functions as a service).72  What this also means in the SP environment, is that for Cloud Native to work, it 
will require greater harmonization of the tooling and infrastructure across all the SPs.  There is a long time 
before this point is achieved. 

 

4.2.2 AUTOMATION AND ORCHESTRATION ISSUES 

As described in in Section 1 on DevOps and CI/CD, automation at every stage of lifecycle with appropriate 
tooling is key to making Cloud Native a reality. This calls for a more robust strategy in place like re-alignment 
of an organization to support services/product (DevOps strategy) and re-tooling for onboarding, managing 
and operating CNFs in SP’s infrastructure.  

It appears that  standardised technology choices have been made for NFV orchestration without really 
understanding their impact on Cloud Native operation.  For example, ETSI VNFM orchestration is locked 
to the Heat and Topology and Orchestration Specification for Cloud Applications, an Organization for the 
Advancement of Structured Information Standards (TOSCA) standards.  Heat is a clone of AWS 
CloudFormation and a main project in OpenStack.73 CloudFormation was intended for applications.  It was 
not designed to keep the application running, nor scale, nor heal, and etcetera.  In short, CloudFormations, 
in its current form, was never really evolved to support “dynamic” orchestration.  The net effect is that ETSI 
took a tool intended to be the very beginning of orchestration and overloaded it with all of the other existing 
orchestration techniques available, leading to a bad design.   

Why is this a problem?  By comparison, for the cases ETSI MANO covers:  

• When starting an application, it cannot sequence the bring-up  

 

72 Serverless architecture (also known as serverless computing or function as a service, FaaS) is a software design pattern where 
applications are hosted by a third-party service, eliminating the need for server software and hardware management by the 
developer. Applications are broken up into individual functions that can be invoked and scaled individually:   
https://www.twilio.com/docs/glossary/what-is-serverless-architecture 
73 https://wiki.openstack.org/wiki/Heat 

https://www.twilio.com/docs/glossary/what-is-serverless-architecture
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• When running an application, it cannot repair failures beyond replacing components.  

For the cases ETSI MANO does not cover: 

• When trying an in-service-upgrade for an application, it is unable to do the fine-grained 
automation required (plus, the VNFM, as defined, does not cover upgrade) 

Moreover, simply making a VNF into a CNF solves none of these problems if the old ecosystem is utilized.  
Unfortunately, locking into just the ETSI MANO-based standard can possibly exacerbate the problem, 
rather than fix it, when moving to Cloud Native computing architecture. The standards must be evolved 
over time to accommodate management and orchestration of CNFs in more Cloud Native way.  

By contrast, Kubernetes is more flexible in dealing with the network functions deployed as microservices in 
a robust fashion, and need to be contended with as Cloud Native networking is remedied.  Kubernetes also 
provides a basic service concept of declarative infrastructure where state of object (create, delete, update) 
is managed by a manifest (YAML-based template) and check live state of object, for example, “keep three 
instances running at all times.”  This characteristic of Kubernetes brings self-healing to CNFs which has 
been a tall order for NFVO in current NFV deployment. YAML-based object declarations also bring 
Infrastructure as Code (IaC) to fore where CNF deployment and its configuration are managed as source 
code, allowing for better CI/CD integration and automation. 

Helm charts are used to define, install, and upgrade Kubernetes applications with packaging and 
configuration capabilities to make it very easy to share (similar to ansible modules). Kubernetes Operator74 
is an application specific controller which extends Kubernetes with service-specific behavior, for example, 
when updating databases, as “do these specific steps in order to preserve the data.”  In short, Kubernetes 
both provides basic orchestration and has an extending ecosystem of new types of orchestration that can 
be used for augmentation (Figure 4.6).  An example of such augmentation would be “automate Day 2 
lifecycle management of container applications similar to capabilities such as Generic-CNF manager to:75  

• Leverage Custom Resource Definitions to deploy Kubernetes native services that can access 
Kubernetes API events 

• Simpifly Operator Software Development Kit (SDK)76 creation of Operators in Go (or leverage Helm 
or Ansible automation)” 

 

74 https://coreos.com/blog/introducing-operators.html 
75  https://events.linuxfoundation.org/wp-content/uploads/2019/07/OSS2019-HS-k8sNativeInfra-OperatorFor5Gedge.pdf 
76 https://github.com/operator-framework/operator-sdk 

https://coreos.com/blog/introducing-operators.html
https://events.linuxfoundation.org/wp-content/uploads/2019/07/OSS2019-HS-k8sNativeInfra-OperatorFor5Gedge.pdf
https://github.com/operator-framework/operator-sdk
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Figure 4.8. Kubernetes Operator maturity Model.77 

4.2.3 HOW CAN WE MOVE FORWARD? 

While the previous sections indicate some issues, there is an opportunity to re-evaluate how to move 
forward and bring the benefits of Cloud Native and the present world of applications into the world of NFV. 
How different is a VNF/CNF from an application (therefore, necessary re-evaluation). In terms of Cloud 
Native infrastructure, Kubernetes was designed to make the running of conventional enterprise applications 
easy.  It was also designed to enable Cloud Native techniques in the building of applications. Two questions 
arise:  

• Can a network function built on Kubernetes, be equally easy to build and operate?  
• Can Cloud Native take advantage of the same techniques?   

To answer, an understanding of, what are the missing Cloud Native support structures from the perspective 
of the service provider network, is needed. 

4.2.4 ADDRESSING PLATFORM SHORTCOMINGS 

Running network functions on Cloud Native infrastructure platform comes with its own challenges due to 
the nature of the workload.  One of these challenges stems from the way platforms are run. Enterprise 
clouds are (usually) oversized and have spare capacity, whereas SP clouds are sized to their workloads.  
Moreover, in central Data Centers (DCs) workloads are large, and a small percentage of inefficiency can 

 

77 https://events.linuxfoundation.org/wp-content/uploads/2019/07/OSS2019-HS-k8sNativeInfra-OperatorFor5Gedge.pdf 
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generate a lot of Capital Expenditure (CAPEX) but can be usually tolerated.  Whereas, in SP edge DCs, 
every dollar spent is multiplied by hundreds or thousands of deployments. Therefore, efficient running of 
applications saves huge cost in service provider DCs, in particular those at the edge of the network, where 
the compute resource constraints are the biggest challenge.  

 

Figure 4.9. Key Kubernetes Solutions for NFV Compute Related Performance Requirement. 

Running specialized network functions like Deep Packet Inspection (DPI), Gateway, Radio Access Network 
(RAN) software and etcetera, demands that the container orchestrator be more platform-aware, so that it 
can provide: 

• deterministic and performant workload placement, along with  
• capabilities to manage more exotic hardware like Application-Specific Integrated Circuit (ASIC), 

SmartNICs (Network Interface Cards), Graphic Processsing Units (GPU), Field-Programmable 
Gate Array (FPGA), and etcetera 

A CPU manager for Kubernetes that provides basic core (compute) affinity for NFV workload is now 
available as part of the latest Kubernetes General Availability (GA) release (v1.5) and can help with 
workloads of the following specific characteristics:78 

• Sensitive to CPU throttling effects 
• Sensitive to context switches 
• Sensitive to processor cache misses 
• Benefiting from sharing processor resources (for example, data and instruction caches) 

 

78 https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/ 
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• Sensitive to cross-socket memory traffic 
• Sensitive or requiring hyper-threads from the same physical CPU core 

The noisy neighbor problem79 of running NFs in containers has been a priority concern and a deterrent in 
the adoption of CNF. This issue is being solved by the CPU isolation feature in Kubernetes which also helps 
improve performance (Figure 4.10). Furthermore, other challenges like Non-Uniform Memory Access 
(NUMA) node, node feature discovery, dynamic Huge page allocations, and etcetera, can now be managed 
natively from the Kubernetes (Figure 4.7).  This shows that quite a bit of work is being done by the Open 
Source community (LF, CNCF) to make Kubernetes the choice for network functions.  

 

Figure 4.10. Benchmark Testing Showcasing Performance Improvement Coming from CPU Pinning and CPU 
Isolation.80 

4.2.5 ADDRESSING NETWORKING RELATED ISSUES 

As indicated in the preceding section, there are also some networking and network performance issues that 
need to be addressed.  Kubernetes CNI is a plugin-based approach to networking with specifications and 
a set of libraries written in Golang, exposing 3rd party networking plugins. CNI’s only goal is to provide 
network reachability to containers and deallocate networking resources when containers cease to exist.  
CNI is very rigid about exposing the network interface, as only one interface with addressable IP assignment 
per Pod is allowed.  

Enterprise networking is trivial with Kubernetes, because it has found way of exposing the kernel's BSD 
(Berkeley) Socket as an API. However, NFV data planes pose a different problem.  For example, 
applications do packet-by-packet networking in an efficient user-space (Data Plane Development Kit or 
DPDK) data plane.  Where there are high volumes of traffic, switching packets to and from containers is 
often too expensive, since the resulting infrastructure networking is a huge consumer of CPU resources.  
Kubernetes currently does not have native feature functionality for fast data path networking. Moreover, 
NFV requires additional network features such as:  

• Exotic protocols (by enterprise application standards)  
o Stream Control Transmission Protocol (SCTP)  
o GPRS Tunneling Protocol (GTP) 
o Packet Forwarding Control Protocol (PFCP) 

 

79 The noisy neighbor problem is a term used to refer to the uneven cloud network performance of virtual machines and applications 
that results from sharing infrastructure. 
80 https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf. 
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o Bidirectional Forwarding Detection (BFD) 
• Unusual behavior (by enterprise application standards)  

o Uplink bonding via Link Aggregation Control Protocol (LACP) or Border Gateway Protocol 
(BGP) anycast  

o EXPRESS (EXplicitly REquested Single Source) Count Management Protocol (ECMP) 
between containers 

• Unusual addressing (by enterprise application standards)  
o Multiple addresses / loopbacks per container  
o Bump-in-wire 

Kubernetes was not designed for this type of construct. For example, it has no indigenous Cloud Native 
feature to address these use-cases ensuring that the network function operates as expected.  This has led 
to innovative solutions in terms of CNI plugins currently filling these gaps. 

From a CNI perspective, there are solutions which address such deficiencies, but have their own 
drawbacks, such as: 

• Contiv+Vector Packet Protocol (VPP) CNI plugin.  However, this does not support container-to-
container chains, pod-to-pod and node-to-node, nor container-to-container 

• Flannel CNI plugin. However, this is Internet Protoco Version 4 (IPv4) only 
• Cilium CNI plugin.  This only addresses Layer 3/4 
• Open Virtual Networking with Kubernetes using Open vSwitch (OVS).  This is overlay network 

only 
• Open vSwitch CNI plugin.This is not high performance, requires MULTUS, and manual L2/L3 

overlays 

Most of the CNIs mentioned do not address every problem related to CNF networking requirements. Since 
the way CNI is tailored is to address reachability by any means, it is not necessarily the most appropriate 
API for enhanced networking required by CNFs. 

Plugins like MULTUS and DANM81  allow for meta-plugin layers to the handle setting up of connectivity by 
attaching multiple network interfaces to pods.  This enables the provision of multiple interfaces to be 
exposed as required by a CNF to function. The problem with these plugins is that they are short term 
solutions for multiple network attachments per pod.  That said, there is a CNI plugin for DPDK with SR-IOV 
support. There is also a vhostuser CNI plugin which can support DPDK accelerated OvS or VPP. 

There are use cases, for example, where there is a need for finer-grained control of their lower-level 
networks at layer 2/layer 3. That is what the Network Service Mesh project aims to offer: the same 
discoverability, durability, configurability, and security as a service mesh but for layer 2/ layer 3. As the 
pathway to multi-cluster connectivity, Network Service Mesh can be used to essentially abstract the concept 
of a distributed service. Network Service Mesh is not yet delivering all of these, as its development is in the 
nascent stage. Network Service Mesh is designed to provides these “missing” Kubernetes networking 

 

81 For those interested, DANM actually does mean “Damn, Another Network Manager”.  https://github.com/nokia/danm#introduction 
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capabilities by using a simple set of APIs designed to facilitate connectivity: between containers running 
services or with external endpoints. 

4.3 A NOTE ON SECURITY 

5G Americas has already published two whitepapers that highlight 5G and security. These two papers cover 
the whole gamut of security in 5G from the perspective of the inherent 3GPP security architecture, from the 
resulting threat surface82 to the extension of security in a 5G slice environment.83  The Evolution of Security 
in 5G: a “Slice” of Mobile Threats is particularly relevant, in as much as the resulting slice instance could 
be the result of many SBA and micro-serviced functional interactions on a cloud platform.   

It is not the purpose of this white paper to go into the detail of 5G security (the previous two 5G Americas 
whitepapers have done this), or how security in cloud platforms have developed84 85 86 87 88. What is of greater 
relevance to this paper, are the cloud platform infrastructure contributions that are necessary for the security 
of the system.   

For example, because of the potential multi-tenant nature of slices, the security needs of such an 
environment are primarily satisfied though security isolation.89  In essence, this means implementing either 
policies for how CNFs/VNFs are run in the cloud, and/or, mechanisms that enforce where the application 
is run (the physical host, type of hardware, and etcetera).  

While security isolation advocates a pragmatic way of assessing how a cloud-native solution should be 
handled in shared infrastructure, it does not paint the complete picture of how security in Cloud Native 
environments is handled.  Since Cloud Native applications also have a CI/CD connotation to them, then 
security for these applications takes on a multi-layered approach.90  Paraphrasing that example heavily, we 
can see that security in cloud-native CI/CD environments has three layers- development, deployment and 
operational: 

Development layer-  The characteristics of this layer would include:  

• Secure DevOps - security policies and architectures to develop applications and workloads on the 
cloud with security applications to the application from inception  

• Automation - integrated automated provisioning of security policies, security technologies and 
vulnerability scanning as the application passes through staging to deployment   

Deployment layer- The characteristics of this layer would include:  

 

82 5G Americas, The Evolution of Security in 5G, October 2018. 
83 5G Americas, The Evolution of Security in 5G: a “Slice” of Mobile Threats, July 2019. 
84 Security as a Service Model for Cloud Environment, Vijay Varadharajan and Udaya Tupakula, IEEE Transactions on Network and 
Service Management, Volume 11, 2014. 
85 ISGcloud: a Security Governance Framework for Cloud Computing, Oscar Rebollo, et al, The Computer Journal, Volume 58, 
2015. 
86 Using Virtual Machine Allocation Policies to Defend against Co-Resident Attacks in CloudComputing, Yi Han et al, IEEE 
Transactions on Dependable and Secure Computing, Volume 14, 2017. 
87 Towards Achieving Data Security with the Cloud Computing Adoption Framework, Victor Chang and Muthu Ramachandran, IEEE 
Transactions on Services Computing, Volume 9, 2016. 
88 Cloud-Trust – a Security Assessment Model for Infrastructure as a Service (IaaS) Clouds, Dan Gonzales et al, IEEE Transactions 
onnCloud Computing, Volume 5, 2017. 
89 A Study of Security Isolation Techniques, Rui Shu, et al, ACM Computing Surveys, Vol 49, No. 3., October 2016. 
90 IBM, Deploying unified security in a hybrid cloud world: https://www.ibm.com/downloads/cas/M49Z0DBL   

https://www.ibm.com/downloads/cas/M49Z0DBL
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• Identity and Access Management – the application of uniform identity and access policies, for the 
deployed components across multiple platforms 

• Data Protection – security controls must be consistent across multiple platforms 
• Automated security and cloud workload management – security and software service solutions that 

leverage automation to (continually) scan for vulnerabilities and applicationly polices and security 
fixes across the cloud ecosystem at the appropriate scale 

• Visibility and intelligence – access and buildup of behavioral information on the application 
(visibility) such that anomalous behavior can be detected (intelligence)  

• Cloud network security – the same level of security exists across the system over which the 
application exists/runs 

Operational layer-  The characteristics of this layer would include:  

• Security operations and threat management - central policy management and visibility across cloud 
and workloads supported by a unified security framework 

Given the nature and architectural implications of Cloud Native functions, security for cloud-native functions 
has to be considered over the whole lifecycle of the functions.  

5. CONCLUSION   

The Cloud Native landscape as a technology has a rich Open Source-supporting ecosystem that has 
enabled the Cloud Native approach to build and run applications that fully exploit the various benefits and 
cost efficiency of the cloud computing model. This new model includes services architectures, 
infrastructure-as-code, automation, continuous integration/delivery pipelines, monitoring tools, and 
etcetera.  

Applications built and deployed with the Cloud Native pattern have some common characteristics: 

• They are composed of microservices, therefore, each application is a collection of small services 
that can be operated independently of one another.  Microservices are often owned by individual 
development teams that operate on their own schedule to develop, deploy, scale and upgrade 
services 

• Cloud Native applications are packaged in containers, aiming to provide isolation contexts for 
microservices. Containers are highly accessible, scalable, easily portable from one environment to 
another and fast to create or tear down.  This flexibility makes them ideal for building and running 
applications composed of microservices 

• Cloud-native applications are built and run on a continuous delivery model, supporting fast cycles 
of build, test, deploy, release, and develop.  This helps software service developers and 
infrastructure IT operations teams to collaborate with one another for building, testing and releasing 
software updates as soon as they are ready, without affecting end-users or developers of other 
teams. Such a model encourages the adoption of DevOps principles, fostering collaboration 
between software service developers and infrastructure IT operations.  This model also encourages 
the creation of a behavioral culture where building, testing and releasing services happlicationens 
more rapidly, frequently and consistently 

Cloud Native applications are dynamically managed, often built and run on modern platforms such as 
Kubernetes, which offer hardware decoupling, and which is critical in terms of deployment automation, 
scaling and management.  
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In the context of application developer-operators placing their workloads into public clouds run by large 
Web-scale cloud service providers, there is no doubt that this approach has been successful. 

However, in reviewing the requirements of 5G and applying the Cloud Native model, it is  an attractive 
direction for many reasons including flexibility, cost savings and efficiency. The model does not map 
completely to the SP’s mobile network operational needs.  That said, the standardization community for 5G 
has adopted a modular approach to the way the 5G core is architected, encouraging a Cloud Native 
approach to its implementation.  There are gaps, and the telecommunications industry is still on the Cloud 
Native journey as exemplified by Figure 5.1. 

 

Figure 4  Migration from Classical Networking Appliance to Cloud Native Network Function.91 

Cloud Native is being implemented and migration strategies are being employed as depicted in Figure 5.2.  
Some best practices and (predictably) some issues around the reality of deployment are explained in this 
report.  There are application dependencies on several layers of the Cloud Native stack, in particular, in the 
workflow management, container engine and minimal OS layers.  These dependencies need to be 
overcome if Cloud Native is to fulfil the expectations 5G implementation has placed on them.  Moreover, 
because the latest focus of the 3GPP standard (Rel-17) is on the application of 5G to enterprise and 
verticals, and when we consider market evidence such as that shown in Figure 5.2, there is a window of 
three to four years during which issues need to be resolved, if the required network flexibility is to truly 
unlock the (illusive) new 5G business models.   

 

91 © 2017 SCTE-ISBE and NCTA 
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Figure 5.25.  Expectation on the Migration to 5G Core.92 

The shift to the cloud-native mindset, especially for the telecom sector, will not be easy.  It will take a phased 
approach to reap the full benefits, with the onus on the operators deploying 5GC on a properly configured 
and controlled Cloud Native stack. It will require a massive effort in terms of re-architecting the network 
functions and re-tooling for automation and orchestration to be cloud ready. Only then will the true flexiblilty 
and cost efficiency benefits of moving to the Cloud Native infrastructure be realized. 

  

 

92 https://www.interdigital.com/white_papers/5g-deployment--service-strategies-an-operator-survey 
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 APPENDIX  

 A. ACRONYM LIST 

Acronym 
/Abbreviation Explanation 

3GPP Third Generation Partnership Project, global standards organization 

4G, 5G 4th Generation, 5th Generation 

5GC 5G Core 

5G-MoNArch 5G Mobile Network Architecture 

5GNR 5G New Radio 

5G PPP 5G Public and Private Partnership 

AF Application Function 

AMF Application Management Function 

API Application Programming Interface 

ARPU Average Revenue Per User 

ASIC Application-Specific Integrated Circuit 

AUSF AUthentication Server Function 

AVX Advanced Vector Extension 

BFD Bidirectional Forwarding Detection 

BSD Berkeley Socket 

CAPEX Capital Expenditure 

CI/CD Continuous Integration/Continuous Delivery 

CIM Cloud Infrastructure Manager 

CNCF Cloud Native Computing Foundation 

CNF Cloud Native Network Function 

CNFFG Cloud Native Network Function Forwarding Graph 

CNFI Cloud Native Network Function Infrastructure 

CNFM Cloud Native Network Function Manager 

CNFMS Cloud Native Network Function MicroServices 

CNI Container Network Interface 
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COTS Common Off The Shelf 

CRUD Create Read Update Delete 

(C)SP (Communication) Service Provider, e.g. AT&T, Telefonica, T-Mobile, Sprint, and 
etcetera 

CUPS Control and User Plane Separation 

CPU Computer Processing Unit 

DC Data Center 

DDD Domain-Driven Design 

DevOps Development and Operations 

DPDK Data Plan Developers Kit 

DPI Deep Packet Inspection 

EPC Enhanced Packet Core 

eSBA enhanced Service Based Architecture 

ETSI European Telecommunication Standards Institute 

FPGA Field Programmable Gate Array 

FUD Fear Uncertainty and Doubt 

F/W Firewall 

GA General Availability 

GPUs Graphic Processing Units 

GTP GPRS Tunneling Protocol 

IaC Infrastructure as Code 

IDL Interface Description Language 

IP Internet Protocol 

IPv4 Internet Protocol version 4 

IT Internet Technology 

LF Linux Foundation 

NEF Network Exposure Function 

NFV Network Function Virtualization 

NFVI Network Function Virtualization Infrastructure  
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NFVO Network Function Virtualization Orchestrator 

NGC Next Generation Core 

NGMN Next Generation Mobile Network Alliance 

NSSF Network Slice Selection Function 

NRF Network Resource Function 

NSA Non-Standalone 

NUMA Non-Uniform Memory Access 

MANO Management And Orchestration  

MC Mobile Core 

MOU Memorandum of Understanding 

NGC Next Generation Core or 5G Next Generation Core (also 5GC) 

OS Operating System 

PCF Policy Control Function 

PFCP Packet Forwarding Control Protocol 

PPS Packets Per Second 

QAT Quick Access Toolbar 

QoS Quality of Service 

RAM Random Access Memory 

RAN Radio Access Network 

RESTful Representational State Transfer conforming Web services 

SA Standalone 

SBA Service Based Architecture 

SBI Service-Based Interface 

SCTP Stream Control Transmissiom Protocol 

SDK Software Development Kit 

SDN Software Defined Networking  

SmartNICs Smart Network Interface Cards 

SMF Session Management Function 

SOA Service Oriented Architecture 
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SR-IOV Single Rool I/O Virtualization Standard 

TCP/IP Transmission Control Protocol/Internet Protocol 

TOSCA Topology and Orchestration Specification for Cloud Applications (Organization 
for the Advancement of Structured Information Standards) 

TUG Telecom User Group 

UDM Unified Data Management  

UE User Equipment 

UPF User Plane Function 

VM Virtual Machine 

VNF Virtual Network Function 

VPP Vector Packet Protocol 

YAML YAML Ain’t Markup Language 
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