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Introduction
This paper presents simulation results for AI/ML based beam management. The simulation assumptions were agreed during the last couple of meetings [1][4].
Simulation Setting for Performance Requirements
RAN4 has, so far, focused on dense urban macro channel to simulate and investigate the performance of spatial only beam prediction. System level channel is more realistic for field deployment.
On the other hand, RAN4 has not calibrated system level channel for FR2 OTA testing. RAN4 has calibrated Umi CDL-C channel for FR2 MIMO OTA testing and captured it in Table D.1-1 of 38.151.
RAN4 has already agreed to focus on CDL based channel model as a starting point for testing of BM-case 1.
	Issue 4-2: Channel model
Agreement:
Use CDL-based channel model as starting point


 
Hence, RAN4 should define performance requirement based on the worst-case performance of dense urban macro and CDL/simplified CDL channels. This will allow RAN4 requirement to be realistic and achievable in a test chamber.
Observation 1: RAN4 is currently focusing on system level channel, e.g., dense urban macro, to simulate and investigate the performance of spatial only beam prediction.
Observation 2: AI-ML beam prediction requirement defined based on system level channel is more realistic for field deployment.
Observation 3: RAN4 has not calibrated system level channel for FR2 OTA testing. RAN4 has calibrated UMi CDL-C channel for FR2 MIMO OTA testing and captured it in Table D.1-1 of 38.151.
Observation 4: RAN4 has already agreed to focus on CDL based channel model as a starting point for testing. 
Proposal 1: RAN4 agrees CDL-based channel model to test AI-ML BM performance.
Proposal 2: Accuracy of AI-ML BM-case 1 is defined based on the worst-case performance of two test dataset where datasets come from following two scenarios:
· Dense urban macro 
· Note: This is currently under consideration and captured in the recently agreed simulation assumption of R4-2508081
· CDL-based channel model (details are TBD)
· Note: The UMi CDL-C channel of Table D.1-1 of 38.151 can be used as a starting point (shown in Table 1)

Table 1: Channel model parameters for UMi CDL-C at 28 GHz
	Cluster #
	Absolute Delay [ns]
	Power in [dB]
	AOD in [°]
	AOA in [°]
	ZOD in [°]
	ZOA in [°]

	1
	0
	-4.4215
	-30.4353
	-134.4434
	98.9242
	83.3318

	2
	12.594
	-1.25
	-20.9269
	129.1633
	99.1915
	72.5229

	3
	13.314
	-3.4684
	-20.9269
	129.1633
	99.1915
	72.5229

	4
	13.974
	-5.2294
	-20.9269
	129.1633
	99.1915
	72.5229

	5
	13.056
	-2.5215
	-28.0782
	-152.8206
	99.5732
	71.1282

	6
	38.196
	0
	-11.6982
	164.1145
	99.306
	74.7544

	7
	38.688
	-2.2185
	-11.6982
	164.1145
	99.306
	74.7544

	8
	39.36
	-3.9794
	-11.6982
	164.1145
	99.306
	74.7544

	9
	39.504
	-7.4215
	17.3861
	84.3647
	100.4513
	69.2454

	10
	47.61
	-7.1215
	-37.5865
	92.0623
	98.5616
	66.7349

	11
	49.278
	-10.7215
	20.2226
	-97.7585
	100.6231
	72.0348

	12
	56.016
	-11.1215
	-50.6106
	78.4702
	98.218
	64.4337

	13
	73.71
	-5.1215
	-33.911
	93.1719
	100.165
	85.4238

	14
	78.498
	-6.8215
	-37.5066
	-112.0441
	100.2604
	64.1548

	15
	130.224
	-8.7215
	-43.1797
	102.4645
	98.1225
	64.7824

	16
	162.63
	-13.2215
	29.2116
	67.2359
	100.2604
	92.467

	17
	255.534
	-13.9215
	27.8133
	34.5731
	98.4852
	65.6889

	18
	276.018
	-13.9215
	23.6584
	48.5813
	98.1416
	68.7572

	19
	329.412
	-15.8215
	-52.5282
	36.4455
	97.9698
	59.1339

	20
	336.462
	-17.1215
	25.0168
	52.6729
	100.7376
	65.3402

	21
	378.39
	-16.0215
	25.4562
	49.8296
	98.1225
	58.4365

	22
	398.244
	-15.7215
	30.7697
	46.4316
	98.1034
	65.2705

	23
	422.562
	-21.6215
	35.9234
	30.759
	100.4513
	62.6903

	24
	519.138
	-22.8215
	-61.2775
	69.2469
	100.9476
	61.993

	Per-Cluster Parameters

	Parameter
	CASD in [°]
	CASA in [°]
	CZSD in [°]
	CZSA in [°]
	XPR in [dB]
	

	Value
	0.799
	10.4021
	0.5726
	4.8814
	7
	





RAN4 has not yet discussed RX beamforming assumptions for the simulations. UE and chip vendors need to pass RAN4/RAN5 conformance tests with their individual RX beamforming codebook. Hence, RAN4 spec should give UE vendor the flexibility to use their individual RX beamforming codebook while reporting simulation results. The specific RX beamforming codebook should be transparent in the simulation assumptions.
Proposal 3: RAN4 allows each company the flexibility to use individual RX beamforming codebook while reporting simulation results.

Simulation Results and Error Modeling

Simulation Framework

RAN4 agreed to the following simulation framework during a previous meeting [5].
	The following cases are treated as the candidate Options: 
· Case 1: No error will be considered in training dataset, model input during inference and ground-truth.
· Case 2: 
· Case 2a No error will be considered in training dataset and ground-truth. Error will be considered in model input during inference
· Case 2b No error will be considered in training dataset and ground truth for training. Error will be considered in model input during inference and ground-truth for inference
· Case 3: Error will be considered in training dataset, model input during inference and ground-truth.





The goal of this simulation framework is to investigate the impact of measurement error on beam prediction metrics. The consideration of measurement error can appear in three forms.
· Case 1:
· Training data: No error
· Testing data: Includes measurement errors
· Ground truth for training and testing: No error 
· Case 2:
· Training data: Includes measurement error
· Testing data: Includes measurement error
· Ground truth for training and testing: No error
· Case 3:
· Training data: Includes measurement error
· Testing data: Includes measurement error
· Ground truth for training and testing: Includes measurement error
If testing data includes measurement error, UE should train its model based on a dataset that includes measurement error, too. Hence, RAN4 should investigate training with measurement error, too.
In a real FR2 AI-ML BM test, ground truth will be decided based on UE’s report. RAN4 already agreed to this concept in the context of ground truth for predicted RSRP in [5]


	· Agreement
· The ground truth for the predicted RSRP is the ideal measurement of RSRP on the predicted Tx beam
· In RAN4, the ground truth is the approximate as the reported RSRP measurement under the certain SNR on the predicted Tx beam
· FFS on SNR level to ensure that SNR is high enough for sufficient accuracy of reported RSRP
· FFS on impact of multiple-AoA test setup
· FFS on the channel condition
· FFS on whether the ground truth will be changing or not
· Other solutions are not precluded



Baseband error will decrease at high SNR. However, RF error may not decrease at high SNR because UE’s Rx AGC settings might be calibrated for a particular SNR value. 
Observation 5: Baseband error will reduce at high SNR.
Observation 6: RF error may not decrease at high SNR because UE’s Rx AGC settings might be calibrated for a particular SNR value. 
Since ground truth will be based on UE’s report and UE’s reported RSRP will always include RF error that may not decrease with SNR, it would make sense to investigate where the ground truth during training and testing include measurement error. That means, RAN4 should investigate realistic performance based on case 3 of last meeting where training and testing dataset, along with ground truth during training and testing include measurement error.
Observation 7: Ground truth will be based on UE’s report and UE’s reported RSRP will include RF error that may not decrease with SNR.
Proposal 4: 
· RAN4 defines performance based on case 3 of last meeting where measurement error will be considered in training dataset, model input during inference and ground-truth during training and testing.

Baseband Error Modelling
RAN4 focused on following two different options to investigate the impact of baseband error distribution on AI-ML beam prediction accuracy.

	Option 1: Apply error distribution from the post beamforming SNR of the strongest Tx-Rx beam pair to all Tx-Rx beam pair’s measurements in the SLS

Option 2: Generate error distribution separately for each individual Tx-Rx beam pair’s SNRs and apply to the corresponding Tx-Rx beam pair measurement in the SLS



We use option 2 in this contribution, i.e., we generate baseband error distribution separately for each individual TX-RX beam pair’s SNRs, model these distributions as Gaussian distributions and then apply the distributions to the corresponding Tx-Rx beam pair measurement in the SLS.
Just for illustration purposes, we show the distribution of baseband error at -3 dB with AWGN and TDL-C in Figure [2] and [3] respectively.
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Figure 2: Baseband absolute error distribution of SSB L1-RSRP at AWGN (-3 dB SNR, curve fitted with zero mean normal distribution and sigma = 0.6 dB)
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Figure 3: Baseband absolute error distribution of SSB L1-RSRP (TDL-C, -3 dB SNR, curve fitted with normal distribution and mean = -0.12 dB and sigma = 0.85 dB)

Observation 8: Baseband error at different SNRs can be modelled with Gaussian distribution. For example, at -3 dB SNR, the distribution of absolute baseband measurement error can be fitted with following Gaussian distributions:
· AWGN: Gaussian with zero mean and sigma = 0.6 dB
· TDL-C: Gaussian with mean = -0.12 dB and sigma = 0.85 dB
RF Error Modeling

RAN4 made the following agreement regarding RF error modelling. This shows that the assumed RF error for each TX beam would be independent.
	The impact of RF errors should be considered. Following assumptions can be used to generate RF errors.
· Truncated Gaussian distribution under ±4.5 dB RF error (=4.5) is used
Each TX beam are Independent



RAN4 is assuming the following for UE antenna port assumptions:
	Antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 



It is not clear how companies are applying RF error to received signal at two ports for each UE. This can be done in three different ways:
· RF error model-1: First, add RF error to received signal of each RX port. Thereafter, combine the received signal of two RX ports later.
· RF error is independent across two RX ports.
· RF error model-2: First, add RF error to received signal of each RX port. Thereafter, combine the received signal of two RX ports later.
· RF error is same across two RX ports.
· RF error model-3: Combine the received signal of two RX ports. Thereafter, add RF error to the received signal.
Results with measurement error will vary depending on the assumed RF error model. We show results with RF error model-1 and RF error model-2 in our contribution.
Observation 9: RAN4 aligns the RF error modelling assumptions among following three options:
· RF error model-1: First, add RF error to received signal of each RX port. Thereafter, combine the received signal of two RX ports later.
· RF error is independent across two RX ports.
· RF error model-2: First, add RF error to received signal of each RX port. Thereafter, combine the received signal of two RX ports later.
· RF error is same across two RX ports.
· RF error model-3: Combine the received signal of two RX ports. Thereafter, add RF error to the received signal.


2.4.3 Simulation Results
2.4.3.1 Simulation Assumptions

Table 2 displays the simulation parameters that we used in this study.

Table 2: Baseline System Level Simulation assumptions for AI/ML in “spatial only” beam prediction evaluations
	Parameter
	Value

	Frequency Range
	FR2 @ 30 GHz; SCS: 120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	Channel model
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	3km/h

	UE distribution
	100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	Antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ 
Number of BS beams: 32 

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	Antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 
Number of UE beams: 4 downlink Rx beams per UE panel at UE side. 

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Inter-panel calibration for UE
	Ideal

	BS Tx Power
	40 dBm 


	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200 m

	BS Antenna height
	25 m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB

	Scenario
	Dense Urban (macro-layer only, TR 38.913) 

	AoDs of Set A and Set B (°)
	· Set A: 

· 4 elevation DFT beams: [106.25, 118.75, 131.25, 143.75]
· 8 azimuth DFT beams: [-52.5, -37.5, -22.5, -7.5, 7.5, 22.5, 37.5, 52.5]
· Set B [(azimuth, elevation)]: 
[(-52.5, 143.75), (-37.5, 131.25), (-22.5, 118.75), (-7.5, 106.25), (7.5, 143.75), (22.5, 131.25), (37.5, 118.75), (52.5, 106.25)

	Beam pattern legend for Set A and Set B
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	Baseline for performance evaluation
	 
Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping) 




2.4.3.2 Definition 

Table 3 shows the definition of different metrics for which we generated results in this contribution.
Table 3: Definitions of Metrics for AI-ML based Beam Prediction
	Metric
	Definition

	L1-RSRP absolute accuracy
	90%-tile L1-RSRP difference between the predicted L1-RSRP of the Top-1 predicted beam and the ground truth L1-RSRP of the same beam.


	Worst case L1-RSRP absolute accuracy among top-K predicted beams
	90%-ile of the worst case L1-RSRP difference between the predicted L1-RSRP of the top-K predicted beams and the ground truth L1-RSRP of the same beams. 
This gets calculated in following steps:
· In one sample of inference reporting, assume I = arg max_{k \in K} (predicted RSRP of beam k – ground truth of beam k)
· Store (predicted RSRP of beam I – ground truth of beam I) for this sample of inference
· Report 90%-ile distribution of above metric

	Relative L1-RSRP of beam owning the 2nd largest predicted reported value 
	90%-ile of following metric: 
(predicted L1-RSRP of beam index i - predicted L1-RSRP of beam index n) -  (ground truth of L1-RSRP of beam index i - ground truth of L1-RSRP of beam index n), [where the beam index n owns the largest reported value].


	Top K/1 without margin
	The percentage of the time when the Top-1 strongest beam (ground truth based) is one of the Top-K predicted beams

	Top 1/K without margin
	The percentage of the time when the Top-1 predicted beam is one of the Top-K strongest beams (ground truth based)

	Top K/N (m) without margin
	The percentage of the time when the Top-K predicted beams contain m of the top-N strongest beams (ground truth based)

	Top 1/1 with margin of X dB

	The successful rate for the correct prediction which is considered as maximum ideal RSRP among top-1 predicted beams is larger than the ideal RSRP of the strongest genie-aided beam – x dB




2.4.4.3. Results
Observation 10: Table 4 contains the results in “narrow” to “narrow” beam prediction scenario.
Table 4: Results of AI-ML based “spatial only” beam prediction (“narrow” to “narrow” scenario)
	Metrics
	Training and testing without measurement error
	Training and testing dataset, along with ground truth for training and testing, with measurement error
(RF error model-1)
	Training and testing dataset, along with ground truth for training and testing, with measurement error
(RF error model-2)

	L1-RSRP absolute accuracy (dB)
	+- 3.72
	+- 4.6
	+- 5.7

	Top K/1 without margin (%)
	K = 1
	78.25
	71.3
	63.79

	
	K = 3
	95.6
	93.6
	90.65

	
	K = 5
	98
	97
	95.68

	Top 1/1 with margin of X dB (%)
	X = 1
	87.45
	80.53
	72.44

	
	X = 3
	94.93
	91.43
	85.1

	
	X = 5
	96.94
	95.39
	91.85




Conclusions

Observation 1: RAN4 is currently focusing on system level channel, e.g., dense urban macro, to simulate and investigate the performance of spatial only beam prediction.
Observation 2: AI-ML beam prediction requirement defined based on system level channel is more realistic for field deployment.
Observation 3: RAN4 has not calibrated system level channel for FR2 OTA testing. RAN4 has calibrated UMi CDL-C channel for FR2 MIMO OTA testing and captured it in Table D.1-1 of 38.151.
Observation 4: RAN4 has already agreed to focus on CDL based channel model as a starting point for testing. 
Observation 5: Baseband error will reduce at high SNR.
Observation 6: RF error may not decrease at high SNR because UE’s Rx AGC settings might be calibrated for a particular SNR value. 
Observation 7: Ground truth will be based on UE’s report and UE’s reported RSRP will include RF error that may not decrease with SNR.
Observation 8: Baseband error at different SNRs can be modelled with Gaussian distribution. For example, at -3 dB SNR, the distribution of absolute baseband measurement error can be fitted with following Gaussian distributions:
· AWGN: Gaussian with zero mean and sigma = 0.6 dB
· TDL-C: Gaussian with mean = -0.12 dB and sigma = 0.85 dB

Observation 9: RAN4 aligns the RF error modelling assumptions among following three options:
· RF error model-1: First, add RF error to received signal of each RX port. Thereafter, combine the received signal of two RX ports later.
· RF error is independent across two RX ports.
· RF error model-2: First, add RF error to received signal of each RX port. Thereafter, combine the received signal of two RX ports later.
· RF error is same across two RX ports.
· RF error model-3: Combine the received signal of two RX ports. Thereafter, add RF error to the received signal.

Table 2: Definitions of Metrics for AI-ML based Beam Prediction
	Metric
	Definition

	L1-RSRP absolute accuracy
	90%-tile L1-RSRP difference between the predicted L1-RSRP of the Top-1 predicted beam and the ground truth L1-RSRP of the same beam.


	Worst case L1-RSRP absolute accuracy among top-K predicted beams
	90%-ile of the worst case L1-RSRP difference between the predicted L1-RSRP of the top-K predicted beams and the ground truth L1-RSRP of the same beams. 
This gets calculated in following steps:
· In one sample of inference reporting, assume I = arg max_{k \in K} (predicted RSRP of beam k – ground truth of beam k)
· Store (predicted RSRP of beam I – ground truth of beam I) for this sample of inference
· Report 90%-ile distribution of above metric

	Relative L1-RSRP of beam owning the 2nd largest predicted reported value 
	90%-ile of following metric: 
(predicted L1-RSRP of beam index i - predicted L1-RSRP of beam index n) -  (ground truth of L1-RSRP of beam index i - ground truth of L1-RSRP of beam index n), [where the beam index n owns the largest reported value].


	Top K/1 without margin
	The percentage of the time when the Top-1 strongest beam (ground truth based) is one of the Top-K predicted beams

	Top 1/K without margin
	The percentage of the time when the Top-1 predicted beam is one of the Top-K strongest beams (ground truth based)

	Top K/N (m) without margin
	The percentage of the time when the Top-K predicted beams contain m of the top-N strongest beams (ground truth based)

	Top 1/1 with margin of X dB

	The successful rate for the correct prediction which is considered as maximum ideal RSRP among top-1 predicted beams is larger than the ideal RSRP of the strongest genie-aided beam – x dB



Observation 10: Table 4 contains the results in “narrow” to “narrow” beam prediction scenario.
Table 4: Results of AI-ML based “spatial only” beam prediction (“narrow” to “narrow” scenario)
	Metrics
	Training and testing without measurement error
	Training and testing dataset, along with ground truth for training and testing, with measurement error
(RF error model-1)
	Training and testing dataset, along with ground truth for training and testing, with measurement error
(RF error model-2)

	L1-RSRP absolute accuracy (dB)
	+- 3.72
	+- 4.6
	+- 5.7

	Top K/1 without margin (%)
	K = 1
	78.25
	71.3
	63.79

	
	K = 3
	95.6
	93.6
	90.65

	
	K = 5
	98
	97
	95.68

	Top 1/1 with margin of X dB (%)
	X = 1
	87.45
	80.53
	72.44

	
	X = 3
	94.93
	91.43
	85.1

	
	X = 5
	96.94
	95.39
	91.85






Proposal 1: RAN4 agrees CDL-based channel model to test AI-ML BM performance.
Proposal 2: Accuracy of AI-ML BM-case 1 is defined based on the worst-case performance in following two scenarios:
· Dense urban macro 
· Note: This is currently under consideration and captured in the recently agreed simulation assumption of R4-2508081
· CDL-based channel model (details are TBD)
· Note: The UMi CDL-C channel of Table D.1-1 of 38.151 can be used as a starting point (shown in Table 1)

Table 1: Channel model parameters for UMi CDL-C at 28 GHz
	Cluster #
	Absolute Delay [ns]
	Power in [dB]
	AOD in [°]
	AOA in [°]
	ZOD in [°]
	ZOA in [°]

	1
	0
	-4.4215
	-30.4353
	-134.4434
	98.9242
	83.3318

	2
	12.594
	-1.25
	-20.9269
	129.1633
	99.1915
	72.5229

	3
	13.314
	-3.4684
	-20.9269
	129.1633
	99.1915
	72.5229

	4
	13.974
	-5.2294
	-20.9269
	129.1633
	99.1915
	72.5229

	5
	13.056
	-2.5215
	-28.0782
	-152.8206
	99.5732
	71.1282

	6
	38.196
	0
	-11.6982
	164.1145
	99.306
	74.7544

	7
	38.688
	-2.2185
	-11.6982
	164.1145
	99.306
	74.7544

	8
	39.36
	-3.9794
	-11.6982
	164.1145
	99.306
	74.7544

	9
	39.504
	-7.4215
	17.3861
	84.3647
	100.4513
	69.2454

	10
	47.61
	-7.1215
	-37.5865
	92.0623
	98.5616
	66.7349

	11
	49.278
	-10.7215
	20.2226
	-97.7585
	100.6231
	72.0348

	12
	56.016
	-11.1215
	-50.6106
	78.4702
	98.218
	64.4337

	13
	73.71
	-5.1215
	-33.911
	93.1719
	100.165
	85.4238

	14
	78.498
	-6.8215
	-37.5066
	-112.0441
	100.2604
	64.1548

	15
	130.224
	-8.7215
	-43.1797
	102.4645
	98.1225
	64.7824

	16
	162.63
	-13.2215
	29.2116
	67.2359
	100.2604
	92.467

	17
	255.534
	-13.9215
	27.8133
	34.5731
	98.4852
	65.6889

	18
	276.018
	-13.9215
	23.6584
	48.5813
	98.1416
	68.7572

	19
	329.412
	-15.8215
	-52.5282
	36.4455
	97.9698
	59.1339

	20
	336.462
	-17.1215
	25.0168
	52.6729
	100.7376
	65.3402

	21
	378.39
	-16.0215
	25.4562
	49.8296
	98.1225
	58.4365

	22
	398.244
	-15.7215
	30.7697
	46.4316
	98.1034
	65.2705

	23
	422.562
	-21.6215
	35.9234
	30.759
	100.4513
	62.6903

	24
	519.138
	-22.8215
	-61.2775
	69.2469
	100.9476
	61.993

	Per-Cluster Parameters

	Parameter
	CASD in [°]
	CASA in [°]
	CZSD in [°]
	CZSA in [°]
	XPR in [dB]
	

	Value
	0.799
	10.4021
	0.5726
	4.8814
	7
	



Proposal 3: RAN4 allows each company the flexibility to use individual RX beamforming codebook while reporting simulation results.
Proposal 4: 
· RAN4 defines performance based on case 3 of last meeting where measurement error will be considered in training dataset, model input during inference and ground-truth during training and testing.
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