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Introduction
In RAN#108, RAN plenary approved a new RAN working group level SID on 6G Radio [RP-251881], which has been further revised into [RP-252912] in RAN#109. Specifically, AI/ML is the indispensable enabler for 6G RAN, for which at least AI/ML framework and new AI/ML use cases are highlighted as key aspects to be studied, with objectives provided as follows [RP-252912]: 
	(8) AI/ML for 6GR and Radio Access Network, leveraging 5G AI/ML framework, as appropriate [See TR38.843] [RAN1, RAN2, RAN3, RAN4]
a) Identify Use Case(s) of interest (either existing or new) with compelling trade-off between e.g., performance, complexity, etc… 
Coordinated discussion needs to be ensured with related design areas, where needed (e.g., MIMO, Mobility, etc…)
NOTE: lead WG depends on the use case.
b) AI/ML framework: Extensible AI/ML enablers based on the identified Use Case(s), including
i. LCM procedures [RAN2, RAN1, RAN3, RAN4]
ii. Data collection and data management, in coordination with SA WGs [RAN2, RAN3, RAN1]
Note: NW for AI is assumed to be covered by new services
6GR and RAN design shall ensure that the 6G System can also operate without AI/ML



In this topic summary, it is intended to include the summary for 6G RAN4 AI topic. 

Note: In the meeting, the updated running summary [R4-2601166] is provided to include the status update for 6G RAN4 AI/ML issues and summary of RAN4 and other WGs’ updated key agreements. 
Pre-meeting FL Summary
Topic #1: General aspects
Issue 1-1: Expected RAN4 AI/ML outcomes to RAN#111
[Background Summary] 
During RAN#110, discussion was held on down-selection of AI/ML use cases at 6G WG level, and the way forward (noted but not endorsed) was accordingly drafted by RAN1/2/3/4 chairs as below for information: 
	· The WG chairs will bring to the March RAN#111 plenary the AI/ML uses cases from their respective WGs
· For each use case, ideally the WG chairs identify:
· Use case and description.  Identification of sub-cases as well.
· Observations on benefits and/or gain (if available) /complexity/standardization effort required
· Impacted working groups - work required by other WGs to complete the study 
· At RAN#111 Plenary to discuss the various use cases and attempt an initial prioritization 



[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Samsung
	R4-2601167
	P5, P6



[Company Proposal Summary]
· RAN4 AI/ML group shall provide a list of RAN4-identified use cases under RAN4 discussion with priority, accordingly which can be used to be provided to RAN#111. [Samsung (P5)]
· For each use case within RAN4-identified use case list, the following information template should be used to provide necessary information to RAN#111. [Samsung (P6)]
	· RAN4-identified Use case
	Name, and identification of sub-cases as well

	Supported companies
	Company-A, B, …

	Use case description
	AI model input
	

	
	AI model output
	

	
	Label
	

	
	Training type
	e.g., offline training, online training, offline training with online refining

	
	Model location for inference
	e.g., NW-sided, UE-sided, two-sided model

	
	Collaboration/interaction between UE and NW
	e.g., network indication, UE capability reporting, etc.

	Observations on benefits and/or gain
	

	Observations on complexity
	

	Standardization effort required
	e.g., System-level simulation, etc.

	Potential RAN4 spec impact
	

	Impacted other working groups
	If yes, elaborate work required by other WGs to complete the study



[FL Recommended Discussion Point]
· Discuss the above proposals and align companies’ view the expected outcome from RAN4#118. 
Agreement:
Use the following template to summarize the identified RAN4-led 6G AI use cases for study.
	· RAN4-identified Use case
	Name, and identification of sub-cases as well

	Supported companies
	Company-A, B, …

	Use case description
	AI model input
	

	
	AI model output
	

	
	Label
	

	
	Training type
	e.g., offline training, online training, offline training with online refining

	
	Model location for inference
	e.g., NW-sided, UE-sided, two-sided model

	
	Collaboration/interaction between UE and NW
	e.g., network indication, UE capability reporting, etc.

	Observations on benefits and/or gain
	

	Observations on complexity
	

	Standardization effort required
	e.g., System-level simulation, etc.

	Potential RAN4 spec impact
	

	Impacted other working groups
	If yes, elaborate work required by other WGs to complete the study



Issue 1-2: Principle for further use cases selection/down-selection
[Background Summary] 
The following agreement on two-stage timeline and principle for AI/ML use case selection is achieved in RAN4#116bis.
	Issue 1-2: RAN4 6G AI/ML study timeline
Agreement:
· RAN4 timeline for Rel-20 6G AI/ML study
· Stage 1: Q4'25 and Q1'26
· To clarify study scope for RAN4 AI/ML framework
· To select the top-prioritized RAN4-led AI/ML use cases, with the detailed evaluation plan concluded for Stage-2
· Stage 2: Q2’26 to Q2’27
· To analyse and conclude RAN4 AI/ML framework (including RAN4 aspects for LCM procedures and other RAN4 specific issues)
· To study comprehensively the RAN4-led use case(s) selected in Stage 1.
· Other new use case(s) are not precluded depending on the consensus and the limited RAN4 bandwidth
· Based on the agreement and/or the request from other WG, RAN4 will study the selected other WG-driven use cases with RAN4 analysis and evaluation. RAN4 related bandwidth limitation should be taken into consideration.

Issue 3-1: Principle for AI/ML use cases selection
Agreement: 
· Principles for AI/ML RAN4-driven use cases selection
· RAN4 shall closely coordinate with other WG and strive not to duplicate the efforts 
· RAN4 should work with other WG to clarify the split between RAN4 driven AI/ML work and RAN1/2/3 driven work.
· Coordinated discussions with RAN1/2/3 are required to avoid overlapping scope.
· Typical RAN4-driven use case shall
· ensure performance gain or gain from other aspects, by focusing on some RF/Demod/RRM topics
· Prioritize the use case by taking into account: 
· use cases with gain over non-AI counterpart 
· gain may include performance gain or gain from other aspects, like overhead reduction.
· trade-off between performance and complexity/overhead should also considered. 
· use cases with potential standard impact.
· Note: the prioritization principle is the general principle and no intention to have implication on RAN4 6G AI work plan. 



[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600249
	P6

	Huawei
	R4-2600902
	P1

	China Unicom
	R4-2601899
	P1

	vivo
	R4-2601475
	P3



[Company Proposal Summary]
· In addition to the principle for AI/ML use cases selection agreed in RAN4#116bis, the following aspects are provided:
· The selected scenarios are highly valuable, instead of being some corner cases [CATT (P6), Huawei (P1), China Unicom (P1)];
· High motivation for introducing AI [CATT (P6), Huawei (P1), China Unicom (P1)];
· Urgency of starting to study [Huawei (P1), China Unicom (P1)];
· Aim to address the issues/demand (especially for mandatory 6G features) faced by current industries [CATT (P6), Huawei (P1), China Unicom (P1)]; 
· Clearer principles are needed for handling cases beyond the prioritized ones when entering stage 2 [vivo (P3)]: 
· Three potential categories to be handled: 
· Case A: Studied in the previous 5G phase (CSI prediction/compression, BM, positioning) and already justified as feasible in 5G (e.g., time domain for L3 beam level).  
· Case B: Newly proposed during later SI phases (e.g., Stage 2) and identified as a valuable direction.  
· Case C: Directions with consensus that were down-selected in Stage 1 due to having limited TUs.
· RAN4 to set up further checkpoint for Stage 2, e.g., Q4’26 to further consider additional use cases
· RAN4 to provide clear guidance on the handling of use cases not included in the 6G AI study especially for the use case in category A above. e.g., 
· Could it be also included in the follow-up 6G WI
· Or is it clearly precluded from 6G WI

[FL Recommended Discussion Point]
· Discuss how to capture the above additional principles for case selection
· Discuss how to the additional principles for Stage-2 use case selection. 

Issue 1-3: Post-deployment enhancement 
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600249
	P1, P2

	Apple
	R4-2600526
	P1

	CAICT
	R4-2600653
	P1

	Samsung
	R4-2601167
	P1, P2

	CMCC
	R4-2600845
	P1, P2

	Huawei
	R4-2600902
	P2

	OPPO
	R4-2601216
	P3, P4

	ZTE
	R4-2601353
	P3, P4

	Qualcomm
	R4-2602130
	P2

	vivo
	R4-2601475
	P1

	Ericsson
	R4-2601417
	P10, P11

	Nokia
	R4-2601685
	P1, P2, P3

	KTL
	R4-2601699
	P1-P11



Issue 1-3a: Post-deployment enhancement – Concept Clarification 
[Background Summary] 
The following agreement is achieved in RAN4#117 [R4-2522458]: 
	Issue 1-1: Post-deployment enhancement
Agreement:
· The following clarification is provided to align companies’ understanding on pre-deployment conformance and post-deployment enhancement options. 
	
	Ways to guarantee AI/ML performance
	When to perform
	Where to perform
	Comment

	(1)
	Pre-deployment conformance test
	Before cell-phone shipped into market
	Testing lab for conformance testing
	Same as existing conformance testing

	(2)
	Post-deployment pre-activation functionality test
(Option 1 in Rel-19 discussion)
	After cell-phone shipped into market, but before new AI/ML functionality activated
	FFS in UE vendors’ lab or testing lab
	Similar as product testing

	(3)
	Post-deployment post-activation functionality testing [based on performance monitoring]
(Similar to Option 2 in Rel-19 discussion)
	After new AI/ML functionality activated
	FFS in-field practical network environment
	



· FFS the following options for post-deployment enhancement in 6G study: 
· Post-deployment pre-activation functionality test (Option 1 in Rel-19 discussion)
· Post-deployment post-activation functionality testing based on performance monitoring (Option 2 in Rel-19 discussion)



[Proposal Summary]
· Further update based on the agreed clarification on existing pre-deployment conformance test and two options of post-deployment enhancement [Nokia (P1)]: 
	 
	Ways to guarantee UE-side AI/ML performance
	When to perform
	Where to perform
	Comment
	Coordination with other WGs

	(1)
	Pre-deployment conformance test
	Before a UE is shipped into market
	Testing lab for conformance testing
	Same as existing conformance testing
	No coordination needed

	(2)
	Post-deployment pre-configuration test
(Option 1 in Rel-19 discussion)

	After cell-phone a UE is operational in a NW shipped into market, but before any new or updated UE-side AI/ML functionality can be configured or activated by the NW
	FFS in UE vendors’ lab or Testing lab for conformance testing
	Similar to product conformance testing, but with much reduced scope i.e., for a selected UE-side AI/ML feature (use case) only
	Coordination might be needed with RAN2

	(3)
	Post-deployment post-configuration validation testing [based on performance monitoring]
(Similar to Option 2 in Rel-19 discussion)

	After a UE is operational in a NW, and after a new or updated UE-side AI/ML functionality has been configured and activated by the NW
	FFS In-field, over-the-air, practical network environment
	Using 3GPP specified RRC procedures and NW-side MNO specific algorithms/policies to trigger the validation 
	Coordination with RAN2 is needed for signaling support



[FL Recommended Discussion Point]
· Discuss the updated concept clarification in Nokia’s table firstly. 

Issue 1-3b: Post-deployment enhancement – Post-deployment Pre-activation functionality testing 
[Proposal Summary]
· Overall prioritization between (2) and (3): 
· Option 1 [CAICT (P1), CMCC (P1), Huawei (P2), OPPO (P3), QC (P2)]: Prioritize the post-deployment post-activation functionality testing [based on performance monitoring]
· Proposals related to post-deployment pre-activation functionality testing, i.e., above (2): 
· Which scenario for performing post-deployment pre-activation test: 
· Option 1 [CATT (P1), QC (P2)]: See no necessity. (New functionality requires pre-deployment conformance test, while performance monitoring is enough for model fine-tuning/retuning/parameter-reloading).  
· Option 1a [Huawei (P2)]: See no necessity unless significant interoperability issues are identified. 
· Option 1b [vivo (P1)]: postponed. 
· Option 2: needed. 
· Where to perform:
· Option 1 [Samsung (P1)]: UE vendors’ lab or other testing lab should be allowed
· Option 2 [ZTE (P4)]: in testing lab instead of in UE vendor’s lab
· How to perform testing: 
· Option 1 [OPPO (P4)]: FFS whether and how to define a reasonable testing approach under post-deployment and pre-activation conditions, e.g., defining test datasets and specifying test methods based on datasets. 
· Option 2 [Ericsson (P10, P11), Nokia (P2)]: FFS scope of model retuning and when and how model retuning shall or can be performed by UE without impacting network operation KPIs. 

Issue 1-3c: Post-deployment enhancement – Post-deployment post-activation functionality testing 
[Proposal Summary]
· Post-deployment validation of AI/ML should evolve from reactive monitoring to confidence-aware operation [Apple (P1)]: 
·  In addition to predictions, AI/ML models may provide confidence or uncertainty indicators.
· Post-deployment validation may support shadow-mode evaluation, in which an updated AI/ML model runs in parallel with the active system [Apple (P2)]. 
· Collaborate with RAN2 on the study of the post-deployment post-configuration functionality validation procedures and requirements [Nokia (P3)]
· FFS whether monitoring procedures can be established in a general way which can be used for all use cases or need to be discussed separately in a case-by-case manner [CMCC (P2)]
· Option 1: case-by-case [Samsung (P2)]
· Detailed case-specific proposal for RAN1-led cases [KTL (P1-P4)]: 
· Low overhead CSI-RS / CSI prediction: Study a PDV (Post-Deployment Validation) qualification framework that links each PDV window to a single model and configuration state, enabling LCM decisions to rely on update-consistent field evidence.
· Low overhead DMRS + AI/ML receiver: Study a PDV as a minimum enabling framework
· CSI compression & feedback (JSCC/JSCCM/JSCM): Study PDV as a key enabling condition for studying and enabling CSI compression and feedback in 6G by defining a minimum PDV framework that includes a post-update validation window, acceptance criteria aligned with both intermediate CSI-quality indicators and system KPIs, and decision inputs and triggering conditions for rollback or fallback actions under representative operating conditions.
· Beam management & extension (incl. IA, RL): Study PDV as a key enabling condition for 6G beam management extensions when post-deployment fine-tuning or model update is supported, and study a minimal PDV framework that gates activation before the updated behavior becomes effective.
· Detailed case-specific proposal for RAN4-led cases [KTL (P5-P4)]:
· AI-DPD/DPoD: Study PDV reporting and evaluation conditioned on explicitly defined operating conditions (e.g., uplink transmit power ranges, PAPR ranges, BWP, and antenna mode) to support attribution of observed changes to the non-linearity handling configuration.

[FL Recommended Discussion Point]
· Discuss the general proposal from Apple and Nokia. 
· Postpone all RAN1/4-led use case-specific proposals, and consider the merits of the proposals for how to capture in the general aspects in TR.  

[bookmark: _Hlk213797120]Issue 1-4: Model complexity and UE category
[Background Summary] 
The meeting RAN4#117 agreed that RAN4 will further study AI model complexities by considering factors including the number of model parameters, computing complexity, size, inference latency, and generalization (with the study not intended to restrict model deployment) and will further define an example to differentiate "Simple" and "Complex" models based on specific metrics and corresponding threshold ranges.
	Agreement:
· For model complexity,  
· RAN4 further study AI model complexities, by considering: number of model parameters, model computing complexity, model size, inference latency, and model generalization.
· The complexity study is not intended to restrict model deployment. 
· FFS the following example to differentiate “Simple” and “Complex” models: 
	
	"Simple model” 
	"Complex model" 

	Num of model parameter
	Low, 
e.g., <1M
	High, 
e.g., 1M ~10M

	Model computing complexity
	Low, 
e.g., <1M FLOPs, or [1M FLOPs ~10M FLOPs]
	High, 
e.g., [1M FLOPs ~10M FLOPs], or 10M FLOPs ~100M FLOPs

	Model size
	Small, 
e.g., <1MB
	Large, 
e.g., 1MB ~10MB

	[Inference latency]
	Low
	High

	[Generalization]
	Sufficient for simple tasks
	High potential for complex tasks






[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600249
	P4, P5

	Samsung
	R4-2601167
	P3

	Huawei
	R4-2600902
	P3

	OPPO
	R4-2601216
	P2

	ZTE
	R4-2601353
	P1, P2

	China Unicom
	R4-2601899
	P2

	Qualcomm
	R4-2602130
	P1

	Ericsson
	R4-2601417
	P1

	Nokia
	R4-2601685
	P4



[Company Proposal Summary]
· Necessity to differentiate AI/ML model complexity: 
· Option 1: No need (if requirements are agnostic with AI model complexity) [CATT (P4, P5), Qualcomm (P1), Nokia (P4)]
· Option 2: FFS model complexity for use case selection in a per-use-case manner [Huawei (P3), ZTE (P1), China Unicom (P2)]
· Option 2a: Model complexity is related to the performance requirement [Ericsson (P1)]
· FFS model complexity, if the above-mentioned necessity is confirmed: 
· FFS model complexity by assessing the model’s training type (e.g., offline/online) and its reliance on training data [OPPO (P2)]. 
· Inference latency and model generalization shall not be the part of model complexity evaluation [ZTE (P2)].
· FFS the complexity of “Complex model”:
· Certain “complex model” range (e.g., >10M FLOPs and/or >10MB) shall be regarded as infeasible to be implemented as real-time inference (i.e., inference latency < 10ms) for 6G handheld UE type [Samsung (P3)].  

[FL Recommended Discussion Point]
· Discuss the necessity to differentiate AI/ML model complexity firstly. 

Issue 1-5: Interoperability for one-sided and two-sided models
[Background Summary] 
Relevant proposal on interoperability for one-sided and two-sided models was provided in RAN4#116bis and #117, while no agreement has been achieved. Interoperability for two-sided and one-sided models are one of the key focused topics in 5G-A study and work item. It should be noted that the Rel-20 5G-A WI will specify the interoperability (by considering Direction C and Direction A with both Option 3a-1 and Option 4-1) and it is expected that the conclusion can be followed in 6G study.

[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CAICT
	R4-2600653
	P1

	Huawei
	R4-2600902
	P4

	vivo
	R4-2601475
	P2

	Ericsson
	R4-2601417
	P2, P3, P4

	Nokia
	R4-2601685
	P5, P6, P7



[Company Proposal Summary]
· Interoperability for one-sided model,
· Option 1 [Huawei (P4), vivo (P2), Nokia (P6)]: No interoperability issues are identified for one-sided models. 
· Option 2 [Ericsson (P2, P3, P4)]: Per-use case study on: 
· Monitoring metric
· Requirement for monitoring metric reporting
· Ensure consistency between the measurements reported by the UEs that are AI/ML capable and UEs that do not bear AI/ML capability
· Interoperability for two-sided model,
· Postponed in 6G study, while RAN4 can check the to-be-specified mechanism for CSI compression in Rel-20 5G-A WI can be reused or enhanced. [CATT (P2), vivo (P2)]
· Only use case specific discussion [Nokia (P5)]

[FL Recommended Discussion Point]
· For interoperability for one-sided model, suggest the group to check Ericsson’s understanding of interoperability (which could be different from some other companies).  
· For interoperability for two-sided model, adopt the summarized proposal. 

Issue 1-6: AI/ML framework for RAN4-driven use cases
[Background Summary] 
In 5G-A AI/ML discussion, AI/ML framework is established for RAN1-driven use cases such as AI-BM, AI-positioning and AI-CSI. It is expected RAN4 could identify new RAN4-driven use cases in 6G, and the applicability of the AI/ML framework for RAN4-driven use cases can be considered in per-use case study. 
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Samsung
	R4-2601167
	P4



[Company Proposal Summary]
· For RAN4 use case(s) to be identified in Rel-20, RAN4 should at least consider the following AI/ML framework aspects be applicable or not [Samsung (P4)]:
· UE-side and NW-side data collection if needed
· Applicability report 
· Associated ID to indicate additional conditions that may not be explicitly configured
· Performance monitoring 
· Dedicated AI/ML processing unit (APU) and timeline
· Testing and Performance Requirements

[FL Recommended Discussion Point]
· Use the AI/ML framework as baseline in the per-use case discussion.  

Issue 1-7: Channel model for evaluation
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Ericsson
	R4-2601417
	P6, P7, P8



[Company Proposal Summary]
· FFS channel model for testing AI/ML functionality: 
· Study the feasibility and methodology of taking channel coefficient from system/link level simulations as data set for further tests [Ericsson (P6)].
· 	The TE limitations, such as storage space, number of channel filter taps, coefficient precision etc., should be studied and improved for AI if possible [Ericsson (P7)].
· Study feasible performance metrics based on channel model with rich randomness [Ericsson (P8)]. 

[FL Recommended Discussion Point]
· Discuss Ericsson’s P6 firstly.
· After confirming this issue, Ericsson’s P7 can be treated in 6G testability thread. 
· Ericsson’s P8 could be treated in per-use case discussion.

Issue 1-8: Other topics agreed to be treated with low priority
[Background Summary] 
The following proposals involves topics (including model generalization, AI/ML UE category) which are agreed to begin from Q2 2026. 
	Issue 2-4: Model generalization
Agreement: 
· For AI/ML functionality generalization, RAN4 shall study generalization of UE and BS based AI/ML functionality for 6G and identify the potential standard impact.
· The study will begin no early than Q2 2026. 
· Study and identify the typical parameters/aspects that are expected to be generalized by AI/ML functionality for each use case firstly, and then discuss how to test the generalization for the corresponding use case.
· RAN4-led use cases will be prioritized.
· The related study on other WG-led use cases will be based on the requests from the corresponding WG.

Issue 2-6: AI/ML UE category
Agreement: 
· Regarding metrics related to AI/MI complexity supported by UE/NW, it can be discussed if a study is needed in 6G no earlier than Q2 2026.
· The definition and the context of AI/MI complexity needs to be further clarified if the study is agreed. 



[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Apple
	R4-2600526
	P3

	Samsung
	R4-2601167
	P3

	OPPO
	R4-2601216
	P1

	CATT
	R4-2600249
	P3



[Company Proposal Summary]
· Model generalization
· Study on how semantic abstract of the deployment characteristics can help to address the model generalization issues [Apple (P3)].
· Different UE types/categories for model complexity:
· Option 1: Postpone the discussion on AI UE category until RAN-P have progress [CATT (P3), OPPO (P1)]
· Option 1a: Consider 6G handheld UE type, while FFS other UE types with low priority [Samsung (P3)]

[Company Proposal Summary]
· Postpone the relevant discussion because these topics are agreed to be treated with low priority. 

Topic #2: AI-based non-linearity compensation
Issue 2-1: Overall view towards AI-DPoD and AI-DPD
[Company Proposal Summary]
	Use case
	Compensation for UL or DL
	Model location and training
	Be positive
	Be neutral or more study is required 
	Be negative (including deprioritize)

	AI-DPoD only in gNB 

	UL
	NW-sided model 
	*(4) Samsung, Huawei, vivo, OPPO
‡(2) Tejas Networks, CMCC

	*(2) Nokia, ZTE
‡ (4) CATT, Apple, Xiaomi, Ericsson
Qualcomm
	‡ (1) Qualcomm 

	AI-DPD only in UE
	UL
	UE-sided model

	*(1) vivo,
‡ (1) Ericsson
CMCC
Nokia
ZTE
	*(1) Nokia
‡ (3) MediaTek, CATT, CMCC
	*(1) OPPO, 
‡ (2) Tejas Networks, Qualcomm

	Note: for companies show supporting, with and without numerical results in the Tdocs are separated counted. 
  * with numerical results in Tdocs
  ‡ without numerical results in Tdocs
  (x) in which x is the number of companies for that category



Huawei: in case AI DPoD is used, is AI DPD still beneficial? Can they work together?
Apple: for low modulation order, the power is limited by the emission. How DPD/DPoD can help?
ZTE: UE may have better info on the PA nonlinearity. From that perspective, DPD may be more efficient and effective. DPD should focus on high modulation order.
OPPO: concerns on the complexity and the impact of BW for DPD. Vivo’s proposal is onling training based. 
Qualcomm: high order modulation should be the focus
Huawei: not only the benefit should be understood but also the impacts. This applies to both UE and NW.
Vivo:DPD can potentially help to reduce the emission for low modulation order. 
MTK: concerns on the complexity and power consumption of DPD at UE.
Samsung: concerns on the DPD for high BW case.
ZTE
Vivo:
Agreement:
Introduce AI-DPoD at NW as 6G RAN4-led AI use case to study. 
· It is assumed no AI-DPD. UE with and without non-AI DPD will be considered. 
Once the AI-DPoD study is completed, AI-DPD at UE will be studied in Rel-20 by taking the performance KPI of AI-DPoD at NW as the benchmark to identify the potential gain from the aspects of performance, complexity and power efficiency. 
· It is assumed no AI-DPoD and no non-AI DPoD at NW
· It can be revisited depending on the 5GA work in R20.
[FL Recommended Discussion Point]
· Discuss the sub-use case selection/prioritization in main session. 

Issue 2-2: PA / TX non-linearity model in AI-DPoD/DPD evaluation
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600250
	P5-P6 (for AI-DPoD)

	MediaTek
	R4-2600168
	P1-P4 (for AI-DPD)

	Tejas Networks
	R4-2600408
	P2, P4 (for AI-DPoD)

	Qualcomm
	R4-2601998
	P1

	CMCC
	R4-2600847
	P3, P4

	Huawei
	R4-2600903
	P1

	vivo
	R4-2600925
	P1, P2, P3 (for AI-DPD), P7 (for AI-DPoD)

	ZTE
	R4-2601186
	P3

	OPPO
	R4-2601217
	P1

	Ericsson
	R4-2601508
	P3, P4, P5, P6

	Samsung
	R4-2601639
	O5, P3, P4



[Company Proposal Summary]
· Before PA / TX non-linearity models selected for 6G parameters: 
· Option 1 [MediaTek (P2), CMCC (P4)), vivo (P2), ZTE (P3), Samsung (P4)]: Before PA model is agreed in 6G System parameters, companies can choose PA model(s) at their own discretion.
· Option 2 [Qualcomm (P1), Ericsson (P3)]: Hold discussion until the model of UE Tx non-linearity model(s) gets agreed in the 6G General RF and UE RF session
· Option 2a [Huawei (P1)]: adopt the related discussion outcome under Joint UE-BS RF and Spectrum aggregation agenda as starting point, further updates are not precluded.
· PA model: 
· Option 1 [MediaTek (P1), CATT (P5), Tejas Networks (P4)]: GMP
· Option 1a [Samsung (P3)]: Rapp model and GMP model in TR 38.803 as starting point
· Other non-linearity factors: 
· Proposal 1 [vivo (P1)]: alignment on IQ imbalance assumptions: e.g., amplitude and phase mismatch
· Proposal 2 [Samsung (P3, P4)]: consider RF modelling of other non-ideal factors including I/Q imbalance, Tx nonlinearity, and phase noise
· IQ imbalance can be modeled as unified distribution
· Phase noise and transmitter nonlinearity are modeled as Gauss white noise
· Other practical issues: 
· Dynamic factors like temperature variation [vivo (P3, P7), Tejas Networks (P2), Samsung (O5)]
· load mismatch [Tejas Networks (P2)]
· Envelope tracking to ensure realistic evaluation [Tejas Networks (P2)]
· Clarify whether the time-varying characteristics of PA non-linearity is needed [OPPO (P1)]
· PA calibration point: 
· Option 1 [vivo (P1)]: alignment including reference waveform, output power, and target ACLR
· If multiple PA / TX non-linearity models selected for 6G parameters: 
· Option 1 [MediaTek (P3), Ericsson (P4, P5)]: The multiple models with memory effects can be used for generalization study during AI DPD evaluation
· Option 2 [CATT (P6)]: Performance of AI-based DPoD with these PA models should be evaluated with corresponding frequency ranges and power class configurations.
· Other information to be provided: 
· Proposal 1 [MediaTek (P3)]: the related information of getting the measurement data to derive the PA model, e.g, sampling rate, BW, average power, modulation, waveform and so on

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Use Case: AI-DPoD in gNB
[Background] The following agreement is achieved for the evaluation procedure for AI-DPoD in RAN4#117: 
	Issue 2-4: AI-DPoD in gNB – evaluation related proposals
Agreement:
· For evaluation procedure Step-2 (Evaluation methodology by applying non-linearity model(s) of transmission signals to baseband evaluation)
· Analyze on the feasibility for both online and offline training
· FFS different data collection methods for AI/ML model training, focusing on UE operation in the compressed (non-linear) PA region: e.g., simulation-based datasets (with realistic Tx front-end and PA models) and measurement-based datasets (from multiple UEs).
· For a given Tx EVM value derived based on the non-linearity models, evaluate the performance with following assumptions on selected RAN4 test cases to find the target SNR to meet RAN4 requirement or test metric, e.g., 70% of maximum throughput or 10% BLER
· Case 1.1: AI-based DPoD + non-linearity TX model(s) (no DPD)
· Case 1.2: AI-based DPoD + non-linearity TX model(s) (non-AI DPD)
· Case 1.3: non-AI-based DPoD + non-linearity TX model(s) (no DPD)
· Case 1.4: non-AI-based DPoD + non-linearity TX model(s) (non-AI DPD)
· Benchmark 
· Benchmark 1): No DPoD + non-linearity TX model (non-AI DPD)
· Additional benchmark: No DPoD + non-linearity TX model (no DPD)
· FFS which RAN4 use case should be used.
· FFS the possibility to align non-AI and AI-based DPoD
· FFS how to proceed the work before non-linearity model is not agreed in other sessions. 
· FFS how to proceed if there are multiple non-linearity models from 6G system parameter and UE RF sessions.
· FFS TxEVM values
· Detailed RF transmission scheme and configuration: 
· Use 5G NR existing supported scheme and configuration as starting point, and will be finally determined based on the conclusion from 6G system parameter and UE RF sessions 



Issue 2-3: Numerical evaluation
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Huawei
	R4-2600903
	O1

	Nokia
	R4-2601735
	O1

	Samsung
	R4-2601639
	O3

	vivo
	R4-2600925
	O3, O4, O5

	ZTE
	R4-2601186
	O2, O3, O4, O5

	OPPO
	R4-2601217
	O1



[Company Proposal Summary]
· Key observations from existing/preliminary numerical evaluation: 
· Vivo: 
· At a target BLER of 10%, AI-DPoD provides around 0.75~1.25 dB SNR gain compared with the no-DPoD baseline under various transmit EVM conditions, and achieves around 0.5 dB SNR gain compared with non-AI-based DPoD schemes.
· With AI-DPoD applied, the transmit EVM requirement can be relaxed while maintaining improved BLER performance.
· [bookmark: _Toc220421794]Nokia: The AI-based DPoD can approach the performance of the genie aided receiver, however, its performance depends on the complexity of the AI-based DPoD models and how training is performed e.g. if the PA response used in training is the same/similar to that used in testing. 
· Samsung: 
· When nonlinearity is dominated by PA component, e.g., I/Q imbalance is slight (Rx EVM=4.5% case). For a memoryless PA, GMP-NC can already fit PA model so that AI-NC (DPoD) improves only a few over GMP-NC
· When nonlinearity is contributed by both of I/Q imbalance and nonlinear PA, e.g., Rx EVM=6% case. In such case, GMP-NC exhibits obvious under-fitting while the nonlinearity can still be well-canceled by AI-NC.
· Huawei: It is observed that AI DPoD can deliver certain non-linearity compensation towards an EVM deteriorated UL 64QAM/256QAM signal which is worse than the corresponding EVM requirements to some extent.
[bookmark: _Ref100767510]Table 7 Net gain with demodulation performance comparison (SNR @ BLER=0.1).
	MCS
	AI DPoD(dB)/EVM
	Baseline(dB)/EVM
	Demod gain(dB)
	Net Gain (dB)

	MCS15
	-9.1/11%
	-8.50/8%
	0.6
	2.0

	MCS27
	2.13/6.2%
	3.84/3.5%
	1.71
	4.41



· ZTE: 
· The performance of both AI-DPoD and No-AI DPoD outperform the RAN4 test metric(SNR at bler = 0.1 when Tx EVM is 3.5%).
· Regarding AI-DPoD for 256QAM, Tx EVM can be relaxed to 4.16% for 10M Hz CBW and 3.96% for 100M Hz CBW assuming GMP model , -36dBc I/Q imbalance and DC offset non-linearity model.
· The performance gap between AI-DPoD and Non-AI DPoD are very limited(<0.1db).
· AI-based DPoD need higher computation complexity than Non-AI based DPoD.
· OPPO: 
· Compared with the solution without DPD/DPoD, the proposed AI DPoD scheme achieves a performance gain of approximately 1 dB at a BLER of 10% with 3.5% EVM. When EVM increases to 8%, the proposed AI DPoD scheme achieves a performance gain of approximately 4 dB at a BLER of 10%.
· Compared with the benchmark with non-AI DPD, the non-AI-based DPD benchmark achieves good nonlinear compensation performance and even outperforms AI-based DPoD
[FL Recommended Discussion Point]
· If this use case is agreed to be captured in RAN4-driven AI use case list, the summary of above observations can be provided.  

Issue 2-4: AI-DPoD evaluation - offline/online training
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600250
	P1

	Tejas Networks
	R4-2600408
	P3 

	Xiaomi
	R4-2600441
	P1

	vivo
	R4-2600925
	P5

	ZTE
	R4-2601186
	O1

	Ericsson
	R4-2601508
	O5, O6, O7, P7



[Company Proposal Summary]
· Clarification of offline/online training
· [ZTE (O1)]: Online training which means (near) real-time with the arrival of new training samples will have a much more higher complexity than offline training.
· Offline/online training for AI-DPoD: 
· Option 1 [CATT (P1), Xiaomi (P1), OPPO]: Offline as baseline
· Option 2 [Samsung]: Online
· Option 3 [Tejas Networks (P3), Ericsson (O7, P7)]: hybrid training approach (Start with offline training as a baseline and add online fine-tuning once data pipelines, complexity budgets, and convergence behaviour are validated)
· According to the offline/online training discussion above, the training label should be clarified: 
· Option 1 [vivo (P5)]: either known data symbols or DMRS, with modelling accuracy, signalling overhead, and robustness taken into consideration

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 2-5: AI-DPoD evaluation - benchmark
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600250
	P4

	Tejas Networks
	R4-2600408
	P5 

	CMCC
	R4-2600847
	P1

	Huawei
	R4-2600903
	P2

	OPPO
	R4-2601217
	O1

	Ericsson
	R4-2601508
	P1, P2, P10

	Samsung
	R4-2601639
	P2



[Company Proposal Summary]
· Evaluation scheme and benchmark for AI-DPoD: 
· Option 1 [CATT (P4), OPPO (O1), Ericsson (P1, P2, P10)]: Evaluate both non-AI and AI-based DPoD firstly
· Option 1a [OPPO (O1)]: Benchmark is No DPoD + non-linearity TX model (non-AI DPD)
· Option 2 [Tejas Networks (P5), CMCC (P1), Ericsson (P1), Samsung (P2)]: Start with Case 1.1 and Case 1.2
· Option 2a [Huawei (P2)]: prioritize Case 1.1.
· Considering Case 1.3 and 1.4 as benchmark [Samsung (P2)]
[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 2-6: AI-DPoD evaluation - evaluation procedure
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600250
	P3, P7

	Tejas Networks
	R4-2600408
	P6 

	CMCC
	R4-2600847
	P5

	Nokia
	R4-2601735
	P2

	ZTE
	R4-2601186
	P1

	OPPO
	R4-2601217
	P2

	Ericsson
	R4-2601508
	P8, O8, P9, P11, P12

	Samsung
	R4-2601639
	P1, P5, P6, P7, P8



[Company Proposal Summary]
· Evaluation metrics for AI-DPoD evaluation: 
· Proposal 1 [CATT (P3)]: RAN4 to use EVM and BLER/throughput as evaluation metrics.
· Proposal 2 [Ericsson (P8)]: RAN4 may start with link-level performance (BLER and Throughput) and computational complexity (FLOPs) as the evaluation metric.
· Transmission scheme and configuration for AI-DPoD evaluation: 
· Proposal 1 [Tejas Networks (P5), ZTE (P1)]: 256QAM
· Proposal 2 [CATT (P7)]: RAN4 to choose one modulation scheme from the existing modulation schemes in NR as a starting, e.g., 64QAM with 8% EVM can be considered.
· Proposal 3 [ZTE (P1)]: typical test case configurations: 1T2R, 10M@15k SCS and 100M@30kSCS
· Proposal 4 [Samsung (P5)]: both 64QAM and 256QAM, prioritize CP-OFDM
· Proposal 5 [Samsung (P8)]: simulation assumption in below Table
	Parameters
	Value

	UE power class
	PC3 with 1Tx 

	Band 
	n104

	PA model
	Generalized memory-based polynomial (GMP) model in TR 38.803

	TxEVM assumption 
	64 QAM: [8% as baseline, 10%, 11%, 12%]

	
	256QAM: [3.5% as baseline, 4%, 6%, 8%]

	I/Q imbalance modelling
	amplitude imbalance (g_I, g_Q) ~ [0, X], phase imbalance(θ_I,θ_Q) ~ [-Y, Y]

	Carrier frequency
	3.5 GHz

	# of TX layers/users
	1

	# of RX antennas
	4/8/64

	Waveform
	CP-OFDM

	SCS
	30KHz 

	BW
	40MHz

	# of PRB
	106

	# of data symbol per slot
	12

	# of DMRS per slot
	2

	Mapping type 
	A

	Number of DMRS CDM group 
	2

	Modulation
	64 / 256 QAM

	MCS index
	[28] for 64QAM and [28] for 256QAM
(Table 5.1.3.1-2 in TS 38.214)

	Channel model
	TDL-A 30ns

	Evaluation metric
	BLER with 10%

	Benchmark
	1. Conventional receiver without DPoD without non-linearity (upper bound performance), e.g., MMSE-IRC
2. Conventional receiver without DPoD with non-linearity 
3. Non-AI based non-linearity receiver: e.g., GMP based method,



· Proposal 6 [OPPO (P2)]: simulation assumption in below Table
	[bookmark: _Hlk213247887]Parameters
	Value

	Carrier frequency
	3.5GHz

	TX antenna number
	1

	RX antenna number
	4

	Waveform
	CP-OFDM

	Sub-carrier number
	96

	OFDM symbol number
	12

	DMRS
	1symbol, ρ=0.5

	MCS
	MCS25（256QAM, CR=885/1024）

	Channel model
	TDL-A, 30ns

	Subcarrier spacing
	15 kHz

	UE speed
	3km/h

	Channel estimation
	Practical

	Evaluation metric
	BLER

	EVM assumption
	3.5%, 8%

	Case
	Case 1.1: AI-based DPoD + non-linearity TX model(s) (no DPD)

	Benchmark
	No DPoD + non-linearity TX model (non-AI DPD)

	PA setup (in simulation) :
[image: 图示

AI 生成的内容可能不正确。]
The non-linearity of PA is modeled using the RAPP model [2], as shown below, where
· 𝐴_𝑖𝑛 denotes the input amplitude,
· 𝐴_0=3 represents the limiting output amplitude
· 𝑣=1 is small signal gain
· 𝑝=1.83(for EVM=3.5%) or 1.18(for EVM=8.0%) is defined as the smoothness parameter
· 𝐺(⋅)  signifies the output amplitude 
[image: 图表, 折线图

AI 生成的内容可能不正确。]




· AI-DPoD processing options: 
· Proposal 1 [Samsung (P6): ]Option 1 (illustrated in below figure) as baseline
[image: ]
· Dataset building method: 
· Proposal 1 [Ericsson (P9)]: RAN4 to study data collection methods for AI/ML model training, focusing on UE operation in the compressed (non-linear) PA region. Both simulation-based datasets (with realistic Tx front-end and PA models) and measurement-based datasets (from multiple UEs) could be evaluated. Other RF impairments should be considered and included.
· Proposal 2 [Samsung (P1)]: Prioritize the simulation-based datasets with realistic non-linearity model assumption for feasibility study. Further clarify how to construct dataset for model training and assumption to guarantee the model generalization.
· Generalization evaluation: 
· Proposal 1 [Nokia (P1)]: whether the AI-based DPoD can generalize over different PA responses, different SU/MU MIMO configurations, propagation responses etc.
· Proposal 2 [Ericsson O8]: The robustness of BS receiver model to compensate for different PA’s, UE’s manufacturing variability, channel variations etc., should be evaluated as well. Further, wide or potentially huge diversity of UE RF implementations should be considered.
· Proposal 3 [Ericsson O9]: It is important to consider the likelihood of the UE’s using DPD and to establish realistic characteristics for the self-interference considering DPD. Companies are encouraged to consider and share useful data
· Relaxed EVM used in evaluation: 
· Proposal 1 [Tejas Networks (P6)]: Evaluate performance at NR EVM baseline (~3.5%) and include relaxed targets (6%, 8%) to stress generalization and expose sensitivity to modelling assumptions.
· Proposal 2 [Ericsson (P12)]: consider 5G NR Tx EVM values as the starting point of the DPoD study
· Proposal 3 [Samsung (P7)]: consider the following TxEVM assumption for performance evaluation and comparison as starting point. 
· 64 QAM: [8% as baseline, 10%, 11%, 12%]
· 256QAM: [3.5% as baseline, 4%, 6%, 8%]

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  
Issue 2-7: AI-DPoD evaluation - benefit evaluation
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Apple
	R4-2600527
	P1



[Company Proposal Summary]
· AI-DPoD benefit evaluation: 
· Proposal 1 [Apple (P1)]: For AI/ML-based 6G nonlinearity compensation, evaluate the benefits of DPoD receivers via (i) maximum tolerable Tx EVM (transmitter distortion robustness) and (ii) system-level benefit via MPR reduction and uplink coverage gain under ACLR/SEM-compliant UE output power.
[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 2-8: TX requirement for relaxed TxEVM signal
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600250
	P2

	Xiaomi
	R4-2600441
	P2

	CMCC
	R4-2600847
	P1, P5

	NTT DoCoMo
	R4-2602021
	P1, P2



[Company Proposal Summary]
· Relaxed TxEVM signal for potential MPR reduction: 
· In-band requirement: 
· Proposal 1 [DCM (P1), Xiaomi (P2), CMCC (P5)]: evaluate the potential MPR reduction and Tx EVM relaxation
· Out-of-band requirement: 
· Proposal 2 [DCM (P1, P2), CATT (P2)]: Out-of-band requirements (e.g., ACLR, SEM, Spurious) should be met, even if EVM requirements are relaxed.

[FL Recommended Discussion Point]
· Check whether the above Proposals are acceptable.  



Issue 2-9: Potential specification impact 
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Samsung
	R4-2601639
	O4, P9



[Company Proposal Summary]
· The following aspects of spec impact are identified for AI-DPoD [Samsung (O4, P9)]: 
· UE capability report on supported MPR relaxing 
· RAN4 requirement on MPR 
· RAN4 demodulation performance requirement with non-linearity compensation receiver
· Collaboration between UE and NW for data collection 

[FL Recommended Discussion Point]
· Check whether the above Proposals are acceptable.  

Use Case: AI-DPD in UE
[Background] The following agreement is achieved for the evaluation procedure for AI-DPD in RAN4#117: 
	Issue 2-6: AI-DPD in UE – evaluation related proposals
Agreement: 
· Evaluation methodology: 
· For a given non-linearity models, evaluate the performance with following assumptions to find the target output power (after applying AI-based DPD) to meet RAN4 Tx requirements, including ACLR/SEM/IBE/EVM 
· FFS how to perform the evaluation on the impact of remaining non-linearity after AI-DPD. 
· Case 2: No DPoD + non-linearity TX model (AI-based DPD)
· Benchmark 
· Benchmark 1): No DPoD + non-linearity TX model (non-AI DPD)
· Additional benchmark: No DPoD + non-linearity TX model (no DPD)
· FFS how to proceed the work before non-linearity model is not agreed in other session. 
· Strive to have aligned model as DPoD evaluation. 
· FFS how to proceed if there are multiple non-linearity models from 6G system parameter and UE RF sessions.
· FFS Tx requirements values
· Detailed RF transmission scheme and configuration: 
· Use 5G NR existing supported scheme and configuration as starting point, and will be finally determined based on the conclusion from 6G system parameter and UE RF sessions  



Issue 2-10: Numerical evaluation
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	vivo
	R4-2600925
	O1, O2

	Nokia
	R4-2601735
	O2

	OPPO
	R4-2601217
	P4



[Company Proposal Summary]
· Key observations from existing/preliminary numerical evaluation: 
· vivo: 
· At a fixed operating point (PA input power), AI-DPD outperforms both GMP-DPD and no-DPD by achieving a superior EVM and ACLR performance.
· When considering 256QAM and 100MHz bandwidth, the AI-DPD shows 3 dB output power improvement compared with no-PDD, and shows 1.3 dB output power improvement compared with nonAI- DPD.
· Nokia: 
· UE-sided AI-based solutions compensation show potential for coping with PA nonlinearity. 
· OPPO: 
· Non-AI DPD is already capable of addressing the PA nonlinearity, at least under conditions without considering online updates. For online updates, AI-based DPoD could be prioritized for further study. AI-based DPD should be deprioritized.
[FL Recommended Discussion Point]
· If this use case is agreed to be captured in RAN4-driven AI use case list, the summary of above observations can be provided.  

Issue 2-11: AI-DPD evaluation - evaluation procedure
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CMCC
	R4-2600847
	P2, P5

	Nokia
	R4-2601735
	P2

	CATT
	R4-2600250
	P8

	vivo
	R4-2600925
	P1



[Company Proposal Summary]
· Evaluation scheme for AI-DPD: 
· Option 1 [CMCC (P1), Nokia (P2)]: AI-DPD in UE can be further studied in RAN4 if the performance gain between AI-DPD and non-AI DPD are observed.
· Evaluation metrics: 
· Proposal 1 [CMCC (P3)]: consider BLER, throughput, MPR, EVM as evaluation metrics.
· Alignment on TX signal [vivo (P1)]: e.g., waveform type, modulation order, bandwidth
· Detailed TX signal assumption: 
· 50 MHz CBW and 15 kHz SCS [CATT (P8)].

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 2-12: AI-DPD evaluation - AI/ML feasibility study
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	MediaTek
	R4-2600168
	P6



[Company Proposal Summary]
· FFS AI-DPD feasibility:
· Proposal 1 [MediaTek (P6)]: To check feasibility of using AI/ML model to generate the real-time output of DPD in the field considering AI/ML model inference delay, model switch delay, etc.
· Proposal 2 [MediaTek]: To compare three directions: (a) Direction 1: AI-based DPD, (b) Direction 2: AI-based LUT DPD update, (c) Direction 3: AI based PA modelling to generate and update LUT
[image: ]
Direction 1: AI-based DPD
[image: ]
Direction 2: AI-based LUT DPD update
[image: ]
Direction 3: AI based PA modelling to generate and update LUT

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly and see it is okay or not to only consider Direction 1.  


Issue 2-13: Potential specification impact 
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	MediaTek
	R4-2600168
	P5

	Nokia
	R4-2601735
	P3

	vivo
	R4-2600925
	P4



[Company Proposal Summary]
· FFS potential and justified spec impact of AI DPD [MediaTek (P5)]: 
· Option 1 [Nokia (P3)]: whether the UE and gNB should exchange any information regarding the AI-DPD behaviour, enabling the gNB to monitor the performance of the AI-DPD solution
· Option 2 [vivo (P4)]: Potential impacts on high-level RF specifications and UE capabilities: 
· MPR improvement: enabling enhanced PA efficiency and higher achievable output power.
· UE capability improvement: such as support for AI-assisted linearization and adaptive predistortion.
· Data collection reducing: by leveraging AI techniques, the amount of new data required for DPD updates when facing dynamic changes can be shrunk, improving adaptation efficiency and reducing overhead.

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  


Topic #3: AI-based SRS power imbalance compensation
Issue 3-1: Overall view towards AI-based SRS power imbalance compensation 
[Company Proposal Summary]
	Use case
	Model location and training
	Be positive
	Be neutral or more study is required 
	Be negative (including deprioritize)

	AI-based SRS residual power imbalance compensation
	NW-sided model 
	*(1) Huawei

	*(1) Samsung
‡ (3) OPPO, Ericsson, CMCC
	‡ (4) Apple, ZTE, Nokia, Qualcomm 

	Note: for companies show supporting, with and without numerical results in the Tdocs are separated counted. 
  * with numerical results in Tdocs
  ‡ without numerical results in Tdocs
  (x) in which x is the number of companies for that category



Qualcomm: how this will help the performance in moderate and low SNR condition. Under certain SNR imbalance range, we are not sure if it is still working.
ZTE: at low SNR, CSI reporting is used instead of SRS
Huawei: this use case can benefit some scenarios, including UE with large antenna array or in good SNR condition. 
Nokia: considering this feature hasn’t been agreed for non-AI, why we need to start with AI based solution. 
Chair guidance
The following aspects should be clarified before the decision is made
1. What’s the spec impact?
2. What’s the scenario where the performance gain is expected. 

· Summarized discussion points: 
· The problem of SRS power imbalance
· SRS power imbalance issue have been confirmed in both RAN4 and RAN1; however, RAN4-identified solutions for supporting non-AI based compensation method failed to achieve consensus in RAN1 [Huawei (O8)].
· Not a problem for high SNR; DL CSF based precoding instead of SRS for low SNR [Qualcomm (O1, O2)]
· UE sided SRS insertion loss imbalance compensation performs very similar to gNB sided SRS insertion loss imbalance compensation, in terms of throughput [Qualcomm (O3)]
· Issue of non-AI compensation [Huawei (O11)]: 
· Signaling overhead caused by dynamic UE reporting of residual power imbalance, 
· Under low SNR conditions, even with such reporting, high-precision channel recovery cannot be achieved.
· System-level gain: 
· NW is constrained in obtaining high-accuracy CSI from CSI feedback for a larger number of CSI-RS ports supported by 6GR, as it may heavily rely on UE’s AI capabilities [Huawei (O1)]
· The power consumption of AI-based CSI feedback for a larger number of CSI-RS ports is higher than that of SRS transmission [Huawei (O2)]
· If SRS power imbalance/aging is well compensated, the coverage of antenna switching SRS can be extended, without relying on CSI-RS [Huawei (O4, O5)].
· Adopt proposed use case only if significant system-level gains are demonstrated [Apple (P1)]
· The relative contribution of SRS power imbalance to overall CSI accuracy may need to be studied to justify its severity [Ericsson (O6)]
· Allow proprietary UE compensation: 
· Proprietary UE compensation should remain internal [Apple (P1)]:
· Importance of SRS-based CSI acquisition for frequency point higher than 6G
· May not become the dominant or critical mechanism if operating frequency is higher than 6G [Ericsson (O6)]. 
· For UEs with more antennas in higher-frequency bands that cannot maintain power balance, compensation at NW is beneficial to enhancing 6G system performance. [Huawei (O9)]
· Large number of UE RX antenna in 6G: 
· Insertion loss will consequently increase [Huawei (O6)]
· It needs to be justified whether residual per-branch power imbalance constitutes a dominant impairment if the number of UE antenna increased [Ericsson (O7)]
[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 3-2: Numerical evaluation  
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Samsung
	R4-2601168
	O1-O6

	Huawei
	R4-2600904
	O12



[Company Proposal Summary]
· Key observations from existing/preliminary numerical evaluation: 
· Observation 1 [Huawei (O12)]: AI-based SRS residual power imbalance compensation delivers desirable performance even under medium-to-low SNR conditions. Moreover, it provides an error tolerance of at least 1 dB for reporting—meaning there is no need to report updates to the SRS residual power imbalance when changes fall within this 1 dB range.
· Observation 2 [Samsung (O1-O6)]: Provided with similar simplified simulation condition, our preliminary evaluation results exhibit similar performance trends as the key observations provided in [R4-2520332]. 
[FL Recommended Discussion Point]
· If this use case is agreed to be captured in RAN4-driven AI use case list, the summary of above observations can be provided.  

Issue 3-3: Evaluation procedure
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600251
	P3

	OPPO
	R4-2601218
	O2

	ZTE
	R4-2601246
	O2, O3

	Ericsson
	R4-2601705
	P2, P4

	Nokia
	R4-2601752
	O2

	Huawei
	R4-2600904
	P2



[Company Proposal Summary]
· The proposed evaluation procedures [framework provided by Huawei (P2)]:
· Step-1: Assumptions on simulation parameters, including channel models, number of UE antennas, frequency band and SRS residual power imbalance distributions are determined to be used in the evaluation. 
· Step-2: Evaluation methodology by modelling SRS residual power imbalance to baseband evaluation with the following procedure 
· Detailed assumptions for evaluation (including data collection, training and inference) may include, but be not limited to 
· Training dataset and testing dataset construction 
· Evaluation metric
· Absolute and/or relative throughput as an additional evaluation KPI [CATT (P3), OPPO (O2), Nokia (O2)]
· AI models and training type 
· Other details are not precluded
· Other aspects related to numerical evaluation:
· The complexity of the AI-based approach should be compared with that of the non-AI-based approach [ZTE (O2)]
· Evaluations on the benefit of IL-range reporting method vs zero-reporting method [Ericsson (P2), OPPO (O2)]
· Compensation also needs to be considered on the UE side [ZTE (O3), Ericsson (O2), Samsung (P1)]
· Analysis on the complexity on the Network side is necessary to the study [Ericsson(P4)]

[FL Recommended Discussion Point]
· Collect additional evaluation results and analysis on the above observations from numerical evaluation.  
· If this use case is agreed to be captured in RAN4-driven AI use case list, the summary of above observations can be provided.  

Issue 3-4: Model generalization
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Samsung
	R4-2601168
	P1, P2

	OPPO
	R4-2601218
	O2

	Qualcomm
	R4-2602042
	O4, O5, O6



[Company Proposal Summary]
· Additional factors to be considered for model generalization evaluation: 
· Option 1 [Samsung (P1), OPPO (O2), Qualcomm (O4, O5, O6)]: Complex nature of the actual power imbalance distribution, including UE-specific IL compensation
· Option 2 [Samsung (P2)]: channel variety

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 3-5: Consideration on dataset building and potential specification impact 
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Samsung
	R4-2601168
	P3

	CATT
	R4-2600251
	P1

	CMCC
	R4-2600846
	P1

	OPPO
	R4-2601218
	O2

	Ericsson
	R4-2601705
	P3

	Qualcomm
	R4-2602042
	O7-O13, P1



[Company Proposal Summary]
· FFS method of dataset building, if offline training is adopted: 
· Problem-1: Measured data or synthetic data
· Problem-2: If measured data, FFS the below possible method: 
· Model input: UE transmits twice, the first time transmitting according to the inherent insertion loss for model input data collection and the second time transmitting with self-compensation to cover up all the insertion loss for model label data collection [Samsung (P3)]
· Model output in training (label): CSI feedback in evaluation stage [CATT (P1)]
· Problem-3: If synthetic data, FFS typical simulation assumptions considering model generalization 
· FFS potential specification impact: 
· Further clarification on the report content and report of the range of SRS residual power imbalance [CMCC (P1), Ericsson (P3), OPPO (O2)]
· Consistency between network and UE, and collaboration mechanisms [OPPO (O2)]
· Even if 3GPP adopts AI-ML bases SRS IL compensation, UE should still be allowed to indicate the maximum insertion loss of each of its antenna port to be the one mentioned in 6G RF spec [Qualcomm (O8)]
· Apart from UE’s reporting, the other mechanisms to train the network sided model and run inference to compensate for SRS IL imbalance can be handled purely through network implementation [Qualcomm (O11)]

[FL Recommended Discussion Point]
· Discussion on the above proposals firstly.  

Issue 3-6: Use case description 
[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Huawei
	R4-2600904
	P1



[Company Proposal Summary]
· Details of AI-based SRS residual power imbalance compensation are summarized in Table [Huawei (P1)]: 
Table 2. AI based SRS residual power imbalance compensation
	AI model input 
	Input in training 
	UL measured channel matrix from SRS with residual power imbalance

	
	Input in inference
	UL measured channel matrix from SRS with residual power imbalance

	AI model output
	Label in training (if applicable)
	CSI measurement without power imbalance, candidate solutions could be:
· CSI feedback based on CSI-RS
· SRS measurements that are processed via time domain filtering to achieve high enough SNR 
· SRS measurements with perfect pre-compensation at UE

	
	Output in inference
	Ideal DL channel matrix

	Assumption on training 
	Training type
	Offline training

	
	Label construction 
(if applicable)
	Dataset construction: 
A total of 100,000 TTIs (Transmission Time Intervals) are allocated as follows:
· 70,000 TTIs: Only S slots are used for model training;
· 10,000 TTIs: Both S slots and D slots are used for model validation;
· 20,000 TTIs: Both S slots and D slots are used for model testing.

	model location for inference
	NW-sided AI

	Collaboration/interaction between UE and NW
	1. Inference: UE reporting on the range of SRS residual power imbalance for model training and model selection 
2. Data collection/monitoring: UE reporting/assistance information for constructing labels, e.g., CSI feedback based on CSI-RS or SRS measurements with perfect pre-compensation

	Evaluation methodology 
		Parameters
	Values

	Carrier frequency/BW
	5GHz/100MHz/272RBs

	CSI-RS ports
	32

	Tx/Rx number @UE
	1T4R

	Channel model
	TDL-A XPL medium

	Doppler
	1Hz

	TDD ULDL pattern
	DDDDDDDSUU

	Power imbalance distribution

	[0, -2.5, -5, -7.5] dB

	
	[0, -2.5, -5, -7.5]±1dB

	SRS pattern 
	4 frequency hopping, 40ms between two SRS hopping




	Evaluation assumption
	A common AI model is trained which applies to each channel matrix extracted from 4RBs. 
The model input/output is the channel matrix with the dimension [M×N], where M denotes the number of CSI-RS ports and N denotes the number of UE Rx.  
Channel aging issue is not considered in this use case.

	Evaluation KPI
	SGCS
Steps for SGCS calculation during model testing
· First, obtain full-bandwidth ideal channel matrix for D slot
· Then perform SVD decomposition for each subband to derive eigenvectors
· Subsequently, find the full-bandwidth channel matrix constructed from AI-recovered CSI at the S slots closest to the D slot, and also perform SVD decomposition for each subband to derive its eigenvectors
· Finally, compare these eigenvectors (from the AI-recovered CSI) with the eigenvectors obtained from the ideal channel matrices to calculate SGCS

	Evaluation benchmark
	1) SRS measurements without residual power imbalance
2) non-AI based SRS residual power imbalance compensation

	preliminary evaluation results
	•AI/ML based SRS residual power imbalance compensation outperforms non-AI/ML based compensation across the entire SNR range, with more obvious performance gains observed at medium to low SNRs.
•AI/ML is capable of compensating without actual values reporting, meaning there is no need to report updates to the SRS residual power imbalance when changes fall within reasonable range.

	High level potential specification impact
	1) UE assistance information/reporting related to SRS residual power imbalance
2) Potential UE RF related testing

	Feasibility issues, including complexity, and other aspects related to implementation
	CNN-based AI model



[FL Recommended Discussion Point]
· This issue can be discussed if RAN4 agree to report this use case to RAN#111.  

Topic #4: AI/ML use cases for RRM
[Background]
· In RAN4#117 discussion, further use case selection/prioritization on AI-RRM use cases is achieved as follows: 
	Issue 4-1: AI-RRM (sub-)use case selection/prioritization
Agreement:
1.	Postpone L1-beam level prediction for Tx beam
2.	Further discussion on the following identified the sub use cases under AI for RRM use case in RAN4#118 as the first priority
[bookmark: _Hlk220711798]a.	For L3-beam level prediction for Tx beam
i.	FR1/FR2-1 spatial domain (intra-cell)
ii.	FR1/FR2-1 spatial domain (inter-cell, non-collocated)
iii.	FR1/FR2-1 frequency domain (inter-cell, non-collocated)
b.	For L3-cell level prediction 
i.	FR1/FR2-1 freq. domain (inter-cell, non-collocated)
c.	Dynamic Adaptation of Measurement Procedure (single domain prediction based, no RSRP prediction is involved)
d.	Spatial domain RX beam sweeping reduction (L1/L3)



Issue 4-1: Beam prediction roadmap
[Company Proposal Summary]
· Two variants [Apple]: 
· Variant A (Tx-only prediction)
· Variant B (Tx+RX prediction)
· Overall roadmap [Apple]: 
[image: A diagram of a measurement

AI-generated content may be incorrect.]

[FL Recommended Discussion Point]
· Tried to provide Apple’s views in below Issue 4-2, 4-4 summary tables, to see if it is possible to discuss there. 

Use Case: L3-beam level prediction for Tx beam
Issue 4-2: Overall view towards L3-beam level prediction for Tx beam 
[Company Proposal Summary]
	Use case
	Sub use case
	Model location and training
	Be positive
	Be neutral or more study is required 
	Be negative (including deprioritize)

	L3-beam level prediction for Tx beam
	FR1/FR2-1 spatial domain (intra-cell)
	UE-sided model
	‡ (3) Ericsson, ZTE, Apple (merged with RX beam prediction) 

	‡ (3) MediaTek, CATT, Samsung
	‡ (5) LGE, vivo, OPPO, Nokia, Qualcomm

	
	FR1/FR2-1 spatial domain (inter-cell, non-collocated)
	UE-sided model
	‡ (4) Ericsson, ZTE, Nokia, Apple (merged with RX beam prediction)

	‡ (3) MediaTek, CATT, Huawei
	‡ (4) LGE, vivo, OPPO, Qualcomm

	
	FR1/FR2-1 frequency domain (inter-cell, non-collocated)
	UE-sided model
	‡ (5) MediaTek (for FR1), CMCC, LGE, Ericsson, ZTE

	‡ (3) MediaTek (for FR2-1), CATT, Huawei
	‡ (4) vivo (after R20 AI-Mobility co-located case), OPPO, Nokia, Qualcomm

	Note: for companies show supporting, with and without numerical results in the Tdocs are separated counted. 
  * with numerical results in Tdocs
  ‡ without numerical results in Tdocs
  (x) in which x is the number of companies for that category



· Summarized discussion points for L3-beam level prediction for Tx beam: 
· General discussion points to all three sub-use cases: 
· Coordination with RAN2 to clarify which WG is leading group [CATT, OPPO, ZTE, Nokia, Qualcomm]
· The benefit of reducing UE measurements is questionable: 
· inaccurate predictions and additional AI inference overhead. Furthermore, the selection criteria for the subset of SSBs to be measured remain unclear. [vivo]
· FR1/FR2-1 spatial domain (intra-cell)
· FFS potential gain for the following three use cases: 
· SSB->SSB: Predict RSRP of SSB in Set A from RSRP of SSB in Set B
· No RS reduction because full set of SSBs still is required for non-AI UE [MediaTek, vivo]
· SSB->CSI-RS: Predict RSRP of CSI-RS in Set A from RSRP of SSB in Set B
· CSI-RS->CSI-RS: Predict RSRP of CSI-RS in Set A from RSRP of CSI-RS in Set B
· Identify the difference from Rel-19 AI-BM [LGE, OPPO, Nokia]
· FR1/FR2-1 spatial domain (inter-cell, non-collocated)
· FFS potential gain for the following three use cases: 
· SSB->SSB: Predict RSRP of SSB in Set A from RSRP of SSB in Set B
· No RS reduction because full set of SSBs still is required for non-AI UE [MediaTek, vivo]
· SSB->CSI-RS: Predict RSRP of CSI-RS in Set A from RSRP of SSB in Set B
· CSI-RS->CSI-RS: Predict RSRP of CSI-RS in Set A from RSRP of CSI-RS in Set B
· FFS proper input features with strong correlation which increase complexity [LGE]
· Generalization issue [OPPO, Qualcomm]
· High complexity [OPPO]
· FR1/FR2-1 frequency domain (inter-cell, non-collocated)
· The necessity of FR2-1 frequency domain prediction 
· Inter-band case: Operators may not have two FR2-1 bands [MediaTek]
· Inter-frequency inter-cell configurations are less frequently deployed in non-collocated scenarios [Nokia]
· Generalization issue [OPPO, Qualcomm]
· High complexity [OPPO]

[FL Recommended Discussion Point]
· Suggest to discuss further down-scope. 

Issue 4-3: Use case description 
[Company Proposal Summary]
· Proposal 1 [Nokia]:  L3 beam-level spatial-domain prediction (inter-cell, non-collocated) use case.
	L3 beam-level spatial-domain prediction (inter-cell, non-collocated)
	Example

	AI model input 
	Input in training 
	Beam-level RSRP measurements from serving cell

	
	Input in inference
	Beam-level RSRP measurements from serving cell

	AI model output
	Label in training (if applicable)
	L3 beam-level RSRP measurements from neighboring cells operating on the same frequency and non-collocated with the serving cell

	
	Output in inference
	L3 beam-level RSRP measurements from neighboring cells operating on the same frequency and non-collocated with the serving cell

	Assumption on training 
	Training type
	offline training, potentially site-specific online finetuning

	
	Label construction 
(if applicable)
	Collected beam-specific measurement data (e.g., SSB or CSI-RS based L3-RSRP)

	Model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	With collaboration/interaction between UE and NW (e.g., for RS/inference configuration)

	Evaluation methodology 
	System level simulation

	Evaluation assumption
	Evaluation assumptions from Rel-20 AI/ML-based mobility can be leveraged

	Evaluation KPI
	RSRP prediction accuracy, MSE
Handover success/failure rate

	Evaluation benchmark
	Legacy framework with no AI-based measurement prediction

	High level potential specification impact
	Measurement accuracy and delay requirements in RAN4 specification
RAN2 signalling support

	Feasibility issues, including complexity, and other aspects related to implementation
	Similar to Rel-20 AI/ML-based mobility use cases, except non-collocated scenarios requiring some further study



[FL Recommended Discussion Point]
· This issue can be discussed if RAN4 agree to report this use case to RAN#111.  

Use Case: L3-cell level prediction 
Issue 4-4: Overall view towards L3-cell level prediction 
[Company Proposal Summary]
	Use case
	Sub use case
	Model location and training
	Be positive
	Be neutral or more study is required 
	Be negative (including deprioritize)

	L3-cell level prediction
	FR1/FR2-1 frequency domain (inter-cell, non-collocated)
	UE-sided model or NW-sided model
	‡ (7) MediaTek (for FR1), CMCC, LGE, Samsung, Ericsson, ZTE, Apple (merged with RX beam prediction)

	‡ (2) MediaTek (for FR2-1), Huawei
	‡ (4) vivo/Nokia (after R20 AI-Mobility co-located case), OPPO, Qualcomm

	Note: for companies show supporting, with and without numerical results in the Tdocs are separated counted. 
  * with numerical results in Tdocs
  ‡ without numerical results in Tdocs
  (x) in which x is the number of companies for that category



· Summarized discussion points for L3-cell level prediction: 
· FR1/FR2-1 frequency domain (inter-cell, non-collocated)
· Cross-working group coordination to avoid duplicated effort [Samsung, OPPO, ZTE]
· Should be based on 5G study progress on the co-located scenarios [vivo, Nokia].
· The necessity of FR2-1 frequency domain prediction 
· Inter-band case: Operators may not have two FR2-1 bands [MediaTek]
· Technical feasibility of frequency-domain inter-cell non-collocated scenario, 
· Whether the trained model can only work on certain location/deployment-based signal map [Samsung]. 
· Generalization issue [OPPO, Qualcomm]
· High complexity [OPPO]

[FL Recommended Discussion Point]
· Check this use case should be in 6G scope or not.  
· Check if it is needed to further down-scope to L3-cell level prediction for “FR1/FR2-1 frequency domain (inter-cell, non-collocated)”. 

Issue 4-5: Use case description 
[Company Proposal Summary]
· Proposal 1 [LGE]:  
	Sub-use case: L3-cell level prediction
	

	AI model input 
	Input in training 
	Measured L3 cell-level RSRPs for intra-frequency cells

	
	Input in inference
	Measured L3 cell-level RSRPs for intra-frequency cells

	AI model output
	Label in training (if applicable)
	Legacy measured L3 cell-level RSRPs of inter-frequency target cell

	
	Output in inference
	Predicted L3 cell-level RSRPs of inter-frequency target cell

	Assumption on training 
	Training type
	Offline training + On-line fine tuning or Online training

	
	Label construction 
(if applicable)
	Through UE’s reporting of legacy measurement

	model location for inference
	Network-sided model – Because the performance of the AI/ML model can be strongly influenced by the base station deployment environment.

	Collaboration/interaction between UE and NW
	If the network provides the trained AI/ML model to the UE, the UE is able to execute UE-based AI/ML functions.

	Evaluation methodology 
	System-level simulation under a scearario that can sufficiently reflect the field environment

	Evaluation assumption
	Maximum number of intra-frequency cells for AI input: [X] 

	Evaluation KPI
	Intermediate KPIs：L3 cell-level RSRP accuracy
Performance KPI: HO performance KPIs considering T-put performance improvement

	Evaluation benchmark
	T-put, HO performance of legacy measurement

	Preliminary evaluation results
	TBA

	High level potential specification impact
	TBA

	Feasibility issues, including complexity, and other aspects related to implementation
	If the field environment is not sufficiently reflected, the functionality may perform well only in SLS.

	Expected benefits
	MG reduction 
Measurement delay reduction
HO performance enhancement



· Proposal 2 [Samsung]:  
	RAN4-identified Use case
	L3-cell level prediction in FR1/FR2-1 freq. domain (inter-cell, non-collocated)

	Use case description
	AI model input
	L3-cell level measurement (e.g., L3 cell-level RSRP) on serving cell at frequency layer 1

	
	AI model output
	L3-cell level prediction (e.g., L3 cell-level RSRP) on neighboring cell at frequency layer 2

	
	Method of labelling
	Label is obtained by additional measurement at frequency layer 2

	
	Training type
	offline training for certain location/deployment-based signal map

	
	Model location for inference
	UE-sided

	
	Collaboration/interaction between UE and NW
	UE capability reporting, NW configuration with reduced RS resources

	Observations on benefits and/or gain
	Reduced RS resources, or reduced measurement delay

	Observations on complexity
	To be evaluated

	Standardization effort required
	System-level simulation

	Potential RAN4 spec impact
	Prediction accuracy requirement

	Impacted other working groups
	RAN2 signaling design



[FL Recommended Discussion Point]
· This issue can be discussed if RAN4 agree to report this use case to RAN#111.  


Use Case: Dynamic adaptation of measurement procedure
Issue 4-6: Overall view towards dynamic adaptation of measurement procedure 
[Company Proposal Summary]
	Sub-use case
	Model location and training
	Be positive
	Be neutral or more study is required 
	Be negative (including deprioritize)

	Dynamic adaptation of measurement procedure
	UE-sided model
	‡ (5) MediaTek, CATT, Xiaomi, LGE, vivo, 

	‡ (5) Samsung, OPPO, ZTE, Nokia, Qualcomm
	‡ (1) Ericsson 

	Note: for companies show supporting, with and without numerical results in the Tdocs are separated counted. 
  * with numerical results in Tdocs
  ‡ without numerical results in Tdocs
  (x) in which x is the number of companies for that category



· Summarized discussion points for dynamic adaptation of measurement procedure: 
· Move to RRM session [Qualcomm]
· Clarify this use case by considering two alternatives [Samsung]: 
· Option 1: NW-agnostic UE autonomous mode: 
· Need to clarify specification impact [Samsung, Nokia].  
· Option 2: NW-UE interaction mode.
· Clarify the difference form Rel-20 AI/ML mobility and other 6G AI RRM use cases [Nokia]
· FFS the existing agreement of “single domain prediction based, no RSRP prediction is involved” [Qualcomm, OPPO]
· FFS joint temporal-frequency-domain prediction
· FFS indirect prediction such as predicted RSRPs of the cells can also serve as a useful basis for adaptation
· Do not preclude the RSRP prediction which can be at least intermediate or optional prediction results. [OPPO]
· FL note: this is contradicting to existing agreement, i.e, “single domain prediction based, no RSRP prediction is involved”
· AI prediction output: 
· Option 1: measurement decisions and/or measurement events as prediction output [vivo]
· Option 2: Predicted L3 beam/cell level measurement; Predicted top-K frequency layers/cells; predicted time for cell change; probability of cell change [OPPO]
· Option 3: UE-signaled "AI Prediction Confidence Level" [Apple]
· Applicable scenarios: 
· FFS the possible applicable scenarios for dynamic adaptation of measurement procedure: 
· Scenario-1 [MediaTek/LGE]: Serving cell is on f1. To-be-predicted frequency is on f2. Set up a scenario that f1 has a full coverage but f2 does not. Depending on the UE’s location, the UE may either obtain the L3 cell-level RSRP of the inter-frequency cell through MG-based measurement or through prediction
· Scenario-2 [Apple]: UE-assisted AI/ML prioritization framework that classifies inter-frequency candidates into high-value and opportunistic categories based on handover utility and historical context. This enables the network to dynamically concentrate physical measurement resources on decision-critical targets while reducing the monitoring overhead for low-priority layers.
· Scenario-3 [vivo]: Take serving cell signal data as the core input and predict direct measurement decisions, such as whether to start or stop measuring neighbouring cells. Based on the predicted results, the UE can adjust its measurement actions, thereby overcoming the limitations of traditional static triggers in measurements on neighbouring cells.
· Down-scope by considering a specific scenario for further study, e.g., only consider dynamic adaptation of measurement procedure for multiple frequency layers [Samsung]
· Evaluation KPI and performance gain:
· FFS Predicted RSRP accuracy; success rate of prediction [OPPO]
· Feasibility
· FFS Model complexity and testability [OPPO]

[FL Recommended Discussion Point]
· Check this use case should be in 6G scope or not.  

Issue 4-7: Use case description 
[Company Proposal Summary]
· Proposal 1 [MediaTek]:  
	Dynamic Adaptation of Measurement Procedure
	MediaTek

	AI model input 
	Input in training 
	RSRP of serving cell and neighbor cells

	
	Input in inference
	RSRP of serving cells and neighbor cells

	AI model output
	Label in training (if applicable)
	Suppose inter-f measurement on f2 is configured.
The label is whether any cell on f2 is [detectable] or the priority of each MO

	
	Output in inference
	Whether any cell on f2 is [detectable] or the priority of each MO

	Assumption on training 
	Training type
	Offline training

	
	Label construction 
(if applicable)
	 Through legacy inter-f measurement

	model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	Can work without collaboration/interaction between UE and NW.
Open to introduce collaboration/interaction between UE and NW to make the whole mechanism better.

	Evaluation methodology 
	System level simulation

	Evaluation assumption
	Serving cell is on f1. To-be-predicted frequency is on f2.
Set up a scenario that f1 has a full coverage but f2 does not.

	Evaluation KPI
	

	Evaluation benchmark
	Measurement following legacy requirements

	preliminary evaluation results
	 

	High level potential specification impact
	New measurement delay requirements to allow dynamic adaptation of measurement procedure. 

	Feasibility issues, including complexity, and other aspects related to implementation
	The model complexity is expected to be not high as it is just a classification model.



· Proposal 2 [vivo]: 
	Sub-use case 
Dynamic Adaptation of Measurement Procedure
	vivo

	AI model input
	Input in training 
	Necessary input:
· Current signal quality data of serving cell and/or neighbor cells (such as RSRP, etc.)
Other possible input:
· network-configured measurement thresholds (such as ssb-RSRP, csi-RSRP, if any)

	
	Input in inference
	Necessary input:
· Current signal quality data of serving cell and/or neighbor cells (such as RSRP, etc.)
Other possible input:
· network-configured measurement thresholds (such as ssb-RSRP, csi-RSRP, if any)

	AI model output
	Label in training (if applicable)
	Necessary:
· Signal quality data of serving cell and/or neighbor cells (such as RSRP, etc.)
Other possible input:
· Measurement decision labels

	
	Output in inference
	Possible output:
· Measurement decisions, e.g., 
· whether to perform measurement on the neighbor cell
· when to perform measurement
· how to perform measurement 
· Measurement events, e.g., 
· "events" related to L3 measurements, such as S-measure-based predictions as a ‘event’ to start/stop neighbor cell measurements.

	Assumption on training 
	Training type
	Offline training/Online training

	
	Label construction 
(if applicable)
	· Based on system-level simulation 
· Based on filed data

	model location for inference
	· UE-sided model

	Collaboration/interaction between UE and NW
	· NW side configures basic parameters for the UE, potential including measurement thresholds (such as ssb-RSRP), measurement parameter related (such as SMTC DRX), etc.; 
· After UE side generates predicted measurement decision (or measurement event), it reports the results as required by the network;
· NW can schedule UE according to measurement decisions

	Evaluation methodology 
	System level simulation and link level simulation

	Evaluation assumption
	The evaluation assumption on AI/ML PHY BM and AI mob time domain RRM measurement prediction can be as the starting point

	Evaluation KPI
	Possible performance metrics on measurement decision (e.g., decision prediction accuracy)

	Evaluation benchmark
	Non-AI measurement initiation mechanism, such as traditional S-measure measurement mechanism and cell reselection measurement mechanism

	Preliminary evaluation results
	

	High level potential specification impact
	Potential new requirements:
· Prediction delay requirements
· Measurement period measurement in the AI-assisted measurement scenarios
· Possible performance metrics (e.g., decision prediction accuracy)
· Potential scheduling requirements
Impact to other WG’s specifications:
· Necessary signaling 
· Necessary procedure based on AI prediction results  

	Feasibility issues, including complexity, and other aspects related to implementation
	Similar to AI mob use case- time domain prediction with one cell



· Proposal 3 [OPPO]:
	Use case c: 
(Dynamic adaptation of measurement procedure)
	OPPO

	AI model input 
	Input in training 
	L3 beam/cell level measurement at historic time instance(s) until t2 for multiple frequency layers;
Other possible information

	
	Input in inference
	L3 beam/cell level measurement at historic time instance(s) until t2 for multiple frequency layers;
Other possible information

	AI model output
	Label in training (if applicable)
	L3 beam/cell level measurement at t2+t for multiple frequency layers

	
	Output in inference
	Predicted L3 beam/cell level measurement at t2+t for multiple frequency layers; Predicted top-K frequency layers/cells; predicted time for cell change; probability of cell change at time t2+t; probability of cell change to frequency layer f

	Assumption on training 
	Training type
	Offline training

	
	Label construction 
(if applicable)
	L3 beam/cell measurement data for multiple frequency layers 

	model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	TBA

	Evaluation methodology 
	System level simulation

	Evaluation assumption
	TBA

	Evaluation KPI
	Predicted RSRP accuracy; success rate of prediction

	Evaluation benchmark
	UE actual measurement; chosen frequencies/cells based on certain criteria; correct time/frequency for cell change

	Preliminary evaluation results
	

	High level potential specification impact
	Corresponding core and accuracy requirements depending on the KPI

	Feasibility issues, including complexity, and other aspects related to implementation
	Benchmark derivation and testability depending on selected KPI

	Potential benefits
	[bookmark: _Hlk220584687]Measurement relaxation/reduction;
Performance improvement for cell change



· Proposal 4 [Qualcomm]:
	· Dynamic Adaptation of Measurement Procedure
	Example

	AI model input 
	Input in training 
	Beam and/or cell level RSRP measurements from serving cell and/or neighbor cells.
Extra information can be considered too if UE proprietary solution-based AI/ML model.

	
	Input in inference
	Same as above.

	AI model output
	Label in training (if applicable)
	Beam and/or cell level RSRP measurements from serving cell and neighbor cells which may or may not be co-located with the measurement cells.
Detectability of the target beam and/or cell.

	
	Output in inference
	Same as above.

	Assumption on training 
	Training type
	offline training, potentially site-specific online finetuning

	
	Label construction 
(if applicable)
	Collected measurement data

	model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	With or without collaboration/interaction, depending on whether and to what extent the UE measurement adaptation decision needs to be communicated to the NW.

	Evaluation methodology 
	System level simulation (a new simulation might not be necessary, depending on how much out of Rel-20 AI/ML-based mobility can be leveraged)

	Evaluation assumption
	May or may not be needed, depending on how much out of Rel-20 AI/ML-based mobility can be leveraged

	Evaluation KPI
	Measurement period optimization for more relevant cells (in terms of RSRP), compared to the RAN4 minimum requirements, which mandate TDM-based measurements across all cells and frequencies in the configured measurement object.

	Evaluation benchmark
	RAN4 minimum requirements, which mandate TDM-based measurements across all cells and frequencies in the configured measurement object.

	Preliminary evaluation results
	TR 38.744 “Technical Report on Study on Artificial Intelligence (AI)/Machine Learning (ML) for mobility in NR”

	High level potential specification impact
	Overall measurement period requirements in RAN4 specification.
Potentially, RAN2 signalling support (depending on whether and to what extent the UE measurement adaptation decision needs to be communicated to the NW)

	Feasibility issues, including complexity, and other aspects related to implementation
	No big concern compared to other AI/ML use cases.



· Proposal 5 [Xiaomi]:
· RAN4 to study AI-driven cell selection, including evaluation metrics and impacts on inter-cell measurement overhead and mobility robustness.
· Stage 1: AI-based Cell Index Prediction (Classification)
· Input: measurements of a small subset of “anchor” cells (or features derived from partial measurements).
· Output: indexes of high-quality candidate cells (top-K) from a larger candidate set.
· Key logic: the model learns correlations between partial measurements and the larger cell set, and outputs which cells are worth measuring (indexes only).
· Stage 2: Targeted Formal Measurement
· The UE performs formal RRM measurements only for the predicted top-K cells, reducing redundant measurement overhead.
· Proposal 6 [Xiaomi]: RAN4 to study AI-assisted measurement period adaptation, potentially in conjunction with AI-based cell selection.

[FL Recommended Discussion Point]
· This issue can be discussed if RAN4 agree to report this use case to RAN#111.  


Use Case: Spatial domain RX beam sweeping reduction (L1/L3)
Issue 4-8: Overall view towards spatial domain RX beam sweeping reduction (L1/L3) 
[Company Proposal Summary]
	Sub-use case
	Model location and training
	Be positive
	Be neutral or more study is required 
	Be negative (including deprioritize)

	Spatial domain RX beam sweeping reduction (L1/L3)
	UE-sided model
	‡ (5) Xiaomi, CMCC, vivo, ZTE, Qualcomm

	‡ (6) MediaTek, CATT, LGE, Samsung, OPPO, Nokia, 
	‡ (1) Ericsson 

	Note: for companies show supporting, with and without numerical results in the Tdocs are separated counted. 
  * with numerical results in Tdocs
  ‡ without numerical results in Tdocs
  (x) in which x is the number of companies for that category



· Summarized discussion points: 
· Coordination with RAN1 on TX-RX beam pair prediction [ZTE]
· Scope clarification: 
· L1 or L3 domain prediction [Samsung]
· Single or multi-domain prediction (e.g., time and spatial domain) [Samsung, OPPO]
· Difference from spatial domain prediction for TX beams [OPPO]
· Importance decreased for FR3:
· Not useful for UE operating at around 7GHz and around 15GHz [MediaTek]
· Evaluation KPI
· FFS RSRP prediction accuracy [OPPO]
· Tradeoff between cost and gain should be justified:
· Compared to RX beam sweeping reduction in previous releases [CATT]
· Complexity due to prediction cross multiple cells and multiple domains [OPPO]
· Comparison to non-AI solution [Qualcomm]
· FFS standard should provide support for UEs that leverage sensor data to enable RX beam sweeping reduction or refinement [LGE]
· Testability issue: 
· FFS multi-AoA test system in Rel-19 AI-BM for FR2-1 can be reused. [MediaTek]

[FL Recommended Discussion Point]
· Check this use case should be in 6G scope or not.  

Issue 4-9: Use case description 
[Company Proposal Summary]
· Proposal 1 [Samsung]:  
	RAN4-identified Use case
	Spatial domain RX beam sweeping reduction (L1/L3)

	Use case description
	AI model input
	L1/L3 beam measurement results (e.g., L1/L3 beam-level RSRP) on selected beams of UE RX beambook

	
	AI model output
	Best RX beam ID of UE RX beambook
or
L1/L3 beam prediction results (e.g., L1/L3 beam-level RSRP) for reporting

	
	Method of labelling
	Label is obtained by complete RX beam sweeping

	
	Training type
	offline training for certain UE model

	
	Model location for inference
	UE-sided

	
	Collaboration/interaction between UE and NW
	UE capability reporting, NW configuration with reduced RS resources

	Observations on benefits and/or gain
	Reduced RS resources, or reduced measurement delay

	Observations on complexity
	To be evaluated

	Standardization effort required
	System-level simulation

	Potential RAN4 spec impact
	Reduced RX beam sweeping factor

	Impacted other working groups
	N/A



· Proposal 2 [vivo]:  
	Sub-use case 
RX beam sweeping reduction
	vivo

	AI model input 
	Input in training 
	Measurements of target reference signals using a reduced set of RX beams with corresponding subset/full set of Tx beams

	
	Input in inference
	[bookmark: OLE_LINK50][bookmark: OLE_LINK51]Measurements of target reference signals using a reduced set of RX beams with corresponding subset/full set of Tx beams

	AI model output
	Label in training (if applicable)
	Properties of the full set of RX beams (with corresponding set A Tx beams) for the reference signals measured with subset RX beams (with corresponding set A or set B Tx beams)

	
	Output in inference
	Tx-Rx beam pair prediction result 

	Assumption on training 
	Training type
	offline training

	
	Label construction 
(if applicable)
	Labeled with actual full RX beams (with corresponding set A Tx beams) and the subset RX beam measurements (with corresponding set A or set B Tx beams) of the same reference signals

	model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	NW informs UE deployment configuration, e.g., Application ID

	Evaluation methodology 
	system level simulation, and link level simulation.

	Evaluation assumption
	The evaluation assumption on AI/ML PHY BM can be as the starting point

	Evaluation KPI
	· RSRP prediction accuracy
· Beam prediction accuracy

	Evaluation benchmark
	Compare the performance of AI/ML-based reduced RX beam sweeping with legacy full RX beam sweeping in FR2

	Preliminary evaluation results
	

	High level potential specification impact
	Potential new requirement
· Reduced measurement period for FR2 measurement due to reduced Rx beam sweeping factor
· TCI state known condition
· Performance requirements, including beam prediction accuracy and RSRP accuracy

	Feasibility issues, including complexity, and other aspects related to implementation
	Model complexity:
· UE-side computational load and memory resource complexity for beam pair prediction
Testability issue



· Proposal 3 [Qualcomm]:  
	Aspects
	Example

	AI model input
	Input in training
	L1-RSRP of a subset (<8) of RX beams

	
	Input in inference
	L1-RSRP of a subset (<8) of RX beams

	AI model output
	Label in training (if applicable)
	L1-RSRP of “full set” (=8) of RX beams

	
	Output in inference
	L1-RSRP of “full set” (=8) of RX beams

	Assumption on training
	Training type
	Offline training

	
	Label construction
	Measurement data

	model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	UE informs network the required number of RX beams it needs to measure to predict the properties of full set of RX beams.

	Evaluation methodology
	system level simulation


	Non-AI-ML benchmark
	Radial basis function interpolation

	Evaluation KPI
	Accuracy of predicted RSRP

	Evaluation assumption
	As an example, the framework of Rel-18 and Rel-19’s evaluation assumptions for AI-ML beam management (mentioned in table 6.3.1-1 of 38.843) can be used. This framework needs to be slightly modified to focus on RX beam prediction, instead of TX beam prediction.  Other examples should also be considered, especially to evaluate RX beam sweeping factor reduction in L3.

	High level potential specification impact
	UE capability regarding the required number of RX beams.

	Feasibility issues, including complexity, and other aspects related to implementation
	No big concern compared to other AI-ML use cases



· Proposal 4 [OPPO]:  
	Use case d: 
(Spatial domain RX beam sweeping reduction (L1/L3))
	OPPO

	AI model input 
	Input in training 
	L1/L3 beam measurement with sub-set of Rx beams for frequency layer f1.
The measurements include multiple cells and Tx beams

	
	Input in inference
	L1/L3 beam measurement with sub-set of Rx beams for frequency layer f1.

	AI model output
	Label in training (if applicable)
	L1/L3 beam measurement with full set of Tx and Rx beams for frequency layer f1.

	
	Output in inference
	Predicted L1/L3 beam measurement with full set of Rx beams for frequency layer f1; predicted top-K Tx/Rx beams

	Assumption on training 
	Training type
	Offline training

	
	Label construction 
(if applicable)
	L1/L3 beam measurement data with full set of Tx and Rx beams

	model location for inference
	UE-sided model

	Collaboration/interaction between UE and NW
	No collaboration, NW configures the reference signals as legacy. 

	Evaluation methodology 
	System level simulation

	Evaluation assumption
	TBA

	Evaluation KPI
	RSRP prediction accuracy

	Evaluation benchmark
	UE actual measurement

	Preliminary evaluation results
	

	High level potential specification impact
	UE capability on the reduced Rx beam sweeping; 
Measurement and prediction related core requirements; 
RSRP prediction accuracy requirements

	Feasibility issues, including complexity, and other aspects related to implementation
	Complexity of implementation due to prediction cross beams, cells and time. 

	Potential benefits
	Reduction of Rx beam sweeping factor 



[FL Recommended Discussion Point]
· This issue can be discussed if RAN4 agree to report this use case to RAN#111.  

Others 
Issue 4-10: AI/ML use cases for RRM agreed to be treated with low priority
[Company Proposal Summary]
· Proposal 1 [CATT]: RAN4 to study the mechanism and applicable scenarios for measurement-gap reduction.
	Index
	use cases
	Model location 
(Training method)
	Positive for the sub-use case to be included in 6G study with priority
	Positive for the use case to be included in 6G study after the prioritized sub-use cases are concluded
	Expected benefits
(e.g., RS reduction, MG reduction etc.)
	Dependence with other WG-led use cases (in 5GA or 6G)
	Which specific aspect RAN4 should study

	4) 
	Multi-Domain L3 level Prediction for Measurement-Gap Reduction
	UE sided model (Offline training)
	CMCC (non-collocated), Samsung*, LGE, vivo, CTC, CATT
	
	MG reduction
	Rel-20 AI-Mob
	Identify which use cases can serve the purpose of measurement gap reduction



· Proposal 2 [vivo]: RAN4 to consider L3 beam-level time domain prediction as a prioritized use case of the current 6G AI SI study.
· Proposal 3 [ZTE]: For Multi-Domain L3 level Prediction, it should be considered after significant progress is achieved for single-domain L3 level prediction to avoid redundant discussion.
· Proposal 4 [ZTE]: If RAN4 wants to introduce new use cases in future, study and develop the potential AI/ML use cases for RRM from the following perspectives:
· Type 1: Whether and how to apply AI/ML to reduce measurement resource overhead
· Type 2: Whether and how to apply AI/ML to reduce measurement/processing delay
· Type 3: Whether and how to apply AI/ML to reduce the interruption/measurement gap
· Proposal 5 [Apple]: Investigate a UE-assisted framework in which the UE predicts short-term beam stability using AI/ML and reports a compact beam stability and/or beamwidth adaptation indicator. The gNB uses this indicator to dynamically adapt beamwidth selection and beam management measurement configurations.

[Company Proposal Summary]
· Suggest to postpone the discussion on this issue due to the prioritization agreement achieved in RAN4#117. 


Topic #5: Other RAN4-driven use cases
Issue 5-1: AI-PRACH use case study 
[Background] In RAN4#117, it is agreed that RAN4 hold the discussion on AI-enabled PRACH receiver which can be considered in RAN1 6G study
	Use Case #3: AI-enabled PRACH receiver
Issue 3-4: AI-enabled PRACH receiver use case selection/prioritization 
[bookmark: _Hlk214627932]Agreement:
· For AI-enabled PRACH receiver: 
· RAN4 hold the discussion on AI-enabled PRACH receiver which can be considered in RAN1 6G study. 



[Relevant Proposals in Companies’ Tdocs]
	Company
	Tdoc No.
	Proposal

	Ericsson
	R4-2601510
	P1



[Company Proposal Summary]
· This use-case should be evaluated by RAN1. Alternatively, if RAN4 evaluates, it should be after the PRACH design is established in RAN1 [Ericsson (P1)] 

[FL Recommended Discussion Point]
· No need to discuss on this proposal, by considering the existing agreement. Topic #5 will be closed. 

Annex: Companies’ detailed proposals
Topic #1: RAN4 AI/ML framework and other general aspects
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600249
	Post-deployment enhancement
Observation 1: If the ‘new AI/ML functionality’ belongs to a new feature that UE should claim support or not, RAN4 will define corresponding requirements and tests, which belongs to pre-deployment conformance test. 
Observation 2: If the ‘new AI/ML functionality’ does not belong to a new feature, the possible changes could be model fine-tuning, re-training or parameter-reloading, etc., in which case the performance monitoring is enough. 
Proposal 1: RAN4 to clarify what changes are tested by post-deployment test. 
Proposal 2: RAN4 to discuss where and how to perform this post-deployment test. 

Model standardization and deployment
Observation 3: The discussion for device types is on hold in RANP until RAN#113. Discussions on device types are not to be discussed in WGs until further update from RAN plenary. 
Proposal 3: RAN4 continue deferring the discussion on AI UE category until RANP have progress. 
Observation 4: In the scenarios where AI/ML models are transferred, AI/ML model information, including complexity and size, etc., need to be aligned between network and UE. Predefining AI UE categories could be one solution.
Observation 5: Defining different requirements for different AI/ML model categories could lead to much spec burden. If requirements are agnostic with AI model complexity, the benefit of differentiating AI model complexities is not clear.
Proposal 4: Discuss the motivation and final targets of differentiating AI/ML model complexity first if RAN4 agree to further discuss AI/ML model categories. 
Proposal 5: Discuss whether different RAN4 requirements are needed for different AI/ML model categories. 

Principle for use cases selection and discussion
Proposal 6: The following aspects can be considered by RAN4 when selecting use cases:
o	The selected scenarios are highly valuable, instead of being some corner cases;
o	High motivation for introducing AI;
o	Aim to address the issues/demand faced by current industries.

	Apple
	R4-2600526
	Proposal 1: For 6G, post-deployment validation of AI/ML should evolve from reactive monitoring to confidence-aware operation. In addition to predictions, AI/ML models may provide confidence or uncertainty indicators. The system (UE and/or network) may use this information to regulate reliance on AI outputs in real time, reducing usage or falling back to legacy under out-of-distribution conditions without waiting for delayed ground-truth measurements or KPI degradation. This confidence-aware operation could complement post-activation monitoring
Proposal 2: For 6G, post-deployment validation may support shadow-mode evaluation, in which an updated AI/ML model runs in parallel with the active system. Shadow predictions are evaluated against subsequent measurements and KPIs under real deployment conditions to determine readiness for promotion to active use
Proposal 3: Study on how semantic abstract of the deployment characteristics can help to address the model generalization issues.

	CAICT
	R4-2600653
	Proposal 1: For post-deployment discussion in 6G AI, prioritize the post-deployment post-activation functionality testing [based on performance monitoring]. 
Proposal 2: Suggest to postpone the discussion on interoperability for two-sided model in 6G AI. For the identified 2-sided cases in 6G study, RAN4 can further check whether the mechanism for CSI compression in Rel-20 5G-A WI could be reused or certain enhancement being required.

	CMCC
	R4-2600845
	Proposal 1: for post-deployment, 5G study can be used as baseline. And option 2 (Post-deployment post-activation functionality testing based on performance monitoring) can be used as starting point for 6G study.
Proposal 2: for post-deployment based on performance monitoring, it is proposed to study whether monitoring procedures can be established in a general way which can be used for all use cases or need to be discussed separately in a case by case manner.

	Huawei, HiSilicon
	R4-2600902
	Proposal 1: RAN4 driven use cases need to be justified based on the following aspects, which include value scenarios, the motivation for introducing AI, the urgency of starting to study, and whether the use case is intended to address issues for mandatory features.  
Proposal 2: RAN4 not define post-deployment pre-activation functional testing for AI/ML features as well, unless significant interoperability issues are identified.    
Proposal 3: Discuss model complexity for use case selection in a per-use-case manner.    
Observation 1: No interoperability issues are identified for one-sided models in 5G AI.    
Proposal 4: Identify the differences between 5G AI and 6G AI before the study of interoperability issues for one-sided models.    

	Samsung
	R4-2601167
	Post-deployment enhancement
Observation 1: The post-deployment pre-activation functionality test (Option 1 in Rel-19 discussion), if introduced, is used to ensure AI/ML functionality after product shipping but before activation, which is quite different from conformance test. 
Observation 2: The post-deployment pre-activation functionality test (Option 1 in Rel-19 discussion) is important to mitigate potential risks if untested AI/ML features were activated directly in the field. 
Proposal 1:	If introduced, post-deployment pre-activation functionality test shall be allowed to be conducted in UE vendors’ lab or other testing lab. 
Proposal 2:	Post-deployment post-activation functionality testing based on performance monitoring can be further discussed in 6G scope for the identified 6G use cases, as per-use case basis. 
Model complexity
Proposal 3:	For model complexity, RAN4 shall study the range of “complex model” complexity: 
- Certain “complex model” range (e.g., >10M FLOPs and/or >10MB) shall be regarded as infeasible to be implemented as real-time inference (i.e., inference latency < 10ms) for 6G handheld UE type. 
- Other complexity range for other UE types can be FFS with low priority.  
AI/ML framework for RAN4-driven use cases
Proposal 4:	For RAN4 use case(s) to be identified in Rel-20, RAN4 should at least consider the following AI/ML framework aspects be applicable or not:
-	UE-side and NW-side data collection if needed
-	Applicability report 
-	Associated ID to indicate additional conditions that may not be explicitly configured
-	Performance monitoring 
-	Dedicated AI/ML processing unit (APU) and timeline
-	Testing and Performance Requirements
Principle for use cases selection and discussion
Proposal 5:	RAN4 AI/ML group shall provide a list of RAN4-identified use cases under RAN4 discussion with priority, accordingly which can be used to be provided to RAN#111.
Proposal 6:	For each use case within RAN4-identified use case list, the following information template should be used to provide necessary information to RAN#111.

	OPPO
	R4-2601216
	Observation 1: 	For computing resources, in current terminal devices, most computing resources are located outside the modem. Computing resources inside the modem, especially dedicated processors like GPUs or NPUs, are very limited.
Observation 2: 	For wireless AI use cases, available computing resources may fall into: 
-	AI computing resource on device, but outside modem
-	Non-AI computing resource on device, but outside modem
-	AI computing resource inside modem
-	Non-AI computing resource inside modem
Observation 3: 	If RAN4 defines reference models without taking into account the diverse AI capabilities of UE, it could lead to AI features being available only to high-end devices.
Proposal 1: 	For 6G, RAN4 should define UE AI categories for different devices. Details related to UE AI categories could be postponed to Q2 2026.
Proposal 2: 	To further study AI model complexities, the model’s training type and its reliance on training data also should be considered as dimensions of assessment.
Proposal 3: 	LCM based approach is expected to remain a fundamental way to implement post-deployment post-activation testing, serving as a baseline for ensuring model performance after deployment.
Proposal 4: 	RAN4 could further study whether and how to define a reasonable testing approach under post-deployment and pre-activation conditions. Defining test datasets and specifying test methods based on datasets could be an option.

	ZTE Corporation, Sanechips
	R4-2601353
	Observation 1: The issues shall be not specific to certain RAN4 driven AI use cases in general part.
Observation 2: Different use case in RF/Demod/RRM part uses the different AI model, the model complexity for different models maybe are different.
Proposal 1: RAN4 shall study corresponding model complexity per use case other than defining it commonly.
Proposal 2: Inference latency and model generalization shall not be the part of model complexity evaluation.
Observation 3: The pre-deployment testing could verify whether the AI functionality can  work in a controlled laboratory environment, the performance indicators and parameters under the current controlled environment can be ensured.
Observation 4: For post-deployment post-activated scenario, the pros and cons are listed.
Observation 5: For post-deployment pre-activated scenario, relying on individual UE vendors' labs could lead to divergent evaluation outcomes, resulting in inconsistent judgments on whether a model update is qualified.
Proposal 3: For post-deployment post-activated scenario, RAN4 shall firstly analyze the pros and cons for testing in the field or in lab, as below:
Proposal 4: For post-deployment pre-activated scenario, the testing shall be performed in testing lab instead of in UE vendor’s lab.

	Ericsson
	R4-2601417
	Model complexity
Observation 1	Complex AI/ML model bears the potential to infer more accurate measurement(s) in comparison to the relatively simple AI/ML model.
Observation 2	Inference time of a complex AI/ML model can be longer than the inference time of relatively simple AI/ML model.
Proposal 1	Evaluation of AI/ML model complexity is performed in relation to the performance requirement to be met to support 6G AI/ML use cases.
Interoperability
Observation 3	For effective deployment of AI/ML based features, performance and behavior of UEs from different vendors implementing AI/ML based functionality needs to be consistent with each other and to ensure this, interoperability needs to be considered as an integral part of 6G AI/ML study.
Observation 4	For functionalities to be supported by UE-sided model, choice of the AI/ML model for deployment can be up to UE implementation.
Observation 5	For the same functionality to be supported by UE, different flavors of AI/ML model can be deployed by different UE vendors.

Observation 6	Network needs to support a mix of UEs that are AI/ML capable and UEs that do not bear AI/ML capability.
Observation 7	If the AI/ML model performance varies between different UEs and their models, then the network needs to know which UE it is interacting with, and when/where it can configure AI/ML functionality to this UE and the performance that can be expected from this UE. Needing to have such knowledge for each of the UEs will compromise interoperability and increase the complexity of deploying the AI/ML based functionality in 6G.
Observation 8	Ensuring consistency between the measurements that are measured and inferred is essential to enable network node to make uniform decisions regardless of whether the UE network is interacting with bears AI/ML capability or not.
Proposal 2	Study and identify monitoring metric relevant for UE sided model performance monitoring. Details of performance monitoring metric can be studied on a per use case basis.
Proposal 3	Study requirements for monitoring metric reporting for performance monitoring of UE sided model at network node. Details of requirements for monitoring metric reporting for performance monitoring can be studied on a per use case basis.
Proposal 4	Ensure consistency between the measurements reported by the UEs that are AI/ML capable and UEs that do not bear AI/ML capability. 
Observation 9	Interoperability for two-side model is being addressed for CSI compression in 5G-A Rel. 20 WI. Learnings from this WI and the approaches identified to handle interoperability issues in two-side AI/ML model deployment can potentially be used to address interoperability issues in AI/ML based 6G functionalities that require two-side model deployment.
Channel model for evaluation
Proposal 5	If the test framework for AI based receiver is using test signal and channel emulator, following aspects should be considered for channel model application:
5)	Model variants depending on scenarios covered by AI feature
6)	Model variants depending on time, frequency and spatial drifting of the channel and UE capabilities
7)	Balance between channel model richness and test complexity.
8)	How to avoid test signals being used for AI model training.
Observation 10	It might be possible to take channel coefficients from system level simulations to create data set for standardization tests.  
Observation 11	The alignment method and the performance metrics could be different from legacy tests. 
Proposal 6	Study the feasibility and methodology of taking channel coefficient from system/link level simulations as data set for further tests.
Proposal 7	The TE limitations, such as storage space, number of channel filter taps, coefficient precision etc., should be studied and improved for AI if possible.
Proposal 8	Study feasible performance metrics based on channel model with rich randomness.
Testing aspects
Proposal 9	UE that claims to support AI/ML based functionality hosts a trained AI/ML model for testing procedure discussions. Details can be further discussed on a use case basis.      
Proposal 10	Study the scope of model retuning and when and how model retuning shall or can be performed by UE without impacting network operation KPIs.
Proposal 11	Study the scope of conformance testing after model retuning.

	vivo
	R4-2601475
	Proposal 1: For post-deployment enhancement, including the necessity and specific solutions for post-deployment pre-activation functionality testing and post-deployment post-activation functionality testing, further discussion can be postponed until specific cases with potential cases emerge.
Proposal 2: Regarding interoperability,
-	For the one-sided model, it is necessary to first clarify the specific definition of interoperability, and further clarify on which possible issues may occur.
-	For the two-sided model, RAN4 can postpone discussion until the corresponding mechanism for CSI compression is specified and the agreed-upon use cases in the 6G study are clearly studied.
Observation 1: To guide the subsequent discussion of the use case studies, clearer principles are needed for handling cases beyond the prioritized ones when entering stage 2. These cases may include at least the following three categories:
	Case A: Studied in the previous 5G phase (CSI prediction/compression, BM, positioning) and already justified as feasible in 5G (e.g., time domain for L3 beam level).  
	Case B: Newly proposed during later SI phases (e.g., Stage 2) and identified as a valuable direction.  
	Case C: Directions with consensus that were down-selected in Stage 1 due to having limited TUs.
Proposal 3: Regarding the handling of the above cases, RAN4 to adopt the following principles:  
-	RAN4 to set up further checkpoint for Stage 2, e.g., Q4’26 to further consider additional use cases. 
-	RAN4 to provide clear guidance on the handling of use cases not included in the 6G AI study especially for the use case in category A above. e.g., 
	Could it be also included in the follow-up 6G WI
	Or is it clearly precluded from 6G WI

	Nokia
	R4-2601685
	Observation 1: New aspects related to post-deployment testing and validation enhancements to be considered in 6G are:
•	Significant update to the in-lab test framework, test requirements, conformance testing and certification [RAN4].
•	A new framework for in-field post-deployment validation [RAN2, RAN4]
•	Updates to ML management procedures required to support in-field validation of AI/ML functionalities [RAN2]
Proposal 1: Update the Table provided in the RAN4 #117 agreement, to align companies’ understanding on pre-deployment conformance and post-deployment enhancement options, as follows:
Proposal 2: RAN4 to study the requirements for the post-deployment pre-activation functionality testing (option 2 from agreement table).
Proposal 3: RAN4 to collaborate with RAN2 on the study of the post-deployment post-configuration functionality validation procedures and requirements (option 3 from agreement table).
Observation 2: The importance of using the number of model parameters in the scope of 3GPP specification work is technically not justified.
Observation 3: The importance of using the model computing complexity in the scope of 3GPP specification work is technically not justified.
Observation 4: The importance of using the model size in the scope of 3GPP specification work is technically not justified.
Observation 5: The importance of using the inference latency in the scope of 3GPP specification work is technically not justified.
Observation 6: The importance of using the model generalization in the scope of 3GPP specification work is technically very limited by the synthetic scenarios and the evaluation metric(s) used.
Proposal 4: RAN4 shall not consider any studies based on AI/ML model complexity metrics to differentiate between “Simple” and “Complex” models.
Proposal 5: Interoperability as a topic needs to be discussed for two-sided model use cases. However, this should be handled as part of use case specific discussion.
Proposal 6: RAN4 do not need to address any specific inter-operability aspects for UE-side one-sided model use cases, as these aspects shall be inherent part of the already existing framework.
Proposal 7: Interoperability of models should not be discussed in general aspects or part of framework discussion until and unless a clear need is established.

	Korea Testing Laboratory
	R4-2601699
	Low overhead CSI-RS / CSI prediction
Observation 1: CSI RS overhead reduction increases reliance on AI/ML reconstruction or prediction for CSI reporting and precoding decisions, so small reconstruction errors can translate into non-linear BLER and throughput regression in the field.
Observation 2: Changes in CSI RS port pattern, frequency density, bandwidth, and port count can change the model input and output structure and can shift the error distribution after deployment.
Observation 3: Post-deployment model updates can occur due to site-specific behaviour and vendor-dependent beamforming weight changes, and lab qualification does not ensure that updated weights remain stable under real deployment conditions.
Observation 4: Without a shared effective-from boundary, PDV aggregation windows can mix pre-update and post-update evidence and the resulting statistics are not comparable around model updates.	
Observation 5: Configuration changes such as antenna mapping or TxRU mapping can create model mismatch even without an explicit model update, which can bias reconstructed CSI and lead to PMI and precoding errors.
Observation 6: Mixed UE capability and reporting fidelity can create hidden performance loss, because aggregated KPIs can mask regression that affects only a subset of UEs.
Observation 7: PDV is primarily a deployment-time qualification gate that verifies stability of fine-tuned or updated models under real deployment conditions and provides measurable acceptance and operating-range criteria that can be used by LCM for safe enablement and operational fallback decisions.
Proposal 1: Study a PDV qualification framework for low-overhead CSI-RS / CSI prediction that links each PDV window to a single model and configuration state, enabling LCM decisions to rely on update-consistent field evidence.
Low overhead DMRS + AI/ML receiver (incl. DMRS-free)
Observation 8: Low overhead DMRS combined with AI receiver processing shifts demodulation robustness to be more sensitive to deployment conditions and receiver implementation. This creates a gap between lab qualification and field behaviour, especially when pilot reduction and AI processing are enabled together.
Observation 9: Under sparse DMRS, small changes in interpolation error and impairment distribution can trigger a sharp BLER transition rather than a gradual degradation. This creates an operational risk because early drift may not be obvious until a cliff is reached.
Observation 10: For superimposed pilot and DMRS free operation, demodulation failures can appear as burst events that are strongly condition dependent. These events may remain hidden in lab conditions and only surface under specific mobility and interference combinations in the field.
Observation 11: When monitoring and adaptation rely on CRC passed data or self supervised signals, the reliability of PDV evidence can degrade exactly in the conditions where robust demodulation is most critical. This can bias monitoring outcomes and delay correct fallback decisions.
Observation 12: Receiver weights can be updated after deployment. Monitoring-based PDV uses aggregation windows. Without a shared effective-from boundary tied to a defined time reference, a window can include both pre-update and post-update evidence. In that case, post-update PDV statistics are not comparable and rollback or fallback can be delayed. This risk is higher when the entity applying the update differs from the entity aggregating the PDV evidence, such as UE-side updates in downlink and gNB-side updates in uplink.
Proposal 2: Study PDV as a minimum enabling framework for Low overhead DMRS + AI/ML receiver (incl. DMRS-free).	
CSI compression & feedback (JSCC/JSCCM/JSCM)
Observation 13: When a single common model is assumed for CSI compression and feedback, the specification and conformance test need an explicitly stated uplink operating-condition set over which the model is evaluated. For testability, this set should be represented by a minimum set of discrete condition bins, such as uplink SINR ranges, interference profiles, fading/Doppler classes, and the Uplink Control Information transmission mode.
Observation 14: JSCC-, JSCCM-, and JSCM-based CSI feedback can change the UCI waveform characteristics. Depending on the latent/bit mapping and payload distribution, it can increase PAPR.
Observation 15: When PAPR increases, RF-limitation handling such as transmit-power backoff or clipping can directly degrade the effective feedback quality.
Observation 16: If these RF-handling conditions are not explicitly controlled in the test assumptions, it becomes difficult to attribute an observed performance regression to either the CSI compression/reconstruction model or the RF-constraint handling.
Observation 17: AI/ML-based CSI compression may change the characteristics of CSI uplink control signaling and therefore can impact multiplexing/coexistence with other uplink control reporting over uplink control resources/channels (e.g., NR PUCCH/PUSCH or their successors), which is tightly coupled to control-channel performance and power/spectrum behavior from a RAN4 perspective.
Observation 18: In a two-sided architecture, mispairing between the UE-side encoder and the network-side decoder can directly lead to performance regression. Therefore, from a RAN4 perspective, without a traceable model-pair identifier and associated traceability information, it becomes difficult to perform field root-cause analysis and to reproduce issues in a test environment.
Observation 19 : Offline data exchange can be used is mentioned as a means to support inter-vendor operability. However, if a minimum exchange package is not defined, the exchange scope can differ across vendors and inter-vendor operability can be weakened rather than improved. The minimum package should clarify what must be shared, such as the dataset, metadata, performance targets, and model-pair identifiers.
Observation 20:  For JSCC-, JSCCM-, and JSCM-based reconstruction, the notion of a binary success/failure outcome can be weaker than for explicit error-detection and/or reliability-indication mechanisoms (e.g.,  CRC when applicable). If the network has no explicit usability-gating rule to decide whether the reconstructed CSI should be used, silent degradation may remain undetected and persist for an extended period. This implies that PDV should cover not only an immediate post-update check but also the validation of the operational gating rule itself.
Observation 21: For two-sided CSI compression based on JSCC/JSCCM/JSCM, feedback reliability semantics can shift from a CRC-like binary outcome to a continuous-quality reconstruction output, so the network cannot rely on a simple pass/fail indication to judge CSI usability.
Observation 22: End-to-end performance of two-sided CSI compression is tightly coupled to uplink operating conditions and implementation-dependent effects, including SINR and interference regimes, UE waveform constraints (e.g., PAPR-driven backoff/clipping), and receiver-processing assumptions (channel estimation, equalization, demodulation).
Observation 23: Without a standardized PDV gate that defines acceptance criteria, operating-condition coverage, and rollback/fallback triggers, it becomes difficult to establish reproducible requirements and test assumptions, and to separate CSI-reconstruction-induced regression from RF/receiver-implementation-driven variation in multi-vendor deployments.
Proposal 3: Study PDV as a key enabling condition for studying and enabling CSI compression and feedback in 6G by defining a minimum PDV framework that includes a post-update validation window, acceptance criteria aligned with both intermediate CSI-quality indicators and system KPIs, and decision inputs and triggering conditions for rollback or fallback actions under representative operating conditions.
Beam management & extension (incl. IA, RL)
Observation 24: As 6G beam spaces grow and operating modes diversify, attributing observed performance changes to the AI/ML algorithm versus RF deployment and measurement-environment variations becomes more difficult. In particular, Layer 1 Reference Signal Received Power (L1-RSRP)-based beam ranking and Top-K accuracy metrics are sensitive to measurement conditions; therefore, explicit operating-condition definitions are increasingly required to ensure test reproducibility.	
Observation 25: When the candidate beam set scales to hundreds of beams, exhaustive sweep-based training and validation data collection becomes impractical. As a result, even if the intended “accuracy versus overhead reduction” benefits remain, a key testability issue for PDV is how to obtain a reference ground truth, such as a baseline ranking or measurement set immediately after an update, that can be used for consistent post-update comparison.	
Observation 26: Lack of generalization typically manifests as insufficient in-domain performance at initial deployment, whereas drift refers to a post-deployment change in the input distribution or input–output mapping driven by time evolution and operational shifts. For 6G extensions, drift-related effects may occur more frequently; therefore, PDV should place particular emphasis on qualification of post-update and post-drift behavior.	
Observation 27: When post-deployment fine-tuning or model update is supported for 6G beam management extensions, performance monitoring alone may lose update-consistent comparability, because a monitoring aggregation window can unintentionally mix samples collected under different model/configuration states. This issue becomes more critical when the mapping between monitoring occasions and the monitored beam set (Set A) changes (e.g., subset bitmap update or 1:1 remapping), since a single window may span two different mappings and the resulting statistics are not directly comparable for PDV gating.	
Observation 28: For IA, Top-1 beam prediction errors can directly reduce Physical Random Access Channel success probability and increase access delay. Even when average KPIs appear stable, performance degradation can concentrate in cell-edge tail conditions; therefore, PDV based only on average KPIs can miss IA-critical degradations
Observation 29: RL-based beam selection can temporarily underperform a strongest-beam baseline during policy update and exploration. Since such exploration-driven underperformance can be short-lived and condition-dependent and may be obscured by average monitoring statistics, including explicit stability checks in PDV gating enables safe and deterministic enablement decisions.
Observation 30: For interacted NW-UE inference, a partial update on only one side can cause version mismatch and cascade errors. Since second-round measurements are conditioned on NW-predicted beams, the collected evidence becomes policy-conditioned and performance degradation can appear silently in averages; therefore, PDV must be able to attribute observed performance to the deployed NW–UE model/policy version combination.
Proposal 4: Study PDV as a key enabling condition for 6G beam management extensions when post-deployment fine-tuning or model update is supported, and study a minimal PDV framework that gates activation before the updated behavior becomes effective.	
Non-linearity handling (DPD/DPoD)
Observation 31: From a RAN4 perspective, within the currently agreed study cases, it is necessary to clarify what should be treated as the baseline in the study for UE-sided DPD and Network-sided DPoD, and what test assumptions should be used for each. It is also necessary to examine whether any additional combined cases beyond the agreed scope are needed to support interoperable requirements and tests.
Proposal 5: Discuss to include, as part of the study, an evaluation that compares UE-sided DPD and Network-sided DPoD within the agreed study cases and derives a suitable baseline and associated test assumptions based on the evaluation results.
Proposal 6: Discuss to include, as part of the study, an assessment of whether any additional combined cases beyond the agreed scope are needed, and if so, to identify the operating conditions under which such additional cases would be justified for study requirements and test assumptions.
Observation 32: UE-sided DPD may require OTA data acquisition and calibration transmissions (e.g., to capture antenna impedance effects), which makes the behavior RF-visible and potentially coupled with scheduling and coexistence.	
Proposal 7: Study a controlled OTA calibration and data-collection concept within the bounds of applicable regulatory emission limits and out-of-band requirements, with explicit operating assumptions, so that RF-visible calibration transmissions remain compliant and do not create unpredictable coexistence impacts.	
Observation 33: If a single feedback receiver (FBRx) is shared across antenna ports, calibration/data collection may require network-coordinated single-port uplink occasions to enable unambiguous collection.
Proposal 8: Study a minimal network-coordinated “single-port uplink occasion” mechanism (or an equivalent constraint) to support unambiguous FBRx-based data collection when FBRx resources are shared.
Observation 34: For Network-sided DPoD, a DMRS-based approach avoids additional signaling, but its effectiveness can depend on whether DMRS distortion is representative of data-symbol distortion (e.g., different PAPR regimes), which may drive additional coordination or constrained operating points.	
Proposal 9: Study a representativeness condition (or an operating-point restriction) for DMRS-only training, and otherwise allow coordinated collection and labeling options when DMRS is not sufficiently representative.	
Observation 35: Any conditional in-band assumptions for coordinated operation shall not be interpreted as relaxing regulatory emission limits or out-of-band requirements, which must remain satisfied irrespective of receiver-side compensation.	
Proposal 10: Study wording that clarifies any coordinated operation or conditional in-band assumptions do not relax regulatory emission limits or out-of-band requirements, and treat those requirements as invariant compliance constraints.
Observation 36: Once UE–NW interaction is assumed for LCM aspects, PDV requires update-consistent classification, and a radio-time effective-from boundary is needed to avoid mixing pre-/post-update evidence within the same aggregation window.	
Observation 37: PDV metrics derived from link performance indicators (e.g., BLER,  HARQ ACK/NACK, and throughput) are inherently influenced by radio-channel variations and scheduler-selected operating points; therefore, from a RAN4 perspective, the PDV procedure needs an explicit definition and categorization of operating conditions (e.g., transmit power bins, PAPR bins, BWP, and antenna mode) so that any observed performance change can be attributed to the non-linearity handling configuration rather than to uncontrolled changes in operating conditions.	
Proposal 11: Study PDV reporting and evaluation conditioned on explicitly defined operating conditions (e.g., uplink transmit power ranges, PAPR ranges, BWP, and antenna mode) to support attribution of observed changes to the non-linearity handling configuration.	

	China Unicom
	R4-2601899
	Proposal 1: RAN4-driven 6G AI/ML use cases shall be justified by value scenarios, AI introduction motivation, study urgency, and relevance to mandatory 6G features, while coordinating with other WGs to avoid duplication.
Proposal 2: Model complexity shall be discussed on a per-use-case basis, considering deployment location (UE/network) and practical constraints. No unified "Simple/Complex" classification standards shall be formulated, and overly complex, commercially unfeasible model assumptions shall be avoided.

	Qualcomm Incorporated
	R4-2602130
	Observation 1: A model has many different aspects (e.g., parameters, FLOP count, etc.) and the importance of those parameters, in terms of complexity, may vary from one company to another. Hence, it will be practically infeasible to come up with a strict threshold between “simple” vs “complex” model that will be universally acceptable.
Observation 2: Proponents need to clarify how 5G’s implemented mechanism of “post-deployment post-activation performance monitoring” differs from the recently proposed option titled “Post-deployment post-activation functionality testing [based on performance monitoring]”.
Proposal 1: RAN4 does not differentiate AI-ML models into discrete sets of categories, in terms of complexity.
Proposal 2: 6G AI-ML can assume 5G’s implemented mechanisms as a baseline to guarantee AI/ML performance. These 5G mechanisms are: 1) Pre-deployment conformance testing and 2) Post-deployment post-activation performance monitoring. Proponents need to further justify why additional mechanisms need to be considered in 6G AI/ML to guarantee performance.



Topic #2: AI-based non-linearity compensation
	Company
	Tdoc No.
	Proposal

	MediaTek Inc.
	R4-2600168
	Proposal 1: PA model adopted in AI DPD evaluation should reflect the memory effects and GMP PA model can be used as an option.
Proposal 2: Before PA model is agreed in 6G System parameters, companies can choose PA model(s) with memory effects at their own discretion.
Proposal 3: If there are multiple PA models from 6G system parameter, the models with memory effects can be used for generalization study during AI DPD evaluation.
Proposal 4: To facilitate cross-validation, it is better that companies can provide not only the analytical expression of the PA model but also the related information of getting the measurement data to derive the PA model, e.g., sampling rate, BW, average power, modulation, waveform and so on.
Proposal 5: Potential spec impact of AI DPD should be justified and discussed.
Proposal 6: As DPD is supposed to execute quite frequently, discuss whether it is workable to use AI/ML model to generate the real-time output of DPD in the field considering AI/ML model inference delay, model switch delay, etc.

	CATT
	R4-2600250
	AI-DPoD in gNB
Proposal 1: Offline train should be the baseline. 
Proposal 2: Regulations and co-existence-related requirements should be met, even if EVM requirements are relaxed. 
Proposal 3: RAN4 to use EVM and BLER/throughput as evaluation metrics. 
Proposal 4: Companies to report performance of both non-AI and AI-based DPoD firstly, and then RAN4 decide whether performance alignment is needed or not.
Proposal 5: RAN4 to assume a simple Generalized Memory Polynomial (GMP) model for PA model as working assumption to proceed with the simulations for aligning simulation assumptions and procedures. 
Proposal 6: If multiple PA models are developed, performance of AI-based DPoD with these PA models should be evaluated with corresponding frequency ranges and power class configurations. 
Proposal 7: RAN4 to choose one modulation scheme from the existing modulation schemes in NR as a starting, e.g., 64QAM with 8% EVM can be considered.  

AI-DPD in UE
Proposal 8: RAN4 to derive the values for ACLR/SEM/IBE/EVM assuming 50 MHz CBW and 15 kHz SCS.

	Tejas Network Limited
	R4-2600408
	Observation 1: UE sided AI DPD faces practical challenges due to strict compute and energy limits for wideband UL and higher order modulation. It introduces device specific and time varying Tx behaviour, complicates emission compliance, and adds lifecycle issues (training, updates, and monitoring) that require network supervision.
Observation 2: Effective network sided DPoD depends on accurate UE Tx modelling that covers PA characteristics and UL front end impairments. Nonlinear response varies with frequency, bandwidth, RB allocation, Tx power, and modulation order.
Observation 3: Offline training of AI models using simulation or measurement datasets is feasible for initial studies. Exclusive reliance on offline training may limit robustness to UE specific and time varying behaviour. Online adaptation can address these effects but adds BS compute, latency, and scalability concerns when many UEs are present.
Observation 4: Simulation datasets must reflect realistic UE Tx behaviour, including both memoryless and memory-based PA models, and cover wide operating ranges extending into the compressed region. Measurement datasets should include multiple UE implementations to capture diversity.
Observation 5: A structured and incremental evaluation flow is needed for reproducibility and fair comparison. Introducing too many cases early risks obscuring key dependencies.
Proposal 1: Prioritize network sided DPoD as the initial study focus. Network sided DPoD leverages BS Rx processing, avoids changes to UE Tx behaviour, and aligns with RAN4 scope on Rx performance evaluation.
Proposal 2: Define modelling assumptions that capture compressed region operation and include memory effects, temperature variation, load mismatch, and envelope tracking to ensure realistic evaluation.
Proposal 3: Adopt a hybrid training approach. Start with offline training as a baseline and add online fine-tuning once data pipelines, complexity budgets, and convergence behaviour are validated.
Proposal 4:  Use the GMP model as a common baseline PA model across companies. Allow additional PA models if parameters and Tx EVM derivation methods are clearly stated.
Proposal 5:  Start with Case 1.1 and Case 1.2 for 256QAM, focusing on network sided DPoD with and without non-AI DPD.
Proposal 6: Evaluate performance at NR EVM baseline (~3.5%) and include relaxed targets (6%, 8%) to stress generalization and expose sensitivity to modelling assumptions.

	Xiaomi
	R4-2600441
	Proposal 1: Offline training can be considered an appropriate and stable reference approach for the evaluation of AI-based DPoD in RAN4 studies.
Proposal 2: RAN4 to evaluate the potential MPR reduction and Tx EVM relaxation  when AI-DPoD  compensates for PA non-linearity at the base station.

	Apple
	R4-2600527
	Proposal 1: For AI/ML-based 6G nonlinearity compensation, evaluate the benefits of DPoD receivers via (i) maximum tolerable Tx EVM (transmitter distortion robustness) and (ii) system-level benefit via MPR reduction and uplink coverage gain under ACLR/SEM-compliant UE output power.

	CMCC
	R4-2600847
	Proposal 1: for evaluation, both case 1.1 (AI-based DPoD+no DPD) and 1.2 (AI-based DPoD+non-AI DPD) can be considered. But for test metrics or RAN4 requirements, it is proposed to base on case 1.2 (AI-based DPoD+non-AI DPD). 
Proposal 2: AI-DPD in UE can be further studied in RAN4 if the performance gain between AI-DPD and non-AI DPD are observed .
Proposal 3: Non-linearity model(s) of transmission signals in other 6G agenda (i.e. 6G general RF and UE RF) can be used for AI/ML evaluation.
Proposal 4: Before the non-linearity model is agreed, the the evaluation can be performed based on companies’ own non-linearity model with details provided.
Proposal 5: it is proposed to consider BLER, throughput, MPR, EVM as evaluation metrics.

	Huawei, HiSilicon
	R4-2600903
	Observation 1: It is observed that AI DPoD can deliver certain non-linearity compensation towards an EVM deteriorated UL 64QAM/256QAM signal which is worse than the corresponding EVM requirements to some extent.
Proposal 1: For the RF modeling for 6G Tx EVM relaxation evaluation, adopt the related discussion outcome under Joint UE-BS RF and Spectrum aggregation agenda as starting point, further updates are not precluded.
Proposal 2: For AI-based Non-linearity Compensation study, prioritize Case 1.1: AI-based DPoD + non-linearity TX model(s) (no DPD).

	vivo
	R4-2600925
	Observation 1: At a fixed operating point (PA input power), AI-DPD outperforms both GMP-DPD and no-DPD by achieving a superior EVM and ACLR performance.

Observation 2: When considering 256QAM and 100MHz bandwidth, the AI-DPD shows 3 dB output power improvement compared with no-PDD, and shows 1.3 dB output power improvement compared with nonAI- DPD. Thus, AI-DPD is demonstrated to provide a superior MPR gain compared to both nonAI-DPD and no-DPD.
Proposal 1: For fair and meaningful DPD evaluation, key simulation parameters could be aligned across evaluations. These parameters could include, but are not limited to:
•	PA calibration point: including reference waveform, output power, and target ACLR. 
•	Signal characteristics: e.g., waveform type, modulation order, bandwidth.
•	IQ imbalance assumptions: e.g., amplitude and phase mismatch.
•	Other RF impairments.
Proposal 2: For DPD evaluation, two alternatives could be considered for PA model derivation: 
•	Alternative 1: To determine a common PA model for further evaluation. This option ensures a uniform test baseline and enables direct performance comparison across different companies.
•	Alternative 2: Various PA models could be used for further evaluation as long as the calibration point is aligned, such that all evaluations are conducted under a comparable level of PA nonlinearity. 
Among the two options, Alternative 2 is considered more promising, as it offers greater flexibility while still ensuring comparability through aligned nonlinearity conditions
Proposal 3: For DPD evaluation, RAN4 should study the performance variation of AI-DPD and benchmarks under dynamic PA characteristics. Appropriate evaluation metrics and benchmark methodologies are FFS.
Proposal 4: AI-DPD has potential impacts on high-level RF specifications and UE capabilities. RAN4 should evaluate, but not limited to: 
•	MPR improvement: enabling enhanced PA efficiency and higher achievable output power.
•	UE capability improvement: such as support for AI-assisted linearization and adaptive predistortion.
•	Data collection reducing: by leveraging AI techniques, the amount of new data required for DPD updates when facing dynamic changes can be shrunk, improving adaptation efficiency and reducing overhead.
Observation 3: At a target BLER of 10%, AI-DPoD provides around 0.75~1.25 dB SNR gain compared with the no-DPoD baseline under various transmit EVM conditions, and achieves around 0.5 dB SNR gain compared with non-AI-based DPoD schemes.
Observation 4: With AI-DPoD applied, the transmit EVM requirement can be relaxed while maintaining improved BLER performance.
Observation 5: Both AI/ML-based DPD and DPoD demonstrate promising potential in compensating for PA non-linearity.
Proposal 5: For AI-DPoD, the training labels should be considered, e.g., either known data symbols or DMRS, with modelling accuracy, signalling overhead, and robustness taken into consideration.
Proposal 6: For DPoD evaluation, the UE PA model should follow the RAN4 DPD PA assumption.
Proposal 7: For DPoD evaluation, RAN4 should study the performance variation of AI-DPoD and benchmarks under dynamic PA conditions. Appropriate evaluation metrics and benchmark methodologies are FFS.

	ZTE Corporation,Sanechips
	R4-2601186
	Observation 1: Online training which means (near) real-time with the arrival of new training samples will have a much more higher complexity than offline training.
Observation 2: The performance of both AI-DPoD and No-AI DPoD outperform the RAN4 test metric(SNR at bler = 0.1 when Tx EVM is 3.5%).
Observation 3: Regarding AI-DPoD for 256QAM, Tx EVM can be relaxed to 4.16% for 10M Hz CBW and 3.96% for 100M Hz CBW assuming GMP model , -36dBc I/Q imbalance and DC offset non-linearity model.
Observation 4: The performance gap between AI-DPoD and Non-AI DPoD are very limited(<0.1db).
Observation 5: AI-based DPoD need higher computation complexity than Non-AI based DPoD.
Proposal 1: For AI-DPoD evaluation, the configurations of the test case for 256QAM are considered as：
- Number of antennas:1T2R 
- Channel bandwidth: 10M@15k SCS and 100M@30kSCS
Proposal 2: Both Tx side and Rx side need to be considered to align non-AI and AI-based DPoD:
-At the Tx side, the non-linearity model should be aligned
-At the Rx side, the input data and output data should be aligned
Proposal 3: For sake of the progress for the AI-DPoD discussion, companies can select their own Tx non-linearity model for performance evaluation, and the non-linearity model should be reported along with the evaluation results.

	OPPO
	R4-2601217
	Proposal 1: 	RAN4 should consider and clarify whether the time-varying characteristic of PA non-linearity is needed PA non-linearity modeling.
Proposal 2: 	Based on companies' inputs, during or after RAN4#118, RAN4 should have on an aligned simulation assumption for further study. The simulation assumption from OPPO is shown in Table 1.
Observation 1: 	Compared with the benchmark with non-AI DPD, the non-AI-based DPD benchmark achieves good nonlinear compensation performance and even outperforms AI-based DPoD.
Proposal 3: 	Necessary to consider scenarios where AI-based DPoD be employed, such as whether time-varying and update of PA nonlinear characteristics need to be taken into account.
Proposal 4: 	Non-AI DPD is already capable of addressing the PA nonlinearity, at least under conditions without considering online updates. For online updates, AI-based DPoD could be prioritized for further study. AI-based DPD should be deprioritized.

	Ericsson
	R4-2601508
	Observation 1: While non-AI-based DPoD and DPD are included as benchmarks, common benchmark reference values need to be defined across companies. For example, the evaluation metric for non-AI-based DPoD should have identical value for all participating companies.
Observation 2: The algorithmic approach of DPoD and DPD is quite different from the AI approach and should be studied independently.
Observation 3: As agreed, a common UE transmitter model would be studied in the UE RF session, which would be used to further evaluate the non-linearity compensation for both AI and non-AI BS receiver.
Observation 4: It is currently unclear whether BS receiver compensation can be addressed with a limited number of models or whether UE implementation diversity would necessitate a large number of compensation variants.
Observation 5: To characterize multiple UE transmitters, either a fine-tuned offline model or less precise and adaptive online approach can be feasible, considering the UE power consumption needed for model training and potential latency issues.
Observation 6: Offline trained AI/ML models may need to be updated in a certain time period to include new UE transmitter models being implemented by UEs.
Observation 7: A hybrid training approach may be considered, where base model parameters are trained offline using generalized UE RF front-end characteristics, while time-varying or UE-specific parameters are adapted through online training, to balance model accuracy, adaptability, computational complexity, and latency constraints.
Observation 8: The robustness of BS receiver model to compensate for different PA’s, UE’s manufacturing variability, channel variations etc., should be evaluated as well.
Observation 9: UE-side DPD uniquely reduces required MPR and mitigates predictable self-interference, leaving residual effects that may be UE-specific and hard to address at the network side; sharing abstract models or representative data from UE vendors could therefore enable realistic evaluation of BS receiver compensation without exposing proprietary details.
Observation 10: Regarding open issue on initiating study before conclusion of 6G UE RF, and parameters such as EVM values, RF non-linearity, etc., similar approach can be followed for both DPoD and DPD.
Based on the discussion following proposals are captured:
Proposal 1: Consider including algorithmic (non-AI-based) approaches for DPoD and DPD within the study scope, to enable comparison with AI-based counterparts.
•	non-AI-based DPoD + no DPD
•	non-AI based DPoD + non-AI DPD
•	no DPoD + non-AI-based DPD
Proposal 2:Discuss both AI-based and non-AI-based UE RF non-linearity compensation approaches within the AI-thread in RAN4, to maintain a concise and manageable discussion given the broad study scope.
Proposal 3: Until a 6G UE transmitter model is agreed in RAN4, the robustness of BS algorithm can be evaluated by exposing it to a distribution of UE transmitter impairments. Otherwise, RAN4 may also wait for UE RF to provide UE Tx model.
Proposal 4: Given the wide, potentially huge diversity of UE RF implementations, the UE RF and system parameter sessions are encouraged to define UE transmitter models that capture this diversity while maintaining a practically feasible number of models for BS receiver compensation and system evaluation.
Proposal 5: If multiple UE non-linearity transmitter models are defined to capture UE RF implementation diversity, their impact and feasibility on corresponding BS receiver compensation should be jointly evaluated.
Proposal 6: Tight coordination is required between 6G UE RF, system parameter and AI session in the 3GPP discussion.
Proposal 7: RAN4 may study which AI/ML algorithms are feasible for modeling UE transmitter characteristics, and which type of model training would be feasible. 
Proposal 8: RAN4 may start with link-level performance (BLER and Throughput) and computational complexity (FLOPs) as the evaluation metric.
Proposal 9: RAN4 to study data collection methods for AI/ML model training, focusing on UE operation in the compressed (non-linear) PA region. Both simulation-based datasets (with realistic Tx front-end and PA models) and measurement-based datasets (from multiple UEs) could be evaluated. Other RF impairments should be considered and included.
Proposal 10: Both AI and non-AI DPoD should have alignment in terms of same simulation assumptions and evaluation metrics, to compare between both approaches.
Proposal 11: RAN4 may begin DPoD study with BS normal PUSCH demodulation performance requirements. Detailed simulation assumptions would require further evaluation.  
Proposal 12: RAN4 may consider 5G NR Tx EVM values as the starting point of the DPoD study.
Proposal 13: Consider DPoD as an enhancement to compensate residual UE transmitter non-linearity in cases where AI-DPD is insufficient due to implementation diversity and efficiency limitations.
Proposal 14: It is very important to consider the likelihood of the UE’s using DPD and to establish realistic characteristics for the self-interference considering DPD. Companies are encouraged to consider and share useful data.

	Samsung
	R4-2601639
	Observation 1:	Proposed AI-DPoD solution has the following core features 
•	The channel estimation/equalization operations in frequency domain and AI based non-linearity training operation is decouple, which can be helpful for usage of light-weight online training 
•	The training process is based on existing DMRS (NR PN sequence) samples without additional overheard
•	High-order term construction (e.g., 3rd order non-linearity) as artificial priori information for better training 
•	Noise variance is estimated during training phase from neural network provide much better estimation accuracy and can reduce implementation complexity by removing conventional noise variance estimation module
•	Input buffer is introduced to deal with non-flat equivalent channel and merry effect considering the memory effort may cause correlation between adjacent samples in the real PA
Observation 2:	Proposed AI-DPoD solution is characterized with the following procedure for model training to perform non-linearity compensation
Observation 3:	The proposed AI solution can achieve low level of computation complexity.
Observation 4:	To enable the data collection for UE operated in the compressed (non-linear) PA region, the collaboration between UE and NW is required. 
Observation 5:	Transmitter characteristic varies in different UE. Even with the same UE, transmitter characteristics may change over time due to the temperature, frequency shift, phase noise 

Proposal 1:	Prioritize the simulation-based datasets with realistic non-linearity model assumption for feasibility study. Further clarify how to construct dataset for model training and assumption to guarantee the model generalization.
Observation 6:	If training dataset is gathered from measured data, it might be not feasible for known data or known transmitted bits
Observation 7:	For the label relying CRC results, since UE operation in the non-linear PA region, especially for large MCS, high input power is required, resulting in the correct CRC cannot be guaranteed by conventional receiver. 
Observation 8:	Given different UE implementation, it is not possible to provide the common non-linearity Tx model with DPD operation.
Observation 9:	RAN4 has never considered DPD operation when specifying UE RF requirement for 5G. If DPD taken into counted for AI-DPoD performance evaluation, we think it should be considered when defining the 6G UE RF related requirement
Observation 10:	Performance with conventional receiver without non-linearity Tx model can be helpful to calibrate company results as upper bound performance when deriving the comparable SNR with non-linearity compensated by non-AI and AI-based DPoD solution.
Observation 11:	Performance with conventional receiver with non-linearity Tx mode can be helpful to Tx non-linearity modeling if the model can achieve the targeting relaxing TxEVM value.
Proposal 2:	RAN 4 prioritizes AI-based DPoD for feasibility study as following cases 
	Case 1.1: AI-based DPoD + non-linearity TX model(s) (no DPD)
	Case 1.2: non-AI-based DPoD + non-linearity TX model(s) (no DPD)
	Case 1.3: Conventional receiver (no DPoD) + non-linearity Tx models (no DPD) 
	Case 1.4: Conventional receiver (no DPoD) + without non- linearity Tx models

Proposal 3:	Consider the existing PA model in TR 38.803 for feasibility evaluation and comparison purpose as starting point, e.g., Rapp model and generalized memory-based polynomial (GMP) model, in conjunction with RF modelling of other non-ideal factors including I/Q imbalance, Tx nonlinearity, and phase noise, as the main contributor of non-linearity for Tx EVM requirement, which align the Tx EVM budget discussion for 256 QAM in LTE
Proposal 4:	For non-linearity model assumption for performance evaluation and comparison 
-	If there is no unified PA model agreed. to proceed the work, companies can use their only PA model. Companies should mention the adopted PA in their paper and adjust the input power level to achieve the targeting relaxing TxEVM value for performance evaluation and comparison.
-	IQ imbalance can be modeled as unified distribution
-	Phase noise and transmitter nonlinearity are modeled as Gauss white noise
Observation 12:	For CP-OFDM waveform, the common processing for DPoD operation is deployed in the time domain after channel estimation and equalization for option 1, option 1a, option 1b and option 2. 
Observation 13:	For option 1 and option 1a, additional high order term construction processing was considered for non-linearity characteristic learning. And additional input buffer was considered to handle the channel impact and PA memory effort in option 1. 
Observation 14:	In option 2, two AI models are considered for DPoD processing and demodulation processing, high computation complexity is required.
Observation 15:	For DFT-s-OFDM waveform, the AI- DPoD operation is deployed after IDFT operation in option 3  
Observation 16:	CP-OFDM waveform was agreed in the study scope for 5G-A non-AI DPoD solution
Proposal 5:	RAN4 can prioritize CP-OFDM waveform for AI-based DPoD solution feasibility evaluation. 
Proposal 6:	The common processing for AI based DPoD processing as option 1 can be considered as baseline assumption. Further align the key assumptions for each processing blocks. RAN4 can also discuss whether it is feasible to define a reference AI model
Proposal 7:	RAN4 can consider the following TxEVM assumption for performance evaluation and comparison as starting point. 
-	64 QAM: [8% as baseline, 10%, 11%, 12%]
-	256QAM: [3.5% as baseline, 4%, 6%, 8%]
Proposal 8:	Considering the following simulation assumption for performance evaluation and simulation results comparison
Proposal 9:	In 6GR, consider to support AI-DPoD, the following are to be studied from RAN4 perspective 
-	UE capability report on supported MPR relaxing 
-	RAN4 requirement on MPR 
-	RAN4 demodulation with non-linearity compensation receiver
-	Collaboration between UE and NW for data collection

	Nokia
	R4-2601735
	Observation 1: The AI-based DPoD can approach the performance of the genie aided receiver, however, its performance depends on the complexity of the AI-based DPoD models and how training is performed e.g. if the PA response used in training is the same/similar to that used in testing.
Proposal 1: If RAN4 agrees to continue study the NW side AI-based DPoD use case, then this study should assess the performance vs complexity of the AI-based DPoD solution and focus on identifying whether the AI-based DPoD can generalize over different PA responses, different SU/MU MIMO configurations, propagation responses etc.
Observation 2: UE-sided AI-based solutions compensation show potential for coping with PA nonlinearity.
Proposal 2: RAN4 should study the UE side AI-DPD use case,  and should assess the performance vs complexity of the AI DPD solution versus the non-AI DPD classical counterpart.
Proposal 3: The RAN4 study should also evaluate whether the UE and gNB should exchange any information regarding the AI-DPD behaviour, enabling the gNB to monitor the performance of the AI-DPD solution.

	Qualcomm Incorporated
	R4-2601998
	Observation 1: Non-linearity model(s) of transmission signals are discussed in 6G General RF and UE RF session.
Proposal 1: Evaluation of AI based non-linearity compensation should remain on hold until the model of UE Tx non-linearity model(s) gets agreed in the 6G General RF and UE RF session.

	NTT DOCOMO, INC.
	R4-2602021
	Observation 1: AI-DPoD and AI-DPD are effective for reducing power consumption and extending UL coverage by allowing operation in more non-linear regions.
Observation 2: While NW-sided AI (AI-DPoD) can compensate for In-band distortion (Tx EVM), it cannot mitigate Out-of-band emissions (e.g., ACLR, SEM) once they are radiated from the UE.
Observation 3: Strict adherence to Out-of-band emission limits is mandatory to observe regional regulations and ensure coexistence, regardless of AI implementation.
Proposal 1: RAN4 should define the RF requirements for AI-DPoD/DPD evaluation as follows:
	In-band requirements (e.g., Tx EVM): Can be relaxed or optimized based on AI performance.
	Out-of-band requirements (e.g., ACLR, SEM, Spurious): Must maintain the existing non-AI RF requirements to ensure regulatory compliance.
Proposal 2: In the evaluation of MPR reduction or power boosting, the target output power must be determined such that it satisfies the non-AI Out-of-band requirements (ACLR/SEM), even if the Tx EVM requirement is relaxed.



Topic #3: AI-based SRS power imbalance compensation
	Company
	Tdoc No.
	Proposal

	CATT
	R4-2600251
	AI-based SRS power imbalance compensation
Observation 1: System performance and spectrum efficiency may decrease if the SRS power difference is large and not considered in channel estimation. Study is needed to see if there is throughput gain provided. 
Proposal 1: Label data in training is generated based on CSI feedback in evaluation stage.
Proposal 2: The ‘ideal DL channel matrix’ output in inference should be interpreted as target channel matrix with less imperfection derived based on CSI feedback if CSI feedback is used to generate label data in training. 
Proposal 3: RAN4 to consider absolute and/or relative throughput as an additional evaluation KPI.
Observation 1: There is no difference in UE behavior compared with the case where no AI-SRS-based channel reconstruction is considered.
Proposal 4: Transmitted SRS should meet exist transmit signal quality requirements defined in RF specifications, if applicable.  

	Apple
	R4-2600528
	Proposal 1: Continue RAN4 evaluation of AI/ML-assisted SRS channel interpretation under UE-dependent distortion only if significant system-level gains are demonstrated. Focus on network-side conditioning techniques that enable such gains while allowing proprietary UE compensation to remain internal. Further consideration should remain contingent on demonstrable system-level gains while preserving UE implementation confidentiality and established RAN1/RAN4 boundaries.

	CMCC
	R4-2600846
	Proposal 1: further clarification on the specification impact, e.g. report of the the range of SRS residual power imbalance, is needed.

	Huawei, HiSilicon
	R4-2600904
	Observation 1: NW is constrained in obtaining high-accuracy CSI from CSI feedback for a larger number of CSI-RS ports supported by 6GR, as it may heavily rely on UE’s AI capabilities.
Observation 2: The power consumption of AI-based CSI feedback for a larger number of CSI-RS ports is higher than that of SRS transmission.
Observation 3: SRS is an attractive complement to, or even a potential substitute for, CSI-RS in numerous 6G scenarios.
Observation 4: If SRS power imbalance is well compensated, the coverage of antenna switching SRS can be extended, without relying on CSI-RS.
Observation 5: If SRS channel aging is well resolved, the coverage of antenna switching SRS can be extended, without relying on CSI-RS.
Observation 6: As 6G evolves toward higher frequency bands and a larger number of UE Rx, the magnitude of SRS power imbalance induced by insertion loss will consequently increase. 
Observation 7: Investigating compensation for SRS power imbalance to improve the accuracy of CSI is urgent for 6GR to support a larger number of CSI-RS ports.
Observation 8: SRS power imbalance issue have been confirmed in both RAN4 and RAN1; however, RAN4-identified solutions for supporting non-AI based compensation method failed to achieve consensus in RAN1.
Observation 9: For UEs with more antennas in higher-frequency bands that cannot maintain power balance, compensation at NW is beneficial to enhancing 6G system performance.
Observation 10: Non-AI compensation has two key issues: one is the signaling overhead caused by dynamic UE reporting of residual power imbalance, and the other is that under low SNR conditions, even with such reporting, high-precision channel recovery cannot be achieved.
Observation 11: AI based SRS power imbalance compensation has the potential to avoid reporting actual values of residual power imbalance, thereby reducing signaling overhead, and to improve compensation performance even under low SNRs.
Observation 12: AI-based SRS residual power imbalance compensation delivers desirable performance even under medium-to-low SNR conditions. Moreover, it provides an error tolerance of at least 1 dB for reporting—meaning there is no need to report updates to the SRS residual power imbalance when changes fall within this 1 dB range.
Proposal 1: Details of AI-based SRS residual power imbalance compensation are summarized in Table 2.
Proposal 2: In RAN4 6G AI, consider supporting AI based SRS residual power imbalance compensation. The evaluation procedures are listed as below.  
•	Step-1: Assumptions on simulation parameters, including channel models, number of UE antennas, frequency band and SRS residual power imbalance distributions are determined to be used in the evaluation. 
•	Step-2: Evaluation methodology by modelling SRS residual power imbalance to baseband evaluation with the following procedure 
	Detailed assumptions for evaluation (including data collection, training and inference) may include, but be not limited to 
-	Training dataset and testing dataset construction 
-	Evaluation metric
-	AI models and training type 
-	Other details are not precluded

	Samsung
	R4-2601168
	LLS simulation results:
Observation 1: CNN-based AI model of acceptable complexity (73.84M FLOPs and 1.14M parameters) exhibits decent SGCS performance (0.9+ averaged SGCS).
Observation 2: No power imbalance compensation under the presence of power imbalance displays extremely degraded SGCs (around 0.3) in the SNR range between 15dB and -5dB.
Observation 3: Non-AI compensation method using dynamic insertion loss report is sensitive to noise power and shows large performance degradation in the low SNR region.
Observation 4: Two AI-based compensation methods show similar SGCS performances, and both outperform the non-AI compensation method in the middle and low SNR regions.
Observation 5: The AI model trained with uniform power imbalance can provide some generalization ability for distribution drift of power imbalance.
Observation 6:  Provided with similar simplified simulation condition, our preliminary evaluation results exhibit similar performance trends as the key observations provided in [R4-2520332].
Consideration on model generalization:
Observation 7: Insertion losses differ in various UE models and actual power imbalance distributions are subject to UE-controlled behaviors, e.g, UE-specific IL compensation.
Observation 8: How to reflect the complex nature of the actual power imbalance distribution is still unknown and needs to be studied.
Proposal 1:  In order to evaluate the performance of AI/ML SRS IL compensation, RAN4 needs to consider the impact of the actual power imbalance distribution impacted by UE implementation and UE-controlled behavior.
Observation 9: The preliminary simulation is based on the channel model of TDL-A 1Hz, which is not representative compared to practical scenario.
Observation 10: Small-scale fading adds extra scaling among antenna ports besides Tx power imbalance.
Observation 11: The AI-based compensation method is confronted with various propagation channels, which may influence the receiving power imbalance besides the transmission power imbalance.
Proposal 2:  The model generalization performance for AI/ML SRS IL compensation should be further studied by taking channel variety into account.
Consideration on dataset building and potential specification impact
Observation 12: If offline training is adopted, dataset could be constructed from measured data or synthetic generation methods.
Observation 13: If dataset is gathered from measured data, one possible way could be that UE transmits twice, the first time transmitting according to the inherent insertion loss for model input data collection and the second time transmitting with self-compensation to cover up all the insertion loss for model label data collection.
Observation 14: If dataset is generated by synthetic methods, typical simulation assumptions considering model generalization should be studied.
Observation 15: If online training is adopted, an explicit procedure for data collection should be studied, including the impacts on other WGs.
Proposal 3: For AI-based SRS IL compensation the method of dataset building and potential specification impact should be further studied.

	OPPO
	R4-2601218
	Observation 1: 	The attempt to address SRS-based channel estimation and IL imbalance issues with AI technology represents a good research direction, but its feasibility and effectiveness remain to be solidly demonstrated.
Observation 2: 	Following aspect should be further clarified 
-	Performance gain
-	Assumptions on insertion loss and traditional compensation schemes
-	Feasibility of relaxing IL reporting and definition of reporting content
-	Consistency between network and UE, and collaboration mechanisms

	ZTE Corporation, Sanechips
	R4-2601246
	Observation 1. Currently, SRS power imbalance compensation is depending on UE implementation.
Observation 2. The complexity of the AI-based approach should be compared with that of the non-AI-based approach.
Observation 3. From evaluation perspective, as mentioned above, compensation also needs to be considered on the UE side.
Observation 4. Both offline training and online training also needs to be considered.
Observation 5. The use cases of AI-SRS-assisted channel reconstruction and SRS power imbalance cannot be discussed separately. 
Proposal 1. Propose to deprioritize AI-based SRS power imbalance compensation in RAN4.

	Ericsson
	R4-2601705
	Observation 1: While A-SRS channel reconstruction is assumed to be applied when UE power headroom is not available, some non-AI solutions, such as reporting Pcmax and power headroom per resource, also have their advantages and availability
Observation 2: Whether UE will have performed the power imbalance is important information for the Network
Observation 3: Some non-AI solutions, such as reporting Pcmax and power headroom per resource, can provide accurate and meaningful imformation, independent of how the UE internally distributes power across ports
Proposal 1: Further analysis and evaluations are needed on both AI-based solutions and non-AI solutions to further decide on the prioritization of this AI-SRS channel reconstruction use case
Observation 4: SRS-based CSI acquisition may not become the dominant or critical mechanism if operating frequency is higher than 6G
Observation 5: The relative contribution of SRS power imbalance to overall CSI accuracy may need to be studied to justify its severity
Observation 6: It needs to be justified whether residual per-branch power imbalance constitutes a dominant impairment if the number of UE antenna increased
Proposal 2: Evaluations on the benefit of IL-range reporting method vs zero-reporting method are necessary to the study.
Proposal 3: IL-range reporting method needs a clear definition of residual IL in the spec.
Proposal 4: Analysis on the complexity on the Network side is necessary to the study

	Nokia
	R4-2601752
	Observation 1: In Rel-19 NR_ENDC_RF_Ph4 WI, RAN4 discussed solutions like SRS IL imbalance UE self-compensation and extended Type 3 SRS PHR reporting.
Observation 2: Using SGCS as the evaluation KPI may not showcase the real gains of AI-assisted SRS IL imbalance compensation over non-AI solutions.
Proposal 1: The AI-assisted SRS power imbalance compensation use case description and evaluation results provided in RAN4#117 do not provide sufficient grounds for selecting this use case for further study in RAN4 6G AI.

	Qualcomm Incorporated
	R4-2602042
	Observation 1: At low SNR, UE cannot compensate insertion loss imbalance due to lack of power headroom. But network is expected to employ DL CSF based precoding, instead of SRS, in this region to improve throughput due to DL-UL link imbalance.
Observation 2: Network is more likely to employ SRS based precoding at high SNR. UE is more likely to compensate insertion loss imbalance at high SNR since it is more likely to have power headroom in this region.
Observation 3: Other sources previously showed that UE sided SRS insertion loss imbalance compensation performs very similar to gNB sided SRS insertion loss imbalance compensation, in terms of throughput
Observation 4: Assume a scenario where the actual maximum insertion loss among four different SRS TX antenna ports is 0,2,4 and 6 dB. The actual insertion loss among the same ports can lie in the range of 0, [0, 2], [0, 4] and [0, 6] dB.
Observation 5: The proponents of AI-ML based SRS insertion loss imbalance compensation have, so far, showed simulation results where insertion loss for a TX port N ranges from LN – 1 to LN + 1 dB where LN is the maximum insertion loss of antenna port N. 
Observation 6: Any AI-ML based algorithm needs to compensate the actual SRS insertion loss imbalance of port, ranging from 0 to LN dB, in real time where LN is the maximum insertion loss of antenna port N. 
Observation 7: The supporters of AI-ML based SRS insertion loss (IL) imbalance propose UE to report its maximum insertion loss for each SRS TX antenna port in a static manner.
Observation 8: Even if 3GPP adopts AI-ML bases SRS IL compensation, UE should still be allowed to indicate the maximum insertion loss of each of its antenna port to be the one mentioned in 6G RF spec.
Observation 9: RAN4 has already agreed that other AI-SRS assisted channel reconstruction mechanisms, except SRS IL compensation, will be considered in RAN1.
Observation 10: RAN1 may study two sided models to investigate other AI-SRS assisted channel reconstruction mechanisms. It is not clear how RAN1 and RAN4’s models can be considered together if RAN4 also decided to investigate two sided models to compensate SRS IL imbalance.
Observation 11: Apart from UE’s reporting, the other mechanisms to train the network sided model and run inference to compensate for SRS IL imbalance can be handled purely through network implementation. 
Observation 12: If the network sided AI-ML model can indeed handle a scenario where UE’s reported maximum insertion for each of its antenna port is the one mentioned in RF spec, it becomes questionable why UE needs to report this maximum insertion loss value for each antenna port and why this network sided AI-ML model needs to be studied to be in RAN4.
Observation 13: Static reporting of maximum insertion loss for each antenna port would not allow UE’s implementation to be transparent.
Proposal 1: RAN4 does not select AI-ML assisted SRS insertion loss imbalance compensation as an official study item during stage 1 of Rel-20 6G AI SI. RAN4 revisits this topic again during stage 2 of 6G AI SI.



Topic #4: AI/ML use cases for RRM
	Company
	Tdoc No.
	Proposal

	MediaTek Inc.
	R4-2600169
	Proposal 1: For Spatial domain L3-beam level prediction for Tx beam, potential gain should be justified at first before starting further study.
Proposal 2: Before starting the work on FR2 Spatial domain RX beam sweeping reduction (L1/L3), more justifications are needed, and testability of this feature should be studied at first.
Observation 1: In R20 AI mobility, frequency domain prediction (co-located) for FR2 has been excluded.
Proposal 3: The target scenario of FR2-1 freq. domain (inter-cell, non-collocated) should be justified.
Proposal 4: For the sub-use case “FR1 freq. domain (inter-cell, non-collocated)”, prefer to keep it in the WF, but need to later coordinate with RAN2 to avoid duplicating work.
Observation 2: It can make better use of limited UE’s measurement capability to allow Dynamic Adaptation of Measurement Procedure at UE side.
Proposal 5: For use case “Dynamic Adaptation of Measurement Procedure”, the detail information is proposed as:

	CATT
	R4-2600252
	Observation 1: RAN2 is discussing similar use cases for L3-beam level prediction and FR1/FR2-1 freq. domain (inter-cell, non-collocated). 
Proposal 1: RAN4 to discuss and decide the leading group for the use cases for L3-beam level prediction and FR1/FR2-1 freq. domain (inter-cell, non-collocated).
Observation 2: It is beneficial for UE to dynamically decide its measurement behaviour. 
Proposal 2: RAN4 to discuss the applicable scenarios, e.g., handover prediction, and model related aspects, e.g., model input/output, etc. 
Observation 3: Features has been introduced to reduce Rx beam sweeping factor in previous releases. 
Proposal 3: The cost and gain of reducing Rx beam sweeping factor with AI/ML need to be comprehensively justified. 
Proposal 4: RAN4 to study the mechanism and applicable scenarios for measurement-gap reduction.

	Xiaomi
	R4-2600446
	Observation 1: Unified narrow-beam measurement increases Rx beam count and makes exhaustive sweeping non-scalable.
Proposal 1: Study AI-based Rx beam prediction as an enabler for unified measurement efficiency.
Observation 2: AI-driven two-stage cell measurement selection reduces redundant inter-cell measurements by predicting high-quality cell indexes (classification).
Proposal 2: RAN4 to study AI-driven cell selection, including evaluation metrics and impacts on inter-cell measurement overhead and mobility robustness.
Observation 3: For scalable 6G measurement under unified architectures, it is insufficient to only reduce the target set (cell selection); measurement period must also be adapted to scenario dynamics to optimize power/latency under bounded reliability.
Proposal 3: RAN4 to study AI-assisted measurement period adaptation, potentially in conjunction with AI-based cell selection.

	Apple
	R4-2600529
	Proposal 1: We propose defining the study's technical scope by structuring each AI/ML RRM prediction use case into Variant A (Tx-only prediction) and Variant B (joint Tx+Rx beam prediction). This inclusion is critical to leverage the significant measurement overhead and gap reductions identified from skipping unnecessary Rx beam sweeps
Proposal 2: We propose organizing the study into two independent investigation tracks. Track 1 follows a phased model development roadmap: Step 1 validates foundational spatial (T3, including cluster variants) and spectral cell-level (T2) prediction. Step 2 integrates these into the spatio-spectral superset (T4), followed by Step 3 extending into the time domain (T5). Independently, Track 2 investigates "Dynamic RRM Measurement Adaptation" mechanisms, focusing on defining triggers and scenarios for relaxing measuring legacy procedures, and evaluating system benefits.
Proposal 3: Investigate the use of a UE-signaled "AI Prediction Confidence Level" as a primary trigger for dynamic measurement adaptation mechanisms. This enables the network to adaptively switch between gap-less AI inference and legacy measurement gap configurations based on real-time local model reliability.
Proposal 4: Investigate a UE-assisted AI/ML prioritization framework that classifies inter-frequency candidates into high-value and opportunistic categories based on handover utility and historical context. This enables the network to dynamically concentrate physical measurement resources on decision-critical targets while reducing the monitoring overhead for low-priority layers.

Proposal 5: Investigate a UE-assisted framework in which the UE predicts short-term beam stability using AI/ML and reports a compact beam stability and/or beamwidth adaptation indicator. The gNB uses this indicator to dynamically adapt beamwidth selection and beam management measurement configurations.

	CMCC
	R4-2600848
	Observation 1: AI/ML based spatial domain UE RX beam sweeping reduction is not studied in 5G-A.
	Beam prediction in 5G-A focus on DL Tx beam prediction
	The discussion on RX beam knowledge in 5G-A is about whether RX beam corresponding to the predicted TX beam is known, and the discussion is about L1 level beam, the main spec impact is TCI state known condition
	For AI/ML for mobility in 5G-A, for UE sided model, spatial domain prediction is not supported
Proposal 1: it is proposed to consider the use case of AI/ML based spatial domain UE RX beam sweeping reduction.  
Proposal 2: it is proposed to consider the use case of AI/ML based frequency domain measurement prediction for non-co-located scenario., including L3-beam level and L3-cell level.

	Huawei, HiSilicon
	R4-2600905
	Proposal 1: For non-collocated inter-cell L3-beam level prediction and L3-cell level prediction, study the feasibility and applicability of AI RRM prediction models in RAN4 6G in the following domain:
-	Spatial domain
-	Frequency domain    

	OPPO
	R4-2600953
	Observation 1: Compared to Rel-19 AI/ML based BM, no big difference is observed for intra-cell spatial domain prediction for L3 beam level measurement. 
Observation 2: The benefits for non-collocated inter-cell spatial domain prediction are not clear while several feasibility issues are observed, e.g., generalization, high complexity. 
Observation 3: There are several feasibility issues observed for non-collocated frequency domain prediction for UE sided model, e.g., generalization, high complexity for implementation and additional information. 
Observation 4: The measurement related use cases including L3 beam and cell level measurement prediction are leftovers from Rel-20 AI mobility which is led by RAN2 and most likely will also be discussed in RAN2. 
Observation 5: The spatial domain Rx beam sweeping reduction includes the prediction cross multiple cells and multiple domains e.g., time and spatial domain. 
Proposal 1: RAN4 not to consider spatial domain prediction for L3 beam level measurement in FR1. 
Proposal 2: Identify the difference between intra-cell spatial domain prediction for L3 beam level measurement and Rel-19 AI/ML based BM. 
Proposal 3: Deprioritize the non-collocated inter-cell spatial domain prediction for L3 beam level prediction for Tx beams. 
Proposal 4: Not to consider UE-sided model for non-collocated frequency domain prediction for L3 beam and cell level measurement. 
Proposal 5: Wait for RAN2 progress for L3 beam level and cell level prediction to avoid overlapping and decide the leading group. 
Proposal 6: Study and identify the potential model output and appropriate evaluation KPI for dynamic adaptation of measurement procedure. 
Proposal 7: Do not preclude the RSRP prediction which can be at least intermediate or optional prediction results for dynamic adaptation of measurement procedure. 
Proposal 8: When evaluating and selecting the feasible methodology (e.g., prediction output and evaluation KPI), performance gains together with the model complexity and testability should be considered. 
Proposal 9: Study the feasibility of spatial domain RX beam sweeping reduction (L1/L3) considering: 
•	appropriate evaluation KPI
•	complexity due to prediction cross multiple cells and multiple domains
•	difference with spatial domain prediction for Tx beams

	LG Electronics Inc.
	R4-2601093
	Proposal 1: RAN4 to consider the spatial domain sub use cases of L3 beam-level measurements prediction as second priority.
Proposal 2: RAN4 to discuss the L3 cell-level measurements prediction use cases first. Once its feasibility is sufficiently validated, we would like to consider the L3 beam level prediction use case.
Proposal 3: For L3 cell-level prediction use case, the details of frequency domain scenario is shown in Table 1. 
Proposal 4: Depending on the UE’s location, the UE may eigther obtain the L3 cell-level RSRP of the inter-frequency cell through MG-based measurement or through prediction. This operation can be considered an example of dynamic adaptation of measurement procedure use case. 
Proposal 5: RAN4 to discuss whether the standard should provide support for UEs that leverage sensor data to enable RX beam sweeping reduction or refinement.

	Samsung
	R4-2601169
	L3-cell level prediction in FR1/FR2-1 freq. domain (inter-cell, non-collocated)
Observation 1:	For L3-cell level prediction in FR1/FR2-1 freq. domain (inter-cell, non-collocated), the following factors shall be considered in RAN4 study: 
-	Technical feasibility of frequency-domain inter-cell non-collocated scenario, e.g., whether the trained model can only work on certain location/deployment-based signal map. 
-	Cross-working group coordination to avoid duplicated effort.  
Proposal 1:	Information related to AI-RRM use case of L3-cell level prediction in FR1/FR2-1 freq. domain (inter-cell, non-collocated) can be summarized as:
L3-beam level prediction for Tx beam
Proposal 2:	For AI-RRM use case of L3-beam level prediction for Tx beam, among the three sub-use cases, RAN4 can study (i) FR1/FR2-1 spatial domain (intra-cell) firstly.
Dynamic adaptation of measurement procedure (single domain prediction based, no RSRP prediction is involved)
Observation 2:	For the proposed AI-RRM use case of dynamic adaptation of measurement procedure, RAN4 need further clarify this use case by considering two alternatives: (1) NW-agnostic UE autonomous mode (2) NW-UE interaction mode.
Observation 3:	If NW-agnostic UE autonomous method is considered for dynamic adaptation of measurement procedure, RAN4 need further clarify the relevant specification impacts if non-AI based requirement can always serve as minimum requirement. 
Proposal 3:	RAN4 need further discussion on clarify AI-RRM use case of dynamic adaptation of measurement procedure, by
-	Clarify dynamic adaptation of measurement procedure by using AI use case information collection template. 
-	Down-scope by considering a specific scenario for further study, e.g., only consider dynamic adaptation of measurement procedure for multiple frequency layers.  
Spatial domain RX beam sweeping reduction (L1/L3)
Observation 4:	For the proposed AI-RRM use case of spatial domain RX beam sweeping reduction (L1/L3), at least the following aspects shall be clarified: 
-	L1 or L3 domain prediction
-	Single or multi-domain prediction 
Proposal 4:	Information related to AI-RRM use case of spatial domain RX beam sweeping reduction (L1/L3) can be summarized as:

	ZTE Corporation, Sanechips
	R4-2601295
	Observation 1: Some use cases have been identified in 5G-A but were not included in work scope due to limited time and large workload, such as RLF, spatial domain, L3 beam level prediction and so on, which are better to be discussed with 5G as a whole. 
Proposal 1: Case a and Case b, RRM measurement prediction relevant use cases that have been identified in 5G-A but not included in work scope due to limited time and large workload, should be discussed in 6G. And further discussion is needed regarding these use cases are driven by RAN2 or RAN4.
Observation 2: NW usually has more comprehensive information than UE because the network has a global view and centralized control capability, while the UE's view is usually limited to itself and the nodes directly communicating with it.
Proposal 2: For case c, more details are needed for Dynamic Adaptation of Measurement Procedure with no RSRP prediction involved.
Observation 3: To reduce measuremnt period, how to reduce RX beam sweeping factor is an important issue shoud be studied. Not only legacy measurement period in NR, but also beam prediction delay for AI BM in Rel-19 can be reduced by Spatial domain RX beam sweeping reduction.  
Proposal 3: It is proposed to consider the use case of AI/ML based spatial domain RX beam sweeping reduction.  
Observation 4: The sub-use case of Tx-Rx beam pair prediction are discussing in RAN1. However, FR2 RX beam sweeping factor is transparent to RAN1/RAN2 spec and has a significant impact on RAN4. 
Proposal 4: RAN4 should discuss how to coordinate with RAN1 on Tx-Rx beam pair prediction.
Proposal 5: For Multi-Domain L3 level Prediction, it should be considered after significant progress is achieved for single-domain L3 level prediction to avoid redundant discussion.
Observation 5: In NR, both LTM and AI mobility are led by RAN2, and RAN2 may be more suitable to lead the use case if AI is to be used in LTM procedure.
Observation 6: From the perspective of measurement prediction, there maybe no difference between AI/ML based SCell related enhancement by measurement prediction and AI based L3 cell-level measurement prediction. Both use AI to reduce measurements without actually measuring the target cell, and obtain prediction results through historical information or measurement results of other cell(s).
Proposal 7: If RAN4 wants to introduce new use cases in future, study and develop the potential AI/ML use cases for RRM from the following perspectives:
- Type 1: Whether and how to apply AI/ML to reduce measurement resource overhead
- Type 2: Whether and how to apply AI/ML to reduce measurement/processing delay
- Type 3: Whether and how to apply AI/ML to reduce the interruption/measurement gap

	Ericsson
	R4-2601418
	Observation 1	Number of first priority use cases to be studied in RAN4 needs to be further reduced with an aim to identify high priority use cases that can be effectively studied within the RAN4 TU allocation.
Proposal 1	Prioritize L3-beam level prediction for Tx beam and L3 cell level prediction use cases for study.
Proposal 2	Down prioritize dynamic adaptation of measurement procedure at UE and Rx beam sweeping factor reduction AI/ML use cases for RRM measurement.

	vivo
	R4-2601476
	Observation 1: For spatial domain prediction, potential issues include:
-	If network energy savings are achieved by transmitting only a subset of reference signals (RS), reducing SSB transmissions may impact coverage and create compatibility issues with legacy non-AI UEs.
-	If the focus is on reducing UE measurements, the benefit of measurement reduction is questionable considering inaccurate predictions and additional AI inference overhead. Furthermore, the selection criteria for the subset of SSBs to be measured remain unclear.
Proposal 1: RAN4 should consider deprioritizing spatial domain prediction for Tx beams in the 6G AI study.
Proposal 2: RAN4 to consider studying frequency domain prediction in a later phase in the 6G AI study, based on 5G study progress on the co-located scenarios. 
Observation 2:  Compared to L3 beam level for spatial domain and frequency domain, time prediction offers 
more significant benefits. Moreover, this case was analysed as a typical example of L3 beam level in the 5G R19 SI RAN2 study and has already been confirmed as feasible.
Proposal 3: RAN4 to consider L3 beam-level time domain prediction as a prioritized use case of the current 6G AI SI study.
Proposal 4: RAN4 to study Dynamic Adaptation of Measurement Procedure, which using measurement decisions and/or measurement events as prediction output
Proposal 5: RAN4 to study Spatial domain RX beam sweeping reduction in 6G AI study.

	Nokia
	R4-2601686
	Observation 1: Intra-cell spatial domain prediction use-cases have been considered in Rel. 19 AI/ML for air interface WI and Rel. 20 AI/ML for mobility WI.
Proposal 1: RAN4 should first determine how the FR1/FR2-1 spatial domain intra-cell L3 beam-level prediction use case differs from those in Rel. 19 AI/ML for air interface WI and Rel. 20 AI/ML for mobility WI to avoid redundant work.
Proposal 2: L3 beam-level spatial-domain inter-cell measurement prediction use case in the non-collocated scenario can be further studied in 6G. RAN4 should coordinate with RAN2 to avoid any overlap.
Proposal 3: Since inter-frequency inter-cell configurations are less frequently deployed in non-collocated scenarios, RAN4 should postpone the discussion on beam-level FR1/FR2-1 frequency domain measurement prediction in the non-collocated cases.
Proposal 4: RAN4 to postpone the discussion on FR1/FR2-1 frequency domain measurement prediction use case for non-collocated case until the completion of the ongoing simulation/framework related work for collocated case in the context of Rel. 20 AI/ML Mobility WI.
Observation 2: Given the availability of this Release 19 parameter RX Beam Sweeping Reduction, it may be relevant for the present study item to reuse this existing capability, as it could already address part of the intended functionality of this use case—at least from the L3 measurement perspective.
Observation 3: With the new UE capability in Rel-19, the application of RX Beam Sweeping Reduction for identifying the optimal RX beam of a predicted DL Tx beam may be not needed as the RX beam corresponding to a UE-predicted TX beam can be considered known.
Proposal 5: Before starting any new study on spatial domain RX beam sweeping reduction (L1/L3), RAN4 should assess whether the existing capabilities are sufficient and should clarify what remaining aspects, if any, need to be studied.
Observation 4: The model input and output assumed in the “dynamic adaptation of measurement procedure” use case proposed in [R4-2520044] are similar to those in Rel-20 AI/ML for mobility in NR and other 6G AI RRM use cases.
Observation 5: The scenario described in [R4-2520345] as a motivation for the “dynamic adaptation of measurement procedure” use case can be covered by the frequency-domain measurement prediction use case considered in Rel-20 AI/ML for mobility in NR.
Proposal 6: The “dynamic adaptation of measurement procedure” use case should not be considered for study in 6G unless further clarification is provided for at least the following aspects:
•	Input and output of the AI models if no RSRP prediction is involved, as stated by the agreement made in RAN4#117
•	Difference from Rel-20 AI/ML for mobility in NR and other 6G AI RRM use cases
•	How to define requirements and test this use case if no collaboration/interaction between UE and NW is assumed
Observation 6: Depending on the use-case, different levels of prediction accuracy may be required at the network and in some scenarios lower accuracy of predicted reports may have adverse effects on Network decisions for operations such as handover and beam switching etc.
Observation 7: Since physically performed measurements would be used for initial training of AI/ML functionalities before deployment as well for in-field fine-tuning and retraining, therefore, they become the upper bound of the prediction performance.
Observation 8: Stricter requirements for physically performed measurements, prioritization of cluster-based approaches and support of UEs capable of improved accuracy for physically performed measurements are some of the potential ways to improve the predicted measurement accuracy.
Observation 9: Reporting delay requirements may differ for different types of measurement classes with lower or higher accuracies.
Proposal 7: For AI/ML-based measurement predictions, RAN4 to study the impacts on measurement requirements. More precisely, RAN4 to study the following aspects:
•	Accuracy of predicted measurements
•	How to mitigate adverse impacts of less accurate predicted measurements
•	Impact on reporting delay requirements
•	Impact on measurement gaps configuration

	Qualcomm Incorporated
	R4-2602043
	Observation 1.1: Prediction in non-co-located scenario through a UE sided AI-ML model is quite challenging and existing simulation results do not guarantee good performance at low SNR.
Observation 1.2: UE sided AI-ML models to predict non-collocated scenario may also suffer from lack of generalization.
Observation 1.3: In the scenario where UE predicts properties of cells of one location based on the measurement of cells of another location, UE may need to utilize Nchoose2 number of models in an area that contains N locations, containing different cells.
Observation 1.4: Network can collect data from many UEs and develop its model to predict properties of one cell based on measurement of another non-co-located cell. Hence, network sided model is a better alternative than UE sided model to predict in non-co-located scenario.
Observation 1.5: During frequency domain non-co-located prediction, prediction quality is expected to go down if the separation between measurement resource and prediction resource is large.
Observation 1.6: Proponents of frequency domain non-co-located prediction want to apply this technique to reduce the need for measurement gaps.
Observation 1.7: 6G RRM session is discussing other more “practical” mechanisms, e.g., gap less measurements, that allow UE to measure measurement objects in different frequency layers without gaps.
Observation 2.1: RAN2 is expected to start discussing 6G AI-ML mobility study items from Feb ’26 meeting. They are expected to discuss studying different topics of AI-ML based mobility, including the topic of ‘L3 beam level prediction in spatial domain’
Observation 2.2: ‘L3 beam level prediction’ will eventually impact RAN2 and RAN1 procedures. For example, UE might be able to find RACH resources corresponding to a beam that gNB is not transmitting. This will introduce new signalling IEs and procedures that can be handled only at RAN2.
Observation 3.1: RAN4 has assumed the RX beam sweep factor to be eight in many FR2 measurement periods of Rel-15. This scaling factor of eight significantly increases evaluation periods in FR2.
Observation 3.2: 5G AI/ML beam management work item assumed FR2 UE to sweep eight RX beams to measure setB beams.
Observation 3.3: The measurement period of 5G spatio-temporal beam prediction gets scaled by both legacy RX beam sweeping factor (eight) and the minimum number of observation samples. The presence of these two factors may make the measurement period of 5G AI/ML based spatio-temporal beam prediction excessively long.
Observation 3.4: RAN4 has introduced new UE capabilities in Rel-18 and Rel-19 that allow UE to signal support of reduced FR2 RX beam sweeping factors for serving and neighbor cells respectively.
Observation 3.5: AI/ML based training and inference can help UE to measure a reference signal with reduced set of RX beams and infer the properties of full set of RX beams for that reference signal. This would significantly reduce the evaluation period in FR2.
Observation 3.6: Table 1-1 shows an overview of the “spatial domain RX beam sweeping reduction” use case.
Observation 3.7: Table 1-2 shows one set of examples to evaluate “spatial domain RX beam sweeping reduction”. Other examples should also be considered to evaluate this topic, especially regarding spatial domain RX beam sweeping reduction for L3 measurement.
Observation 3.8: Simulation results suggest that AI-ML based “spatial only” TX beam prediction vastly outperforms radial basis function interpolation (thin plane spline) based non-AI-ML methods even in the presence of measurement error.
Observation 3.9: AI-ML based spatial domain RX beam sweeping prediction can be conceived as the RX side version of AI-ML based “spatial only” TX beam prediction. Hence, this topic has the potential to show benefits with respect to its non-AI-ML counterparts.
Observation 4.1: Although AI-native UE implementations have gained significant traction and are expected to mature by the 6G timeframe, scenario-agnostic RRM requirements could unintentionally constrain such intelligent behaviors.
Observation 4.2: Per the agreement reached at RAN4 #117, the use case ‘dynamic adaptation of measurement procedure’ is strictly limited to ‘single‑domain prediction’ and ‘no RSRP prediction.’ With these restrictions applied, the target use case will likely become too limited, making the study outcome narrowly scoped and insufficiently scalable. This is not desirable, considering that the following examples could be left out of the study scope:
•	If certain inter-frequency cells within the configured measurement objects are not expected to be detectable (e.g., due to predicted low SNR), those cells can be excluded from CSSF or scaling‑factor calculations until they are predicted to become detectable, which may require temporal-frequency domain joint prediction. 
•	If the PCell RSRP is predicted to remain above a threshold based on intra‑frequency temporal‑domain prediction, inter‑frequency measurements configured for mobility (assuming the intended measurement purpose can be indicated to the UE by the network) may be skipped.

Proposal 1.1: RAN4 should pause studying prediction in any non-co-located scenario, including the following, until the performance of similar predictions (time/frequency/spatial and L1/L3) in co-located scenario get investigated thoroughly.
a.	For L3-beam level prediction for Tx beam
ii.	FR1/FR2-1 spatial domain (inter-cell, non-collocated)
iii.	FR1/FR2-1 frequency domain (inter-cell, non-collocated)
b.	For L3-cell level prediction 
i.	FR1/FR2-1 freq. domain (inter-cell, non-collocated)

Proposal 2.1: RAN4 should wait to start study ‘L3 beam level prediction’ until RAN2 starts discussing 6G SI AI-ML mobility topics to avoid overlap between RAN2 and RAN4 topics.  
Proposal 3.1: RAN4 should study if and how AI/ML based training and inference can help a 6G FR2 UE to support reduced RX beam sweeping factor. 

Proposal 4.1: RAN4 should include ‘Dynamic Adaptation of Measurement Procedure’ as one of the use cases for the 6G AI study and investigate whether and how to accommodate AI-based UE dynamic measurement adaptation within the 6G RRM specification, as well as identify any required signaling support from other working groups. However, if there is a possibility that the study outcome becomes too narrowly scoped and not sufficiently scalable due to the constraints applied in the agreement reached at RAN4 #117, RAN4 should consider moving this study to the 6G RRM discussion, particularly under the ‘unified measurement’ item, so that the ultimate objective of the use case study can be broad enough to accommodate the following aspects:
•	The adaptive measurement procedure should not be restricted to single‑domain prediction. Joint temporal-frequency-domain prediction could also enable more efficient measurement requirements by enabling more dynamic adaptation of CSSF.
•	The adaptive measurement procedure based on prediction results does not need to rely solely on ‘direct prediction.’ Indirect prediction such as predicted RSRPs of the cells can also serve as a useful basis for adaptation. For example, outputs of the Release‑20 AI/ML‑based Mobility work item may also be further explored to support such adaptation.
•	Prediction does not necessarily need to rely on specification‑defined AI. UE‑proprietary AI solutions may also be used.
Proposal 4.2: The following table shows one set of examples to evaluate ‘Dynamic Adaptation of Measurement Procedure’.



Topic #5: Other RAN4-driven use cases
	Company
	Tdoc No.
	Proposal

	Ericsson
	R4-2601510
	Observation 1	Based on the agreement in RAN4#116bis meeting for RAN4 driven use-case selection, RAN4 may prioritize those use-cases which have minimum to no impact on other WGs.
Observation 2	The AI/ML-enabled PRACH receiver use case depends on new random-access procedures, multi-user detection mechanisms, and potential updates to PRACH preamble design, which are within RAN1’s scope. Current RAN4 requirements only address single-user PRACH detection and cannot assess performance for multi-user collision scenarios.
Proposal 1	This use-case should be evaluated by RAN1. Alternatively, if RAN4 evaluates, it should be after the PRACH design is established in RAN1.
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