	
3GPP TSG-SA5 Meeting #162	S5-253895
Goteborg, Sweden, 25 - 29 August 2025

Source:	Nokia, Ericsson
Title:	Rel-19 pCR 28.572 Enhance Draft TS on Management of planned configurations
Document for:	Approval
Agenda item:	6.19.9.1 – Management of planned configurations
Spec:	3GPP TS 28.572 Management and orchestration; Management of planned configurations
Version:	0.5.1
Work Item:	PlanM, Management of planned configurations

Comments
The group is requested to discuss and to approve the pCR below.

Proposed Changes
* * * First Change * * * *
[bookmark: _Toc199255864]Introduction
Configuration management of mobile networks is a complex task. Configuration plans are typically generated by planning tools. This specification describes how these plans can be managed and activated.

* * * Next Change * * * *
[bookmark: scope][bookmark: _Toc199255865]
1	Scope
The present document specifies the management of planned configurations. …

* * * Next Change * * * *
[bookmark: _Toc178763702][bookmark: _Toc199255871]4	Concept and overview
This specification introduces the concept of planned configurations that a MnS consumer can create on a MnS producer. In contrast to the one current configuration that refers to the configuration that is active in the managed system, multiple planned configurations can coexist. Multiple planned configurations can be grouped together in planned configuration groups.
Planned configurations and planned configuration groups can be validated and activated. Conditional activation is possible. Fallback configurations allow to revert to a previous state.

* * * Next Change * * * *
[bookmark: _Toc178763704][bookmark: _Toc191480516][bookmark: _Toc199255873][bookmark: _Toc178763729]6	Solution description
Editor's note: Clarify that annotations are only for the user and are not processed by the MnS producer.
[bookmark: _Toc178763705][bookmark: _Toc180490130][bookmark: _Toc191480517][bookmark: _Toc199255874][bookmark: _Toc178763715]6.1	Planned configurations
[bookmark: _Toc180490131][bookmark: _Toc191480518][bookmark: _Toc199255875]6.1.1	Definition
The current configuration is the configuration currently used by the managed system. It is represented by (a tree of) configuration data nodes. State data nodes are not included. The format of the configuration data node tree is typically defined by (stage 2) NRM definitions and (stage 3) schema definitions.
Note that the data node tree representing a managed system typically comprises besides configuration data nodes also (read-only) state data nodes, that represent the current state of the managed system. Configuration data nodes and state data nodes may be separated in dedicated subtrees, but they may be also contained in one tree.
[bookmark: _Hlk180058797]A planned configuration is a configuration that can be manipulated without impacting the current configuration of the system. It relates to configuration data nodes and not to state data nodes. It is maintained side-by-side with the current configuration.
[bookmark: _Toc180490132][bookmark: _Toc191480519][bookmark: _Toc199255876]6.1.2	Format of planned configurations
A planned configuration is represented by a set of operations to be applied to the current configuration. The operations are described by the input parameters of the "changeMOIs" operation specified in TS 28.532 [4], with the addition that each operation in the operation set has a key for identifying the operation.
A planned configuration is represented by a set of operations to be applied to the current configuration. Each operation is described by three parameters: a modify operator, a target, and a value. An operation may be annotated with a description. The order of operations in the operation set is irrelevant.
The target parameter identifies a data node in the current configuration that is to be manipulated by the modify operator. This node is referred to as target data node. The modify operarator specifies the modification to be applied to the target data node. The value parameter specifies the value that is used by the modify operator on the target data node.
The modify operator indicates, if a new node is to be created in the current configuration, an existing node is to be updated, or an existing node is to be deleted. The value parameter is absent for data node deletions, in all other cases it needs to be present. Updating the value of an existing node may be done in two different ways: either the value in the value parameter replaces the existing value completely, or the value in the value parameter is merged into the existing value.
Success or failure of the create, update and delete operations depend on the presence or absence of the target data node in the current configuration:
· The operation to create a new node may fail, if the node already exists, or may not fail. In the latter case the value of the target node is replaced with the value in the value parameter.
· The operation to update an existing node may fail, if the node does not exist, or may not fail. In the latter case the target node is created with its value set to the value in the value parameter.
· The operation to delete an existing node may fail, if the node does not exist, or may not fail. In the latter case the operation is silently ignored.
This specification defines a format for planned configurations called XYZ for which the following applies.
· The node identified by the target parameter may be any kind of node (managed objects, attributes, attribute fields, attribute elements).
· The following modify operations are defined:
· createNewNode: creates the target node in the current configuration with the representation specified by the value parameter, if the target node does not exist in the current configuration. If the target node already exists, an error is raised.
· mergeIntoExistingNode: merges the (partial) representation of the target node specified in the value parameter into the current representation of the target node, if the target nod exists in the current configuration. If the target node does not exist, an error is raised.
· mergeIntoExistingNodeOrCreateNewNode: merges the (partial) representation of the target node specified in the value parameter into the current representation of the target node, if the target node exists in the current configuration. If the target node does not exist, it is created with its representation set to the representation specified in the value parameter.
· deleteNode: deletes the target node, if the target node exists in the current configuration. If the target node does not exist, the MnS producer shall ignore the operation and shall not raise an error.
· All updates for an existing managed object should be grouped into a single mergeIntoExistingMoi or mergeIntoExistingMoiOrCreateNewMoi operation. The MnS producr may reject planned configurations where more than one operation targets the same managed object instance.
· In a valid planned configuration, the managed objects containg the target managed object shall exist either in the current configuration or as part of the planned configuration. The MnS producer is not required to implicitly create managed objects instances that are used as path components but which do not exist in the plan nor in the current configuration.
For the use with current configurations that are based on the managed object concept a special profile called Managed Object Plan is provided. For a Managed Object Plan the following applies:
· The node identified by the target parameter shall be a managed object instance. No other node types are allowed as target nodes. The MnS producer shall reject a planned configuration if it contains target data nodes that are not managed objects.
· All updates for an existing managed object should be grouped into a single mergeIntoExistingMoi or mergeIntoExistingMoiOrCreateNewMoi operation. The MnS producr may reject planned configurations where more than one operation targets the same managed object instance.
The MnS consumer may specify an identifier for each operation in the creation request for a planned configuration descriptor. The MnS producer may discard this identifier upon reception of the request and use the positional index of the operation in the operation set instead whenever a reference to an operation in the operation set is required.
The following guidelines may ease the processing of operation sets during validation and activation:
1. Parent objects should be created before child objects.
-	Objects that are referenced should be created before the reference.
[bookmark: _Toc180490133][bookmark: _Toc191480520][bookmark: _Toc199255877]6.1.3	Meta data for planned configurations
Each planned configuration is described by meta data. This includes the name, the version, and a human readable textual description. It is also possible to specify additional MnS consumer defined properties (key value pairs) to further describe and qualify the planned configuration, for example to specify who created the planned configuration. The aforementioned annotations are for usage by a (human) MnS consumer only. The are not processed by the MnS producer.
Editor's note: Clarify that "version" may help the consumer to realize a version management system (use multiple plans with different version numbers).
Furthermore, it includes the content type of the planned configuration and a pointer to the current configuration. The pointer allows for deployments where the planned configuration is on another MnS producer than the current configuration.
Furthermore, it is specified if the operations of the operations set are an atomic set, where all operations need to be validated and activated successfully, or if some operations are allowed to fail (non-atomic or best effort set). In other words, for atomic sets, all operations of the set must be processed successfully or no operation at all. Operations, that are already applied when an error occurs, must be rolled back. For best effort sets, the operations that can be processed successfully are processed, and those that for whatever reason cannot be processed successfully are not processed. In this mode the validation or activation process continues on the occurrence of an error. In a third mode the validation or activation process stops on the occurrence of an error.
For example, subscriptions to alarm notifications on multiple Network Functions may have value also in case the subscription on some Network Functions fails. When analytics are computed based on measurements collected at some well selected Network Functions, then all measurement collection jobs must be created. If one job cannot be created it does not make sense to collect the remaining measurements.
The date and time at which information in the planned configuration was modified the last time is provided as well.
[bookmark: _Toc180490135][bookmark: _Toc191480521][bookmark: _Toc199255878]6.1.4	Planned configuration descriptor
The operation set and related meta data are specified in a planned configuration descriptor. Each descriptor has a unique identifier.
[bookmark: _Toc180490136][bookmark: _Toc188283803][bookmark: _Toc191480522][bookmark: _Toc199255879][bookmark: _Toc178763718]6.2	Planned configuration groups
[bookmark: _Toc180490137][bookmark: _Toc188283804][bookmark: _Toc191480523][bookmark: _Toc199255880]6.2.1	Definition
[bookmark: _Toc180490138][bookmark: _Toc188283805][bookmark: _Toc191480524]A planned configuration group is a set of planned configurations or planned configuration groups that shall be processed (validated and activated) together.
For example, one plan may create a new cell, and another plan may start the collection of measurements for the new cell, or one plan may configure one base station and another plan may configure another base station, when both base stations need to be consistently configured to enable handovers between them.
[bookmark: _Toc199255881][bookmark: _Toc188283806][bookmark: _Toc191480525]6.2.2	Planned configuration group members
A planned configuration (or planned configuration group) belonging to a planned configuration group is also called a member of that planned configuration group. A planned configuration (or planned configuration group) can be a member of more than one planned configuration group.
The members of a planned configuration group shall be considered as atomic or non-atomic (best effort), in the same way as the operations of an operation set may form an atomic or a non-atomic (best effort) set.
Furthermore, the members of a planned configuration group can be ordered or not ordered. If ordered, the planned configuration group members are processed in the order as specified in the planned configuration group. If not ordered, the members can be processed in any order or in parallel.
For example, when the configuration for a new Network Function is in one plan and the creation of a performance metric collection job in another plan, then the plans must be ordered (assuming the job object is contained under a configuration object).
Not ordered are for example plans adding performance metric collection jobs to already configured Network Functions.
There shall not be any circular membership relationships between two or more planned configuration groups. E.g. group-A is a member of group-B then group-B is not allowed to be a member of group-A.

[image: A group of text and a line

AI-generated content may be incorrect.]
[bookmark: _CRFigure4_2_115]Figure 6.2.2-1: NOT allowed circular planed configuration group membership relation (with 3 groups)
A planned configuration group may not include any individual planned configuration more than once. The following is not allowed because Group_A cannot contain Plan2 twice, It is also invalid because Group_B contains Plan1 twice, once via Group_C and once via Group_A.
[image: A diagram of a group

AI-generated content may be incorrect.]
Figure 6.2.2-2: NOT allowed multiple containment of planed configuration
All member planned configurations shall have the same configuration content type.
[bookmark: _Toc199255882]6.2.3	Conflicts between planned configuration group members
Conflicting operations may be contained in planned configuration group members. For example, a planned configuration may set an attribute to some value and another planned configuration sets the same attribute to some other value.
If the configuration group members are ordered, the result is deterministic. The conflicting planned configurations are processed in the order as they appear in the planned configuration group. The last processed planned configuration determines the result. If the configuration group members are not ordered, the result is not guaranteed to be deterministic. Depending on which planned configuration group member is processed last, the result may be different.
Conflicting operations within a single planned configuration are not considered as conflicts.
If the configuration group members are ordered, the result is deterministic. The conflicting operations are processed in the order as they appear in the ordered plans. The last processed operation from the ordered set of operations manipulating the same node determines the result. If the configuration group members are not ordered, the result is not deterministic. Depending on which operation from the unordered set of operations manipulating the same node is processed last, the result may be different.
It is configurable if a detected conflict should invalidates the planned configuration group.
[bookmark: _Toc180490139][bookmark: _Toc188283807][bookmark: _Toc191480526][bookmark: _Toc199255883]6.2.4	Meta data for planned configuration groups
Each planned configuration group is described by meta data. This includes annotations such as the name, the version, and a human readable textual description.
Furthermore, it includes the information if the group members areis atomic or non-atomic, if it isthey are ordered or unordered, and if a conflict between planned configuration group members shall invalidate the planned configuration group and prevent its activation.
The date and time at which information in the planned configuration group was modified for the last time is provided as well.
[bookmark: _Toc180490141][bookmark: _Toc188283808][bookmark: _Toc191480527][bookmark: _Toc199255884]6.2.5	Planned configuration group descriptor
The planned configuration group members and its meta data are specified in a planned configuration group descriptor. Each descriptor has a unique identifier.
[bookmark: _Toc191480528][bookmark: _Toc199255885]6.3	Fallback configurations
[bookmark: _Toc191480529][bookmark: _Toc199255886]6.3.1	Definition
Fallback is the process of returning to the configuration that was used by the managed system before the activation of a planned configuration or planned configuration group. A fallback configuration is the configuration describing this configuration.
Fallback configurations are generated by the system. Fallback may be applied when the activation of a planned configuration or a planned configuration group does not yield the desired results. Use cases include:
· A wrong planned configuration was activated. The operator MnS consumer requests wants to return to the old configuration.
· The new configuration does not perform as expected. The operator or the automation system wantsMnS consumer requests to return to the old configuration.
· The new configuration was deployed on existing Network Functions in anticipation of some new Network Functions being rolled out. The roll out does not happen. The existing Network Functions are rolled back to the configuration state at the time the activation was triggered.
Fallback may be implemented by one of the following methods:
-	"undo operations": This method only reverses the changes resulting from the activation of a planned configuration or planned configuration group. It has no effect on configuration data nodes that are not affected by the activation of the planned configuration or planned configuration group. Therefore, changes to other data nodes, that occur after activation and before fallback, are not undone.
-	"restore complete configuration": This method reverts all configuration changes done after the activation of a planned configuration or planned configuration group, i.e. those resulting from the activation of a planned configuration or planned configuration group and those done via some other means. This method restores the complete old configuration. Therefore, changes to data nodes, that occur after activation and before fallback, are undone as well. Note that the complete data node tree is restored in this mode. Therefore, this mode might not be supported in deployment scenarios with large data node trees.
[bookmark: _Toc191480530][bookmark: _Toc199255887]6.3.2	Fallback configuration preparation
A fallback configuration is created by the system upon the start of an activation process when enable fallback is requested. The format of the fallback configuration is dependent on the fallback method.
In case of "undo operations" the fallback configuration shall be visible to the consumer as a read-only planned configuration. A fallback configuration is always a single configuration (not a planned configuration group) and is atomic. For example, for a planned configuration that adds a new object to the current data node tree the fallback configuration simply removes this object. Note that the fallback operations are not always simply the opposite of the operations contained in the activated planned configuration. The fallback configuration is created on effective changes only, for example:
· Only successful operations shall be included in the fallback configuration.
· For removed objects, the fallback configuration needs to include the representation of the object in the current data node tree at the time of removal.
· The removal of objects that do not exist cannot result in the addition of an object, leave alone that there would be no representation for that object.
· The addition of an object that already exists shall not result in the removal of that object.
Editor's note: For "changeMOIs" it is not specified if the addition (operation "add") of an object or attribute, that already exists, is an error. Furthermore, it is not specified if the removal (operation "remove") of an object, that does not exist, is an error. This may have to be clarified. Maybe it is also dependent on the protocol.
In case of "restore configuration" the fallback configuration is implementation specific.
[bookmark: _Toc191480531][bookmark: _Toc199255888]6.3.3	Meta data for fallback configurations
Each fallback configuration is described by meta data. This includes annotations such as the name, the version, and a human readable textual description.
Furthermore, an identifier of the activation process whose result is to be rolled back must be provided.
A fallback is always atomic.
[bookmark: _Toc191480532][bookmark: _Toc199255889]6.3.4	Fallback configuration descriptor
The fallback configuration and its meta data are specified in a fallback configuration descriptor. Each descriptor has a unique identifier.
A fallback configuration has the following properties:
· activation mode is always atomic (plan descriptor)
· must include the id of the activation job (plan descriptor)
· "planConfigContentType" is set by the MnS producer and is read-only (plan descriptor)
· "currentConfigAddress" is set by the MnS producer and is read-only (plan descriptor)
· cannot be a member of a planned configuration group (group descriptor)
· cannot be activated by trigger conditions (trigger conditions)
· restore flavour cannot be validated (validation)
· no fallback is possible (activation)
· no cancelling is possible (activation)
· a pointer to the fallback configuration descriptor shall be included in the related activation job (activation)

Editor's note: This descriptor is ffs. A fallback configuration has the following differences compared to a normal planned configuration:
· apply mode is always atomic (plan descriptor)
· must include the id of the activation job (plan descriptor)
· planConfigContentType is set by the MnS producer and is read-only (plan descriptor)
· currentConfigAddress is set by the MnS producer and is read-only (plan descriptor)
· cannot be a member of a planned configuration group (group descriptor)
· cannot be activated by trigger conditions (trigger conditions)
· restore flavour cannot be validated (validation)
· no fallback is possible (activation)
· no cancelling is possible (activation)
· a pointer to the fallback configuration descriptor shall be included in the related activation job (activation)
[bookmark: _Toc191480533][bookmark: _Toc199255890][bookmark: _Toc180490142][bookmark: _Toc178763724]6.4	Trigger conditions
[bookmark: _Toc191480534][bookmark: _Toc199255891]6.4.1	Definition
A trigger condition is a set of definitions controlling the points in time when associated planned configurations and planned configuration groups are activated. The set of definitions typically includes expressions on data node trees that evaluate to true or false. Trigger conditions are evaluated permanently.
[bookmark: _Toc191480535][bookmark: _Toc199255892]6.4.2	Usage
Trigger conditions are provided for conditional activation of planned configurations and planned configuration groups. The planned configuration is activated automatically when the provided conditions are met.
For example, additional performance metric collection jobs or assurance functions shall be created when metrics that are always collected cross certain thresholds.
[bookmark: _Toc191480536][bookmark: _Toc199255893]6.4.3	Specification of trigger conditions
The trigger for activation is specified as follows:
· a condition expression evaluating to true or false.
· an evaluation period.
· a hysteresis that may require the evaluation to yield true for a specified time or a specified number of times before the trigger is activated.
The condition expression works on the data node tree of the current configuration. The notation used to express the condition depends on the MnS protocol used. The transition of the evaluation result of the trigger condition from false to true is considered as a trigger. The transition from true to false is not considered as a trigger.
The evaluation period determines how often the trigger condition is evaluated.
The hysteresis may be used to ensure that the trigger is activated only when the trigger condition evaluates to true for a certain time or a certain number of times. This prevents the trigger from being activated also when the evaluation result toggles between false and true.
Editor's note: Time based triggers are ffs.
Editor's note: It is ffs if a hysteresis is not for the first triggering but only for subsequent triggers.
[bookmark: _Toc199255894][bookmark: _Toc188283810][bookmark: _Toc191480537][bookmark: _Toc180490147][bookmark: _Toc178763727]6.4.4	Meta data for trigger conditions
Each trigger condition is described by meta data. This includes annotations such as the name, the version, and a human readable textual description.
[bookmark: _Toc199255895]6.4.5	Control parameters for trigger conditions
The trigger may be activated each time the result of the trigger condition evaluation changes from false to true or only once. A control parameter allows to configure this behavior.
[bookmark: _Toc199255896]6.4.6	Monitor parameters for trigger conditions
Monitor parameters are provided that display the current result of the evaluation, the data and time at which the trigger was last activated, and a Boolean indicating if the trigger is inactive for the case that only one activation is requested.
[bookmark: _Toc199255897]6.4.7	Trigger condition descriptor
The trigger condition descriptor includes the specification of the trigger condition itself, and associated meta-data, control parameters and monitor parameters.
[bookmark: _Toc199255898]6.5	Validation of planned configurations
[bookmark: _Toc178763719][bookmark: _Toc180490143][bookmark: _Toc188283811][bookmark: _Toc191480538][bookmark: _Toc199255899]6.5.1	Definition
Planned configurations may have problems making itand it may be impossible to activate them. Validation is the process to unveil potential problems with planned configurations before their activation of the planned configuration.
The validation function has two input arguments: the operation set representing the planned configuration and a reference configuration which typically is a snapshot of the current configuration at a certain point of time. The planned configuration is applied to the snapshot of the currentreference configuration. The resulting configuration data node tree must comply with to the (stage 2) NRM definitions and (stage 3) NRM schema definitions.
[bookmark: _Toc178763720][bookmark: _Toc180490144][bookmark: _Toc188283812][bookmark: _Toc191480539][bookmark: _Toc199255900]6.5.2	Potential problems
Validation discovers problems of planned configurations. These problems may be classified as follows:
· Information model problems
-	Problems of the planned configuration itself
-	Problems of the planned configuration in relationship to the current configuration
· Application layer problems
Examples offor problems withof the planned configuration itself:
· Update of an attribute with a value that does not match the data type defined for the value of the attribute
· Creation of an attribute name value pair that is not defined
· Update of an existing attribute that is defined as read-only
· Creation of an object with an object class that is not defined
· Creation of an object with a representation does not match the object class defined for the object
· Creation of an object under an object whose class does not support this containment
Examples for problems of the planned configuration in relationship to the current configuration:
· Creation of objects under parents that do not exist
· Deletion of leaf objects that do not exist
· Deletion of objects that are no leaves
· Violation of the cardinality property of an object
· Violation of the multiplicity property of an attribute
Examples for application layer problems
-	An attribute value in the planned configuration is in the value range allowed by the attribute properties but the value is not allowed in the current state of the application.
[bookmark: _Toc178763721][bookmark: _Toc180490145][bookmark: _Toc188283813][bookmark: _Toc191480540][bookmark: _Toc199255901]6.5.3	Validation process
The purpose of validation is to detect problems of the planned configuration. As described in the previous clause, problems can be categorized into three groups.
Problems of the operations themselfsitself are detected by analyzing the operations together with the NRM schema. The current configuration is not involved in this process. Problematic operations are always invalid. If an atomic operation set contains at least one invalid operation, the complete planned configuration is invalid. If a non-atomic operation set contains a bad operation, only the operation is invalid. The operation set with the other operations may still be valid, dep ending on the validation result for the other operations.
Problems of the planned configuration in relationship to the current configuration are detected by applying the operations of the operation set one by one to a snapshot of the current configuration. This may result in intermediate states that do not comply to the constraints defined by the NRM schema. For example, assume the schema defines a constraint that an object has to contain exactly a certain number of child objects. When a plan contains an operation to remove one child object, and an operation to add a child object, there might be intermediate states at certain times during the execution of the validation with the constraint violated, as there can be too few or too many child objects. However, after validating all operations, the constraint is fulfilled again. For example, an object of class A shall contain always exactly five objects of class B. To replace an object of class B, the object to be replaced may be deleted in the first step. In the second step the new object is added. The other possibility is to add the new object first and delete the object to be removed afterwards. In both cases the cardinality has a temporary invalid state. The validation process needs to take this into account: Problems of the planned configuration in relationship to the current configuration may be temporary only and be healed later when more operations are processed. A final assessment on the validity of operations can be made only after processing all operations.
In addition to problems of the planned configuration in relationship to the current configuration, problems of the planned configuration at application layer may occur. These problems are detected by evaluating the updates specified by the operations in the context of the configuration that is produced by applying the planned configuration against the current configuration. As for problems of the planned configuration in relationship to the current configuration, a final assessment on the validity of operations can be made only after processing all operations.
In the atomic mode for validation all operations must be valid for the planned configuration to be valid. If only one operation is invalid the complete planned configuration is invalid. The former case is also referred to as a successful validation and the latter as a failed validation.
In the best effort mode for validation all operations must be valid for the planned configuration to be valid. If at least one operation is invalid (but not all), the planned configuration is partially valid (or partially invalid). If all operations are invalid the planned configuration is invalid. These three cases are also referred to as successful validation, partially successful validation (or partially failed validation), and failed validation.
All constraint violations shall be reported.
The result of a validation is valid only for the given reference configuration, i.e. in many use cases the conceptual snapshot of the current configuration at a certain point in time. The same validation could have a different result later for many reasons e.g. current configuration changes or network environment changes.
A successful validation does not guarantee a successful activation.
[bookmark: _Toc178763722][bookmark: _Toc180490146][bookmark: _Toc188283814][bookmark: _Toc191480541][bookmark: _Toc199255902][bookmark: _Toc188283815]6.5.4	Validation of planned configuration groups
The planned configuration group members are validated in the order specified. If no order is specified, they can be validated in any order. Each member is validated as specified in this and the previous clause. The validation of atomic members concludes with either validated or failed. The validation of best effort members concludes with either validated, partially validated or failed.
An atomic group is considered as valid, if atomic members are valid, and best effort members are valid or partially valid. If the validation of one (atomic or best effort) member fails, the validation of the complete group shall fail.
A best effort group is considered as valid, if atomic members are valid, and best effort members are valid or partially valid. If the validation of at least one (atomic or best effort) member fails, the group is considered as partially valid. If the validation of all members fails, the validation of the complete group shall fail.
[bookmark: _Toc199255903]6.5.5	Validation of fallback configurations
When the fallback configuration is the complete old configuration, the complete current configuration is replaced when activating the fallback configuration. In this case the concept of validation has no meaning. The complete old configuration is always valid. Therefore, the fallback configuration should not be validated when the fallback configuration is represented by the complete old configuration.
When the fallback configuration is a set of undo operations, the fallback configuration should be validated like a planned configuration prior to activation.
[bookmark: _Toc191480542][bookmark: _Toc199255904]6.5.6	Validation control parameters
The "validationMode" parameter is provided for specifying the validation mode, which can take one of two values: continue on error or stop on error.
In the stop on error mode the validation process stops upon the detection of the first invalid operation. In the continue on error mode the validation process continues upon the detection of invalid operations until all operations of the operation set are processed,
Control parameters for validation are not specified.
Editor's note: Add "cancelRequest". A cancellation request stops an ongoing validation process. The state is set to "NOT_VALIDATED".
[bookmark: _Toc188283816][bookmark: _Toc191480543][bookmark: _Toc199255905]6.6	Activation of planned configurations
[bookmark: _Toc178763725][bookmark: _Toc180490148][bookmark: _Toc188283817][bookmark: _Toc191480544][bookmark: _Toc199255906]6.6.1	Definition
Activation is the process of applying a planned configuration to the managed system.
[bookmark: _Toc188283818][bookmark: _Toc191480545][bookmark: _Toc199255907]6.6.2	Potential problems
A planned configuration is validated before activation. Therefore a planned configuration that is activated should not have any of the problems that are discovered by validation. Only valid or partially valid planned configurations or planned configuration groups should be activated. Therefore, other types of problems are encountered during activation. These include
· A Network Function cannot be updated, because it is not reachable.
· A Network Function cannot be updated, because it is locked.
· A Network Function cannot be updated, because it does not exist.
· A Network Function cannot be updated, because it lacks necessary resources.
· A Network Function cannot be updated, because necessary access rights are not in place.
[bookmark: _Toc188283819][bookmark: _Toc191480546][bookmark: _Toc199255908]6.6.3	Activation process
Activation is the process of applying the updates specified by the operations contained in a planned configuration to the managed system. After the managed system is updated, the updates are reflected in the current configuration. The sequence of the operations while activating a planned configuration depends on the internal implementation of the MnS producer and on its internal state. This is an important benefit compared to command-by-command configuration, because implementation details remain private to the MnS producer, while the MnS consumer needs to know the target state only.
 Note that the system may not apply the operations to the managed system exactly as specified. For example, to change the configuration of a function, the function may have to be locked. Locking operations may not be included in the planned configuration and therefore the configuration update operation is augmented with locking and unlocking operations.
In atomic mode, the system may have to roll back to the current configuration that was effective when the activation process started. Therefore, the system needs to take and store a (conceptual) snapshot of the impacted part of the current configuration upon starting the activation process.
If not in atomic mode, the activation process may stop or continue when the first error occurs.
The activation process may run for quite some time, for example when large configurations are downloaded to the Network Functions as part of the activation process.
The planned configuration to be activated should be validated first.
Problems related to the activation of a planned configuration shall be reported.
[bookmark: _Toc188283820][bookmark: _Toc191480547][bookmark: _Toc199255909]6.6.4	Activation of planned configuration groups
The planned configuration group members are activated in the order specified. If no order is specified, they can be activated in any order. Each member is activated as specified in the previous clause. The activation of atomic members concludes with either activated or failed. The activation of best effort members concludes with either activated, partially activated or failed.
An atomic group is considered as activated, if atomic members can be activated, and best effort members can be activated or partially activated. If the activation of one (atomic or best effort) member fails, the activation of the complete group shall fail (and all updates must be undone).
A best effort group is considered as activated, if atomic members can be activated, and best effort members can be activated or partially activated. If the activation of at least one (atomic or best effort) member fails, the group is considered as partly activated. If the activation of all members fails, the activation of the complete group shall fail (and all updates must be undone).
[bookmark: _Toc188283821][bookmark: _Toc191480548][bookmark: _Toc199255910]6.6.5	Activation control parameters
A couple of control parameters determine the behavior of an activation process.
Activation can be started immediately upon creation of the job, or when triggered by a trigger condition. The behaviour is set by a control parameter.
Activation is typically a trade-off between speed of activation and service impact. Both targets cannot be minimized at the same time. For example, to speed up the activation process many data node tree portions for Managed Elements may be handled in parallel, but if the planned configuration is bad the service provided by many Managed Elements is degraded or fails at the same time and must be rolled back to the old configuration. Activating the new configuration for the Managed Elements one by one slows down the speed of activation but limits the number of Managed Elements with bad configurations if the planned configuration is bad. The preference (speed or service impact) is indicated by a control parameter.
Another control parameter allows the MnS consumer to request the MnS producer to create a fallback configuration for potential later activations. The MnS producer will create a fallback configuration on explicit request only.
Activation jobs can be cancelled. A specific control parameter is provided for this purpose. Cancelling an activation job stops the activation of operations at the next point possible. Changes for atomic planned configurations are rolled back (undone).
Editor's note: Explain "enable-fallback", "service-impact and "immediate-activation". Also "cancel-request".
[bookmark: _Toc191480549][bookmark: _Toc199255911]6.7	Conditional activation of planned configurations
Planned configurations and planned configuration groups can be activated based on trigger conditions. A trigger condition holds the information, which activation job is triggered by it.
[bookmark: _Toc178763728][bookmark: _Toc188283823][bookmark: _Toc191480550][bookmark: _Toc199255912]6.8	Asynchronous configuration updates
Updating the current configuration may take some time, more time than an update operation based on a synchronous request response pattern, where the request provides the desired updates and the response information about the outcome of the requested updates, may be able to cope with. In a synchronous request-response pattern, the response is sent shortly after reception of the request.
This problem is addressed by so-called asynchronous update operations, where the request response pattern just provides the desired updates to the MnS producer. The response does not contain information about the outcome but a confirmation of reception of the desired updates. The information about the outcome of the update operations is provided asynchronously, i.e. later when the information is available.
Management of planned configuration includes as a special case also an asynchronous update operation. It is not mandatory to create a planned configuration before validation or activation. A new configuration can be provided also together with the validation or activation request. This is conceptually equivalent to an asynchronous update operation.
[bookmark: _Toc199255913]6.9	Fallback
[bookmark: _Toc178763731][bookmark: _Toc199255914]6.10	Planned configuration lifecycle
[bookmark: _Toc180490153][bookmark: _Toc188283826][bookmark: _Toc191480553][bookmark: _Toc199255915]6.911	Managing planned configurations
Planned configuration descriptors arecan be created, updated replaced completely and deleted by MnS consumers on MnS producers. The capability to partially update a planned configuration descriptor by a MnS consumer is an optional feature of an MnS producer, that is not required in all deployment scenarios. This might be the case when the operator updates the planned configuration descriptor on the MnS producer side using an appropriate GUI, or when the planned configurations are rather small.
Multiple planned configuration descriptors can be maintained on a MnS producer. Each planned configuration is identified by an identifier. The identifier is assigned by the MnS producer.
Planned configurations cannot be updated when being validated or activated.
Planned configurations cannot be deleted when being validated or activated, and when being referenced in planned configuration groups or trigger conditions.
[bookmark: _Toc191480555]Planned configuration group descriptors are created, updated and deleted by MnS consumers on MnS producers. The planned configurations and planned configuration groups referred to as members in a planned configuration group shall exist.
Multiple planned configuration group descriptors can be maintained on a MnS producer. Each planned configuration group is identified by an identifier. The identifier is assigned by the MnS producer.
[bookmark: _Toc178763733][bookmark: _Toc180490154][bookmark: _Toc188283827][bookmark: _Toc191480554][bookmark: _Toc199255916]6.1012	Managing planned configuration groups
Planned configuration group descriptors arecan be created, updatedreplaced completely and deleted by MnS consumers on MnS producers. The capability to partially update a planned configuration group descriptor by a MnS consumer is an optional feature of an MnS producer, that is not required in all deployment scenarios. This might be the case when the operator updates the planned configuration group descriptor on the MnS producer side using an appropriate GUI, or when the planned configurations are rather small.
The planned configurations and planned configuration groups referred to as members in a planned configuration group shall exist.
Multiple planned configuration group descriptors can be maintained on a MnS producer. Each planned configuration group is identified by an identifier. The identifier is assigned by the MnS producer.
[bookmark: _Toc199255917]6.1113	Managing fallback configurations
Fallback configuration descriptors are not directly managed by MnS consumers. They are created automatically by MnS producers when the "enableFallback" attribute in an activation job is set to true. Only the "name", "version", and "description" can be set by MnS consumers once the object is created. Fallback configurations cannot be modified by MnS consumers. Each fallback configuration is identified by an identifier. The identifier is assigned by the MnS producer.
When many fallbacks are enabled, the situation can become soon complex and the risk for misconfigurations increases. MnS producers may therefore apply implementation specific strategies to reduce the risk for misconfigurations. For example, they may allow only for one fallback configuration to exist; if another fallback is enabled, the existing fallback configuration is overwritten. Or they may allow for multiple fallback configurations only if they affect different parts of the network.
Fallback configurations can be deleted by MnS consumers, or by the MnS producer based on an implementation specific policies.
No fallback on the activation of a fallback configuration is possible.
[bookmark: _Toc188283828][bookmark: _Toc191480556][bookmark: _Toc199255918][bookmark: _Toc180490155]6.1214	Managing trigger conditions
Conditions are created, updatedreplaced completely and deleted by MnS consumers on MnS producers. For each condition shall be specified which activation jobs are triggered by this condition. The capability to partially update a trigger condition by a MnS consumer is an optional feature of an MnS producer. Each trigger condition is identified by an identifier. The identifier is assigned by the MnS producer.
[bookmark: _Toc188283829][bookmark: _Toc191480557][bookmark: _Toc199255919][bookmark: _Toc180490156][bookmark: _Toc188283830][bookmark: _Toc191480558]6.1315	Managing validations
Validation of a planned configuration is requested by MnS consumers and performed by MnS producers. To request validation the MnS consumer needs to create a validation job on the MnS producer. Each job is identified by an identifier. The identifier is assigned by the MnS producer.
The MnS consumer may annotate the job with a "name", a textual human-readable "description" and his own identifier "mnsConsumerId".
The planned configuration to be validated is specified by including the identifier of the corresponding planned configuration descriptor in the job creation request. Alternatively, for validating a planned configuration group, a planned configuration group descriptor can be specified.
In case no planned configuration descriptor or no planned configuration group descriptor has been created for the planned configurations to be validated, a descriptor may be specified directly in the validation job creation request.
When only one planned configuration is requested to be validated no control parameter needs to be specified in the request. For validating planned configuration groups, the "isFailOnMemberConflicts" parameter needs to be specified.
The MnS producer adds the following information elements to the job: "jobSstate", "jobDetails", "currentConfigtime", "startedAt", "stoppedAt", "validationState", and "validationDetails" "result", "memberConflicts", and "errors".
The information element "errors" is a structured data type with the following properties:
-	The mandatory "type" property that provides high level error information.
-	The optional "title" that provides a short, human-readable summary of the problem type. It shall not change from occurrence to occurrence of the problem.
-	The optional "reason" property" that provides more details on the error conditions than the "type" property.
-	The mandatory "badOp" property that specifies the operation, that cannot be satisfied.
Further details can be found in TS 32.158 [2].
Multiple validation jobs can run in parallel, even if the planned configurations target the same portions of the current configuration.
To provide a consistent result, a planned configuration or planned configuration group (incl. its members) cannot be modified during validation, or more precisely when the "jobState" of the validation job has either of the following values: "RUNNING", "CANCELLING". Modification requests shall be rejected.
Editor's note: Clarify that the validation result is valid only when it is produced. Wheen the current configuration changes or the plan is updated the result is outdated.
Editor's note: Clarify that planned configurations and planned configuration groups should be locked during validation.
[bookmark: _Toc199255920]6.1416	Managing activations
Activation of a planned configuration is requested by MnS consumers and performed by MnS producers. To request activation the MnS consumer needs to create an activation job on the MnS producer. Each job is identified by an identifier. The identifier is assigned by the MnS producer.
The planned configuration to be activated is specified by including the identifier of the corresponding planned configuration descriptor in the job creation request. Alternatively, for validating a planned configuration group, a planned configuration group descriptor can be specified.
In case no planned configuration descriptor or no planned configuration group descriptor has been created for the planned configurations to be activated, a descriptor may be specified also directly in the activation request.
For falling back to an old configuration, the identifier of a fallback configuration descriptor needs to be specified.
Activation shall start immediately upon creation of the activation job, unless the "isImmediateActivation" parameter is set to false. In this case the activation is triggered by a trigger condition that points to the activation job. Note that the activation job does not know the related conditions.
For immediate activation an activation job can activate a planned configuration only once. If the planned configuration is to be activated a second time a new job needs to be created. For conditional activation, in contrast, an activation job can activate the same planned configuration multiple times. For example, if a planned configuration is for weekdays and another planned configuration is for weekends, two activation jobs can be used for activating both planned configurations. One job is triggered by a trigger condition triggering the activation when the weekend starts, the other job is triggered by a trigger condition when the weekdays start.
Multiple activation jobs running can run in parallel if the planned configurations do not update the same portions of the current configuration.
Furthermore, the following control parameters need to be specified in the job creation request: "isEnableFallback", and "serviceImpact", and "isImmediateActivation".
The MnS producer adds the following information elements to the job: "state", "startedAt", "stoppedAt", "result", and "errors".
Only planned configurations, that are successfully validated, should be activated. Therefor a MnS consumer should always create a validation job first. Only after successful validation of a planned configuration, a job for activating the planned configuration should be created. In case the planned configuration was not validated the MnS producer shall create a validation job for the planned configuration. The activation is started only if the planned configuration is valid. If the planned configuration is invalid the activation is not started and the result attribute of the activation indicates that the activation failed.
A MnS consumer can request a MnS producer to cancel a running activation process. The behavior depends on the application mode:
· For "ATOMIC" the configuration is rolled back.
· For "BEST_EFFORT" the activation is stopped.
· For "STOP_ON_ERROR" the activation is stopped
As for validation, a planned configuration or planned configuration group (incl. its members) cannot be modified or deleted during its activation, or more precisely when the "jobState" of the activation job has either of the following values: "RUNNING", or "CANCELLING".
Multiple activation jobs can run simultaneously if the planned configurations do not affect the same portions of the current configuration. However, if they do affect the same portion, they cannot run in parallel and shall be queued.
Editor's note: Clarify that planned configurations and planned configuration groups should be locked during activation.
[bookmark: _Hlk206083676][bookmark: _Toc199255921]6.15	Managing conditional activation
The MnS consumer shall create an activation job as described in clause 6.14 and a trigger condition as described in clause 6.12. The "isImmediateActivation" control parameter of the activation job shall be set to "FALSE". The "activationJobs" parameter in the trigger condition shall specify the activation jobs to be activated.
6.1617	Notifications
Notifications are not specified.

* * * Next Change * * * *
[bookmark: _Toc178763736][bookmark: _Toc188283832][bookmark: _Toc191480560][bookmark: _Toc199255922]7	Information model
Editor's note: Add statements about uniqueness of ids.
[bookmark: _Toc191480561][bookmark: _Toc199255923]7.1	PlannedConfigurationDescriptor
[bookmark: _Toc191480562][bookmark: _Toc199255924]7.1.1	Definition
This definition represents a planned configuration descriptor.
[bookmark: _Toc191480563][bookmark: _Toc199255925]7.1.2	Information Elements
The following table specifies the information elements of a planned configuration descriptor.
	Information element name
	S
	Documentation and Allowed Values
	Properties

	id
	M
	The identifier of the planned configuration.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	name
	M
	The name of the planned configuration.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	version
	M
	The version of the planned configuration. Its format is implementation specific.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	description
	M
	The textual human-readable description of the planned configuration.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	customProperties
	M
	The container allowing to specify additional consumer defined properties (key value pairs) describing and qualifying the planned configuration.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	planConfigContentType
	M
	The format of the planned configuration.
	type: String
multiplicity: 1
isInvariant: True
isWritable: True

	currentConfigAddress
	O
	The address of the current configuration.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	applyMode
	M
	Specifies if the operations in the operation set are treated as atomic, best effort, or if processing shall stop on the occurrence of the first error.

allowedValues:
- ATOMIC
- BEST_EFFORT
- STOP_ON_ERROR
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: Truei

	lastModifiedAt
	M
	The date and time at which the planned configuration descriptor was modified the last time by a MnS consumer. Upon creation of the planned configuration descriptor the value of the information element is set to the date and time at which the descriptor is created.
	type: DateTime
multiplicity: 1
isInvariant: False
isWritable: False

	planConfigContentType
	M
	The format of the planned configuration in "planConfig". The format depends on the solution set and is typically specified with a media type.
	type: String
multiplicity: 1
isInvariant: True
isWritable: True

	planConfig
	M
	The operation set specifying the planned configuration. The operations are described by the input parameters of the "changeMOIs" operation specified in TS 28.532 [4]. The node to be modified is identified by the concatenation of the "currentConfigAddress" (if available) and the "path" component in "planConfig".
The format of "planConfig" is specified in "planConfigContentType"
Editor's note: The exact format is still ffs.
	type: PlanConfigString
multiplicity: 1..*
isInvariant: False
isWritable: True

	activationMode
	M
	Specifies if the operations in the operation set are treated for activation as atomic, best effort, or if processing shall stop on the occurrence of the first error.

"ATOMIC": Either all or none of the operations are executed. In case of error the already executed operations should be rolled back. However, there is no guarantee that the rollback will succeed.

"BEST_EFFORT": In case of an error all further operations that are possible to execute are attempted to be executed.

"STOP_ON_ERROR": In case of an error no further operations are attempted.

allowedValues:
- ATOMIC
- BEST_EFFORT
- STOP_ON_ERROR
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: True

	validationState
	M
	The outcome of the last validation of the planned configuration ("VALID", "PARTIALLY_VALID", "INVALID"), or "NOT_VALIDATED" if the planned configuration has not been validated yet. The state is reset to "NOT_VALIDATED", if in another state, when "planConfig" is updated.

allowedValues:
- NOT_VALIDATED
- VALID
- PARTIALLY_VALID
- INVALID
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	lastValidatedAt
	M
	The date and time at which the planned configuration was validated (the last time). The information element is absent, when the planned configuration has not been validated yet.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

7.1.3	Data types
7.1.3.1	PlanConfig
	Information element name
	S
	Documentation and Allowed Values
	Properties

	target
	M
	The target node of the operation.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

	modifyOperator
	M
	The modify operator applied to the target node.

allowedValues:
- createNewMoi
- mergeIntoExistingMpi
- mergeIntoExistingMoiOrCreateNewMoi
- deleteMoi
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	value
	M
	The value applied to the target node.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

	description
	O
	The textual human-readable description of the operation.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

	id
	O
	The identifier of the operation.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

[bookmark: _Toc191480564][bookmark: _Toc199255926]7.2	PlannedConfigurationGroupDescriptor
[bookmark: _Toc191480565][bookmark: _Toc199255927]7.2.1	Definition
This definition represents a planned configuration group descriptor.
[bookmark: _Toc191480566][bookmark: _Toc199255928]7.2.2	Information Elements
The following table specifies the information elements of a planned configuration group descriptor.
	Information element name
	S
	Documentation and Allowed Values
	Properties

	id
	M
	The identifier of the planned configuration group descriptor
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	name
	M
	The name of the planned configuration group.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	version
	M
	The version of the planned configuration group. Its format is implementation specific.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	description
	M
	The textual human-readable description of the planned configuration group.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	customProperties
	O
	The container allowing to specify additional consumer defined properties (key value pairs) describing and qualifying the planned configuration.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	members
	M
	The identifiers of planned configurations or the planned configuration groups that are members of this planned configuration group.
	type: String
multiplicity: 1..*
isOrdered: True
isUnique: True
isInvariant: False
isWritable: True

	isOrdered
	M
	Specifies if the members of the planned configuration group are ordered. When ordered, the planned configuration group members shall be validated/activated in the specified order. When not ordered the planned configuration group members can be validated/activated in any order.
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: True

	applyMode
	M
	Specifies if the members of the planned configuration group are treated as atomic, best effort, or if processing shall stop on the occurrence of the first error.

allowedValues:
- ATOMIC
- BEST_EFFORT
- STOP_ON_ERROR
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: True

	isFailOnMemberConflicts
	M
	Specifies if the activation shall fail on detection of conflicts between planned configuration group members, or if the operations shall be processed as if there were no conflicts.
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: True

	lastModifiedAt
	M
	The date and time at which the planned configuration group descriptor was modified the last time by a MnS consumer. Upon creation of the planned configuration group descriptor the value of the information element is set to the date and time at which the descriptor is created.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	validationState
	M
	The outcome of the last validation, or "NOT_VALIDATED" if the planned configuration group has not been validated yet. The state is reset to "NOT_VALIDATED", if in another state, when "members" is updated.

allowedValues:
- NOT_VALIDATED
- VALID
- PARTIALLY_VALID
- INVALID
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	lastVAalidatedAt
	M
	The date and time at which the planned configuration group was validated (the last time). The information element is absent, when the planned configuration has not been validated yet.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

[bookmark: _Toc191480567][bookmark: _Toc199255929]7.3	FallbackConfigurationDescriptor
[bookmark: _Toc191480568][bookmark: _Toc199255930]7.3.1	Definition
This definition represents a fallback configuration descriptor.
[bookmark: _Toc191480569][bookmark: _Toc199255931]7.3.2	Information Elements
The following table specifies the information elements of a fallback configuration descriptor.
	Information element name
	S
	Documentation and Allowed Values
	Properties

	id
	M
	The identifier of the fallback configuration descriptor
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	name
	M
	The name of the fallback configuration.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	version
	M
	The version of the fallback configuration. Its format is implementation specific.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	description
	M
	The textual human-readable description of the fallback configuration.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	customProperties
	M
	The container allowing to specify additional consumer defined properties (key value pairs) describing and qualifying the planned configuration.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	activationJob
	M
	The identifier of the related activation job.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	configurationContentType
	M
	The format of the fallback configuration.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	fallbackC-config
	M
	The fallback configuration.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

[bookmark: _Toc191480570][bookmark: _Toc199255932]7.4	TriggerConditionDescriptor
[bookmark: _Toc191480571][bookmark: _Toc199255933]7.4.1	Definition
This definition represents a trigger condition descriptor.
[bookmark: _Toc191480572][bookmark: _Toc199255934]7.4.2	Information Elements
The following table specifies the information elements of a trigger condition descriptor.
	Information element name
	S
	Documentation and Allowed Values
	Properties

	id
	M
	The identifier of the trigger condition descriptor.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	name
	M
	The name of the trigger condition.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	version
	M
	The version of the planned configuration. Its format is implementation specific.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	description
	M
	The textual human-readable description of the trigger condition.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	customProperties
	M
	The container allowing to specify additional consumer defined properties (key value pairs) describing and qualifying the planned configuration.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	conditionExpression
	M
	The condition expression.
	type: String
multiplicity: 1
isInvariant: False
isWritable: True

	evaluationPeriod
	M
	The evaluation period specifies the interval of time between two consecutive condition expression evaluations. The unit is seconds.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: True

	hysteresis
	M
	The hysteresis, when present, specifies that the trigger shall not be activated immediately, when the evaluation result changes from false to true, but only when the evaluation results is true for a specified time (which must be a multiple of the evaluation period) or a specified number of times.

allowedValues: Integers greater or equeal to "1".
	type: integerHysteresis
multiplicity: 0..1
isInvariant: False
isWritable: True

	isTriggerOnce
	M
	The boolean indication, if the trigger is disarmed after the first firing.
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: True

	activationJobs
	M
	The identifiers of one or more activation jobs that shall be triggered by this condition.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	startEvaluationAt
	M
	The date and time at which the evaluation of the condition expression shall start. The evaluation result is set to "False" before that date and time. If the information element is not specified, evaluation of the trigger condition shall start immediately.
	type: DateTime
multiplicity: 0..1
isInvariant: True
isWritable: True

	stopEvaluationAt
	M
	The date and time at which the evaluation of the condition expression shall stop. The evaluation result is set to "False" after that date and time. If the information element is not specified, evaluation of the trigger condition shall continue until the deletion of the trigger condition descriptor.
	type: DateTime
multiplicity: 0..1
isInvariant: True
isWritable: True

	lastModifiedAt
	M
	The date and time at which the trigger condition was modified the last time by a MnS consumer. Upon creation of the trigger condition descriptor the value of the information element is set to the date and time at which the descriptor is created.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	currentEvaluationResult
	M
	The current result of evaluating the "condition-expression".
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: False

	lastTriggeredAt
	M
	Th date and time at which the evaluation result of the trigger condition changed the last time from "False" to "True".
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	isTriggerActive
	M
	The indication if the trigger can start activation jobs (trigger is active), or if the trigger cannot start activation jobs (trigger is inactive).
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: False

[bookmark: _Toc199255935]7.4.3	Data types
[bookmark: _Toc199255936]7.4.3.1	Hysteresis
	Information element name
	S
	Documentation and Allowed Values
	Properties

	timeOfTrueEvaluations
	M
	The hysteresis, when present, specifies that the trigger shall not be activated immediately, when the evaluation result changes from false to true, but only when the evaluation results is true for a specified time (which must be a multiple of the evaluation period). Unit is seconds
	type: Integer
multiplicity: 0..1
isInvariant: False
isWritable: True

	numberOfTrueEvaluations
	M
	This information element, when present, specifies that the trigger shall not be activated immediately, when the evaluation result changes from false to true, but only when the evaluation results is true for a specified time (which must be a multiple of the evaluation period) or a specified number of times.
	type: Integer
multiplicity: 0..1
isInvariant: False
isWritable: True

[bookmark: _Toc191480573][bookmark: _Toc199255937]7.5	ValidationJob
[bookmark: _Toc191480574][bookmark: _Toc199255938]7.5.1	Definition
This definition represents a validation job.
[bookmark: _Toc191480575][bookmark: _Toc199255939]7.5.2	Information Elements
The following table specifies the information elements of a validation job.
	Information element name
	S
	Documentation and Allowed Values
	Properties

	id
	M
	The identifier of the validation job.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	name
	M
	The name of the validation job.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	description
	M
	The textual human-readable description of the validation job.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	mnsConsumerId
	M
	The consumer that created the job. It may indicate a human user and/or one or more applications, for example ["userid:janedoe", "appid:12314"].
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	planConfigDescrId
	M
	The identifier of the planned configuration descriptor, whose operation set is requested to be validated.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	planConfigGroupDescrId
	M
	or, alternatively, the identifier of the planned configuration group descriptor, whose operation sets are requested to be validated.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	planConfigDescr
	O
	or, alternatively, the planned configuration descriptor to be activated, if no planned configuration descriptor was created earlier.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	planConfigDescrGroup
	O
	or, alternatively, the planned configuration group descriptor to be validated, if no planned configuration group descriptor was created earlier.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	validationMode
	
	The validation mode.

allowedValues:
- CONTINUE_ON_ERROR
- STOP_ON_ERROR
	type: ENUM
multiplicity: 1
isInvariant: True
isWritable: True
default: CONTINUE_ON_ERROR

	cancelRequest
	O
	This boolean information element allows to request to cancel the activation process by setting its value to "True".
Setting the value to "False" has no observable result. When the value is set to "True" it cannot be changed any more.
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: True

	jobState
	M
	The validation job state.

allowedValues:
- NOT_STARTED
- RUNNING
- CANCELLING
- CANCELLED
- COMPLETED
- FAILED

Editor's note: It is ffs if more detailed state and progress info needs to be added, for example the reasons why a job failed.
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	jobDetails
	M
	Detailed information related to the job, including job related errors.
	type: JobDetails
multiplicity: 1
isInvariant: False
isWritable: False

	currentConfigTime
	M
	The date and time of the current configuration state against which the planned configuration or planned configuration group is validated.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	startedAt
	M
	The date and time at which the validation process started, i.e. the time when the job state transition from "NOT_STARTED" to "RUNNING" occurred. In the "NOT_STARTED" state the information element is absent or carries no information.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	stoppedAt
	M
	The date and time at which the validation process stopped, i.e. the job state transition from "RUNNING" to "COMPLETED" or "FAILED", or from "CANCELLING" to "CANCELLED". In the "NOT_STARTED", "RUNNING" or "CANCELLING" state the information element is absent or carries no information.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	validationState
	M
	The current activation validation state of the planned configuration or planned configuration group that is processed by the validation job.

- UNKNOWN: validation result is unknown because the validation has not started yet or is still ongoing. The "jobState" provides further qualifications.
- VALIDATION_SUCCEEDED: all operations are validated and are valid.
VALIDATION_FAILED: at least one operation was not validated or is invalid.

allowedValues:
- NOT_VALIDATED
- VALIDATING
- UNKNOWN
- VALIDATION_SUCCEEDED
- VALIDATION_SUCCEEDED_PARTIALLY
- VALIDATION_FAILED
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	validationDetails
	M/
	Details of the validation of the operations that are contained in the planned configuration or planned configuration group.

Editor's note: This parameter is ffs. It may have to be merged with "memberConflicts".
	type: ValidationExecutionDetails
multiplicity: 1
isInvariant: False
isWritable: False

	memberConflicts
	M
	In case the validation process detects a conflict between the members of the planned configuration group to be validated, details about the conflict are specified here.
	type: MemberConflict
multiplicity: 0..*
isInvariant: False
isWritable: False

[bookmark: _Toc199255940]7.5.3	Data types
[bookmark: _Toc199255941]7.5.3.1	JobDetails
	Information element name
	S
	Documentation and Allowed Values
	Properties

	jobDetails
	
	Detailed information related to the job.
	type: String
multiplicity: *
isInvariant: False
isWritable: False

[bookmark: _Toc199255942]7.5.3.2	ValidationExecutionDetails
	Information element name
	S
	Documentation and Allowed Values
	Properties

	summary
	M
	This information element provides a summary of the validation or activation results.Editor's note: This IE is ffs.
	type: Summary
multiplicity: 1
isInvariant: False
isWritable: False

	results
	M
	The validation or activation results for each operation.
	type: Result
multiplicity: *
isInvariant: False
isWritable: False

7.5.3.3	Summary
	Information element name
	S
	Documentation and Allowed Values
	Properties

	notFinished
	M
	The number of operations not yet started to be processed or currently being processed.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	succeeded
	M
	The number of successful operations.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	failed
	M
	The number of failed operations.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	rollBackSucceeded
	M
	The number of operations for which the roll back succeeded.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	rollBackFailed
	M
	The number of operations for which the roll back failed.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

7.5.3.4	Result
	Information element name
	S
	Documentation and Allowed Values
	Properties

	planConfigDescrId
	M
	If planned configuration groups are activated, this information elements specifies the planned configuration descriptor identifier, for which error details are reported. If a planned configuration is activated or validated, this information element is absent.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: False

	operationId
	M
	The identifier of the operation.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

	state
	M
	The state of the operation activation.

allowedValues:
- NOT_STARTED
- PROCESSING
- SUCCEEDED
- FAILED
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	errors
	M
	The error details for the "FAILED" state. In all other states the information element is absent or carries no information.
	type: Error
multiplicity: *
isInvariant: False
isWritable: False

	memberConflicts
	M
	In case the validation or activation process detects a conflict between the members of the planned configuration group to be validated, this might cause the validation or activation to fail dependent on the "isFailOnMemberConflicts" element.
	type: MemberConflict
multiplicity: 0..*
isInvariant: False
isWritable: False

7.5.3.5	Error
	Information element name
	S
	Documentation and Allowed Values
	Properties

	type
	M
	High level error information.
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	title
	M
	A short, human-readable summary of the problem type. It shall not change from occurrence to occurrence of the problem. In other words, each type is mapped to one and only one title.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: False

	reason
	M
	Further qualification of the "type".
	type: ENUM
multiplicity: 0..1
isInvariant: False
isWritable: False

	detail
	M
	A human-readable explanation specific to this occurrence of the problem.
	type: ENUM
multiplicity: 0..1
isInvariant: False
isWritable: False

	errorInfo
	M
	Any additional error information.
	type: Any
multiplicity: 0..1
isInvariant: False
isWritable: False

	path
	M
	The path identifying the data node to which the operation could not be applied.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

[bookmark: _Toc199255943]7.5.3.63	MemberConflict
	Information element name
	S
	Documentation and Allowed Values
	Properties

	memberConflict
	M
	The identification of two or more operations that have a conflict.
	type: MemberOp
multiplicity: 2..*
isOrdered: False
isUnique: True
isInvariant: False
isWritable: False

[bookmark: _Toc199255944]7.5.3.74	MemberOp
	Information element name
	S
	Documentation and Allowed Values
	Properties

	planConfigDescrId
	M
	The identifier of a planned configuration descriptor.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

	opId
	M
	The identifier of an operation.
	type: String
multiplicity: 1..*
isInvariant: False
isWritable: False

[bookmark: _Toc191480576][bookmark: _Toc199255945]7.6	ActivationJob
[bookmark: _Toc191480577][bookmark: _Toc199255946]7.6.1	Definition
This definition represents an activation job.
[bookmark: _Toc191480578][bookmark: _Toc199255947]7.6.2	Information Elements
The following table specifies the information elements of an activation job.
	Information element name
	S
	Documentation and Allowed Values
	Properties

	id
	M
	The identifier of the activation job.
	type: String
multiplicity: 1
isInvariant: True
isWritable: False

	name
	M
	The name of the activation job.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	description.
	M
	The textual human-readable description of the activation job.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: True

	mnsConsumerId
	M
	The consumer that created the job. It may indicate a human user and/or one or more applications, for example ["userid:janedoe", "appid:12314"].
	type: String
multiplicity: *
isOrdered: False
isUnique: True
isInvariant: False
isWritable: True

	planConfigDescrId
	M
	The identifier of the planned configuration descriptor, whose operation set is requested to be activated.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	planConfigGroupDescrId
	M
	or, alternatively, the identifier of the planned configuration group descriptor, whose operation sets are requested to be activated.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	fallbackConfigDescrId
	M
	or, alternatively, the identifier of the fallback configuration descriptor, whose operation sets are requested to be activated.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	planConfigDescr
	M
	or, alternatively, the planned configuration descriptor to be activated, if no planned configuration descriptor was created earlier.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	planConfigGroupDescr
	M
	or, alternatively, the planned configuration group descriptor to be activated, if no planned configuration group descriptor was created earlier.
	type: String
multiplicity: 0..1
isInvariant: True
isWritable: True

	isFallbackEnabled
	O
	This boolean attribute allows to specify if the MnS producer shall create a plan with the current configuration to allow for a later fallback. Default value is "False", e.g. no fallback is enabled.
The plan-id of the fallback plan shall be returned to the MnS consumer.
	type: Boolean
multiplicity: 1
isInvariant: True
isWritable: True

	serviceImpact
	O
	The service impact mode.

allowedValues:
- LEAST_SERVICE_IMPACT
- SHORTEST_TIME
	type: ENUM
multiplicity: 1
isInvariant: True
isWritable: True

	isImmediateActivation
	O
	This Bboolean attribute specifies if the activation job shall start immediately (value is "True") or, alternatively, by conditional activation (value is "False").
	type: Boolean
multiplicity: 1
isInvariant: True
isWritable: True

	cancelRequest
	O
	This boolean attribute allows to request to cancel the activation process by setting its value to "True". Setting the value to "False" has no observable result. When the value is set to "True" it cannot be changed any more.
	type: Boolean
multiplicity: 1
isInvariant: False
isWritable: True

	jobState
	M
	The activation job state.

allowedValues:
- NOT_STARTED
- QUEUED
- RUNNING
- CANCELLING
- CANCELLED
- COMPLETED
- FAILED

Editor's note: It is ffs if more detailed state and progress info needs to be added, for example the reasons why a job failed.
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	jobDetails
	M
	Detailed information related to the job, including job related errors.
	type: JodDetails
multiplicity: 1
isInvariant: False
isWritable: False

	startedAt
	M
	The date and time at which the activation process started, i.e. the time when the job state transition from "NOT_STARTED" to "RUNNING" occurred. In the "NOT_STARTED" state the information element is absent or carries no information.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: FalseType: DateTime
multiplicity: 0..1
isOrdered: NA
isUnique: NA

	stoppedAt
	M
	The date and time at which the activation process stopped, i.e. the job state transition from "RUNNING" to "COMPLETED" or "FAILED", or from "CANCELLING" to "CANCELLED". In the "NOT_STARTED", "RUNNING" or "CANCELLING" state the information element is absent or carries no information.
	type: DateTime
multiplicity: 0..1
isInvariant: False
isWritable: False

	activationState
	M
	The current activation state of the planned configuration or planned configuration group that is processed by the activation job.

allowedValues:
- NOT_STARTED
- ACTIVATING
- ACTIVATION_SUCCEEDED
- ACTIVATION_SUCCEEDED_PARTIALLY
- ACTIVATION_FAILED
- ACTIVATION_FAILED_ROLLED_BACK
- ACTIVATION_FAILED_ROLLBACK_FAILED
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	activationDetails
	M/
	Details of the activation of the operations that are contained in the planned configuration or planned configuration group.
	type: ActivationDetailsExecutionDetails
multiplicity: 1
isInvariant: False
isWritable: False

[bookmark: _Toc199255948]7.6.3	Data types
[bookmark: _Toc199255949]7.6.3.1	JobDetails
	Information element name
	S
	Documentation and Allowed Values
	Properties

	
	
	Editor's note: This IE is ffs.
	

[bookmark: _Toc199255950]7.6.3.2	ActivationDetails
	Information element name
	S
	Documentation and Allowed Values
	Properties

	summary
	M
	This information element provides a summary of the activation results.
	type: Summary
multiplicity: 1
isInvariant: False
isWritable: False

	results
	M
	The activation result for each operation.
	type: Result
multiplicity: *
isInvariant: False
isWritable: False

[bookmark: _Toc199255951]7.6.3.3	Summary
	Information element name
	S
	Documentation and Allowed Values
	Properties

	unprocessed
	M
	The number of operations not yet started to be processed or currently being processed.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	succeeded
	M
	The number of successful operations.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	failed
	M
	The number of failed operations.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	rollBackSucceeded
	M
	The number of operations for which the roll back succeeded.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

	rollBackFailed
	M
	The number of operations for which the roll back failed.
	type: Integer
multiplicity: 1
isInvariant: False
isWritable: False

[bookmark: _Toc199255952]7.6.3.4	Result
	Information element name
	S
	Documentation and Allowed Values
	Properties

	planConfigDescrId
	M
	If planned configuration groups are activated, this information elements specifies the planned configuration descriptor identifier, for which error details are reported. If a planned configuration is validated, this information element is absent.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: False

	operationId
	M
	The identifier of the operation.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

	state
	M
	The state of the operation activation.

allowedValues:
- UNPROCESSED
- PROCESSING
- SUCCEEDED
- FAILED
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	errors
	M
	The error details for the "FAILED" state. In all other states the information element is absent or carries no information.
	type: Error
multiplicity: *
isInvariant: False
isWritable: False

[bookmark: _Toc199255953]7.6.3.5	Error
	Information element name
	S
	Documentation and Allowed Values
	Properties

	type
	M
	High level error information.
	type: ENUM
multiplicity: 1
isInvariant: False
isWritable: False

	title
	M
	A short, human-readable summary of the problem type. It shall not change from occurrence to occurrence of the problem. In other words, each type is mapped to one and only one title.

Editor's note: The name of the IE is ffs. Another possible name is message. The name title conveys the meaning that this is a string with a 1:1 relation to type.
	type: String
multiplicity: 0..1
isInvariant: False
isWritable: False

	reason
	M
	Further qualification of the "type".
	type: ENUM
multiplicity: 0..1
isInvariant: False
isWritable: False

	detail
	M
	A human-readable explanation specific to this occurrence of the problem.

Editor's note: The name of the IE is ffs. Another possible name is message.
	type: ENUM
multiplicity: 0..1
isInvariant: False
isWritable: False

	errorInfo
	M
	Any additional error information.
	type: Any
multiplicity: 0..1
isInvariant: False
isWritable: False

	path
	M
	The path identifying the data node to which the operation could not be applied.
	type: String
multiplicity: 1
isInvariant: False
isWritable: False

* * * Next Change * * * *
[bookmark: _Toc170722299][bookmark: _Toc178763741][bookmark: _Toc199255954]Annex A (normative):
Solution sets
[bookmark: clause4][bookmark: _Toc157982719][bookmark: _Toc170722300][bookmark: _Toc178763742][bookmark: _Toc191480580][bookmark: _Toc199255955]A.1	RESTful HTTP-based solution set
[bookmark: _Toc199255956]A.1.1	General Considerations
Editor's note: The following considerations and examples may be subject to further study and modification.

The Naming of information elements in stage-3 generally is the same as in stage-2. However, there will be elements/resources that have different names between stage 2 and stage 3 dependent on the contentType of the planned configuration. Any such deviations are documented in clause TBD.
The planConfigContentType specifies the type of the content in the 'planConfig'. This is required so that the MnS Producer may correctly interpret the provided plan configuration data. The configurationContentType application/3gpp-yang-patch shall be one such supported content type. This type is based on the yang patch specification as per RFC 8072 but with the following exceptions:
'target' : As per section 2.4 of RFC-8072 but allowing for the omission of the module prefix (e.g. it is possible to specify a target like '/_3gpp-common-subnetwork:SubNetwork=Ireland /_3gpp-common-mecontext:MeContext=Dublin-1/_3gpp-common-managed-element:ManagedElement=Dublin-1/_3gpp-nr-nrm-gnbdufunction:GNBDUFunction=1' or in the relaxed form '/SubNetwork=Ireland/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1').
'value' : Encoded according to RFC-7951 but allowing the omission of the module prefix. The MnS Producer shall accept this shorter form of the value if it determines the overall value is unambiguous.
Provisions for OpenAPI defined data node trees
The format of the value for the "target" parameter shall be constructed according to the rules defined for the target URI in clause 4.2.3 of TS 32.158 [2] with "http://" omitted.
The structure of the "value" parameter is given by the following JSON schema snippet.
	type: object
 properties:
 id:
 type: string
 objectClass:
 type: string
 objectInstance:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 attributes:
 type: object

Provisions for mapping the planned configuration into (3GPP) JSON Patch
"createNewMoi" is mapped to the "add" operation without further consideration.
deleteMoi is relaxed, "remove" operation is strict. Therefore, a "remove" operation is only generated, when the managed object exists, otherwise the deleteMoi operation in the plan has no mapping.
Provisions for YANG defined data node trees

Provisions for mapping the planned configuration into NETCONF

[bookmark: _Toc199255957]A.1.2	Resource structure
The resource structure on the MnS producer is as follows:
…/{MnSName}/{/MnSVersion}/plan-descriptors/{id}
…/{MnSName}/{/MnSVersion}/plan-descriptors/{id}/plan-config
…/{MnSName}/{/MnSVersion}/plan-group-descriptors/{id}
…/{MnSName}/{/MnSVersion}/plan-validation-jobs/{id}
…/{MnSName}/{/MnSVersion}/plan-validation-jobs/{id}/status
…/{MnSName}/{/MnSVersion}/plan-validation-jobs/{id}/validation-details
…/{MnSName}/{/MnSVersion}/plan-activation-jobs/{id}
…/{MnSName}/{/MnSVersion}/plan-activation-jobs/{id}/status
…/{MnSName}/{/MnSVersion}/plan-activation-jobs/{id}/activation-details
Creating, reading, updating and deleting planned configurations
The data node tree on the MnS producer is as follows upon system start up.
	{
 "plan-descriptors": {},
 "plan-group-descriptors": {},
 "fallback-config-descriptors": {},
 "trigger-condition-descriptors": {},
 "plan-validation-jobs": {},
 "plan-activation-jobs": {}
}

[bookmark: _Toc199255958]A.1.3	Plan Descriptor Examples (informative)
Editors note: All examples below need to be aligned with stage 3 once stage 3 has been agreed.
A new item of the collection resource "plan-descriptors" is created by MnS consumers using HTTP POST.
	POST 3gpp/ ProvMnS/v1/plan-descriptors HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "name": "NewBts10Plan",
 "version": "2.0",
 "description": "This is the plan for the new BTS 10.",
 "planConfigContentType": "XYZ application/vnd.3gpp.json-patch+json",
 "currentConfigAddress": "http://example.org/3gpp/ ProvMnS/v1",
 "applyactivationMode": "ATOMIC",
 "planConfig": [
 {
 "key": "op1",
 "modifyOperatorop": "CREATEadd",
 "targetpath": "/SubNetwork=SN1/ManagedElement=ME10",
 "value": {
 "id": "ME10",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "Castle Charlottenburg"
 }
 }
 }
]
}

The MnS producer allocates the identifier "p1" for the new resource and returns the response. The location header contains the URI of the new resource. The response body contains the representation of the new resource which is equal to the representation received in the request with the "lastModifiedAt" and "validationState" properties added.
	HTTP/1.1 201 Created
Date: Wed, 21 Aug 2024 15:39:57 GMT
Location: http://example.org/3gpp/ProvMnS/v1/plan-descriptors/p1
Content-Type: application/json

{
 "name": "NewBts10Plan",
 "version": "2.0",
 "description": "This is the plan for the new BTS 10.",
 "planConfigContentType": "application/vnd.3gpp.json-patch+json",
 "currentConfigAddress": " http://example.org/3gpp /ProvMnS/v1",
 "applyactivationMode": "ATOMIC",
 "lastModifiedAt": " 2025-03-06T16:50:26-08:00 ",
 "validationState": "NOT_VALIDATED",
 "planConfig": [
 {
 "key": "op1",
 "modifyOperatorop": "CREATEadd",
 "targetpath": "/SubNetwork=SN1/ManagedElement=ME10",
 "value": {
 "id": "ME10",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "Castle Charlottenburg"
 }
 }
 }
]
}

The resource structure on the MnS producer contains the new resource.
	{
 "plan-descriptors": {
 "p1": {
 "name": "NewBts10Plan",
 "version": "2.0",
 "description": "This is the plan for the new BTS 10.",
 "planConfigContentType": "application/vnd.3gpp.json-patch+json",
 "currentConfigAddress": " http://example.org/3gpp /ProvMnS/v1",
 "applyactivationMode": "ATOMIC",
 "lastModifiedAt": " 2025-03-06T16:50:26-08:00 ",
 "validationState": "NOT_VALIDATED",
 "planConfig": [
 {
 "key": "op1",
 "modifyOperatorop": "CREATEadd",
 "path": "/SubNetwork=SN1/ManagedElement=ME10",
 "value": {
 "id": "ME10",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "Castle Charlottenburg"
 }
 }
 }
]
 }
 },
 "plan-group-descriptors": {},
 "fallback-config-descriptors": {},
 "trigger-condition-descriptors": {},
 "plan-validation-jobs": {},
 "plan-activation-jobs": {}
}

	

The next example shows how the value of the "location" attribute in the operation can be changed from "Castle Charlottenburg" to "Summer palace Charlottenburg".
	PATCH 3gpp/ProvMnS/v1/plan-descriptors/p1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "modiryOperatorop": "replace",
 "path": "/planConfig/0/value/attributes/location",
 "value": "Summer palace Charlottenburg"
 }
]

To delete the planned configuration "p1" a MnS consumer might send.
	DELETE 3gpp/ProvMnS/v1/plan-descriptors/p1 HTTP/1.1
Host: example.org

In case of success, the MnS producer returns the following message.
	HTTP/1.1 204 No Content
Date: Wed, 21 Aug 2024 16:12:45 GMT

The next example shows how a planned configuration can be created for the case where the current configuration data node tree is specified with YANG.
	POST 3gpp/ProvMnS/v1/plan-descriptors HTTP/1.1
Host: example.org
Content-Type: application/json
Accept : application/json,application/problem+json

{
 "name" : "planxyz",
 "activationapplyMode" : "BEST_EFFORT", # Execute in a best effort manner trying all operations
 "configurationContentType" : "application/3gpp-yang-patch+json"
 "planConfig": {
 "
 "edit" : [
 {
 "operation": "create",
 "editId" : "opId-001",
 "target": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/:GNBDUFunction=1",
 "value": {
 "NRCellDU": [
 {
 "id": "1",
 "attributes": {
 "administrativeState" : "LOCKED",
...
 }
 }
 }
 },
 {
 "operation": "merge",
 "editId" : "opId-002",
 "target": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1/NRCellDU=2",
 "value": {
 "attributes": {
 "administrativeState": "LOCKED",
 }
 }
 },
 {
 "operation": "remove",
 "editId" : "opId-003",
 "target": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1/NRCellDU=3"
 }
]
 }
 }
}

To get the planConfig :
	GET 3gpp/ProvMnS/v1/plan-descriptors/p1/plan-config HTTP/1.1
Host: example.org
Content-Type: application/json

To get a specific operation/edit in a planConfig :
	GET 3gpp/ProvMnS/v1/plan-descriptors/p1/plan-config/{editId} HTTP/1.1
Host: example.org
Content-Type: application/json

The next example shows how the planConfig edit / operation with editId=opId-001 can be modified to change the value of the "administrativeState" attribute from "LOCKED" to "UNLOCKED". The 'editId' may be used to uniquely identify the specific configuration operation/edit to be modified in the planConfig.
	PATCH 3gpp/ProvMnS/v1/plan-descriptors/p1/planConfig/opId-002 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "value": {
 "attributes": {
 "administrativeState": "LOCKED",
 }
 }
}

To create a new edit entry to the end of the edits:
	PATCH 3gpp/ProvMnS/v1/plan-descriptors/p1/planConfig HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "operation": "merge",
 "editId" : "opId-004",
 "target": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1/NRCellDU=4",
 "value": {
 "attributes": {
 "administrativeState": "UNLOCKED",
 }
 }
}

To create a new edit entry before/after an existing edit use "before" or "after" parameter options:
	PATCH 3gpp/ProvMnS/v1/plan-descriptors/p1/planConfig?after=opId-001 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "operation": "merge",
 "editId" : "opId-004",
 "target": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1/NRCellDU=4",
 "value": {
 "attributes": {
 "administrativeState": "UNLOCKED",
 }
 }
}

[bookmark: _Toc199255959]A.1.4	Plan Activation Job Examples
This section shows examples for plan activation job related resources. This example uses the 'inline' form of the plan descriptor:
	# Create plan-activation-job

POST {apiRoot}/ProvMnS/1900/plan-activation-jobs HTTP/1.1
Host: example.org
Content-Type: application/json
Accept : application/json,application/problem+json

{
 "name" : "job-xyz",
 "description" : "optimize the Dublin area network",
 "isFallbackEnabled" : true,
 "planConfigDescrId" : "planxyz"
}

Response
{
 "id": "myjob-111",
 "name" : "job-xyz",
 "description" : "optimize the Dublin area network",
 "isFallbackEnabled" : true,
 "planConfigDescrId" : "planxyz",
 "jobState" : "RUNNING",
 "startedAt" : "<some-time>",
 "activationState" : "NOT_STARTED",
 "activationDetails": {
 "href" : "{apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111/activation-details"
 },
 "cancelRequest" : false,
 "links" : {
 "self" : { "href" : "{apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111"},
 "planDescriptor" : "{apiRoot}/ProvMnS/1900/…/planxyz"},
 "status": { "href" : "{apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111/status"},
 "fallback": { "href" : "…"}
 }
}

GET plan-activation-job status (job COMPLETE). Report all the relevant status information
related to the plan activation job

GET {apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111/status

Response
{
 "jobState": "COMPLETE",
 "activationState": "ACTIVATED",
 "startedAt": "2024-12-02T13:16:54.088Z",
 "stoppedAt": "2024-12-02T13:16:58.088Z"
}

GET plan-activation-job activation-details
- jobState=COMPLETED / activationState=ACTIVATED
- All configuration edits/operations are successfully activated
- no detailed info on failed edits/operations are reported (none failed)

GET {apiRoot}/ProvMnS /1900/plan-activation-jobs/myjob-111/activation-details

Response
{
 "summary" : {
 "unprocessed": 0,
 "succeeded": 3,
 "failed": 0
 }
}

GET plan-activation-job activation-details with verbose option (expand=all)
- jobState=COMPLETED / activationState=ACTIVATED
- All configuration edits/operations are successfully activated
- no detailed info on failed edits/operations are reported (none failed)

GET {apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111/activation-details?expand=all

Response
{
 "editStatus" : [
 {
 "planDescriptorId" : "plan-desc-001",
 "edit" : [
 {
 "editId" : "opId-001",
 "state" : "SUCCEEDED"
 },
 {
 "editId" : "opId-002",
 "state" : "SUCCEEDED"
 },
 {
 "editId" : "opId-003",
 "state" : "SUCCEEDED"
 }
]
 }
],
 "summary" : {
 "unprocessed": 0,
 "succeeded": 3,
 "failed": 0
 }
}

GET plan-activation-job result-details with complete configuration edit/operation failure
- jobState=COMPLETED / activationState=ACTIVATION_FAILED
- All configuration edits/operations failed to activate
- Activation details on failed edits/operations are reported

GET {apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111/activation-details

Response
{
 "editStatus" : [
 {
 "planDescriptorId" : "planxyz",
 "edit" : [
 {
 "editId" : "opId-001",
 "state" : "FAILED",
 "errors" : {
 "error" : [
 {
 "type": "application",
 "reason": "data-exists",
 "path": "/_3gpp-common-subnetwork:SubNetwork=Irl/_3gpp-common-mecontext:MeContext=Dublin-1/_3gpp-common-managed-element:ManagedElement=Dublin-1/_3gpp-nr-nrm-gnbdufunction:GNBDUFunction=1/_3gpp-nr-nrm-nrcelldu:NRCellDU=1",
 "message": "Data already exists; cannot be created"
 }
]
 }
 },
 {
 "editId" : "opId-002",
 "state" : "FAILED",
 "errors" : {
 "error" : [
 {
 "type": "application",
 "reason": "data-exists",
 "path": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1/NRCellDU=2",
 "message": "Data already exists; cannot be created"
 }
]
 }
 },
 {
 "editId" : "opId-003",
 "state" : "FAILED",
 "errors" : {
 "error" : [
 {
 "type": "application",
 "reason": "data-exists",
 "path": "/SubNetwork=Irl/MeContext=Dublin-1/ManagedElement=Dublin-1/GNBDUFunction=1/NRCellDU=3",
 "message": "Data already exists; cannot be created"
 }
]
 }
 }
]
 }
],
 "summary" : {
 "unprocessed": 0,
 "succeeded": 0,
 "failed": 3
 }
}

GET plan-activation-job result-details with operation/edit failure (with expand=all option)
- jobState=COMPLETED / activationState=PARTIALLY_ACTIVATED
- Some configuration edits/operations failed to activate
- Activation details on failed edits/operations are reported
- Activation details on successful edits/operations are reported (expand=all)

GET {apiRoot}/ProvMnS/1900/plan-activation-jobs/myjob-111/activation-details?expand=all

Response
{
 "editStatus" : [
 {
 "planDescriptorId" : "planxyz",
 "edit" : [
 {
 "editId" : "opId-001",
 "state" : "FAILED",
 "errors" : {
 "error" : [
 {
 "type": "application",
 "reason": "data-exists",
 "path": "/_3gpp-common-subnetwork:SubNetwork=Irl/_3gpp-common-mecontext:MeContext=Dublin-1/_3gpp-common-managed-element:ManagedElement=Dublin-1/3gpp-nr-nrm-gnbdufunction:GNBDUFunction=1/_3gpp-nr-nrm-nrcelldu:NRCellDU=1",
 "message": "Data already exists; cannot be created"
 }
]
 }
 },
 {
 "editId" : "opId-002",
 "state" : "SUCCEEDED"
 },
 {
 "editId" : "opId-003",
 "state" : "SUCCEEDED"
 }
]
 }
],
 "summary" : {
 "unprocessed": 0,
 "succeeded": 2,
 "failed": 1
 }
}

* * * End of Changes * * * *

image1.png
is_member_of is_member_of

member_of

image2.png
is_member_of \js_member_of

Group_C

is_member_of (is_member_of \is_member_of “\is_member_of

[Plan1 | [Plan1 | [Plan2]| [Plan2 |

