

	
3GPP TSG-SA5 Meeting #154 	S5-241971
Changsha, China, 15 - 19 April 2024

	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.623
	CR
	-
	rev
	0346
	Current version:
	18.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Rel-18 CR 28.623 YANG Corrections

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S5

	
	

	Work item code:
	TEI18
	
	Date:
	2024-04-16

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	YANG SS is not matching the approved stage 2.

	
	

	Summary of change:
	Update YANG code to match existing stage 2.

	
	

	Consequences if not approved:
	Stage 2 and Stage 3 mismatch; interoperability problems.

	
	

	Clauses affected:
	Only Forge

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	YANG Forge MR link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/1101 at commit efc2c4eb8f12d7fdc23ac3855eeb22502d986cbe

	
	

	This CR's revision history:
	

Forge MR link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/1101 at commit efc2c4eb8f12d7fdc23ac3855eeb22502d986cbe

*** START OF CHANGE ***
*** yang-models/_3gpp-common-managed-function.yang ***
<CODE BEGINS>
module _3gpp-common-managed-function {
 yang-version 1.1;
 namespace urn:3gpp:sa5:_3gpp-common-managed-function;
 prefix mf3gpp;

 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-measurements { prefix meas3gpp; }
 import _3gpp-common-trace { prefix trace3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";
 description "The module defines a base class/grouping for major 3GPP
 functions.
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 Copyright 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference
 "3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)

 3GPP TS 28.620
 Umbrella Information Model (UIM)";

 revision 2024-02-24 { reference CR-0346; }
 revision 2023-09-18 { reference CR-0271; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-04-26 { reference CR-0250; }
 revision 2023-02-14 { reference "CR-0234"; }
 revision 2022-11-02 { reference "CR-0753"; }
 revision 2022-10-24 { reference CR-0196; }
 revision 2022-01-07 { reference "CR-0146"; }
 revision 2021-01-25 { reference "CR-0122"; }
 revision 2020-09-30 { reference "CR-bbbb"; }
 revision 2020-08-06 { reference "CR-0102"; }
 revision 2020-08-03 { reference "CR-0095"; }
 revision 2020-06-23 { reference "CR-085"; }
 revision 2020-06-08 { reference "CR-0092"; }
 revision 2019-11-21 { reference "S5-197275, S5-197735"; }
 revision 2019-10-28 { reference S5-193518 ; }
 revision 2019-06-18 { reference "Initial revision"; }

 feature MeasurementsUnderManagedFunction {
 description "The MeasurementSubtree shall be contained under ManageElement";
 }

 feature TraceUnderManagedFunction {
 description "The TraceSubtree shall be contained under ManagedFunction";
 }

 grouping OperationGrp {
 description "This data type represents an operation.";
 reference "3gpp TS 28.622";

 leaf name {
 type string;
 mandatory true;
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 leaf-list allowedNFTypes {
 type string;
 min-elements 1;
 description "The type of the managed NF service instance
 The specifc values allowed are described in TS 23.501";
 }

 leaf operationSemantics {
 type enumeration {
 enum REQUEST_RESPONSE;
 enum SUBSCRIBE_NOTIFY;

 }
 config false;
 mandatory true;
 yext3gpp:inVariant;
 description "Semantics type of the operation.";
 reference "3GPP TS 23.502";
 }
 }

 grouping ManagedNFServiceGrp {
 description "A ManagedNFService represents a Network Function (NF) service.";
 reference "Clause 7 of 3GPP TS 23.501.";

 leaf userLabel {
 type string;
 description "A user-friendly (and user assignable) name of this object.";
 }

 leaf nFServiceType {
 config false;
 mandatory true;
 type string;
 description "The type of the managed NF service instance
 The specifc values allowed are described in clause 7.2 of TS 23.501";
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 list sAP {
 key "host port";
 min-elements 1;
 max-elements 1;
 description "The service access point of the managed NF service instance";
 uses types3gpp:SAPGrp;
 }

 list operations {
 key name;
 min-elements 1;
 uses OperationGrp ;
 description "Set of operations supported by the managed NF
 service instance";
 }

 leaf administrativeState {
 type types3gpp:BasicAdministrativeState;
 type types3gpp:AdministrativeState;
 mandatory true;
 description "Permission to use or prohibition against using the instance";
 }

 leaf operationalState {
 type types3gpp:OperationalState;
 config false;
 mandatory true;
 description "Describes whether the resource is installed and working";
 }

 leaf usageState {
 type types3gpp:usageState ;
 config false;
 mandatory true;
 description "Describes whether the resource is actively in use at a
 specific instant, and if so, whether or not it has spare
 capacity for additional users.";
 }

 leaf registrationState {
 type enumeration {
 enum REGISTERED;
 enum DEREGISTERED;
 }
 config false;
}
 }

 grouping Function_Grp {
 description "A base grouping for 3GPP functions.";

 leaf userLabel {
 type string;
 description "A user-friendly (and user assignable) name of this object.";
 }
 }

 grouping ManagedFunctionGrp {
 description "Abstract root class to be inherited/reused by classes
 representing 3GPP functions.

 Anywhere this grouping is used by classes inheriting from ManagedFunction
 the list representing the inheriting class needs to include all
 contained classes of ManagedFunction too. Contained classes are
 either
 - augmented into the Function class or
 - shall be included in the list representing the inheriting class
 using the grouping ManagedFunctionContainedClasses:
 1) EP_RP solved using augment
 2) uses mf3gpp:ManagedFunctionContainedClasses;
 ";

 uses Function_Grp;

 list vnfParametersList {
 key vnfInstanceId;
 description "Contains the parameter set of the VNF
 instance(s) corresponding to an NE.
 The presence of this list indicates that the ManagedFunction
 represented is realized by one or more VNF instance(s). Otherwise it
 shall be absent.
 The presence of a vnfParametersList entry, whose vnfInstanceId with a
 string length of zero, in createMO operation can trigger the
 instantiation of the related VNF/VNFC instances.";

 leaf vnfInstanceId {
 type string ;
 description "VNF instance identifier";
 reference "ETSI GS NFV-IFA 008 v2.1.1:
 Network Functions Virtualisation (NFV); Management and Orchestration;
 Ve-Vnfm reference point - Interface and Information Model Specification
 section 9.4.2

 ETSI GS NFV-IFA 015 v2.1.2: Network Functions Virtualisation (NFV);
 Management and Orchestration; Report on NFV Information Model
 section B2.4.2.1.2.3";
 }

 leaf vnfdId {
 type string ;
 description "Identifier of the VNFD on which the VNF instance is based.
 The absence of the leaf or a string length of zero for vnfInstanceId
 means the VNF instance(s) does not exist (e.g. has not been
 instantiated yet, has already been terminated).";
 reference "ETSI GS NFV-IFA 008 v2.1.1:
 Network Functions Virtualisation (NFV); Management and Orchestration;
 Ve-Vnfm reference point - Interface and Information Model Specification
 section 9.4.2";
 }

 leaf flavourId {
 type string ;
 description "Identifier of the VNF Deployment Flavour applied to this
 VNF instance.";
 reference "ETSI GS NFV-IFA 008 v2.1.1:
 Network Functions Virtualisation (NFV) Management and Orchestration";
 }

 leaf autoScalable {
 type boolean ;
 mandatory true;
 description "Indicator of whether the auto-scaling of this
 VNF instance is enabled or disabled.";
 }
 }

 list peeParametersList {
 key idx;
 description "Contains the parameter set for the control
 and monitoring of power, energy and environmental parameters of
 ManagedFunction instance(s).";

 leaf idx { type uint32; }

 leaf siteIdentification {
 type string;
 mandatory true;
 description "The identification of the site where the
 ManagedFunction resides.";
 }

 leaf siteLatitude {
 type decimal64 {
 fraction-digits 4;
 range "-90.0000..+90.0000";
 }
 description "The latitude of the site where the ManagedFunction
 instance resides, based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to
 the northern hemisphere. This attribute is optional
 for BTSFunction, RNCFunction, GNBDUFunction and
 NRSectorCarrier instance(s).";
 }

 leaf siteLongitude {
 type decimal64 {
 fraction-digits 4;
 range "-180.0000..+180.0000";
 }
 description "The longitude of the site where the ManagedFunction
 instance resides, based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to
 degrees east of 0 degrees longitude. This attribute is optional
 for BTSFunction, RNCFunction, GNBDUFunction and
 NRSectorCarrier
 instance(s).";
 }

 leaf siteAltitude {
 type decimal64 {
 fraction-digits 4;
 }
 description "The altitude of the site where the ManagedFunction
 instance resides, in the unit of meter. This attribute is
 optional for BTSFunction, RNCFunction, GNBDUFunction and
 NRSectorCarrier instance(s).";
 }

 leaf siteDescription {
 type string;
 mandatory true;
 description "An operator defined description of the site where
 the ManagedFunction instance resides.";
 }

 leaf equipmentType {
 type string;
 mandatory true;
 description "The type of equipment where the managedFunction
 instance resides.";
 reference "clause 4.4.1 of ETSI ES 202 336-12";
 }

 leaf environmentType {
 type string;
 mandatory true;
 description "The type of environment where the managedFunction
 instance resides.";
 reference "clause 4.4.1 of ETSI ES 202 336-12";
 }

 leaf powerInterface {
 type string;
 mandatory true;
 description "The type of power.";
 reference "clause 4.4.1 of ETSI ES 202 336-12";
 }
 }

 leaf priorityLabel {
 mandatory true;
 type uint32;
 }

 uses meas3gpp:SupportedPerfMetricGroupGrp;

 leaf-list supportedTraceMetrics {
 type string;
 config false;
 description "List of trace metrics. When this attribute is contained in
 a managed object it defines the trace metrics supported for this
 object and all descendant objects.

 Trace metrics include trace messages, MDT measurements
 (Immediate MDT, Logged MDT, Logged MBSFN MDT), RLF and RCEF reports,
 see TS 32.422. Trace metrics are identified with their metric
 identifier. The metric identifier is constructed as defined
 in clause 10 of TS 32.422.";
 }
 }

 grouping ManagedFunctionContainedClasses {
 description "A grouping used to containe classes (lists) contained by
 the abstract IOC ManagedFunction";
 list ManagedNFService {
 description "Represents a Network Function (NF)";
 reference "3GPP TS 23.501";
 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses ManagedNFServiceGrp;
 }
 }

 uses meas3gpp:MeasurementSubtree {
 if-feature MeasurementsUnderManagedFunction ;
 }

 uses trace3gpp:TraceSubtree {
 if-feature TraceUnderManagedFunction ;
 }
 }
}
<CODE ENDS>
*** END OF CHANGE ***
*** START OF CHANGE ***
*** yang-models/_3gpp-common-managementdatacollection.yang ***
<CODE BEGINS>
module _3gpp-common-managementdatacollection {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-managementdatacollection";
 prefix "mgtdatcol3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types {prefix types3gpp; }
 import _3gpp-common-yang-extensions {prefix yext3gpp; }
 //import ietf-inet-types { prefix inet; }
 import ietf-yang-types { prefix yang; }
 import _3gpp-common-subnetwork { prefix subnet3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Handling management data collection
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 Copyright 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2024-04-12 { reference CR-0346; }
 revision 2023-11-18 { reference CR-0299 ; }
 revision 2023-11-06 { reference "CR-0305"; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-02-14 { reference "CR-0234"; }
 revision 2022-11-04 { reference "CR-0194"; }

 grouping GeoAreaToCellMappingGrp {
 description "Represents the GeoAreaToCellMapping data type.

 The mapping of the geographical area to cells is performed at
 instantiation of the IOC.";

 list geoArea {
 description "It specifies the geographical area using the cordinates of
 the corners of a convex polygon.";
 key idx;
 max-elements 1;
 leaf idx {
 type string;
 }
 uses types3gpp:GeoAreaGrp;
 }

 leaf associationThreshold {
 type uint8 {
 range 1..100;
 }
 yext3gpp:inVariant;
 description "It specifies the threshold of coverage area in
 percentage whether a cell belongs to the geographical area or not.

 If this attribute is absent, the location of the base station
 antenna determines whether a cell belongs to the geographical
 area or not.";
 }
 }

 grouping AreaOfInterestGrp {
 description "It specifies a location(s) from where the management data
 shall be collected.";

 list geoAreaToCellMapping {
 description "Contains a geographical area and an association threshold.
 The geo-area is defined as a convex polygon using the attribute
 'geoArea'.

 The MnS producer shall map the geographical area to cells. There are
 two evaluation criteria whether a cell belongs to a geographical area
 or not. If attribute 'associationThreshold' is absent, the location
 of the base station antenna determines the belonging. If attribute
 'associationThreshold' is configured, the coverage area is considered.
 The attribute 'associationThreshold' determines the lower boundary of
 the coverage ratio. For example, if the 'associationThreshold' is
 configured to 60%, a cell shall be considered as included in the
 geographical area if at least 60% of the coverage area of that
 cell overlaps with the specified geographical area.

 The mapping of the geographical area to cells is performed at
 instantiation of the IOC.";
 key idx;
 leaf idx { type string; }
 uses GeoAreaToCellMappingGrp;
 }

 list taiList {
 description "Tracking Area Identity list";
 key idx;
 min-elements 1;
 max-elements 8;
 leaf idx { type string; }
 uses types3gpp:TaiGrp;
 }

 leaf-list nrCellIdList {
 type string;
 description "List of NR cells identified by NG-RAN CGI";
 }

 leaf-list eutraCellIdList {
 type string;
 description "List of E-UTRAN cells identified by E-UTRAN-CGI";
 }

 leaf-list utraCellIdList {
 type string;
 description "List of UTRAN cells identified by UTRAN CGI";
 }
 }

 grouping NodeFilterGrp {

 list areaOfInterest {
 key idx;
 leaf idx {
 type string;
 }
 uses AreaOfInterestGrp;
 description "It specifies a location(s) from where the management data
 shall be collected. It is defined in terms of TAI(s).";
 }

 leaf networkDomain {
 type enumeration {
 enum CN;
 enum RAN;
 }
 // mandatory false
 description "It specifies the network domain of the target node. This
 will also result in collecting appropriate management data from the
 nodes belonging to the specified domain.";
 }

 leaf cpUpType {
 type enumeration {
 enum CP;
 enum UP;
 }
 // mandatory false
 description "It specifies the traffic type of the target node. This will
 also result in collecting appropriate management data from the nodes
 handling the specified traffic (e.g AMF for CP and UPF for UP).";
 }

 leaf sst {
 type uint8; // TS 28.003 clause 28.4.
 description "It specifies the slice service type (SST) of which the slice
 subnet should be targeted. Please refer to 3GPP TS 23.501: 'System
 Architecture for the 5G System'";
 }
 }

 typedef mgtDataCategoryType {
 type enumeration {
 enum COVERAGE;
 enum CAPACITY;
 enum ENERGY_EFFICIENCY;
 enum MOBILITY;
 enum ACCESSIBILITY;
 }
 description "";
 }

 grouping TimeWindowGrp {
 leaf startTime {
 type yang:date-and-time;
 yext3gpp:inVariant;
 }
 leaf endTime {
 type yang:date-and-time;
 yext3gpp:inVariant;
 }
 }

 grouping ManagementDataCollectionGrp {

 choice managementData {
 case mgtDataCategory {
 leaf-list category {
 type mgtDataCategoryType;
 min-elements 1;
 max-elements 5; // The ENUM contains 5 possible values
 description "This attributes defines the type of management data that
 are requested.

 Allowed values for data category are COVERAGE, CAPACITY,
 ENERGY_EFFICIENCY, MOBILITY, ACCESSIBILITY. The data categories
 will map to certain measurement families defined in TS 28.552, see
 below. In addition to the below mappings, MnS producer may map the
 provided categories to any additional proprietary management data,
 as appropriate.

 - The COVERAGE category will map to measurement families of MR
 (measurements related to Measurement Report) and L1M (measurements
 related to Layer 1 Measurement).

 - The CAPACITY category will map to measurement family RRU
 (measurements related to Radio Resource Utilization).

 - The ENERGY_EFFICIENCY category will map to measurement family PEE
 (measurements related to Power, Energy and Environment).

 - The MOBILITY category will map to measurement family MM
 (measurements related to Mobility Management).

 - The ACCESSIBILITY category will map to measurement family CE
 (measurements related to Connection Establishment).";
 }
 }
 case mgtDataName {
 leaf-list name {
 type string;
 min-elements 1;
 description "List of management data identified by name.

 The list may include metrics or set of metrics defined
 in TS 28.552, TS 28.554 and TS 32.422.

 The metrics are identified with their names/identifiers.
 For performance measurements defined in TS 28.552 the name is
 constructed as follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without
 subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined according to the
 KPI definitions template as the component designated with a).

 For trace metrics (including trace messages, MDT measurements
 (Immediate MDT, Logged MDT, Logged MBSFN MDT), RLF and RCEF
 reports) defined in TS 32.422, the name (metric identifier) is
 defined in clause 10 of TS 32.422.

 For non-3GPP specified managment data the name is defined
 elsewhere.";
 }
 }
 mandatory true;
 }

 list targetNodeFilter {
 key idx;
 leaf idx {
 type string;
 }
 min-elements 1;
 description "Set of information to target the Object Instance to collect
 the measurements from.";
 uses NodeFilterGrp;
 }

 list collectionTimeWindow {
 key "startTime endTime";
 max-elements 1;
 description "Collection time window for which the management data
 should be reported.";
 uses types3gpp:TimeWindowGrp;
 uses TimeWindowGrp;
 }

 list reportingCtrl {
 key idx;
 leaf idx {
 type string;
 }
 min-elements 1;
 max-elements 1;
 uses types3gpp:ReportingCtrl;
 description "Selecting the reporting method and defining associated
 control parameters.";
 }

 leaf dataScope {
 type enumeration {
 enum SNSSAI;
 enum 5QI;
 }
 // mandatory false; [Implicit]
 description "It specifies whether the required data is reported per
 S-NSSAI or per 5QI.";
 }
 }

 augment /subnet3gpp:SubNetwork {

 list ManagementDataCollection {
 key id;
 uses top3gpp:Top_Grp ;
 container attributes {
 uses ManagementDataCollectionGrp;
 }
 description "This IOC represents a management data collection request
 job. The requested data could be of kind Trace, MDT (Minimization
 of Drive Test), RLF (Radio Link Failure) report, RCEF (RRC Connection
 Establishment Failure) report, PM (performance measurements), KPI
 (end-to-end key performance indicators) or a combination of these.

 The attribute 'managementData' defines the management data which shall
 be reported. This may either include a list of data categories or a
 list of management data identified with their name. For further details
 see TS 28.622 clause 4.3.50. The 'targetNodeFilter' attribute can be
 used to target object instance(s) producing the required management
 data. It is assumed that the consumer may not have detailed knowledge
 of the network and hence may not identify the exact object instance
 producing the required management data. In this case consumer can
 request management data, specified by 3GPP, produced by certain network
 function(s) based on a particular location, the domain (CN or RAN) of
 the network function, and the handled traffic (CP or UP) of the network
 function.

 To activate the production of the requested data, a MnS consumer has to
 create a 'ManagementDataCollection' object instance on the MnS producer.

 The MnS producer will derive multiple jobs ('PerfMetricJob',
 'TraceJob') from a single 'ManagementDataCollection' job for collecting
 the required management data. Once it receives the measurement from
 multiple sources, it consolidates the data into a set of management data
 for reporting.

 The attribute 'collectionTimeWindow' specifies the time window for which
 the management data should be reported.

 The attribute 'reportingCtrl' specifies the method and associated
 control parameters for reporting the produced management data to MnS
 consumers. Three methods are available: file-based reporting with
 selection of the file location by the MnS producer, file-based
 reporting with selection of the file location by the MnS consumer and
 stream-based reporting.

 The attribute 'dataScope' configures, whether the management data
 should be reported per S-NSSAI or per 5QI, if applicable.";
 }
 }

}
<CODE ENDS>
*** END OF CHANGE ***
*** START OF CHANGE ***
*** yang-models/_3gpp-common-measurements.yang ***
<CODE BEGINS>
module _3gpp-common-measurements {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-measurements";
 prefix "meas3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }
 import _3gpp-common-files { prefix files3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines Measurement and KPI related groupings
 Any list/class intending to use this should include 2 or 3 uses statements
 controlled by a feature:

 A)
+++ feature MeasurementsUnderMyClass {
+++ description 'Indicates whether measurements and/or KPIs are supported
+++ for this class.';
+++ }

 B) include the attribute measurementsList and/or kPIsList indicating the
 supported measurment and KPI types and GPs. Note that for classes
 inheriting from ManagedFunction, EP_RP or SubNetwork these attributes are
 already inherited, so there is no need to include them once more. E.g.

+++ grouping MyClassGrp {
+++ uses meas3gpp:SupportedPerfMetricGroup;
+++ }

 C) include the class PerfmetricJob to control the measurements/KPIs. E.g.

 list MyClass {
 container attributes {
 uses MyClassGrp;
 }
+++ uses meas3gpp:MeasurementSubtree {
+++ if-feature MeasurementsUnderMyClass ;
+++ }
 }

 Measurements can be contained under ManagedElement, SubNetwork, or
 any list representing a class inheriting from Subnetwork or
 ManagedFunction. Note: KPIs will only be supported under SubNetwork
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 Copyright 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2024-02-24 { reference CR-0346; }
 revision 2023-11-18 { reference "CR-0299 CR-0305"; }
 revision 2023-09-18 { reference CR-0271; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-04-26 { reference CR-0250; }
 revision 2023-02-18 { reference "CR-0240"; }
 revision 2023-02-14 { reference "CR-0234"; }
 revision 2022-11-04 { reference "CR-0212 CR-0194"; }
 revision 2022-10-24 { reference CR-0196; }
 revision 2022-09-30 { reference CR-0191; }
 revision 2021-07-22 { reference "CR-0137"; }
 revision 2020-11-06 { reference "CR-0118"; }
 revision 2020-09-04 { reference "CR-000107"; }
 revision 2020-06-08 { reference "CR-0092"; }
 revision 2020-05-31 { reference "CR-0084"; }
 revision 2020-03-11 { reference "S5-201581, SP-200229"; }
 revision 2019-11-21 { reference "S5-197275, S5-197735"; }
 revision 2019-10-28 { reference "S5-193516"; }
 revision 2019-06-17 { reference " "; }

 feature FilesUnderPerfMetricJob {
 description "Files shall be contained under PerfMetricJob";
 }

 grouping ThresholdInfoGrp {
 description "Defines a single threshold level.";

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "List of performance metrics.
 Performance metrics include measurements defined in TS 28.552 and KPIs
 defined in TS 28.554 [28]. Performance metrics can also be specified
 by other SDOs, or be vendor specific. Performance metrics are
 identified with their names.

 For measurements defined in TS 28.552 the name is constructed as follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 `- 'family' for measurement families
 For KPIs defined in TS 28.554 [28] the name is defined in the KPI
 definitions template as the component designated with e).

 A name can also identify a vendor specific performance metric or a
 group of vendor specific performance metrics.";
 }

 leaf thresholdLevel {
 type uint64;
 mandatory true;
 description "Number (key) for a single threshold in the threshold list
 applicable to the monitored performance metric.";
 }

 leaf thresholdDirection {
 type enumeration {
 enum UP;
 enum DOWN;
 enum UP_AND_DOWN;
 }
 must '. = "UP_AND_DOWN" or not(../hysteresis)' {
 error-message "In case a threshold with hysteresis is configured, the "
 +"threshold direction attribute shall be set to 'UP_AND_DOWN'.";
 }
 mandatory true;
 description "Direction of a threshold indicating the direction for which
 a threshold crossing triggers a threshold.

 When the threshold direction is configured to 'UP', the associated
 treshold is triggered only when the performance metric value is going
 up upon reaching or crossing the threshold value. The treshold is not
 triggered, when the performance metric is going down upon reaching or
 crossing the threshold value.

 Vice versa, when the threshold direction is configured to 'DOWN', the
 associated treshold is triggered only when the performance metric is
 going down upon reaching or crossing the threshold value. The treshold
 is not triggered, when the performance metric is going up upon reaching
 or crossing the threshold value.

 When the threshold direction is set to 'UP_AND_DOWN' the treshold is
 active in both direcions.

 In case a threshold with hysteresis is configured, the threshold
 direction attribute shall be set to 'UP_AND_DOWN'.";
 }

 leaf thresholdValue {
 type union {
 type int64;
 type decimal64 {
 fraction-digits 2;
 }
 }
 mandatory true;
 description "Value against which the monitored performance metric is
 compared at a threshold level in case the hysteresis is zero";
 }

 leaf hysteresis {
 type union {
 type uint64;
 type decimal64 {
 fraction-digits 2;
 range "0..max";
 }
 }
 must '. >= 0';
 description "Hysteresis of a threshold. If this attribute is present
 the monitored performance metric is not compared against the
 threshold value as specified by the thresholdValue attribute but
 against a high and low threshold value given by

 threshold-high = thresholdValue + hysteresis
 threshold-low = thresholdValue - hysteresis

 When going up, the threshold is triggered when the performance metric
 reaches or crosses the high threshold value. When going down, the
 hreshold is triggered when the performance metric reaches or crosses
 the low threshold value.

 A hysteresis may be present only when the monitored performance
 metric is not of type counter that can go up only. If present
 for a performance metric of type counter, it shall be ignored.";
 }
 }

 grouping SupportedPerfMetricGroupGrp {
 list SupportedPerfMetricGroups {
 config false;
 description "Captures a group of supported performance metrics and
 associated parameters related to their production and reporting.
 A SupportedPerfMetricGroup attribute which is part of an MOI may
 define performanceMetrics for any MOI under the subtree contained
 under that MOI, e.g. SupportedPerfMetricGroup on a ManagedElement
 can specify supported metrics for contained ManagedFunctions
 like a GNBDUFunction.";

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "Performance metrics include measurements defined in
 TS 28.552 and KPIs defined in TS 28.554.

 Measurements are identified by name.

 For measurements defined in TS 28.552 the name is constructed as
 follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined in the KPI
 definitions template as the component designated with e).

 For non-3GPP specified measurements the name is defined
 elsewhere.";
 }

 leaf-list granularityPeriods {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 description "Granularity periods supported for the associated
 measurement types. The period is defined in seconds.";
 }

 leaf-list reportingMethods {
 type enumeration {
 enum FILE_BASED_LOC_SET_BY_PRODUCER;
 enum FILE_BASED_LOC_SET_BY_CONSUMER;
 enum STREAM_BASED;
 }
 min-elements 1;
 }

 leaf-list reportingPeriods {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 description "Reporting periods supported for the associated
 measurement types. The period is defined in seconds.";
 }
 }
 }

 grouping PerfMetricJobGrp {
 description "Represents the attributtes of the IOC PerfMetricJob";

 leaf administrativeState {
 default UNLOCKED;
 type types3gpp:BasicAdministrativeState ;
 type types3gpp:AdministrativeState ;
 description "Enable or disables production of the metrics";
 }

 leaf operationalState {
 config false;
 mandatory true;
 type types3gpp:OperationalState ;
 description "Indicates whether the PerfMetricJob is working.";
 }

 leaf jobId {
 type string;
 description "Id for a PerfMetricJob job.";
 yext3gpp:inVariant;
 }

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "Performance metrics include measurements defined in
 TS 28.552 and KPIs defined in TS 28.554. Performance metrics can
 also be those specified by other SDOs or vendor specific metrics.
 Performance metrics are identfied with their names. A name can also
 identify a vendor specific group of performance metrics.

 For measurements defined in TS 28.552 the name is constructed as
 follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined in the KPI
 definitions template as the component designated with e).";
 }

 leaf granularityPeriod {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 mandatory true;
 description "Granularity period used to produce measurements. The value
 must be one of the supported granularity periods for the metric.";
 }

 leaf-list objectInstances {
 type types3gpp:DistinguishedName;
 }

 leaf-list rootObjectInstances {
 type types3gpp:DistinguishedName;
 description "Each object instance designates the root of a subtree that
 contains the root object and all descendant objects.";
 }

 uses types3gpp:ReportingCtrl {
 refine "reportingCtrl/file-based-reporting/fileReportingPeriod" {
 must '(number(.)*"60") mod number(../granularityPeriod) = "0"' {
 error-message
 "The time-period must be a multiple of the granularityPeriod.";
 }
 }
 }

 leaf _linkToFiles {
 type string ;
 config false;
 mandatory true;
 yext3gpp:notNotifyable ;
 description "Link to a 'Files' object.";
 yext3gpp:inVariant;
 }
 }

 grouping ThresholdMonitorGrp {
 description "A threshold monitor that is created by the consumer for
 the monitored entities whose measurements are required by consumer
 to monitor.";

 leaf administrativeState {
 default UNLOCKED;
 type types3gpp:BasicAdministrativeState ;
 type types3gpp:AdministrativeState ;
 description "Enables or disables the ThresholdMonitor.";
 }

 leaf operationalState {
 config false;
 mandatory true;
 type types3gpp:OperationalState ;
 description "Indicates whether the ThresholdMonitor is working.";
 }

 list thresholdInfoList {
 key idx;
 min-elements 1;
 leaf idx { type uint32 ; }
 uses ThresholdInfoGrp;
 description "List of threshold info.";
 }

 leaf monitorGranularityPeriod {
 type uint32 {
 range "1..max";
 }
 units second;
 mandatory true;
 description " Granularity period used to monitor measurements for
 threshold crossings. ";
 }

 leaf-list objectInstances {
 type types3gpp:DistinguishedName;
 yext3gpp:notNotifyable;
 }

 leaf-list rootObjectInstances {
 type types3gpp:DistinguishedName;
 description "Each object instance designates the root of a subtree that
 contains the root object and all descendant objects.";
 yext3gpp:notNotifyable;
 }
 }

 grouping MeasurementSubtree {
 description "Contains classes that define measurements.
 Should be used in all classes (or classes inheriting from)
 - SubNnetwork
 - ManagedElement
 - ManagedFunction

 If a YANG module wants to augment these classes/list/groupings they must
 augment all user classes!

 If a class uses this grouping in its list it shall also use the
 grouping SupportedPerfMetricGroupGrp to add SupportedPerfMetricGroup as
 an attribute to its grouping";

 list PerfMetricJob {
 description "This IOC represents a performance metric production job. It
 can be name-contained by SubNetwork, ManagedElement, or ManagedFunction.

 To activate the production of the specified performance metrics, a MnS
 consumer needs to create a PerfMetricJob instance on the MnS producer.
 For ultimate deactivation of metric production, the MnS consumer should
 delete the job to free up resources on the MnS producer.

 For temporary suspension of metric production, the MnS consumer can
 manipulate the value of the administrative state attribute. The MnS
 producer may disable metric production as well, for example in overload
 situations. This situation is indicated by the MnS producer with setting
 the operational state attribute to disabled. When production is resumed
 the operational state is set back to enabled.

 The jobId attribute can be used to associate metrics from multiple
 PerfMetricJob instances. The jobId can be included when reporting
 performance metrics to allow a MnS consumer to associate received
 metrics for the same purpose. For example, it is possible to configure
 the same jobId value for multiple PerfMetricJob instances required to
 produce the measurements for a specific KPI.

 The attribute performanceMetrics defines the performance metrics to be
 produced and the attribute granularityPeriod defines the granularity
 period to be applied.

 All object instances below and including the instance name-containing
 the PerfMetricJob (base object instance) are scoped for performance
 metric production. Performance metrics are produced only on those object
 instances whose object class matches the object class associated to the
 performance metrics to be produced.

 The attributes objectInstances and rootObjectInstances allow to restrict
 the scope. When the attribute objectInstances is present, only the object
 instances identified by this attribute are scoped. When the attribute
 rootObjectInstances is present, then the subtrees whose root objects are
 identified by this attribute are scoped. Both attributes may be present
 at the same time meaning the total scope is equal to the sum of both
 scopes. Object instances may be scoped by both the objectInstances and
 rootObjectInstances attributes. This shall not be considered as an error
 by the MnS producer.

 When the performance metric requires performance metric production on
 multiple managed objects, which is for example the case for KPIs, the
 MnS consumer needs to ensure all required objects are scoped. Otherwise
 a PerfMetricJob creation request shall fail.

 The attribute reportingCtrl specifies the method and associated control
 parameters for reporting the produced measurements to MnS consumers.
 Three methods are available: file-based reporting with selection of the
 file location by the MnS producer, file-based reporting with selection
 of the file location by the MnS consumer and stream-based reporting.

 For file-based reporting, all performance metrics that are produced
 related to a 'PerfMetricJob' instance for a reporting period shall be
 stored in a single reporting file.

 When the administrative state is set to 'UNLOCKED' after the creation
 of a 'PerfMetricJob' the first granularity period shall start. When
 the administrative state is set to 'LOCKED' or the operational state
 to 'DISABLED', the ongoing reporting period shall be aborted, for
 streaming the ongoing granularity period. When the administrative
 state is set back to 'UNLOCKED' or the operational state to 'ENABLED'
 a new reporting period period shall start, in case of streaming a new
 granularity period.

 Changes of all other configurable attributes shall take effect only at
 the beginning of the next reporting period, for streaming at the
 beginning of the next granularity period.

 When the 'PerfMetricJob' is deleted, the ongoing reporting period shall
 be aborted, for streaming the ongoing granularity period.

 A PerfMetricJob creation request shall fail, when the requested
 performance metrics, the requested granularity period, the requested
 repoting method, or the requested combination thereof is not supported
 by the MnS producer.

 Creation and deletion of PerfMetricJob instances by MnS consumers is
 optional; when not supported, PerfMetricJob instances may be created and
 deleted by the system or be pre-installed.";

 key id;
 uses top3gpp:Top_Grp ;
 container attributes {
 uses PerfMetricJobGrp ;
 }
 uses files3gpp:FilesSubtree {
 if-feature FilesUnderPerfMetricJob;
 }
 }

 list ThresholdMonitor {
 key id;
 description "Represents a threshold monitor for performance metrics.
 It can be contained by SubNetwork, ManagedElement, or ManagedFunction.
 A threshold monitor checks for threshold crossings of performance metric
 values and generates a notification when that happens.

 The ThresholdMonitor shall be used only when NRM based threshold
 monitoring is supported.

 To activate threshold monitoring, a MnS consumer needs to create a
 ThresholdMonitor instance on the MnS producer. For ultimate deactivation
 of threshold monitoring, the MnS consumer should delete the monitor to
 free up resources on the MnS producer.

 For temporary suspension of threshold monitoring, the MnS consumer can
 manipulate the value of the administrative state attribute. The MnS
 producer may disable threshold monitoring as well, for example in
 overload situations. This situation is indicated by the MnS producer with
 setting the operational state attribute to disabled. When monitoring is
 resumed the operational state is set again to enabled.

 All object instances below and including the instance containing the
 ThresholdMonitor (base object instance) are scoped for performance
 metric production. Performance metrics are monitored only on those
 object instances whose object class matches the object class associated
 to the performance metrics to be monitored.

 The optional attributes objectInstances and rootObjectInstances allow to
 restrict the scope. When the attribute objectInstances is present, only
 the object instances identified by this attribute are scoped. When the
 attribute rootObjectInstances is present, then the subtrees whose root
 objects are identified by this attribute are scoped. Both attributes may
 be present at the same time meaning the total scope is equal to the sum
 of both scopes. Object instances may be scoped by both the objectInstances
 and rootObjectInstances attributes. This shall not be considered as an
 error by the MnS producer.

 Multiple thresholds can be defined for multiple performance metric sets
 in a single monitor using thresholdInfoList. The attribute
 monitorGranularityPeriod defines the granularity period to be applied.
 The value is a supported GP for the measurements being monitored.
 Threshold crossing behaviour is as defined in [54], Annex F.

 Each threshold is identified with a number (key) called thresholdLevel.
 A threshold is defined using the attributes thresholdValue ,
 thresholdDirection and hysteresis.

 When hysteresis is absent or carries no information, a threshold is
 triggered when the thresholdValue is reached or crossed. When hysteresis
 is present, two threshold values are specified for the threshold as
 follows: A high treshold value equal to the threshold value plus the
 hysteresis value, and a low threshold value equal to the threshold value
 minus the hysteresis value. When the monitored performance metric
 increases, the threshold is triggered when the high threshold value is
 reached or crossed. When the monitored performance metric decreases, the
 threshold is triggered when the low threshold value is reached or crossed.
 The hsyteresis ensures that the performance metric value can oscillate
 around a comparison value without triggering each time the threshold when
 the threshold value is crossed.

 Using the thresholdDirection attribute a threshold can be configured in
 such a manner that it is triggered only when the monitored performance
 metric is going up or down upon reaching or crossing the threshold.

 A ThresholdMonitor creation request shall be rejected, if the performance
 metrics requested to be monitored, the requested granularity period, or
 the requested combination thereof is not supported by the MnS producer.
 A creation request may fail, when the performance metrics requested to be
 monitored are not produced by a PerfMetricJob.

 Creation and deletion of ThresholdMonitor instances by MnS consumers is
 optional; when not supported, ThresholdMonitor instances may be created
 and deleted by the system or be pre-installed.";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses ThresholdMonitorGrp ;
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE ***
*** START OF CHANGE ***
*** yang-models/_3gpp-common-fm.yang ***
<CODE BEGINS>
module _3gpp-common-fm {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-fm";
 prefix "fm3gpp";

 import ietf-yang-types { prefix yang; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines a Fault Management model
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 Copyright 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.111";

 revision 2024-02-24 { reference CR-0346; }
 revision 2024-01-18 {
 description "The specification of the file is moved from 28.623 to 28.532";
 reference "28.623 CR-0315";
 }
 revision 2023-09-18 { reference CR-0271; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-05-10 { reference CR-0250; }
 revision 2022-10-24 { reference CR-0196; }
 revision 2021-08-08 { reference "CR-0132"; }
 revision 2021-06-02 { reference "CR-0130"; }
 revision 2020-06-03 { reference "CR-0091"; }
 revision 2020-02-24 { reference "S5-201365"; }

 feature AcknowledgeByConsumer {
 description "Indicates whether alarm acknowledgement by the consumer is
 supported.";
 }

 typedef eventType {
 type enumeration {
 enum COMMUNICATIONS_ALARM {
 value 2;
 }

 enum QUALITY_OF_SERVICE_ALARM {
 value 3;
 }

 enum PROCESSING_ERROR_ALARM {
 value 4;
 }

 enum EQUIPMENT_ALARM {
 value 5;
 }

 enum ENVIRONMENTAL_ALARM {
 value 6;
 }

 enum INTEGRITY_VIOLATION {
 value 7;
 }

 enum OPERATIONAL_VIOLATION {
 value 8;
 }

 enum PHYSICAL_VIOLATION {
 value 9;
 }

 enum SECURITY_SERVICE_OR_MECHANISM_VIOLATION {
 value 10;
 }

 enum TIME_DOMAIN_VIOLATION {
 value 11;
 }
 }

 description "General category for the alarm.";
 }

 typedef severity-level {
 type enumeration {
 enum CRITICAL { value 3; }
 enum MAJOR { value 4; }
 enum MINOR { value 5; }
 enum WARNING { value 6; }
 enum INDETERMINATE { value 7; }
 enum CLEARED { value 8; }
 }

 description "The possible alarm severities";
 }

 grouping AlarmRecordGrp {
 description "Contains alarm information of an alarmed object instance.
 A new record is created in the alarm list when an alarmed object
 instance generates an alarm and no alarm record exists with the same
 values for objectInstance, alarmType, probableCause and specificProblem.
 When a new record is created the MnS producer creates an alarmId, that
 unambiguously identifies an alarm record in the AlarmList.

 Alarm records are maintained only for active alarms. Inactive alarms are
 automatically deleted by the MnS producer from the AlarmList.
 Active alarms are alarms whose
 a) perceivedSeverity is not CLEARED, or whose
 b) perceivedSeverity is CLEARED and its ackState is not ACKNOWLEDED.";

 leaf alarmId {
 type string;
 mandatory true;
 description "Identifies the alarmRecord";
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 leaf objectInstance {
 type types3gpp:DistinguishedName;
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 leaf notificationId {
 type int32;
 config false ;
 mandatory true;
 description "The Id of the last notification updating the AlarmRecord.";
 yext3gpp:notNotifyable;
 }

 leaf alarmRaisedTime {
 type yang:date-and-time ;
 mandatory true;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf alarmChangedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm has not changed";
 yext3gpp:notNotifyable;
 }

 leaf alarmClearedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm was not cleared";
 yext3gpp:notNotifyable;
 }

 leaf alarmType {
 type eventType;
 config false ;
 mandatory true;
 description "General category for the alarm.";
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 leaf probableCause {
 type union {
 type int32;
 type string;
 }
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 leaf specificProblem {
 type union {
 type int32;
 type string;
 }
 config false ;
 reference "ITU-T Recommendation X.733 clause 8.1.2.2.";
 yext3gpp:notNotifyable;
 yext3gpp:inVariant;
 }

 leaf perceivedSeverity {
 type severity-level;
 mandatory true;
 description "This is Writable only if producer supports consumer
 to set perceivedSeverity to CLEARED";
 yext3gpp:notNotifyable;
 }

 leaf backedUpStatus {
 type boolean;
 config false ;
 description "Indicates if an object (the MonitoredEntity) has a back
 up. See definition in ITU-T Recommendation X.733 clause 8.1.2.4.";
 yext3gpp:notNotifyable;
 }

 leaf backUpObject {
 type types3gpp:DistinguishedName;
 config false ;
 description "Backup object of the alarmed object as defined in
 ITU-T Rec. X. 733";
 yext3gpp:notNotifyable;
 }

 leaf trendIndication {
 type enumeration {
 enum MORE_SEVERE;
 enum NO_CHANGE;
 enum LESS_SEVERE;
 }
 config false ;
 description "Indicates if some observed condition is getting better,
 worse, or not changing. ";
 reference "ITU-T Recommendation X.733 clause 8.1.2.6.";
 yext3gpp:notNotifyable;
 }

 grouping ThresholdInfoGrp {
 leaf measurementType {
 type string;
 mandatory true;
 }

 leaf direction {
 type enumeration {
 enum INCREASING;
 enum DECREASING;
 }
 mandatory true;
 description "
 If it is 'Increasing', the threshold crossing notification is
 triggered when the measurement value equals or exceeds a
 thresholdValue.

 If it is 'Decreasing', the threshold crossing notification is
 triggered when the measurement value equals or below a
 thresholdValue.";
 }

 leaf thresholdLevel {
 type string;
 }

 leaf thresholdValue {
 type string;
 }

 leaf hysteresis {
 type string;
 description "The hysteresis has a threshold high and a threshold
 low value that are different from the threshold value.
 A hysteresis, therefore, defines the threshold-high and
 threshold-low levels within which the measurementType value is
 allowed to oscillate without triggering the threshold crossing
 notification.";
 }
 }

 list thresholdInfo {
 config false ;
 yext3gpp:notNotifyable;
 description "Indicates the crossed threshold";
 uses ThresholdInfoGrp;
 }

 list stateChangeDefinition {
 key attributeName;
 config false ;
 description "Indicates MO attribute value changes associated with the
 alarm for state attributes of the monitored entity (state transitions).
 The change is reported with the name of the state attribute, the new
 value and an optional old value.
 See definition in ITU-T Recommendation X.733 [4] clause 8.1.2.10.";
 yext3gpp:notNotifyable;

 leaf attributeName {
 type string;
 }

 anydata newValue {
 mandatory true;
 description "The new value of the attribute. The content of this data
 node shall be in accordance with the data model for the attribute.";
 }

 anydata oldValue{
 description "The old value of the attribute. The content of this data
 node shall be in accordance with the data model for the attribute.";
 }
 }

 list monitoredAttributes {
 key attributeName;
 config false ;
 yext3gpp:notNotifyable;
 description "Attributes of the monitored entity and their
 values at the time the alarm occurred that are of interest for the
 alarm report.";
 reference "ITU-T Recommendation X.733 clause 8.1.2.11.";

 leaf attributeName {
 type string;
 }

 anydata value {
 mandatory true;
 description "The value of the attribute. The content of this data
 node shall be in accordance with the data model for the attribute.";
 }
 }

 leaf proposedRepairActions {
 type string;
 config false ;
 description "Indicates proposed repair actions. See definition in
 ITU-T Recommendation X.733 clause 8.1.2.12.";
 yext3gpp:notNotifyable;
 }

 leaf additionalText {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 list additionalInformation {
 key name;
 config false ;
 yext3gpp:notNotifyable;
 description "Vendor specific alarm information in the alarm.";
 uses types3gpp:nameValuePair;
 }

 leaf rootCauseIndicator {
 type boolean;
 default false;
 config false ;
 description "It indicates that this AlarmInformation is the root cause
 of the events captured by the notifications whose identifiers are in
 the related CorrelatedNotification instances.";
 yext3gpp:notNotifyable;
 }

 leaf ackTime {
 if-feature AcknowledgeByConsumer;
 type yang:date-and-time ;
 config false ;
 description "It identifies the time when the alarm has been
 acknowledged or unacknowledged the last time, i.e. it registers the
 time when ackState changes.";
 yext3gpp:notNotifyable;
 }

 leaf ackUserId {
 if-feature AcknowledgeByConsumer;
 type string;
 description "It identifies the last user who has changed the
 Acknowledgement State.";
 yext3gpp:notNotifyable;
 }

 leaf ackSystemId {
 if-feature AcknowledgeByConsumer;
 type string;
 description "It identifies the system (Management System) that last
 changed the ackState of an alarm, i.e. acknowledged or unacknowledged
 the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf ackState {
 if-feature AcknowledgeByConsumer;
 type enumeration {
 enum ACKNOWLEDGED {
 description "The alarm has been acknowledged.";
 }
 enum UNACKNOWLEDGED {
 description "The alarm has unacknowledged or the alarm has never
 been acknowledged.";
 }
 }
 yext3gpp:notNotifyable;
 }

 leaf clearUserId {
 type string;
 description "Carries the identity of the user who invokes the
 clearAlarms operation.";
 yext3gpp:notNotifyable;
 }

 leaf clearSystemId {
 type string;
 yext3gpp:notNotifyable;
 }

 leaf serviceUser {
 type string;
 config false ;
 description "It identifies the service-user whose request for service
 provided by the serviceProvider led to the generation of the
 security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf serviceProvider {
 type string;
 config false ;
 description "It identifies the service-provider whose service is
 requested by the serviceUser and the service request provokes the
 generation of the security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf securityAlarmDetector {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 list correlatedNotifications {
 key sourceObjectInstance;
 description "List of correlated notifications";

 leaf sourceObjectInstance {
 type types3gpp:DistinguishedName;
 }

 leaf-list notificationId {
 type int32;
 min-elements 1;
 }
 }
 }

 grouping AlarmListGrp {
 description "Represents the AlarmList IOC.";

 leaf administrativeState {
 type types3gpp:BasicAdministrativeState ;
 type types3gpp:AdministrativeState ;
 default LOCKED;
 description "When set to UNLOCKED, the alarm list is updated.
 When the set to LOCKED, the existing alarm records are not
 updated, and new alarm records are not added to the alarm list.";
 }

 leaf operationalState {
 type types3gpp:OperationalState ;
 default DISABLED;
 config false;
 description "The producer sets this attribute to ENABLED, indicating
 that it has the resource and ability to record alarm in AlarmList
 else, it sets the attribute to DISABLED.";
 }

 leaf numOfAlarmRecords {
 type uint32 ;
 config false;
 mandatory true;
 description "The number of alarm records in the AlarmList";
 yext3gpp:notNotifyable;
 }

 leaf lastModification {
 type yang:date-and-time ;
 config false;
 description "The last time when an alarm record was modified";
 yext3gpp:notNotifyable;
 }

 list alarmRecords {
 key alarmId;
 description "List of alarmRecords";
 yext3gpp:notNotifyable;
 uses AlarmRecordGrp;
 }
 }

 grouping FmSubtree {
 description "Contains FM related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list AlarmList {
 key id;
 max-elements 1;
 description "The AlarmList represents the capability to store and manage
 alarm records. The management scope of an AlarmList is defined by all
 descendant objects of the base managed object, which is the object
 name-containing the AlarmList, and the base object itself.

 AlarmList instances are created by the system or are pre-installed.
 They cannot be created nor deleted by MnS consumers.

 When the alarm list is locked or disabled, the existing alarm records
 are not updated, and new alarm records are not added to the alarm list";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses AlarmListGrp ;
 }
 }
 }

}
<CODE ENDS>
*** END OF CHANGE ***
*** START OF CHANGE ***
*** yang-models/_3gpp-common-yang-types.yang ***
<CODE BEGINS>
module _3gpp-common-yang-types {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-yang-types";
 prefix "types3gpp";

 import ietf-inet-types { prefix inet; }
 import ietf-yang-types { prefix yang; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";
 description "The model defines a YANG mapping of the top level
 information classes used for management of 5G networks and
 network slicing.
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 Copyright 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623";

 revision 2024-04-12 { reference CR-0346; }
 revision 2023-11-06 { reference CR-0305; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-08-09 { reference CR-0266; }
 revision 2023-05-10 { reference CR-0250; }
 revision 2023-02-14 { reference CR-0234; }
 revision 2022-11-04 { reference "CR-0194"; }
 revision 2022-10-24 { reference CR-0196; }
 revision 2022-07-26 { reference "CR-0180" ; }
 revision 2022-02-09 { reference "CR-0144"; }
 revision 2021-11-01 { reference "CR-0141"; }

 revision 2021-09-30 {
 description "Added Longitude, Latitude, TenthOfDegrees, OnOff.";
 reference "CR-0138";
 }

 revision 2020-11-06 {
 description "Removed incorrect S-NSSAI definitions.";
 reference "CR-0118";
 }

 revision 2020-03-10 {
 description "Removed faulty when statements.";
 reference "SP-200229";
 }

 revision 2019-10-25 {
 description "Added ManagedNFProfile.";
 reference "S5-194457";
 }

 revision 2019-10-16 {
 description "Added SAP and usageState.";
 reference "S5-193518";
 }

 revision 2019-06-23 {
 reference "Initial version.";
 }

 typedef EnabledDisabled {
 type enumeration {
 enum DISABLED ;
 enum ENABLED ;
 }
 }

 grouping nameValuePair {
 leaf name { type string; }
 leaf value { type string; }
 }

 grouping TimeWindowGrp {
 leaf startTime {
 type yang:date-and-time;
 yext3gpp:inVariant;
 }
 leaf endTime {
 type yang:date-and-time;
 yext3gpp:inVariant;
 }
 }

 grouping ProcessMonitorGrp {
 description "Provides attributes to monitor the progress of processes
 with specific purpose and limited lifetime running on MnS producers.
 It may be used as data type for dedicated progress monitor attributes
 when specifying the management representation of these processes.
 The attributes in this clause are defined in a generic way.
 For some attributes specialisations may be provided when specifying a
 concrete process representation.

 If a management operation on some IOCs triggers an associated
 asynchronous process (whose progress shall be monitored), this should
 also result in creating an attribute named 'processMonitor' (of type
 'ProcessMonitor') in these IOC(s). The processMonitor attribute may be
 accompanied by use-case specific additional data items.

 The progress of the process is described by the 'status' and
 'progressPercentage' attributes. Additional textual qualifications for
 the 'status' attribute may be provided by the 'progressStateInfo' and
 'resultStateInfo' attributes.

 When the process is instantiated, the 'status' is set to 'NOT_RUNNING'
 and the 'progressPercentage' to '0'. The MnS producer decides when to
 start executing the process and to transition into the 'RUNNING' state.
 This time is captured in the 'startTime' attribute. Alternatively, the
 process may start to execute directly upon its instantiation. One
 alternative must be selected when using this data type.

 During the 'RUNNING' state the 'progressPercentage' attribute may be
 repeatedly updated. The exact semantic of this attribute is subject to
 further specialisation. The 'progressInfo' attribute may be used to
 provide additional textual information in the 'NOT_RUNNING', 'CANCELLING'
 and 'RUNNING' states. Further specialisation of
 'progressStateInfo' may be provided where this data type is
 used.

 Upon successful completion of the process, the 'status' attribute is set
 to 'FINISHED', the 'progressPercentage' to 100%. The time is captured in
 the 'endTime' attribute. Additional textual information may be provided
 in the 'resultStateInfo' attribute. The type of
 'resultStateInfo' in this data type definition is 'String'.
 Further specialisation of 'resultStateInfo' may be provided
 where this data type is used.

 In case the process fails to complete successfully, the 'status'
 attribute is set to 'FAILED' or 'PARTIALLY_FAILED', the current value of
 'progressPercentage' is frozen, and the time captured in 'endTime'. The
 'resultStateInfo' specifies the reason for the failure.
 Specific failure reasons may be specified where the data type defined in
 this clause is used. The exact semantic of failure may be subject for
 further specialisation as well.

 In case the process is cancelled, the 'status' attribute is first set to
 'CANCELLING' and when the process is really cancelled then to 'CANCELLED'.
 The transition to 'CANCELLED' is captured in the 'endTime' attribute.
 The value of 'progressPercentage' is frozen. Additional textual
 information may be provided in the 'resultStateInfo' attribute.

 The 'resultStateInfo' attribute is provided only for additional textual
 qualification of the states 'FINISHED', 'FAILED', 'PARTIALLY_FAILED' or
 'CANCELLED'. It shall not be used for making the outcome, that the
 process may produce in case of success, available.

 The process may have to be completed within a certain time after its
 creation, for example because required data may not be available any
 more after a certain time, or the process outcome is needed until a
 certain time and when not provided by this time is not needed any more.
 The time until the MnS producer automatically cancels the process is
 indicated by the 'timer' attribute.";

 leaf id {
 type string;
 mandatory true;
 description "Id of the process. It is unique within a single
 multivalue attribute of type ProcessMonitor.";
 }

 leaf status {
 type enumeration {
 enum NOT_STARTED ;
 enum RUNNING ;
 enum CANCELLING ;
 enum FINISHED ;
 enum FAILED ;
 enum PARTIALLY_FAILED ;
 enum CANCELLED ;
 }
 config false;
 default RUNNING;
 description "Represents the status of the associated process,
 whether it fails, succeeds etc.
 It does not represent the returned values of a successfully finished
 process. ";
 }

 leaf progressPercentage {
 type uint8 {
 range 0..100;
 }
 config false;
 description "Progress of the associated process as percentage";
 }

 leaf-list progressStateInfo {
 type string;
 config false;
 description "Additional textual qualification of the states
 'NOT_STARTED', 'CANCELLING' and 'RUNNING'.

 For specific processes, specific well-defined strings (e.g. string
 patterns or enums) may be defined as a specialisation.";
 }

 leaf resultStateInfo {
 type string;
 config false;
 description "Additional textual qualification of the states
 'FINISHED', 'FAILED', 'PARTIALLY_FAILED and 'CANCELLED'.
 For example, in the 'FAILED' or 'PARTIALLY_FAILED' state this
 attribute may be used to provide error reasons.

 This attribute shall not be used to make the outcome of the process
 available for retrieval, if any. For this purpose, dedicated
 attributes shall be specified when specifying the representation of
 a specific process.

 For specific processes, specific well-defined strings (e.g. string
 patterns or enums) may be defined as a specialisation.";
 }

 leaf startTime {
 type yang:date-and-time;
 config false;
 description "Start time of the associated process, i.e. the time when the
 status changed from 'NOT_STARTED' to 'RUNNING'.";
 }

 leaf endTime {
 type yang:date-and-time;
 config false;
 description "Date and time when status changed to 'SUCCESS', 'CANCELLED',
 'FAILED' or 'PARTIALLY_FAILED'.

 If the time is in the future, it is the estimated time
 the process will end.";
 }

 leaf timer {
 type uint32;
 units minutes;
 description "Time until the associated process is automatically cancelled.
 If set, the system decreases the timer with time. When it reaches zero
 the cancellation of the associated process is initiated by the
 MnS_Producer.
 If not set, there is no time limit for the process.

 Once the timer is set, the consumer can not change it anymore.
 If the consumer has not set the timer the MnS Producer may set it.";
 yext3gpp:notNotifyable;
 }
 }

 typedef TenthOfDegrees {
 type uint16 {
 range 0..3600;
 }
 units "0.1 degrees";
 description "A single integral value corresponding to an angle in degrees
 between 0 and 360 with a resolution of 0.1 degrees.";
 }

 typedef Latitude {
 type decimal64 {
 fraction-digits 4;
 range "-90.0000..+90.0000";
 }
 description "Latitude values";
 }

 typedef Longitude {
 type decimal64 {
 fraction-digits 4;
 range "-180.0000..+180.0000";
 }
 description "Longitude values";
 }

 typedef Altitude {
 type decimal64 {
 fraction-digits 6;
 }
 units "meters";
 description
 "Height from a reference 0 value.";
 }

 grouping GeographicalCoordinates {
 description "This datatype represents the geographical coordinates";
 reference "#GPP TS 28.558 clause 6.3.8";

 leaf latitude {
 type Latitude;
 mandatory true;
 }

 leaf longitude {
 type Longitude;
 mandatory true;
 }

 leaf altitude {
 type Altitude;
 }

 }

 typedef OnOff {
 type enumeration {
 enum ON;
 enum OFF;
 }
 }

 // grouping ManagedNFProfile will be removed as it is
 // being moved to _3gpp-5gc-nrm-nfprofile
 grouping ManagedNFProfile {
 description "Defines profile for managed NF";
 reference "3GPP TS 23.501";

 leaf idx { type uint32 ; }

 leaf nfInstanceID {
 config false;
 mandatory true;
 type yang:uuid ;
 description "This parameter defines profile for managed NF.
 The format of the NF Instance ID shall be a
 Universally Unique Identifier (UUID) version 4,
 as described in IETF RFC 4122 " ;
 yext3gpp:inVariant;
 }

 leaf-list nfType {
 config false;
 min-elements 1;
 type NfType;
 description "Type of the Network Function" ;
 }

 leaf hostAddr {
 mandatory true;
 type inet:host ;
 description "Host address of a NF";
 }

 leaf authzInfo {
 type string ;
 description "This parameter defines NF Specific Service authorization
 information. It shall include the NF type (s) and NF realms/origins
 allowed to consume NF Service(s) of NF Service Producer.";
 reference "See TS 23.501" ;
 }

 leaf location {
 type string ;
 description "Information about the location of the NF instance
 (e.g. geographic location, data center) defined by operator";
 reference "TS 29.510" ;
 }

 leaf capacity {
 mandatory true;
 type uint16 ;
 description "This parameter defines static capacity information
 in the range of 0-65535, expressed as a weight relative to other
 NF instances of the same type; if capacity is also present in the
 nfServiceList parameters, those will have precedence over this value.";
 reference "TS 29.510" ;
 }

 leaf nFSrvGroupId {
 type string ;
 description "This parameter defines identity of the group that is
 served by the NF instance.
 May be config false or true depending on the ManagedFunction.
 Config=true for Udrinfo. Config=false for UdmInfo and AusfInfo.
 Shall be present if ../nfType = UDM or AUSF or UDR. ";
 reference "TS 29.510" ;
 }

 leaf-list supportedDataSetIds {
 type enumeration {
 enum SUBSCRIPTION;
 enum POLICY;
 enum EXPOSURE;
 enum APPLICATION;
 }
 description "List of supported data sets in the UDR instance.
 May be present if ../nfType = UDR";
 reference "TS 29.510" ;
 }

 leaf-list smfServingAreas {
 type string ;
 description "Defines the SMF service area(s) the UPF can serve.
 Shall be present if ../nfType = UPF";
 reference "TS 29.510" ;
 }

 leaf priority {
 type uint16;
 description "This parameter defines Priority (relative to other NFs
 of the same type) in the range of 0-65535, to be used for NF selection;
 lower values indicate a higher priority. If priority is also present
 in the nfServiceList parameters, those will have precedence over
 this value. Shall be present if ../nfType = AMF ";
 reference "TS 29.510" ;
 }
 }

 typedef usageState {
 type enumeration {
 enum IDLE;
 enum ACTIVE;
 enum BUSY;
 }
 description "It describes whether or not the resource is actively in
 use at a specific instant, and if so, whether or not it has spare
 capacity for additional users at that instant. The value is READ-ONLY.";
 reference "ITU T Recommendation X.731";
 }

 grouping SAPGrp {
 leaf host {
 type inet:host;
 mandatory true;
 }
 leaf port {
 type inet:port-number;
 mandatory true;
 }
 description "Service access point.";
 reference "TS 28.622";
 }

 typedef Mcc {
 description "The mobile country code consists of three decimal digits,
 The first digit of the mobile country code identifies the geographic
 region (the digits 1 and 8 are not used):";
 type string {
 pattern '[02-79][0-9][0-9]';
 }
 reference "3GPP TS 23.003 subclause 2.2 and 12.1";
 }

 typedef Mnc {
 description "The mobile network code consists of two or three
 decimal digits (for example: MNC of 001 is not the same as MNC of 01)";
 type string {
 pattern '[0-9][0-9][0-9]|[0-9][0-9]';
 }
 reference "3GPP TS 23.003 subclause 2.2 and 12.1";
 }

 grouping PLMNId {
 leaf mcc {
 mandatory true;
 type Mcc;
 }
 leaf mnc {
 mandatory true;
 type Mnc;
 }
 reference "TS 38.413 clause 9.3.3.5";
 }

 typedef Nci {
 description "NR Cell Identity. The NCI shall be of fixed length of 36 bits
 and shall be coded using full hexadecimal representation.
 The exact coding of the NCI is the responsibility of each PLMN operator";
 reference "TS 23.003";
 type union {
 type string {
 length 36;
 pattern '[01]+';
 }
 type string {
 length 9;
 pattern '[a-fA-F0-9]*';
 }
 }
 }

 typedef OperationalState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum DISABLED {
 value 0;
 description "The resource is totally inoperable.";
 }

 enum ENABLED {
 value 1;
 description "The resource is partially or fully operable.";
 }

 }
 }

 typedef BasicAdministrativeState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum LOCKED {
 value 0;
 description "The resource is administratively prohibited from performing
 services for its users.";
 }

 enum UNLOCKED {
 value 1;
 description "The resource is administratively permitted to perform
 services for its users. This is independent of its inherent
 operability.";
 }
 }
 }

 typedef AdministrativeState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum LOCKED {
 value 0;
 description "The resource is administratively prohibited from performing
 services for its users.";
 }

 enum UNLOCKED {
 value 1;
 description "The resource is administratively permitted to perform
 services for its users. This is independent of its inherent
 operability.";
 }

 enum SHUTTINGDOWN {
 value 2;
 description "Use of the resource is administratively permitted to
 existing instances of use only. While the system remains in
 the shutting down state the manager or the managed element
 may at any time cause the resource to transition to the
 locked state.";
 }
 }
 }

 typedef AvailabilityStatus {
 type enumeration {
 enum IN_TEST;
 enum FAILED;
 enum POWER_OFF;
 enum OFF_LINE;
 enum OFF_DUTY;
 enum DEPENDENCY;
 enum DEGRADED;
 enum NOT_INSTALLED;
 enum LOG_FULL;
 }
 }

 typedef CellState {
 type enumeration {
 enum IDLE;
 enum INACTIVE;
 enum ACTIVE;
 }
 }

 typedef Nrpci {
 type uint32;
 description "Physical Cell Identity (PCI) of the NR cell.";
 reference "TS 36.211 subclause 6.11";
 }

 typedef Tac {
 type int32 {
 range 0..16777215 ;
 }
 description "Tracking Area Code";
 reference "TS 23.003 clause 19.4.2.3";
 }

 grouping TaiGrp {
 description "This <<dataType>> defines a Tracking Area Identity (TAI)
 as specified in clause 28.6 of TS 23.003, clause 8.2 of TS 38.300
 and clause 9.3.3.11 of TS 38.413. It is composed of the PLMN
 identifier (PLMN-Id, which is composed of the MCC and MNC) and
 the Tracking Area Code (TAC). ";
 list plmnId {
 description "PLMN Identity.";
 min-elements 1;
 max-elements 1;
 key "mcc mnc";
 uses types3gpp:PLMNId;
 }

 leaf tac { type Tac; }
 }

 grouping GeoCoordinateGrp {
 description "Geographical location on earth";
 leaf latitude {
 type decimal64 {
 fraction-digits 4;
 range -90..90 ;
 }
 mandatory true;
 description "Latitude based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to the
 northern hemisphere.";
 }

 leaf longitude {
 type decimal64 {
 fraction-digits 4;
 range -180..180 ;
 }
 mandatory true;
 description "Longitude based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to
 degrees east of 0 degrees longitude.";
 }
 }

 grouping GeoAreaGrp {
 description "This data type defines a geographical area.
 The geo-area is defined using a convex polygon in the attribute
 'convexGeoPolygon'.";

 list convexGeoPolygon {
 description "Specifies the geographical area with a convex polygon.
 The convex polygon is specified by its corners.";
 key "latitude longitude";
 min-elements 3;
 ordered-by user;

 uses GeoCoordinateGrp;
 }
 }

 typedef AmfRegionId {
 type union {
 type uint8 ;
 type string {
 length 8;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 typedef AmfSetId {
 type union {
 type uint16 {
 range '0..1023';
 }
 type string {
 length 8;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 typedef AmfPointer {
 type union {
 type uint8 {
 range '0..63';
 }
 type string {
 length 6;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 grouping AmfIdentifier {
 leaf amfRegionId {
 type AmfRegionId;
 }
 leaf amfSetId {
 type AmfSetId;
 }
 leaf amfPointer {
 type AmfPointer;
 }
 description "The AMFI is constructed from an AMF Region ID,
 an AMF Set ID and an AMF Pointer.
 The AMF Region ID identifies the region,
 the AMF Set ID uniquely identifies the AMF Set within the AMF Region, and
 the AMF Pointer uniquely identifies the AMF within the AMF Set. ";
 }

// type definitions especially for core NFs

 typedef NfType {
 type enumeration {
 enum NRF;
 enum UDM;
 enum AMF;
 enum SMF;
 enum AUSF;
 enum NEF;
 enum PCF;
 enum SMSF;
 enum NSSF;
 enum UDR;
 enum LMF;
 enum GMLC;
 enum 5G_EIR;
 enum SEPP;
 enum UPF;
 enum N3IWF;
 enum AF;
 enum UDSF;
 enum BSF;
 enum CHF;
 }
 }

 typedef NotificationType {
 type enumeration {
 enum N1_MESSAGES;
 enum N2_INFORMATION;
 enum LOCATION_NOTIFICATION;
 }
 }

 typedef Load {
 description "Latest known load information of the NF, percentage ";
 type uint8 {
 range 0..100;
 }
 }

 typedef N1MessageClass {
 type enumeration {
 enum 5GMM;
 enum SM;
 enum LPP;
 enum SMS;
 }
 }

 typedef N2InformationClass {
 type enumeration {
 enum SM;
 enum NRPPA;
 enum PWS;
 enum PWS_BCAL;
 enum PWS_RF;
 }
 }

 grouping DefaultNotificationSubscription {

 leaf notificationType {
 type NotificationType;
 }

 leaf callbackUri {
 type inet:uri;
 }

 leaf n1MessageClass {
 type N1MessageClass;
 }

 leaf n2InformationClass {
 type N2InformationClass;
 }
 }

 grouping Ipv4AddressRange {
 leaf start {
 type inet:ipv4-address;
 }
 leaf end {
 type inet:ipv4-address;
 }
 }

 grouping Ipv6PrefixRange {
 leaf start {
 type inet:ipv6-prefix;
 }
 leaf end {
 type inet:ipv6-prefix;
 }
 }

 typedef NsiId {
 type string;
 }

 typedef UeMobilityLevel {
 type enumeration {
 enum STATIONARY;
 enum NOMADIC;
 enum RESTRICTED_MOBILITY;
 enum FULLY_MOBILITY;
 }
 }

 typedef ResourceSharingLevel {
 type enumeration {
 enum SHARED;
 enum NOT_SHARED;
 }
 }

 typedef TxDirection {
 type enumeration {
 enum DL;
 enum UL;
 enum DL_AND_UL;
 }
 }

 grouping AddressWithVlan {
 leaf ipAddress {
 type inet:ip-address;
 }
 leaf vlanId {
 type uint16;
 }
 }

 /* DistinguishedName pattern is built up based on the
 EBNF in 32.300 clause 7.3 EBNF of DN String Representation

 leaf DN { type string { // Same pattern as LocalDN
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?(,[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)*';
 } }

 leaf fullLocalDN { type string { // LocalRDN , { RDNSeparator , LocalRDN } RDNSeparator is a single , no space or \R allowed Me.mykey=1 allowed
 // (fullLocalRDN)(,(fullLocalRDN))*
 pattern '(([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?))(,(([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)))*';
 } }

 leaf LocalDN { type string { // LocalRDN , { RDNSeparator , LocalRDN } RDNSeparator is a single , no space or \R allowed
 // LocalRDN(,LocalRDN)*
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?(,[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)*';
 } }

 leaf fullLocalRDN { type string { // same as fullLocalDNAttributeTypeAndValue
 pattern '([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)';
 } }

 leaf LocalRDN { type string { // same as LocalDNAttributeTypeAndValue
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?';
 } }

 leaf fullLocalDNAttributeTypeAndValue { type string { // LocalDNAttributeType , AttributeTypeAndValueSeparator , RegularAttributeValue
 // pattern LocalDNAttributeType=RegularAttributeValue
 pattern '([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)';
 } }

 // limitation: NamesOfClassAndNamingAttributenot supported Me.mykey=1
 leaf LocalDNAttributeTypeAndValue { type string {
 // ebnf1 LocalDNAttributeType , AttributeTypeAndValueSeparator , RegularAttributeValue
 // ebnf2-limited NameOfClassWithIdAttribute , AttributeTypeAndValueSeparator , RegularAttributeValue
 // pattern NameOfClassWithIdAttribute=RegularAttributeValue
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?';
 } }

 leaf LocalDNAttributeType { type string { // NameOfClassWithIdAttribute | NamesOfClassAndNamingAttribute RDNSeparator is a single , no space or \R allowed
 // NameOfClassWithIdAttribute|NamesOfClassAndNamingAttribute
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*)';
 } }

 leaf RegularAttributeValue { type string { // (AttributeValueChar - SpaceChar) , [{ AttributeValueChar } , (AttributeValueChar - SpaceChar)]
 pattern '([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?' ;
 } }

 leaf NamesOfClassAndNamingAttribute { type string { // ClassName , ClassNamingAttributeSeparator , NamingAttributeName
 // pattern: ClassName\.NamingAttributeName
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*' ;
 } }

 leaf restrictiveClassName { type string { //
 pattern '[a-zA-Z][a-zA-Z0-9-_]*' ;
 } }

 leaf ClassName { type string { // CapitalLetterChar , { LocalDNAttributeTypeChar }
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*' ;
 } }

 leaf NamingAttributeName { type string { // SmallLetterChar , { LocalDNAttributeTypeChar }
 pattern '[a-z][^,=+<>#;\\"\r\n*.]*' ;
 } }

 */
 typedef DistinguishedName {
 type string {
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|'
 + '(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*'
 + '([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?'
 + '(,[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))'
 + '(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*'
 + '([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)*';
 }
 description "Represents the 3GPP standard for DistinguishedName.

 Limitations:
 - RDNSeparator: don't allow SpaceChar or CarriageReturnChar
 - NullDN: Disallow nullDN that is the same as not providing a DN
 - NamesOfClassAndNamingAttribute format not allowed
 (eg. ManagedElement.mykey=345436)";
 reference "3GPP TS 32.300";
 }

 typedef QOffsetRange {
 type int8 {
 range "-24 | -22 | -20 | -18 | -16 | -14 | -12 | -10 | -8 | -6 | " +
 " -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | " +
 " 12 | 14 | 16 | 18 | 20 | 22 | 24";
 }
 units dB;
 }

 grouping ReportingCtrl {
 choice reportingCtrl {
 mandatory true;
 description "
 This choice defines the method for reporting collected performance
 metrics to MnS consumers as well as the parameters for configuring the
 reporting function. It is a choice between the control parameter
 required for the reporting methods, whose presence selects the
 reporting method as follows:

 - When only the fileReportingPeriod attribute is present, the MnS
 producer shall store files on the MnS producer at a location selected
 by the MnS producer and, on condition that an appropriate subscription
 is in place, inform the MnS consumer about the availability of new
 files and the file location using the notifyFileReady notification.
 In case the preparation of a file fails, 'notifyFilePreparationError'
 shall be sent instead.

 - When the 'fileReportingPeriod' and 'notificationRecipientAddress'
 attributes are present, then the MnS producer shall behave like
 described for the case that only the 'fileReportingPeriod' is present.
 In addition, the MnS producer shall create on behalf of the MnS
 consumer a subscription, using 'NtfSubscriptionControl', for the
 notification types 'notifyMOICreation' and 'notifyMOIDeletion' related
 to the 'File' instances that will be produced later. In case an existing
 subscription does already include the 'File' instances to be produced,
 no new subscription shall be created. The
 'notificationRecipientAddress' attribute in the created
 'NtfSubscriptionControl' instance shall be set to the value of the
 'notificationRecipientAddress' in the related 'PerfMetricJob'. This
 feature is called implicit notification subscription, as opposed to the
 case where the MnS consumer creates the subscription (explicit
 notification subscription). When the related 'PerfMetricJob' is
 deleted, the 'NtfSubscriptionControl' instance created due to the
 request for implicit subscription shall be deleted as well.

 - When only the fileReportingPeriod and fileLocation attributes are
 present, the MnS producer shall store the files on a MnS consumer, that
 can be any entity such as a file server, at the location specified by
 fileLocation. No notification is emitted by the MnS producer.

 - When only the streamTarget attribute is present, the MnS producer
 shall stream the data to the location specified by streamTarget.

 For the file-based reporting methods the fileReportingPeriod attribute
 specifies the time window during which collected measurements are
 stored into the same file before the file is closed and a new file is
 opened.";

 case file-based-reporting {
 leaf fileReportingPeriod {
 type uint32 {
 range 1..max;
 }
 units minutes;
 mandatory true;
 description "For the file-based reporting method this is the time
 window during which collected measurements are stored into the same
 file before the file is closed and a new file is opened.
 The time-period must be a multiple of the granularityPeriod.

 Applicable when the file-based reporting method is supported.";
 }
 choice reporting-target {
 case file-target {
 leaf fileLocation {
 type string ;
 description "Applicable and must be present when the file-based
 reporting method is supported, and the files are stored on the MnS
 consumer.";
 }
 }
 case notification-target {
 leaf notificationRecipientAddress {
 type string;
 description "Must be present when the notification-based reporting
 method is supported, and the the files are available as
 notifications for the MnS consumer to subscribe to.";
 }
 }
 description "When netiher fileLocation or notificationRecipientAddress
 are present, the files are stored and available to the MnS consumer
 if the MnS subscribes to the notifyFileReady notification.";
 }
 }

 case stream-based-reporting {
 leaf streamTarget {
 type string;
 mandatory true;
 description "Applicable when stream-based reporting method is
 supported.";
 }
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE ***
