

	
3GPP TSG-SA4 Meeting #128	S4-241339
Jeju, Korea (Republic Of), 20th May 2024 - 24th May 2024	Revision of S4-241171
	Revision of S4-241125
	Revision of S4-241061
	CR-Form-v12.3

	CHANGE REQUEST

	

	
	26.258
	CR
	0002
	rev
	3
	Current version:
	18.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Adding ISAR track-a split rendering feature to TS 26.258 and Corrections to the IVAS C-Code and corresponding specification text

	
	

	Source to WG:
	Dolby Sweden AB, Ericsson LM, Fraunhofer IIS, Huawei Technologies Co Ltd., Nokia Corporation, NTT, Orange, Panasonic Holdings Corporation, Philips International B.V., Qualcomm Incorporated, VoiceAge Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	IVAS_Codec, ISAR
	
	Date:
	2024-05-14

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	1) The split rendering feature enabled with this CR was selected by SA4 according to the ISAR selection procedure. This CR replaces CR0001, as presented at SA4#127-bis-e
2) After the submission of the initial IVAS C-Code to SA4#125, continued and extended testing (both, mechanical and subjective) has revealed a number of issues that have to be corrected. These issues include crashes, address/memory sanitizer errors, undefined-behavior sanitizer errors, quality issues.
3) The listener orientation axes are not defined correctly.
4) The distance attenuation parameter of the renderer configuration is not defined.
5) Add provision of provision of HRIR / BRIR filter sets as control data for binaural audio rendering by means of Matlab scripts in order include custom HRIRs/BRIRs (inline wih IVAS-4)
6) IVAS specific Split Rendering solution: LC3plus bitrates don’t comply with Bluetooth BAP profile

	
	

	Summary of change:
	1) The feature is introduced in section 4.5 and fully described in a new subsection under section 7 (Functional description of the rendering, rendering control, and pre-rendering).

2) Corrections to the findings as described above, specifically corrections to:

· Various crashes, especially for bitrate switching and packet-loss conditions
· Various sanitizer errors (address sanitizer, memory sanitizer, unbehaved behavior sanitizer)
· Various improvements to memory allocation
· Various corrections for bitrate switching
· Code refactoring and improvements
· Broken JBM functionality for OSBA
· Correction to various quality issues
· CNA too high in ISM DTX with JBM (
· Wrong object panning for OMASA at 32 and 48 kbit/s (MR 1095)
· Loudness mitmatch for rendering 7.1.4 at 160 kbit/s to mono or stereo (MR 1069)
· Clicks for MDCT-Stereo DTX with mono output for transitions inactive -> active (MR 1173)
· Wrong rendering rendering 7.1.4 at 160 kbit/s to SBA (MR 1151)
· Distorted multi-channel output in 5ms rendering (MR 1311)
· Mismatch in OSBA output gain (MR 1341)
· ParamMC and ParamUpmix binaural room reverb with head rotation energy not correct (MR 1382)
· Level drop in high-bitrate ISM configurations (MR 1516)
· Glitches for border-cases in ParamMC output (MR 1563)
· Corrections which impact interoperability with previous versions:
· Added missing SBA order bits for OSBA (MR 1501)
· Adjust OSBA discrete-coding x-over bitrate (MR 1347)
· For SBA, add signaling of input signal order to bitstream (MR 1539)
· Introduce an introduce finite precision comparison in MASA surround coherence entropy coding for 384 and 512 kbit/s (MR 1486); this issue was detected during the conversion to BASOP.

A complete list with all merge requests affecting the source code is available at https://forge.3gpp.org/rep/ivas-codec-pc/ivas-codec/-/wikis/Documentation/MRs-in-20240522_delivery_SA4_128_final

3) An incorrect specification of the listener orientation may lead to an incorrect rendering of the audio scene.
4) The use of the distance attenuation feature would not be documented and the parsing of the binary format renderer configuration may fail.
5) As part of the electronic attachment, a set of Matlab scripts is provided to provision custom HRIR / BRIR filter sets as control data for binaural audio rendering including new HRIRs as proposed and agreed in S4-241134.
6) IVAS specific Split Rendering solution: Correct LC3plus bitrates in order to comply with Bluetooth BAP profile (agreed S4-241004).

	
	

	Consequences if not approved:
	IVAS codec will not offer a split rendering feature and potentially not be available on lightweight end devices. Significant issues with IVAS C-code, i.e. crashes, memory issues, undefined behavior, impact on BASOP-port, quality issues, missing support for custom HRIRs/BRIRs.

	
	

	Clauses affected:
	3.3, 4, 5.11, 5.14.2, 5.16, 5.17, Annex B.1, Annex B.2
Electronic attachment

	
	

	
	Y
	N
	
	

	Other specs
	X
	
	 Other core specifications	
	TS 26.253 CR 0003
TS 26.254 CR 0001
TS 26.255 CR 0001

	affected:
	X
	
	 Test specifications
	TS 26.258 CR 0001

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Changes to the electronic attachment will be implemented in S4-241172.

	
	

	This CR's revision history:
	S4-241061: Initial Version
S4-241125: R1, with additional changes to the electronic attachment only
S4-241171: R2, with additional changes to the electronic attachment only
S4-241339: R3, corrections to cover sheet

* * * First Change * * * *
[bookmark: _Toc145650943]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
ACN	Ambisonic Channel Number
CICP	Coding-independent Code Points
CSV	Comma Separated Values
EVS	Enhanced Voice Services
FB	Fullband
FEC	Frame Erasure Concealment
HRTF	Head Related Transfer Function
ISM	Independent Stream with Metadata
IVAS	Immersive Voice and Audio Services
ISAR	Immersive Audio for Split Rendering Scenarios
JBM	Jitter Buffer Management
LFE	Low Frequency Enhancement
MASA	Metadata-Assisted Spatial Audio
MC	Multi-channel
NB	Narrowband
OBA	Object Based Audio
SBA	Scene Based Audio
SID	Silence Insertion Descriptor
SWB	Super Wideband
WB	Wideband
[bookmark: EDM_endabb_]WMOPS	Weighted Millions of Operations Per Second

		* * * Next Change * * * *
[bookmark: _Toc145650944]4	C code structure
This clause gives an overview of the structure of the floating-point C code and provides an overview of the contents and organization of the C code attached to the present document.
The C code has been verified on the following platforms:
-	IBM PC compatible computers with Windows 10 operating systems and Microsoft Visual C++ 2017 compiler, 32-bit.
C was selected as the programming language because portability was desirable.
[bookmark: _Toc145650945]4.1	Contents of the C source code
The C code is organized as listed in Table 1:
Table 1: Source code directory structure
	Directory
	Description

	readme.txt
	information on how to compile and use

	Makefile
	UNIX style encoder Makefile

	Workspace_msvc/
	Directory for the MSVC 2017 (or newer) project files

	apps/
	Source code files used solely for the encoder/decoder/renderer applications; these applications make use of the libraries built from lib_com, lib_dec, lib_enc, lib_rend, and lib_util

	lib_com/
	Source code files used both in encoder and decoder

	lib_dec/
	Source code files used solely in the decoder

	lib_enc/
	Source code files used solely in the encoder

	lib_isar/
	Source code files used solely for split rendering

	lib_lc3plus/
	Source code files used solely for split rendering

	lib_rend/
	Source code files used solely in the renderer

	lib_util/
	Source code files solely for utility functions used by the applications

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM data is contained in files named "rom_*" and “ivas_rom_*” with suffix "c".
Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is installed, this directory will have a compiled version of the encoder (named IVAS_cod), the decoder (named IVAS_dec), and the renderer (named IVAS_rend) and the split rendering post-renderer (named ISAR_post_rend).
[bookmark: _Toc145650946]4.2	Program execution
The codec for Immersive Voice and Audio Services is implemented in fourthree programs:
-	IVAS_cod: encoder;
-	IVAS_dec: decoder;
- 	IVAS_rend: renderer;
- 	ISAR_post_rend: split rendering post-renderer..
The programs should be called like:
-	IVAS_cod [encoder options] <input file> <bitstream file>;
-	IVAS_dec [decoder options] <bitstream file> <output file>;
- 	IVAS_rend [renderer options] -i <input file> -if <input format> -o <output file> -of <output format>;
-	ISAR_post_rend [post-renderer options] -i < bitstream file or input file> -if <input format> -o <output file>.
The input and output files contain 16-bit linear encoded PCM samples (headerless or in WAVE format) and the bitstream file contains encoded data.
The encoder, decoder, and renderer options will be explained by running the programs without any input arguments. See the file readme.txt for more information on how to run the IVAS_cod, IVAS_dec, and IVAS_rend and ISAR_post_rend programs.

* * * Next Change * * * *
[bookmark: _Toc143608879]5.11	Head rotation trajectory file (decoder/renderer input)
In the reference implementation of the codec, input data representing the current rotation of the listeners head can be provided to the decoder in an ASCII formatted file comprising four columns separated by commas. These columns contain floating-point numbers representing either a quaternion or a Euler angle. The distinction between these two input formats is made by a magic number in the first column. If this value is set to -3.0, it is assumed that the remaining three columns contain three Euler angles. Otherwise, all four columns are interpreted as a Quaternion. The input is expected to have one line for each subframe of 5 ms.
In the case of Quaternion-based input, the columns are the w, x, y, z components of a unit quaternion. Proper normalization to 1 shall be maintained in the input. The coordinate system is defined such that the x-axis points into the direction of view from the left to the right ear, the y axis points into the direction of viewright to the left ear, and the z axis point from bottom to top. The origin is in the center of the head. For example, an approximate 90-degree rotation around the horizontal (z) axis would be represented by the following input line:
0.707107,0.000000,0.000000,0.70710-
.
In the case of Euler-angle input, the first column contains the magic number -3.0, and the next three columns are the Euler angles yaw, pitch, and roll. The rotations are applied in the order yaw-pitch-roll. The yaw angle rotates around the z axis. The pitch angle rotates around the new y axis. The roll angle rotates around the new x axis. The equivalent of the example line above is then:
-3.0,90.000035,0.000000,0.000000
		* * * Next Change * * * *
[bookmark: _Toc145650966][bookmark: _Toc162519148]5.14.2	Text renderer config metadata format
The text based renderer configuration file contains the following syntax elements:
[general]	header of general metadata
binaryConfig = path;	path to the binary configuration file
[roomAcoustics]	header of room acoustic metadata group
frequencyGridCount = N;	number of frequency grids
acousticEnvironmentCount = N;	number of acoustic environments
[frequencyGrid:N] 	header of a frequency grid, where N is a zero-based, sequential grid index
method = individualFrequencies | startHopAmount | defaultBanding;
specifies frequency grid representation method
nrBands = N;	number of frequency bands, applicable for individual frequencies and start-hop-amount representation methods
frequencies = [...];	center frequencies for individualFrequencies representation method, a comma separated list of N numeric values (ints or floats)
startFrequency = value;	starting frequency for start-hop-amount representation method
frequencyHop = value;	frequency hop for start-hop-amount representation method. Center frequencies for a grid are computed as fcn = fcn-1 * hop
defaultGrid = N;	default grid identifier. The available default grids are as in Annex B.1, Table B.4.
defaultGridOffset = N;	it is possible to use a subset of a default grid by specifying an offset - index of the first center frequency of the default grid and
defaultGridNrBands = N;	number of bands from the default grid to be used
[acousticEnvironment:N]	header of an acoustic environment element, where N is a zero-based grid index (does not have to be sequential)
frequencyGridIndex = N;	index of the frequency grid (see above) used for frequency dependent parameters
preDelay = value;	a delay at which DSR (diffuse to source ratios) were measured
rt60 = [...];	RT60 values per frequency band
dsr = [...];	diffuse to source sound energy ratio per frequency band
earlyReflectionsSize = [x, y, z];	shoebox model room size in x, y, z dimension in meters
absorptionCoeffs = [x1, x2, y1, y2, z1, z2];
early reflections absorption coefficients per wall
listenerOrigin = [x, y, z];	early reflections listener origin (optional) as offset from the room center
lowComplexity = TRUE | FALSE;	early reflection low-complexity mode flag (FALSE by default)
[directivitySetting]	header of the directivity data group
directivityCount = N;	number of directivity components
[directivityPattern:N]	header of a directivity pattern element, where N is a zero-based element index
directivity = [ia, oa, og];	directivity data: ia – inner angle, oa – outer angle, og – outer gain.
[SPLITREND]	header of split rendering group
BITRATE = R;	split rendering bitrate
DOF = N;	degree of freedom (N ranging from 0 to 3)
HQMODE = N;	High quality mode for 3DOF (N can be 0 or 1), adds more complexity at pre-renderer
CODEC = X; 	split rendering transport codec (X can be LCLD or LC3plus or NONE)	
FRAMESIZE = [5, 10, 20]	frame size in ms of the split rendering transport codec. Note: LC3plus supports 5 and 10 ms framesize, LCLD supports 5, 10 and 20 ms framesize.
The config file format supports comments starting with a hash sign #. It also supports splitting data into multiple lines, useful in case of larger arrays.
		* * * Next Change * * * *
5.16	Split rendering pose correction file (decoder/renderer output, post-renderer input)
The split rendering pose correction file used with PCM split rendering audio data (output of decoder/renderer and input to post-renderer, mode BINAURAL_SPLIT_PCM) is described in TS 26.253, clause 7.6.2.3 and clause 7.6.7.
5.17	Split rendering bitstream file (decoder/renderer output, post-renderer input)
The split rendering bitstream file (output of decoder/renderer and input to post-renderer, mode BINAURAL_SPLIT_CODED) is described in TS 26.253, clause 7.6.7.

		* * * Next Change * * * *
[bookmark: _Toc145650974]Annex B (normative):
Binary renderer config metadata format
[bookmark: _Toc145650975]B.1	Definition of binary renderer config metadata format
The binary renderer config metadata format consists of acoustic environment and, directivity payload components and distance attenuation components (payloadRendConfig, see Table B.1). The acoustic environment component (payloadAcEnv, see Table B.2) metadata syntax consists of a frequency grids element (payloadFreqGrid) containing single or multiple frequency grids, and a single or multiple acoustic environments. An acoustic environment contains a late reverb element (payloadLateReverb), and optionally a shoebox model element for early reflections synthesis (payloadEarlyReflections). This construction allows for dynamic switching between acoustic environments by selecting an environment using its identifier (revAcEnvID). This facilitates multiple use cases, such as scenes with multiple, fully independent rooms, dynamic scene changes, or user selectable acoustics environments. The payload syntax of the payloadAcEnv() and its elements are shown in the tables below. Locally atomic data components are marked bold with their respective size in bits and mnemonic format, and their descriptions are provided below the payload element tables. The complex payload elements are provided in subsequent tables.
Table B.1: Syntax of payloadRendConfig
	Syntax
	Bits
	Mnemonic

	payloadRendConfig() {
	
	

		if (hasAcEnv) {
	1
	bslbf

			payloadAcEnv();
	
	

		}
	if (hasDirectivity) {
		payloadDirectivity();
	}
	if (hasDistanceAttenuation) {
		payloadDistanceAttenuation();
	}
	
1

1
	
bslbf

bslbf

	}
	
	

…
Table B.9: Syntax of GetFrequency
	Syntax
	Bits
	Mnemonic

	frequency = GetFrequency() {
	
	

		frequency = LUT(frequencyCode);
	var
	vlclbf

		if (moreAccuracy) {
	1
	bslbf

			frequency = frequency * 2^((frequencyRefine + 1) / 51);
	4
	uimsbf

		return frequency;
	
	

	}
	
	

frequencyCode	Code that indicates a center frequency in Hz of a one-third octave band (see Table B.20)
moreAccuracy	Flag that indicates whether data for a more accurate frequency is transmitted.
frequencyRefine	Field that indicates a value for refining the frequency value.

The payloadDirectivity() elements describe the source directivity pattern. Each pattern has an ID and the objects can be assigned to use a specific ID.
Table B.9a1: Syntax of payloadDirectivity
	Syntax
	Bits
	Mnemonic

	payloadDirectivity() {
	
	

		directivityCount = GetCountOrIndex ();
	var
	vlclbf

		for (i = 0; i < directivityCount; i++) {
	
	

			directivityIndex = GetCountOrIndex ();
	var
	vlclbf

			ia[directivityIndex] = getAngle();
	
	

			oa[directivityIndex] = getAngle();
	
	

			og[directivityIndex] = getOuterGain();
	
	

		}
	
	

	}
	
	

Table B.9a2: Syntax of GetAngle
	Syntax
	Bits
	Mnemonic

	angle = GetAngle() {
	
	

		angle = angleCode * 20.0;
	5
	bslbf

		return angle;
	
	

	}
	
	

Table B.9a3: Syntax of GetOuterGain
	Syntax
	Bits
	Mnemonic

	outerGain = GetAngle() {
	
	

		log_gain = -90.0 + outerGainCode * 3.0;
	5
	bslbf

		outerGain = 10^(log_gain/20);
	
	

		return outerGain;
	
	

	}
	
	

The payloadDistanceAttenuation describes the distance attenuation parameters that is used for all objects being rendered.
Table B.9a4: Syntax of payloadDistanceAttenuation
	Syntax
	Bits
	Mnemonic

	payloadDistanceAttenuation() {
	
	

			rd = GetRefDistMeters();
	
	

			md = GetMaxDistMeters();
	
	

			rf = GetRolloffFactor();
	
	

		}
	
	

	}
	
	

Table B.9a5: Syntax of GetRefDistMeters
	Syntax
	Bits
	Mnemonic

	refDist = GetRefDistMeters() {
	
	

		refDist = (refDistCode + 1) * 0.1;
	6
	bslbf

		return refDist;
	
	

		}
	
	

Table B.9a6: Syntax of GetMaxDistMeters
	Syntax
	Bits
	Mnemonic

	maxDist = GetMaxDistMeters() {
	
	

		maxDist = (maxDistCode + 1) * 1.0;
	6
	bslbf

		return maxDist;
	
	

		}
	
	

Table B.9a7: Syntax of GetRolloffFactor
	Syntax
	Bits
	Mnemonic

	rolloffFactor = GetRolloffFactor() {
	
	

		rolloffFactor = rolloffFactorCode* 0.1;
	6
	bslbf

		return rolloffFactor;
	
	

		}
	
	

		* * * Next Change * * * *
[bookmark: _Toc145650976]B.2	Support Elements Look-up Tables
This clause contains the look-up tables used in the binary renderer config metadata.
Table B.10: countOrIndexLoCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	0111
	0
	001010
	13
	111101
	26
	1101000
	39
	1011011
	52

	100
	1
	001001
	14
	111100
	27
	1100111
	40
	1011010
	53

	01100
	2
	001000
	15
	111011
	28
	1100110
	41
	1011001
	54

	01101
	3
	000111
	16
	111010
	29
	1100101
	42
	1011000
	55

	01010
	4
	000110
	17
	111001
	30
	1100100
	43
	1010111
	56

	01011
	5
	000101
	18
	111000
	31
	1100011
	44
	1010110
	57

	01000
	6
	000100
	19
	1101111
	32
	1100010
	45
	1010101
	58

	01001
	7
	000011
	20
	1101110
	33
	1100001
	46
	1010100
	59

	001111
	8
	000010
	21
	1101101
	34
	1100000
	47
	1010011
	60

	001110
	9
	000001
	22
	1101100
	35
	1011111
	48
	1010010
	61

	001101
	10
	000000
	23
	1101011
	36
	1011110
	49
	1010001
	62

	001100
	11
	111111
	24
	1101010
	37
	1011101
	50
	1010000
	63

	001011
	12
	111110
	25
	1101001
	38
	1011100
	51
	
	

…
Table B.22: absorptionCode look-up table
	Code
	Value

	110
	0

	100
	0.1

	101
	0.2

	0110
	0.3

	0111
	0.4

	111
	0.5

	0100
	0.6

	0101
	0.7

	0010
	0.8

	0011
	0.9

	000
	1

Table B.23: Syntax of payloadDirectivity
	Syntax
	Bits
	Mnemonic

	payloadDirectivity() {
	
	

		directivityCount = GetCountOrIndex ();
	var
	vlclbf

		for (i = 0; i < directivityCount; i++) {
	
	

			directivityIndex = GetCountOrIndex ();
	var
	vlclbf

			ia[directivityIndex] = getAngle();
	
	

			oa[directivityIndex] = getAngle();
	
	

			og[directivityIndex] = getOuterGain();
	
	

		}
	
	

	}
	
	

Table B.24: Syntax of GetAngle
	Syntax
	Bits
	Mnemonic

	angle = GetAngle() {
	
	

		angle = angleCode * 20.0;
	5
	bslbf

		return angle;
	
	

		}
	
	

Table B.25: Syntax of GetOuterGain
	Syntax
	Bits
	Mnemonic

	outerGain = GetAngle() {
	
	

		log_gain = -90.0 + outerGainCode * 3.0;
	5
	bslbf

		outerGain = 10^(log_gain/20);
	
	

		return outerGain;
	
	

		}
	
	

Table B.26: angleCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	00000
	0
	00101
	5
	01010
	10
	01111
	15

	00001
	1
	00110
	6
	01011
	11
	10000
	16

	00010
	2
	00111
	7
	01100
	12
	10001
	17

	00011
	3
	01000
	8
	01101
	13
	10010
	18

	00100
	4
	01001
	9
	01110
	14
	
	

Table B.27: outerGainCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	00000
	0
	00110
	6
	01100
	12
	10010
	18
	11000
	24
	11110
	30

	00001
	1
	00111
	7
	01101
	13
	10011
	19
	11001
	25
	
	

	00010
	2
	01000
	8
	01110
	14
	10100
	20
	11010
	26
	
	

	00011
	3
	01001
	9
	01111
	15
	10101
	21
	11011
	27
	
	

	00100
	4
	01010
	10
	10000
	16
	10110
	22
	11100
	28
	
	

	00101
	5
	01011
	11
	10001
	17
	10111
	23
	11101
	29
	
	

Table B.28: refDistCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	000000
	0
	001100
	12
	011000
	24
	100100
	36
	110000
	48
	111100
	60

	000001
	1
	001101
	13
	011001
	25
	100101
	37
	110001
	49
	111101
	61

	000010
	2
	001110
	14
	011010
	26
	100110
	38
	110010
	50
	111110
	62

	000011
	3
	001111
	15
	011011
	27
	100111
	39
	110011
	51
	111111
	63

	000100
	4
	010000
	16
	011100
	28
	101000
	40
	110100
	52
	
	

	000101
	5
	010001
	17
	011101
	29
	101001
	41
	110101
	53
	
	

	000110
	6
	010010
	18
	011110
	30
	101010
	42
	110110
	54
	
	

	000111
	7
	010011
	19
	011111
	31
	101011
	43
	110111
	55
	
	

	001000
	8
	010100
	20
	100000
	32
	101100
	44
	111000
	56
	
	

	001001
	9
	010101
	21
	100001
	33
	101101
	45
	111001
	57
	
	

	001010
	10
	010110
	22
	100010
	34
	101110
	46
	111010
	58
	
	

	001011
	11
	010111
	23
	100011
	35
	101111
	47
	111011
	59
	
	

Table B.29: maxDistCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	000000
	0
	001100
	12
	011000
	24
	100100
	36
	110000
	48
	111100
	60

	000001
	1
	001101
	13
	011001
	25
	100101
	37
	110001
	49
	111101
	61

	000010
	2
	001110
	14
	011010
	26
	100110
	38
	110010
	50
	111110
	62

	000011
	3
	001111
	15
	011011
	27
	100111
	39
	110011
	51
	111111
	63

	000100
	4
	010000
	16
	011100
	28
	101000
	40
	110100
	52
	
	

	000101
	5
	010001
	17
	011101
	29
	101001
	41
	110101
	53
	
	

	000110
	6
	010010
	18
	011110
	30
	101010
	42
	110110
	54
	
	

	000111
	7
	010011
	19
	011111
	31
	101011
	43
	110111
	55
	
	

	001000
	8
	010100
	20
	100000
	32
	101100
	44
	111000
	56
	
	

	001001
	9
	010101
	21
	100001
	33
	101101
	45
	111001
	57
	
	

	001010
	10
	010110
	22
	100010
	34
	101110
	46
	111010
	58
	
	

	001011
	11
	010111
	23
	100011
	35
	101111
	47
	111011
	59
	
	

Table B.30: rolloffFactorCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	000000
	0
	001100
	12
	011000
	24
	100100
	36

	000001
	1
	001101
	13
	011001
	25
	100101
	37

	000010
	2
	001110
	14
	011010
	26
	100110
	38

	000011
	3
	001111
	15
	011011
	27
	100111
	39

	000100
	4
	010000
	16
	011100
	28
	101000
	40

	000101
	5
	010001
	17
	011101
	29
	
	

	000110
	6
	010010
	18
	011110
	30
	
	

	000111
	7
	010011
	19
	011111
	31
	
	

	001000
	8
	010100
	20
	100000
	32
	
	

	001001
	9
	010101
	21
	100001
	33
	
	

	001010
	10
	010110
	22
	100010
	34
	
	

	001011
	11
	010111
	23
	100011
	35
	
	

* * * End of Change * * * *

