3GPP TR 26.958 V0.2.0 (2026-02)
14
Release 20

	[bookmark: page1] 3GPP TR 26.958 V0V0.2.0.1.1 (2025-20265-0211)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on 3D Gaussian splats for mobile;
(Release 20)

		

	[image:]
	[image:]

	

	[bookmark: warningNotice]The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© 2025, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	5
Introduction	6
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.4	Abbreviations	8
4	3DGS representation format	8
4.1	Introduction	8
4.2	Primitives	9
4.3	Camera parameters	9
5	Use cases	9
5.1	Introduction	9
5.2	On-device capture and sharing of a static 3DGS scene	9
5.2.1	Description	9
5.2.2	Working assumptions	10
5.3	Exploration of a large 3DGS environment	11
5.3.1	Description	11
5.3.2	Working assumptions	12
5.4	Dynamic 3DGS content	12
5.4.1	Description	12
5.4.2	Working assumptions	13
5.5	 3D Avatar communication	14
6	Quality factors	14
6.1	Introduction	14
6.2	Discussion	14
6.3	Complexity	16
6.4	Metrics	16
6.5	Data size	16
7	Static 3DGS content creation	16
7.1	3DGS generic workflow	16
7.2	Capture	16
7.3	Structure from Motion	17
7.4	Training	18
7.4.1 	Introduction	18
7.4.2 	Gaussian initialization	18
7.4.3 	Projective footprint	18
7.4.4 	Loss and optimization	18
7.4.5	Discussion	19
8	3DGS rendering	19
8.1	Pipeline description	19
8.2	Rasterization process	20
8.2.1 Introduction	20
8.2.2 Main stages	20
8.2.3 Detailed implementation	21
8.2.3.1 Introduction	21
8.2.3.2 Optional spatial binning	21
8.2.3.3 Front-to-back ordering	21
8.2.3.4 Per-pixel fused evaluation and optional early termination	21
8.2.3.5 Numerical precision and robustness	21
8.3 	Variants and optimization techniques	21
9	High level media data workflows	22
9.1	All-in-client configuration	22
9.1	Client-server configuration	22
10	Mapping to the 3GPP services	22
10.1	All in UE configuration	22
10.2	Client-server configuration	22
11	Related activities and products and services	22
11.1	Standardization activities	23
11.2	Services	23
11.3	Software and products	23
12 	Reference implementation	23
12.1	Capture	23
12.2	Transmission	23
12.4 	Rendering	23
Annex : <Informative annex title for a Technical Report>	24
B.1	Heading levels in an annex	24
Annex <X> (informative): Change history	25

For definitive guidance on drafting 3GPP TSs and TRs, see 3GPP TS 21.801 supplemented by the 3GPP web page http://www.3gpp.org/specifications-groups/delegates-corner/writing-a-new-spec.
Ensure all blue guidance text is removed before submitting the TS/TR to the TSG for approval.
[bookmark: foreword][bookmark: _Toc214542861]Foreword
This clause is mandatory; do not alter the text in any way other than to choose between "Specification" and "Report".
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.

[bookmark: introduction][bookmark: _Toc214542862]Introduction
This clause is optional. If it exists, it shall be the second unnumbered clause.
[bookmark: scope][bookmark: _Toc214542863]
1	Scope
This clause shall start on a new page.
The present document …

[bookmark: references][bookmark: _Toc214542864]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[aa]	KB. Kerbl, G. Kopanas, T. Leimkühler, G. Drettakiserbl et al,. "3D Gaussian Splatting for Real-Time Radiance Field Rendering", ACM Transactions on Graphics, volume 42(4), July 2023.
[ac]	3GPP TR 26.928: "Extended Reality (XR) in 5G".
[ad] 	Wang et al., Z. Wang; A.C. Bovik; H.R. Sheikh;, E.P. Simoncelli, "Image Quality Assessment: From Error Visibility to Structural Similarity", IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004
[ae] 	Satish et al., N. Satish, M. Harris, M. Garland, "Designing Efficient Sorting Algorithms for Manycore GPUs", Proceedings of IEEE International Symposium on Parallel & Distributed Processing, (pp. 1-10, 2009).
[af] 	T. Porter, T. Duff, et al., "Compositing Digital Images", Computer Graphics (SIGGRAPH '84 Proceedings), 18(3), 253-259.
[ag] 	J. Wang, M. Chen, N. Karaev, A. Vedaldi, C. Rupprecht, D. Novotny: "VGGT: Visual Geometry Grounded Transformer", arXiv:2503.11651, March 2025.
[ah] 	H. Xu, H. Yu, S. Peng, R. Pautrat, M. Pollefeys, A. Geiger: "DepthSplat: Connecting Gaussian Splatting and Depth", arXiv:2410.13862, October 2024.
[ai] 	L. Jiang, Y. Mao, L. Xu, T. Lu, K. Ren, Y. Jin, X. Xu, M. Yu, J. Pang, F. Zhao, D. Lin, B. Dai, L. Jiang, Y. Mao, L. Xu, et al.: "AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views", arXiv:2505.23716, May 2025.
[aj] 	K. Zhang, S. Bi, H. Tan, Y. Xiangli, N. Zhao, K. Sunkavalli, Z. Xu: "GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting", arXiv:2404.19702, April 2024.
[ak] 	G. Kang, S. Nam, S. Yang, X. Sun, S. Khamis, A. Mohamed, E. Park: "iLRM: An Iterative Large 3D Reconstruction Model", arXiv:2507.23277, July 2025.
[al] 	W. Lin, Y. Feng, Y. Zhu: "MetaSapiens: Real-Time Neural Rendering with Efficiency-Aware Pruning and Accelerated Foveated Rendering", arXiv:2407.00435, July 2024.
[am] 	F. Hahlbohm, F. Friederichs, T. Weyrich, L. Franke, M. Kappel, S. Castillo, M. Stamminger, M. Eisemann, M. Magnor, F. Hahlbohm, F. Friederichs, T. Weyrich, et al.: "Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency", arXiv:2410.08129, October 2024. (Correspond à la mention "HTGS" dans votre texte).
[an] 	QQ. Hou, R. Rauwendaal, Z. Li, H. Le, F. Farhadzadeh, F. Porikli, A. Bourd, A. Said, . Hou, F. Farhadzadeh, H. Le, et al.: "Sort-free Gaussian Splatting via Weighted Sum Rendering", arXiv:2410.18931, October 2024.
[ao] 	S. Kheradmand, D. Vicini, G. Kopanas, D. Lagun, W.M. Yi, M. Matthews, A. Tagliasacchi,S. Kheradmand, D. Vicini, G. Kopanas, et al .: "StochasticSplats: Stochastic Rasterization for Sorting-Free 3D Gaussian Splatting", arXiv:2503.24366, March 2025.
[ba]	Kiri Engine, https://www.kiriengine.app/
[bb] 	Niantic Scaniverse, https://scaniverse.com/
[bc] 	Polycam, https://poly.cam/
[bd] 	Luma AI, https://lumalabs.ai/
[be]	awSet PotShot, https://www.jawset.com/.
[bf] 	LichtFeld Studio , https://lichtfeld.io/
[bg] 	SuperSplat, https://superspl.at/
[bh]	Gauzilla, https://www.gauzilla.xyz/
[bi1	G. Wu,, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, & X. Wang, "4D Gaussian Splatting for Real-Time Dynamic Scene Rendering". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 20310–20320, 2024.
[bj] 	J. Luiten, G. Kopanas, B. Leibe, & D. Ramanan, "Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis”, arXiv :2308.09713, 2023.
[bk] 	Z. Yang, H. Yang, Z. Pan, & L. Zhang. "Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting”. arXiv:2310.10642, 2024.
[bl] 	Y. Duan, F. Wei, Q. Dai, Y. He, W. Chen, & B. Chen, "4D Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes”, SIGGRAPH, 2024.
|editorial note: It is preferred that the reference to 21.905 be the first in the list.]

[bookmark: definitions][bookmark: _Toc214542865]3	Definitions of terms, symbols and abbreviations
This clause and its three subclauses are mandatory. The contents shall be shown as "void" if the TS/TR does not define any terms, symbols, or abbreviations.
[bookmark: _Toc214542866]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Aanisotropic: refers to Gaussians whose shape and orientation vary by direction, allowing them to take ellipsoidal forms instead of uniform spheres. This enables more accurate modelling of local geometry and surface details by adapting each splat’s spread and rotation in 3D space.
3D tile: A discrete spatial partition of a massive geospatial dataset, defined by a specific bounding volume enabling the optimized streaming and progressive rendering of content based on the viewer's proximity and field of view.
Tracked 3DGS: a temporally consistent Gaussian representation where each Gaussian primitive has an identity preserved across frames and the time evolution can be modeled (e.g., position, covariance, SH coefficients).
Semi‑Tracked 3DGS: a partially consistent representation where some subsets of gaussians are tracked over time, but splits, merges, or new gaussians appear/disappear, and identity consistency is intermittent.
Untracked 3DGS: a frame‑based representation where each frame is an independent Gaussian cloud with no temporal correspondences between frames.
[bookmark: _Toc214542867]3.2	Symbols
For the purposes of the present document, the following symbols apply:
Symbol format (EW)
<symbol>	<Explanation>

[bookmark: _Toc214542868]3.4	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
3DGS	3D Gaussian Splatting
SH	Spherical Harmonic
PLY	Polygon file format
UE	User Equipment
XR	eXtended Reality
LOD	Level Of Detail
SfM	Structure from Motion

[bookmark: clause4][bookmark: _Toc214542869]4	3DGS representation format
[Editor’s note: Placeholder for the description of the 3DGS format and characteristics]
[bookmark: _Toc214542870]4.1	Introduction
A 3D Gaussian Splatting (3DGS) scene is represented as a set of continuous primitives, anisotropic 3D Gaussians, each carrying geometric parameters and radiometric attributes. It was first introduced in 2023 in the research paper 3D Gaussian Splatting for Real-Time Radiance Field Rendering from INRIA [aa]. The data model captures a primitive’s spatial support (position, orientation, shape) and its appearance (view-dependent color).
[bookmark: _Toc214542871]4.2	Primitives
[Editor’s note: align the definition with what the industry develops]
A 3DGS primitive is an oriented 3D Gaussian with the following attributess.fields. The items below describe data elements, independent of any specific encoding:
-	Position: 3D scene position of the primitive expressed with x, y, and z coordinates in the local space system.
-	Rotation: Primitive orientation, that may be defined with a normalized quaternion, defining the local axes of the Gaussian.
-	Scale: Per-axis scales that set the primitive’s spatial sizes.
-	Opacity: Blending weight controlling the splat’s contribution during compositing.
-	Direct color (DC): Per-channel base color (linear RGB) used when no view dependence is applied.
-	Spherical harmonics (SH) color: Per-channel coefficient set up to a declared order between 0 and 3 enabling view-dependent color. According to the order, the number of SH the number of stored SHsSH are 0, 3, 8 and 15.
The source 3DGS data is generally stored in a PLY file containing 32- bits floating point values but other data types may also be used such as 16- bits integersinteger or 16- bits floating points.
[bookmark: _Toc214542872]4.3	Camera parameters
To ensure accurate and high-quality rendering, it is important to reuse the position and settings of the cameras used to capture the 3DGS scenes during the rendering process.
For each acquired view, complete camera information may be necessary: extrinsic parameters (pose as a matrix or quaternion translation in the scene's coordinate system), intrinsic parameters (models: pinhole, fisheye, etc.), lens parameters, as well as temporal metadata (time stamp, shutter model), photometric parameters (exposure, white balance), and a camera identifier for multi-sensor systems. This information is generally available during training and may be retained with the 3DGS .ply files.
This data makes it possible to constrain the user's positions to the correctly acquired position zones, thus limiting low-quality renderings and allowing the reuse of camera information during rendering to update projection parameters and obtain renderings close to the acquired images.
[bookmark: _Hlk220940303][Editor’s Note: How those parameters may improve the rendering could be good to study.]

[bookmark: _Toc214542873]5	Use cases
[Editor’s note: Placeholder for the description of the use cases]
[bookmark: _Toc214542874][bookmark: _Hlk220938266]5.1	Introduction
The present clause describes service scenarios illustrating the generation and the consumption of 3DGS scenes as well as associated working assumptions on the service configurations that serve as basis for detailed analysis documented in the following clauses of this technical report.
[bookmark: _Toc214542875]5.2	On-device capture and sharing of a static 3DGS scene
[bookmark: _Toc214542876]5.2.1	Description
A user initiates a short capture session on a mobile device (UE) using the rear or front camera(s). Various typical capture patterns may be supported, per example:
-	Object/person sweep ("object scan", "3D selfie"): the user moves around a subject at close range, recording multiple viewpoints to ensure good coverage and parallax.
-	Panorama-like clip: the user records a brief handheld video from one fixed position to capture a landscape, room, or monument by a small camera motion (panning).
During capture, the application may guide the user (e.g., coverage hints, exposure/focus locks) and may collect auxiliary signals (e.g., estimated pose, depth sensor data, lens parameters, focal, inertial measurement unit, device GPS, capture framerate…).
From the captured frames, the UE generates a static 3DGS model. Depending on device capability and policy:
-	Generation may happen locally in the UE (e.g. for small objects and short captured clips).
-	Generation may be offloaded to edge/cloud (e.g. for faster turnaround or higher quality).
-	The generation pipeline may be configured to meet the capabilities of the UE, and may include image selection, photometric normalization, background segmentation, UE metadata-based initialization, optimization, decimation, and quantization. Other techniques suitable for mobile devices may also be used.
The 3DGS models may be packaged for exchange and sent to another UE via commonly available channels (e.g., MMS, OTT messaging, or file transfer).
Upon reception on in a UE, the application loads the 3DGS model and provides an interactive viewing experience:
-	6DoF or constrained-6DoF: the user is offered the ability to rotate the scanned object/person, zoom, and slightly shift the viewpoint.
-	For larger scenes or non 360 scanned models, the application may constrain motion to the positions around the original capture position(s) to avoid out-of-bound views.
-	The 3DGS model may be rendered in AR or VR, depending on device capabilities and user preferences.
-	In addition to 2D displays, dedicated AR/VR devices (glasses or headsets) could be used to display the 3DGS models within a 360-degree environment.
3GPP TR 26.928 [ac] outlines the 5G XR framework, including a definition of XR use cases and delivery modes. This use case is aligned with Annex A.2 "3D Image Messaging", which describes a capture, 3D model creation, shared and local viewing flow.
[bookmark: _Toc214542877]5.2.2	Working assumptions
This section clause outlines the end-to-end processing chain, from capture to rendering on the receiving UE. It enumerates the key functional blocks, and device capability requirements.
-	Acquisition and 3DGS content generation
-	Sensor capture (RGB video, potentially depth and position and orientation if available).
-	On-device 3DGS generation (including structure from motion and training) or upload of 2D captures to the edge/cloud for content generation, then reception of the generated static 3DGS asset into the UE.
[Editor’s note: both workflows are expected to be documented because they have different uplink/downlink traffic and latency profiles.]
-	Compression and packaging
-	The resulting static 3DGS scene is serialized into a delivery format.
[Editor’s note: characterize which Gaussian parameters need to be signalled (position, scale, orientation, color, spherical harmonics, opacity, etc.) and what level of precision and number of gaussians is required for acceptable quality meeting the EU's performance capabilities. This directly impacts file size and bitrate]
[Editor’s note: To be considered whether existing 3GPP media delivery frameworks (e.g. MMS, messaging, file transfer) may carry a static 3DGS models without new protocol work, or whether new signalling is needed]
-	Transport and delivery
-	For 3DGS model sharing using 3D messaging, the static 3DGS object could be delivered as a discrete file or binary stream using existing 3GPP services (e.g. MMS, messaging, file download, …).
-	Given the amount of data in a static scene and the limits in terms of the number of gaussians for efficient rendering on a UE, latency is not considered critical.
-	Decoding and decompression
-	The UE receiving the 3DGS model parses and decompresses the 3DGS structure and may load it into GPU memory.
-	Rendering
-	Real-time splat-based renderer on a mobile via CPU and/or GPU.
-	Viewpoint movement is locally constrained to the "captured frustum envelope", i.e. viewpoint positions to where the original cameras were during capture, to avoid visual holes and to respect creative intent.
-	User navigation may be restricted by the application to ensure collision avoidance with the 3DGS object and/or to limit the possible views to the captured areas.
[Editor’s note: how “allowed navigation volume” is expressed to the receiver for safety, privacy, and quality reasons]
[bookmark: _Toc214542878]5.3	Exploration of a large 3DGS environment
[bookmark: _Toc214542879]5.3.1	Description
In this scenario the user explores a large 3DGS environment on a UE with responsive 6DoF or constrained-6DoF navigation.
A user launches an application and selects a large 3DGS scene (e.g., museum, mall level, outdoor plaza, city, …). The UE requests visible parts of the scenes around the current pose and prefetches likely next regions based on motion prediction. The navigation is expected be constrained to captured spaces to avoid out-of-bounds views.
The environment is delivered as an adaptive set of 3D tiles at various level of details (LOD). Edge/cloud assistance may be used for content preparation and low-latency delivery.
At session start, the service negotiates device capabilities and network constraints, then selects an initial set of 3D tiles at various level of details to display the 3DGS scenes according to user's position and orientation.
The selection of 3D tiles and their level of detail (LOD) is performed based on user movement and device capabilities and bandwidth. A buffering process may be used to mask variations in bandwidth and quality in each region. The selection process must maintain a constant number of 3D Gaussian splats displayed at any given time to ensure good quality and smooth navigation by minimizing variations in visual quality and the number of frames per second rendered.
According to the 3D tiles loaded, the rendering process may display the 3DGS scene. A smooth transition may be applied by the renderer to limit the visual effect of the level of detail changes. For safety and quality, motion is restricted to the captured region.
Interactive delivery of 3D tiles is used to receive the 3DGS data at various level of details.
The 3DGS model may be rendered in AR or VR, depending on device capabilities and user preferences. Adding to smartphone device, dedicated AR/VR devices (glasses or headsets) could be used to display the 3DGS models.
TR 26.928 [aa] alignment (informative): This use case maps to interactive 6DoF streaming with optional split compute/rendering at the edge; downloaded media with local interactivity may apply when scenes are cached for offline revisit.
[bookmark: _Toc214542880][bookmark: _Hlk220939337]5.3.2	Working assumptions
This section clause outlines the end-to-end processing chain, emphasising adaptive delivery and device capability requirements.
-	Acquisition and content generation
-	The capture and the generation of large 3DGS scenes are not addressed in this use case.
-	Based on the 3DGS models, the region-based parts of the 3DGS scenes are generated for adaptive delivery.
-	Compression and packaging
-	3D tiled LODs are serialized into a delivery format with signalling for spatial and LOD indices and dependencies.
[Editor’s note: workflow is expected to be documented because it has different uplink/downlink traffic and latency profiles according to the precision per LOD and 3D tiles.]
[Editor’s note: characterize which Gaussian parameters need to be signalled (position, scale, orientation, color, spherical harmonics, opacity, etc.) and what level of precision and number of gaussians is required for acceptable quality meeting the EU's performance capabilities. This directly impacts file size and bitrate]
[Editor’s note: To be considered whether existing 3GPP media delivery frameworks (e.g. MMS, messaging, file transfer) may carry a static 3DGS models without new protocol work, or whether new signalling is needed]
-	Transport and delivery
-	Interactive delivery and predictive prefetch; edge-assisted content hosting is recommended for latency control.
-	Latency targets are tighter due to interactive navigation; buffering strategies aim to minimise latencies and popping visual artifacts
-	Decoding and decompression
-	The UE parses the 3D tile indices, fetches/decompresses 3DGS chunks, and manages GPU residency for active 3D tiles.
-	Rendering
-	Real-time splat-based renderer on mobile GPU with 3D tile/LOD switching and temporal stability safeguards.
-	Navigation is constrained to the allowed-view volume derived from the capture information.
-	Navigation may be further constrained to collision detection with 3DGS objects in the scene. For example, by analysing the local splats density or using objects bounding boxes, or with a pre-defined authorized navigation area.
[Editor’s note: how “allowed navigation volume” is expressed to the receiver for safety, privacy, and quality reasons]
[bookmark: _Toc214542881]5.4	Dynamic 3DGS content
[bookmark: _Toc214542882]5.4.1	Description
A UE receives time-varying 3DGS content depicting a dynamic subject or scene (e.g., a performer, dancer, singer, exhibition moment, band, sport action …). The UE renders the 3DGS content sequence in real time. The delivery and rendering process may also be assisted by the network through mechanisms such as partial delivery or network-assisted rendering. The user is offered the ability to adjust the viewpoint locally within a constrained navigation volume while the subject or scene itself changes dynamically over time. This is analogous to volumetric video streaming, except the rendering primitive is 3D Gaussian splats rather than textured meshes or voxels.
This use-case is mainly focused on the delivery, decoding, and real-time rendering of pre-recorded dynamic 3DGS sequences (e.g. on-demand streaming of file download). Depending on feasibility, live dynamic 3DGS capturing and delivery may also be considered at a later stage.
This use case aligns with 3GPP TR 26.928 [aa], specifically Use Case 3: Streaming of Immersive 6DoF (non-live/on-demand variant).
[bookmark: _Toc214542883]5.4.2	Working assumptions
This section clause outlines the end-to-end processing chain covering the delivery and rendering of dynamic 3DGS content, emphasising adaptive delivery and device capability requirements.
-	Acquisition and content generation
-	The capture and the generation of dynamics 3DGS models are not the focus of this use case, but the feasibility of such processes using non-professional setups may be considered at a later stage.
-	Compression and packaging
-	Sequence serialization with time indices
- 	The 3DGS sequence is compressed to meet the service and bandwidth constraints in term of bitrate.
[Editor’s note: the scene complexity may impact the feasibility of this use case on mobile platforms and associated limitations need to be identified.]
[Editor’s note: workflow is expected to be documented because it has different uplink/downlink traffic and latency profiles.]
[Editor’s note: characterize which Gaussian parameters need to be signalled (position, scale, orientation, color, spherical harmonics, opacity, etc.) and what level of precision and number of gaussians is required for acceptable quality meeting the EU's performance capabilities. This directly impacts file size and bitrate]
[Editor’s note: To be considered whether existing 3GPP media delivery frameworks (e.g. MMS, messaging, file transfer) can carry a static 3DGS models without new protocol work, or whether new signalling is needed]
-	Transport and delivery
-	On-demand streaming and file delivery is used to transmit the 3DGS compressed data.
-	Partial delivery or streaming of the 3DGS compressed data may also be supported depending on the 3DGS data characteristics as well as UE and network capabilities.
-	The delivery of the UE’s pose information is needed when performing partial delivery.
-	Decoding and decompression
-	The UE and/or network parses the dynamic scene, fetches/decompresses 3DGS data, and manages GPU residency for visible gaussian splats.
-	Rendering
-	Real-time splat-based renderer.
-	Navigation is constrained to the allowed-view volume derived from the capture information.
-	Navigation may be further constrained to collision detection with 3DGS objects in the scene. For example, by analysing the local splats density or using objects bounding boxes, or with a pre-defined authorized navigation area.
-	Rendering may also be done by the network if using network-assisted rendering.
[Editor’s note: how “allowed navigation volume” is expressed to the receiver for safety, privacy, and quality reasons]
[bookmark: _Toc214542884]5.5		3D Avatar communication
[bookmark: _Hlk220948429]5.5.1	Description
A user is represented by an avatar that combines a rigged mesh and a 3D Gaussian Splat layer for fine detail. The sender transmits a time aligned animation stream and a static 3DGS as part of the base avatar. The animation stream drives the rig and blendshapes. The renderer composites mesh shading with 3DGS contributions. The approach reduces texture distribution and enables photoreal micro geometry without heavy UV textures.
The following fFigure 5.5.1-1figure depicts the use case:
[image: Une image contenant Visage humain, personne, capture d’écran, homme

Le contenu généré par l’IA peut être incorrect.]
Figure 15.5.1-1:: Use case of a 3DGS avatar in a 3D avatar call.
 [Editor’s note: We expect refinement on the format later.]
5.5.2	Working assumptions
[Editor’s note: We expect refinement on the format later.]

[bookmark: _Toc214542885]6	Quality factors
[Editor’s note: Placeholder for the description of the quality factors]
[bookmark: _Toc214542886]6.1	Introduction
[bookmark: _Toc214542887]6.2	Discussion
The objectives of FS_3DGS_MED cover a wide range of aspects in the end-to-end workflow related to 3DGS, including on those related to workflow aspects:
b.	Consistent end-to-end quality across different capturing and rendering systems for 3DGS representations.
In order to be able to approach this objective it is necessary to have ana understanding of the different factors which may affect the quality for a certain 3DGS representation, including those related to capturing, generation, representation formats, as well as rendering. Whilst it is useful to study these different aspects separately in order to identify the different solutions and technologies available, each of these aspects also have significant impacts on the target quality of experience for the end consumer.
Table 1 6.2-1 below shows a concise list of different factors which may affect the overall quality of an experience using 3DGS:
Table 16.2-1: Factors which may affect the quality of a 3DGS experience
	Capture
	Generation
	Format
	Rendering

	- Number of cameras
- Camera placement or capture path(s)
- Depth information
	- Initialization tools (e.g. SfM)
- Projection tools
- Adaptive density control tools (dropout, overfitting etc.)
- AI tools
	- Attributes (what and how many)
- Bit depths for attributes
- Compression aspects
	- Hardware / software implementations
- Device display type

In order to be able to study the factors at each stage in the workflow, it may be useful to define a set of requirements for each reference scenario to be used in the study. Requirements may further be categorized into content requirements and workflow requirements.
Content requirements here may be associated to the nature of the volumetric scene which is to be captured as a 3DGS representation format, for example whether the capture is an object or a scene, the volume of the scene, and the characteristics of the details of interest within the scene.
In contrasts, workflow requirements may be a result of the limitations in the capturing, generation or rendering environments of the use case or scenario.
A brief example of these requirements is listed in table 2 6.2-2 below.
Table 26.2-2: Requirements for consideration associated to reference scenarios
	Content requirements
	Workflow requirements

	- Object vs scene
- Static vs dynamic
- Scene volumetric size
- Details of interest (number of persons / objects in the scene) including material properties
	- Limitations in capturing (no. cameras, capture placement)
- Limitations in generation (processing power, hardware)
- Live vs on-demand aspects

[bookmark: _Toc214542888]6.3	Complexity
6.3.1	Dynamic 3DGS
Dynamic scene complexity may significantly impact the feasibility of dynamic 3DGS content on mobile platforms. High‑motion or structurally complex scenes tend to increase GPU memory usage, rendering load, bandwidth consumption, and thermal pressure on the device.
The following parameters can directly constrain achievable frame rate, session duration, and desirable visual quality:
-	Number of Gaussians
-	Magnitude of motion
-	Presence of topology changes
-	Variability of Gaussian attributes
[Editor’s note: Determine the maximum scene complexity that representative UE categories can sustain based on these factors need to be studied.]
With respect to compression, highly dynamic content (e.g. multi‑person scenes, self‑occlusions, cloth or hair motion) often reduces the benefits of temporal prediction. Such content tends to require more frequent keyframes and weaken the temporal coherence assumptions underlying many coding algorithms. Encoding and decoding complexity therefore increases with the intrinsic complexity and temporal variability of the scene.
Dynamic 3DGS representations may be further categorized as tracked, partially tracked, or untracked, depending on whether Gaussian primitives maintain temporal associations across frames. These categories differ in their efficiency for temporal prediction and robustness to motion or topology changes.
[Editor’s note: Comparing these formats with respect to bitrate efficiency, latency, UE processing and resulting visual quality need to be studied.]
Further, the original INRIA 3DGS representation [X], widely used for static Gaussian‑based radiance field rendering, was designed for per‑scene optimization, static topology, and frame‑independent Gaussian attributes. As such, it does not exploit temporal redundancy and is not inherently optimized for dynamic content. Recent academic developments already explore alternatives overcoming such limitation. [bi], [bj], [bk], [bk]
[Editor’s note: The prevalent dynamic‑oriented 3DGS format(s) will need to be identified.]
[bookmark: _Toc214542889]6.4	Metrics
[bookmark: _Toc214542890]6.5	Data size

[bookmark: _Toc214542891]7	Static 3DGS content creation
[Editor’s note: Placeholder for the description of the 3DGS content creation processes]
[bookmark: _Toc214542892]7.1	3DGS generic workflow
As an example, a 3DGS model construction from the capture of 2D data follows the production workflow as illustrated in figure 27.1-1:
 [image: Une image contenant texte, capture d’écran, bande dessinée

Le contenu généré par l’IA peut être incorrect.]
Figure 27.1-1: 3DGS model production workflow from a 2D video
[bookmark: _Toc214542893]The workflow consists of three parts. First, the capture phase. During this phase, numerous views of a real-world object or scene are acquired from different positions, typically as photos or video frames.
Next, a Structure from Motion (SfM) step estimates the camera's intrinsic parameters and poses and reconstructs a sparse 3D structure, which serves as initialization for a set of Gaussians roughly aligned with the object. If the captures were performed using 3D scanning, this step may use depth information to improve accuracy.
Finally, during training, the rendered image of the current Gaussian scene is compared to the corresponding real-world image for each view and minimize the photometric error. As optimization progresses, the Gaussians are split or pruned, resized, reoriented, and their color/opacity is adjusted, progressively densifying and refining the scene to produce an accurate and consistent 3D representation with viewpoints.
7.2	Capture
Content acquisition for 3D Gaussian Splats (3DGS) relies on capturing accurate 3D data from real-world objects and environments. Primary methods include:
-	2D image and video capture: video sequences or sets of 2D images capture from various positions and orientations offer coverage of dynamic or complex environments. Sequential frames may provide dense colour and positional cues for downstream 3D reconstruction and Gaussian splat generation, making it practical for capturing motion or large-scale scenes efficiently.

-	3D Scanning: High-precision laser or LiDAR scanners provide accurate spatial measurements of objects and scenes, capturing dense geometric detail suitable for Gaussian splat representation. These devices enable large-scale and high-fidelity acquisition, though they require specialized equipment and controlled capture conditions.
-	Multi-Image Capture: Still images taken from multiple viewpoints allow detailed reconstruction of object surfaces. Overlapping images ensure sufficient coverage and colour information for later conversion to 3DGS format. This approach is cost-effective and flexible, particularly for small to medium scale scenes.
These capture methods focus on acquiring raw visual and spatial data, forming the foundation for 3DGS content generation.
[bookmark: _Toc214542894]7.3	Structure from Motion
The Structure from Motion (SfM) step consists in operating the feature extraction and matching and retrieving the camera parameters when unknown. After image alignment, the process creates a sparse point cloud that is further densified with depth calculation methods.
Camera parameters, often known by the capturing system include the focal length and centre and its distortion model from the lens. Even if the focal parameters may be estimated from the captured video from the SfM software, the lens distortion model if ignored may result in an anamorphic 3d model.
Given frames with unknown intrinsics/extrinsics :
-	Feature detection and matching: detect keypoints (e.g., using Scale-Invariant Feature Transform (SIFT) or Oriented FAST and Rotated BRIEF (ORB), build tracks and a view graph, then perform geometric verification.
-	Relative pose: estimate the essential matrix via a 5‑point solver within RANdom SAmple Consensus (RANSAC); decompose to and select the cheirality‑consistent solution.
-	Incremental Structure from Motion (SfM)+ Bundel Adjustments (BA): grow the reconstruction, triangulate , and refine intrinsics/extrinsics/structure with bundle adjustment (BA) using a robust loss and optional radial distortion .
This translates into the following optimization problem, with observations and projection :

This equation minimizes the reprojection error between observed 2D points and projected 3D points across multiple views, where:
-	- Camera parameters for each view :
- 	: Intrinsic calibration matrix (focal length, principal point, skew)
-	: Rotation matrix (camera orientation)
-	: Translation vector (camera position)
-	- 3D coordinates of the -th point in the scene (the sparse reconstruction)
-	: Visibility set, pairs where point is visible in camera
-	: Observed 2D pixel coordinates of point in image
-	: Projection function that maps 3D point to 2D image coordinates using camera parameters and optional distortion
-	: Squared L2 norm for squared Euclidean distance
-	: Robust loss function (e.g., Huber, Cauchy) to reduce influence of outliers
The goal is to minimize the difference between where points actually appear in images () and where they should appear given the estimated 3D structure and camera parameters ().
[bookmark: _Toc214542895]7.4	Training
[bookmark: _Toc214542896]7.4.1 	Introduction
The third step is about the creation of the gaussian splats associated to each 3D point using iterative optimization process that will search for the splats that match as much as possible the source video for a given pose (position + orientation) by optimizing the size, shape, colour and transparency of the splats.
[bookmark: _Toc214542897]7.4.2 	Gaussian initialization
From the sparse cloud, instantiate an anisotropic Gaussian per point/patch with mean , rotation , scales , and covariance
Each splat has opacity scale and view‑dependent color encoded by SH coefficients , a standard low‑order lighting basis.
[bookmark: _Toc214542898]7.4.3 	Projective footprint
In camera :

Using perspective with Jacobian at , the screen‑space ellipse is

For pixel ,

Front‑to‑back alpha compositing (Porter–Duff) yields [ca]:

[bookmark: _Toc214542899]7.4.4 	Loss and optimization
For training, we supervise the reconstruction using observed frames and corresponding masks with the following objective:

where follows the structural similarity metric of [ad].
The 3DGS generation becomes a differentiable optimization problem where the entire rendering pipeline, from 3D Gaussian parameters through projection, alpha blending, to final pixel colors, may be backpropagated through to compute gradients.
This differentiability enables machine learning techniques to automatically refine all parameters simultaneously: 3D positions {μᵢ}, covariances {Σᵢ}, opacities {αᵢ}, colors {cᵢ}, and camera parameters {Kₖ, Rₖ, tₖ}. Machine learning optimizers like Adaptive Moment Estimation (Adam) then use gradients to iteratively minimize error through gradient descent, just as in neural network training.
[bookmark: _Toc214542900]7.4.5	Discussion
The original paper on 3D Gaussian Splatting for Real-Time Radiance Field Rendering [aa] published in August of 2023 presents a workflow as shown belowin figure 7.4.5-1 below.:
[image:]
Figure 17.4.5-1:: Organization of the workflow [aa]
Whilst the original workflow process includes a closed loop optimization problem using convergence with ground truths to output a learned representation, it should be noted that neural networks were not used in any part of the workflow.
Since the publish of the original paper, there has been an influx of research in academia to improve all aspects of the workflow, including the adoption of neural network-based techniques.
In particular, some methods gaining interest include:
-	VGGT: Visual Geometry Grounded Transformer [ag], a feed-forward neural network that directly infers all key 3D attributes of a scene, including camera parameters, points maps, depths amps and 3D point tracks, from one, a few, or hundreds of its view. VGGT is quickly replacing the more traditional Structure from Motion technique for the initialization process to create a sparce point cloud due to its faster and more accurate algorithm, especially when the number of input views is limited.
-	
Optimized learned representations to create 3DGS representations directly, such as DepthSplat [ah] (which connects depth estimation and 3DGS with a shared architecture) and AnySplat [ai] (which feeds uncalibrated input images into a feed-forward network without the need to known camera poses and per-scene optimization).

-	Scalable large reconstruction models for 3DGS, which focus on using transformer-based large reconstruction models that predicts 3D Gaussian primitives (as opposed to adopting triplane NeRF as the scene representation). Methods such as GS-LRM [aj] and iLRM [ak] have advantages of supporting scalability whilst being fast and maintaining good visual quality.

[bookmark: _Toc214542901]8	3DGS rendering
[Editor’s note: Placeholder for the description of the 3DGS rendering processes]
[bookmark: _Toc214542902]8.1	Pipeline description
The commonly used pipeline to render 3DGS objects is outlined in this clause. It defines the per-frame inputs, configurable options, and outputs of a representative implementation, without prescribing specific algorithms.
The inputs are, per 3DGS frame and per rasterized image:
-	3DGS data: per-Gaussian attributes as defined in section clause 4.2 of this document (e.g., position, scale, rotation, opacity, color (DC) and spherical harmonics (SH) coefficients).
-	Rendering parameters: camera pose (position/orientation), camera intrinsics (focal lengths, principal point), image resolution/viewport, and the view–projection matrix derived from these.
-	Rendering options (implementation-dependent).
-	Appearance model: SH degree/order used for view-dependent color (e.g., DC only, order-1, order-3).
-	Numerical precision: choice of FP16/FP32 for buffers and arithmetic, and tolerances for early termination.
-	Compositing rule: color blending mode for semi-transparent accumulation.
-	Parallelization strategy: work decomposition per-tile (screen-space bins), per-primitive (per-Gaussian), or per-pixel, including tile size and binning policy.
-	Culling policy: frustum and projected-size thresholds.
The outputs are:
-	Primary: an image buffer containing the rasterization of the 3DGS object at the requested resolution and color space.
-	Optional auxiliaries: alpha, opacity or depth buffers.
[bookmark: _Toc214542903]8.2	Rasterization process
[bookmark: _Toc214542904]8.2.1	 Introduction
This section clause presents a rendering process used to render a 3DGS model. A 3DGS model is rendered based on the observer’s position and orientation and on the Gaussian, primitives defined in Section clause 4.1. Depending on the chosen representation format, the rasterization described below may need to be updated to consider the format details.
[bookmark: _Toc214542905]8.2.2	 Main stages
The main steps of the rasterization process are:
-	Culling: all Gaussians are examined, and those that do not affect the image are eliminated: elements located behind the observer or entirely outside the targeted display area are removed.
-	Sorting: the remaining Gaussians are then sorted by distance from the observer, from farthest to closest, so that their semi-transparent contributions stack in a visually correct manner.
-	Gaussian color: For each Gaussian thus sorted, its apparent color is calculated from the observer's viewpoint by combining its base color (DC) with its spherical harmonic coefficients to capture viewpoint-related variations.
-	Projection: based on the position, scale, and rotation parameters of the Gaussian, the rasterization engine determines its location on the 2D screen and calculates the footprint it covers: an elliptical region centered on its projected position. Precise pixel boundaries are computed in the two 2D directions so only potentially covered pixels are processed.
-	Pixel color: For each pixel within its footprint, the Gaussian’s contribution is evaluated based on its opacity and its distance from the projection centre in screen space, with the influence decreasing progressively toward the edges.
-	Blending: This processing continues for all Gaussians, covering the pixel from the furthest Gaussian to the nearest and accumulating contributions until the final pixel color is obtained. Very small contributions may be ignored, and the updating of nearly opaque pixels may be stopped to optimize rendering.
[bookmark: _Toc214542906]8.2.3	 Detailed implementation
[bookmark: _Toc214542907]8.2.3.1	 Introduction
This section clause describes a typical rendering process close to the implementation presented in [aa]. Different variants and optimizations exist and are being used.
[bookmark: _Toc214542908]8.2.3.2	 Optional spatial binning
Each 3D Gaussian projects to a 2D ellipse characterized by its center [image:][image:] and covariance matrix [image:].[image:]. We compute an axis-aligned bounding box for each ellipse by extracting the [image:][image:] contour (typically with [image:][image:]) from [image:][image:] using either eigen-decomposition or direct bounds computation.
Each Gaussian is then assigned to all overlapping [image:][image:] pixel tiles in the image. For each tile, we store pairs [image:][image:] where [image:][image:] is the Gaussian index and [image:][image:] is the camera-space depth of the Gaussian's center, or an occlusion-aware depth proxy [aa].
This step is optional but helps improving the computational performance when rendering large GS scenes.
[bookmark: _Toc214542909]8.2.3.3	 Front-to-back ordering
To achieve correct alpha blending, Gaussians within each tile must be sorted by depth in front-to-back order. We quantize the depth values to fixed-width integer keys:
[image:]
where [image:][image:] is a scaling factor that maps the depth range to the integer key space. We then perform a stable least-significant-digit (LSD) radix sort per tile, typically using either three 8-bit passes or two 12-bit passes [ae].
[bookmark: _Toc214542910]8.2.3.4	 Per-pixel fused evaluation and optional early termination
For each pixel [image:][image:] within a tile, we iterate through the depth-sorted Gaussian indices. For each Gaussian that passes the ellipse membership test:
[image:]

we compute the Gaussian weight [image:][image:] and opacity [image:][image:] in a fused manner to minimize memory bandwidth consumption. We then accumulate the color and transmittance using the over operator [af]:
[image:]
where [image:][image:]is the accumulated color, [image:][image:]is the remaining transmittance, and [image:][image:]is the view-dependent color of Gaussian [image:][image:] evaluated at viewing direction [image:].[image:]. In an optimization, the iteration terminates early when the transmittance falls below a threshold [image:][image:], as subsequent Gaussians contribute negligibly to the final pixel color.
[bookmark: _Toc214542911]8.2.3.5	 Numerical precision and robustness
All accumulation operations use float32 (32-bit floating point) precision with alpha values clamped to the range [image:].[image:]. The transmittance [image:][image:] is biased away from zero to avoid denormal floating-point numbers, which may significantly degrade performance. The depth scaling factor must be chosen to preserve correct near-to-far ordering throughout the depth range, with special consideration for reverse-Z depth buffer configurations if employed. As an optional optimization, per-tile occlusion culling may terminate processing once the cumulative transmittance for all pixels in the tile drops below a threshold, thereby reducing computational work in densely populated regions of the scene.
[bookmark: _Toc214542912]8.3 	Variants and optimization techniques
As noted in the detailed sections clauses above, visual results and performance may vary significantly depending on implementation choices. Common variations include:
-	Appearance simplification: Reducing spherical harmonics order from 3 to 1 or 0 (DC only) to accelerate rendering at the cost of view-dependence and non-anisotropic rendering.
-	Sorting strategy: Choosing between various sorting strategies: software, hardware, Radix-sort, by blocks.
-	Precision: Using FP16 for storage buffers while keeping FP32.
-	Culling: Adjusting projected size thresholds or using per-tile occlusion culling to stop processing tiles that are already fully opaque.
Each choice affects sharpness, temporal stability, energy conservation, and GPU cost. It is common to adjust these parameters differently depending on the rasterization objectives: quality, latency, or real-time compromise.
Beyond these parameter adjustments, new 3DGS rendering technics targeting real-time deployment on heterogeneous platforms. Recent work focuses on more efficient splat rasterization processes:
-	For example, MetaSapiens introduces an efficiency-aware pruning strategy and foveated point-based neural rendering to reach real-time (>100 FPS) 3DGS on mobile GPUs [al].
-	Hybrid Transparency Gaussian Splatting (HTGS) [am] proposes several blending modes, including hybrid schemes that sort only the most important splats and treat the remaining ones with order-independent transparency, greatly reducing the cost of depth sorting while preserving quality [am].
-	Other approaches aim for fully sort-free rasterization, such as Weighted-Sum Rendering, which replaces non-commutative alpha blending by commutative weighted sums so that splats can be rendered using standard hardware blending without any explicit depth sorting [an].
-	StochasticSplats rasterization uses a Monte-Carlo estimator of the volume-rendering equation to blend overlapping Gaussians correctly while entirely removing the sorting step and gaining more than four-time speed-up over sorted rasterization [ao].

[bookmark: _Toc214542913]9	High level media data workflows
[Editor’s note: Placeholder for the description of the workflows]
[bookmark: _Toc214542914]9.1	All-in-client configuration
[bookmark: _Toc214542915]9.1	Client-server configuration

[bookmark: _Toc214542916]10	Mapping to the 3GPP services
[Editor’s note: Placeholder for the description of the 3GPP services used]
[bookmark: _Toc214542917]10.1	All in UE configuration
[bookmark: _Toc214542918]10.2	Client-server configuration

[bookmark: startOfAnnexes][bookmark: _Toc214542919]11	Related activities and products and services
[Editor’s note: Placeholder for the description of the products and services]
[bookmark: _Toc214542920]11.1	Standardization activities
[bookmark: _Toc214542921]11.2	Services
[bookmark: _Toc214542922]11.3	Software and products

With the increase in popularity of 3DGS, software and products related to 3DGS generation and rendering have proliferated. Some of these tools started out as 3D scanning or photogrammetry tools, but have added support for 3DGS generation, rendering, post-processing, etc. Below some popular consumer software and products are listed.
KIRI EngineTM [ba] is a cloud-based platform available on iOS and Android that captures scenes using photogrammetry or LiDAR, with Gaussian splat generation as one of its output formats. The tool produces Gaussian splats alongside traditional mesh or point cloud representations and is optimized for capturing objects or small scenes. Users have limited control over splat count, distribution, or colour representation, and the quality of the output depends heavily on the capture quality and coverage of the device used. Kiri allows export of 3DGS in ".ply" and other formats.
NianticTM ScaniverseTM [bb] is a smartphone application that performs local, on-device processing to generate 3D Gaussian splat representations from photos or videos. Using Structure-from-Motion (SfM) for camera pose estimation followed by Gaussian optimization, it produces outputs in formats such as ".ply", which are compatible with external viewers and downstream applications. The application is optimized for mobile devices, with training times typically taking minutes for small to medium-sized scenes. However, mobile GPU and thermal constraints limit the size and density of scenes that can be processed, and users cannot manually adjust SH order or apply splat pruning. Scaniverse produces 3DGS data that can be exported in ".ply" or ".spz" formats.
PolycamTM [bc], available on the web, iOS and Android, uses a cloud-based pipeline to convert photos or videos into Gaussian splats for interactive viewing, while also supporting mesh or point cloud generation in other modes. The cloud processing handles camera calibration, pose estimation, and splat optimization, with outputs available in ".ply" format for splats and standard formats for meshes. Users cannot control splat parameters or optimization details, and cloud processing may introduce non-deterministic results between repeated runs.
Luma AITM [bd] is an iOS and web-based platform that processes short handheld videos or image sets to generate neural scene representations rendered as Gaussian splats or hybrid neural radiance fields. The system uses pose estimation and scene normalization before optimizing Gaussian splats, which is claimed to ameliorate incomplete scene coverage and minor motion artifacts. Outputs are provided as interactive viewers, but raw Gaussian parameters or spherical harmonic (SH) coefficients are not exposed. Users cannot control splat count, density, or colour representation, and the outputs are oriented more toward visualization and sharing rather than integration into downstream pipelines. 3DGS generated with Luma AI cannot be exported as of February 2026.
JawsetTM PotshotTM [be] is a Windows-based desktop application that performs local, GPU-based processing to convert image sets into Gaussian splat representations. The application workflow involves alignment, optimization, and visualization of Gaussian splats, with performance scaling according to scene complexity and GPU capabilities. Postshot offers more consistent control over desktop-scale captures compared to mobile applications, but users cannot access its internal pipeline. Parameter tuning is also limited (for example, compared to research-oriented tools) such as the inability to control SH coefficients at a low level. Generated 3DGS can be exported in ".ply" format.
LichtFeld StudioTM [bf] is an opensource desktop application for Linux and Windows which supports local, GPU based 3DGS representation generation, editing and rendering with support for masking. The application requires input data with SfM already computed, that is images, pointclouds and camera locations. The application boasts features such as 3D Unscented (3DGUT) transform for rendering, Background Modulation for capturing black segments in the 3DGS, Timelapse for intermittent render quality checks or recording during training. The generated 3DGS is stored as a “ply” file and can be used in other supporting tools.
Besides the above, browser-based tools for sharing, editing or rendering 3DGS content are also being developed. Two examples being SuperSplatTM [bg] and GauzillaTM [bh], which are web-based tools that operate on existing 3DGS content, providing client-side rendering through WebGL or WebGPU. In addition to rendering and sharing 3DGS, Supersplat allows users to perform transformations, cropping, and basic filtering of datasets but do not support training or reconstruction of new Gaussian splats. Rendering fidelity may be lower compared to desktop GPU pipelines, and the tools seem suitable for post-processing or quick visualization tasks.
Table 11.3-1: Software and products related to 3DGS generation and rendering.
	Product
	App Type
	Processing
	Export Options

	KIRI EngineTM
	Mobile (iOS, Android)
	Cloud-based
	.ply and other formats

	NianticTM ScaniverseTM
	Mobile (smartphone)
	Local (on-device)
	.ply, .spz

	PolycamTM
	Web, Mobile (iOS, Android)
	Cloud-based
	.ply for splats, mesh formats

	Luma AITM
	Web, Mobile (iOS)
	Cloud-based
	No (February 2026)

	JawsetTM PotshotTM
	Desktop (Windows)
	Local (GPU-based)
	.ply

	LichFeld StudioTM
	Desktop (Windows/Linux)
	Local (GPU-based)
	.ply

[bookmark: _Toc214542923]12 	Reference implementation
[Editor’s note: Placeholder for the description of the reference implementation]
[bookmark: _Toc214542924]12.1	Capture
[bookmark: _Toc214542925]12.2	Transmission
[bookmark: _Toc214542926]12.4 	Rendering

[bookmark: _Toc214542927]
Annex :
<Informative annex title for a Technical Report>
Informative annexes in Technical Reports do not use "(informative") in the title, since all annexes in TRs are informative. Use style "Heading 9" in TRs.
[bookmark: _Toc214542928]B.1	Heading levels in an annex
Heading levels within an annex are used as in the main document, but for Heading level selection, the "A.", "B.", etc. are ignored. e.g. B.1.2 is formatted using Heading 2 style.

[bookmark: _Toc214542929]Annex <X> (informative):
Change history
[bookmark: historyclause]
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2025-11
	SA4#134
	S4-251765
	
	
	
	Technical report skeleton
	0.0.1

	2025-11
	SA4#134
	S4-252138
	
	
	
	3DGS representation format: S4-252069
Use cases: S4-252029, S4-252033, S4-252034, S4-251737 (2nd use case is agreed)
Quality factors: S4-252030
3DGS content generation: S4-252070, S4-25203, S4-252056
3DGS rendering: S4-252073, S4-252056
	0.1.0

	2025-11
	SA4#134
	S4-252137
	
	
	
	Editorial changes
	0.1.1

	2026-02
	SA4#135
	S4-260332
	
	
	
	Editorial changes: S4-260089
Software: S4-260186
Complexity: S4-260191
	0.2.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

3GPP
image3.jpeg
3DGS Avatar in a 3D Avatar Call

image4.png
2D video(s)

Data
acquisition

Structure
from Motion

Dense/sparse
point cloud

3D Gaussian
splatting
training

3DGS model

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf
Q

image13.emf
Q

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf
—C+Ta;(wc;(D), T «T(1l—a;(u

image35.emf

image36.emf

image37.emf

image38.emf

image39.emf

image40.emf

image41.emf

image42.emf

image43.emf

image44.emf

image45.emf

image46.emf

image47.emf

image48.emf

image49.emf

image50.emf

image51.emf

image1.png
~

5G

image2.png
=

A GLOBAL INITIATIVE

