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1. Introduction
This pseudo-change request proposes to update the TR document of the FS_3DGS_MED study, and more specifically section 8.4 relating to the Rendering.
2. Reason for Change
Provide a first version of this section. 
3. Proposal
It is proposed to agree the following changes to the 3GPP Draft TR 26.958.
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* * * Next Change * * * *
8 3DGS rendering
[Editor’s note: Placeholder for the description of the 3DGS rendering processes. It will be interesting to identify how this rendering process is mapped to the XR Baseline terminal architecture and interfaces defined in clause 5.1 of TS 26.119 in the context of AR]
[bookmark: _Toc213432165]8.1 Pipeline description 
The commonly used pipeline to render 3DGS objects is outlined in this clause. It defines the per-frame inputs, configurable options, and outputs of a representative implementation, without prescribing specific algorithms. 
The inputs are, per 3DGS frame and per rasterized image: 
· 3DGS data: per-Gaussian attributes as defined in section 4.2 of this document (e.g., position, scale, rotation, opacity, color (DC) and spherical harmonics (SH) coefficients).
· Rendering parameters: camera pose (position/orientation), camera intrinsics (focal lengths, principal point), image resolution/viewport, and the view–projection matrix derived from these.
· Rendering options (implementation-dependent).
-	Appearance model: SH degree/order used for view-dependent color (e.g., DC only, order-1, order-3).
-	Numerical precision: choice of FP16/FP32 for buffers and arithmetic, and tolerances for early termination.
-	Compositing rule: color blending mode for semi-transparent accumulation.
-	Parallelization strategy: work decomposition per-tile (screen-space bins), per-primitive (per-Gaussian), or per-pixel, including tile size and binning policy.
-	Culling policy: frustum and projected-size thresholds.
The outputs are:
· Primary: an image buffer containing the rasterization of the 3DGS object at the requested resolution and color space.
· Optional auxiliaries: alpha, opacity or depth buffers
[bookmark: _Toc213432168]8.2 Rasterization process
8.2.1 Introduction 
This section presents a rendering process used to render a 3DGS model. A 3DGS model is rendered based on the observer’s position and orientation and on the Gaussian, primitives defined in Section 4.1. Depending on the chosen representation format, the rasterization described below may need to be updated to consider the format details.
8.2.2 Main stages
The main steps of the rasterization process are: 
· Culling: all Gaussians are examined, and those that do not affect the image are eliminated: elements located behind the observer or entirely outside the targeted display area are removed.
· Sorting: the remaining Gaussians are then sorted by distance from the observer, from farthest to closest, so that their semi-transparent contributions stack in a visually correct manner.
· Gaussian color: For each Gaussian thus sorted, its apparent color is calculated from the observer's viewpoint by combining its base color (DC) with its spherical harmonic coefficients to capture viewpoint-related variations.
· Projection: based on the position, scale, and rotation parameters of the Gaussian, the rasterization engine determines its location on the 2D screen and calculates the footprint it covers: an elliptical region centered on its projected position. Precise pixel boundaries are computed in the two 2D directions so only potentially covered pixels are processed.
· Pixel color: For each pixel within its footprint, the Gaussian’s contribution is evaluated based on its opacity and its distance from the projection centre in screen space, with the influence decreasing progressively toward the edges. 
· Blending: This processing continues for all Gaussians, covering the pixel from the furthest Gaussian to the nearest and accumulating contributions until the final pixel color is obtained. Very small contributions may be ignored, and the updating of nearly opaque pixels may be stopped to optimize rendering.
8.2.3 Detailed implementation
8.2.3.1 Introduction 
This section describes a typical rendering process close to the implementation presented in [dd]. Different variants and optimizations exist and are being used.
8.2.3.2 Optional Sspatial binning 
Each 3D Gaussian projects to a 2D ellipse characterized by its center  and covariance matrix . We compute an axis-aligned bounding box for each ellipse by extracting the  contour (typically with ) from  using either eigen-decomposition or direct bounds computation. 
Each Gaussian is then assigned to all overlapping  pixel tiles in the image. For each tile, we store pairs  where  is the Gaussian index and  is the camera-space depth of the Gaussian's center, or an occlusion-aware depth proxy [dd]. 
This step is optional but helps improving the computational performance when rendering large GS scenes.
8.2.3.3 Front-to-back ordering 
To achieve correct alpha blending, Gaussians within each tile must be sorted by depth in front-to-back order. We quantize the depth values to fixed-width integer keys:


where  is a scaling factor that maps the depth range to the integer key space. We then perform a stable least-significant-digit (LSD) radix sort per tile, typically using either three 8-bit passes or two 12-bit passes [ee]. 
8.2.3.4 Per-pixel fused evaluation and optional early termination
For each pixel  within a tile, we iterate through the depth-sorted Gaussian indices. For each Gaussian that passes the ellipse membership test: 


we compute the Gaussian weight  and opacity  in a fused manner to minimize memory bandwidth consumption. We then accumulate the color and transmittance using the over operator [ff]:

where is the accumulated color, is the remaining transmittance, and is the view-dependent color of Gaussian  evaluated at viewing direction . In an optimization, the iteration terminates early when the transmittance falls below a threshold , as subsequent Gaussians contribute negligibly to the final pixel color. 
8.2.3.5 Numerical precision and robustness
All accumulation operations use float32 (32-bit floating point) precision with alpha values clamped to the range . The transmittance  is biased away from zero to avoid denormal floating-point numbers, which may significantly degrade performance. The depth scaling factor  must be chosen to preserve correct near-to-far ordering throughout the depth range, with special consideration for reverse-Z depth buffer configurations if employed. As an optional optimization, per-tile occlusion culling may terminate processing once the cumulative transmittance for all pixels in the tile drops below a threshold, thereby reducing computational work in densely populated regions of the scene.
8.2.4 Implementation variations
As noted in the detailed sections above, visual results and performance may vary significantly depending on implementation choices. Common variations include:
· Appearance simplification: Reducing spherical harmonics order from 3 to 1 or 0 (DC only) to accelerate rendering at the cost of view-dependence and non-anisotropic rendering.
· Sorting strategy: Choosing between various sorting strategies: software, hardware, Radix-sort, by blocks.
· Precision: Using FP16 for storage buffers while keeping FP32.
· Culling: Adjusting projected size thresholds or using per-tile occlusion culling to stop processing tiles that are already fully opaque.
Each choice affects sharpness, temporal stability, energy conservation, and GPU cost. It is common to adjust these parameters differently depending on the rasterization objectives: quality, latency, or real-time compromise.

* * * End of Changes * * * *
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