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1. Introduction
This pseudo-change request proposes to update the TR document of the FS_3DGS_MED study, and more specifically section 7 related to the content generation.
2. Reason for Change
Provide a first version of this section. 
3. Proposal
It is proposed to agree the following changes to the 3GPP Draft TR 26.958.

[bookmark: _Hlk61529092]* * * First Change * * * *
[bookmark: _Toc213713591][bookmark: _Toc213432142]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications"
[ca]	 Kerbl et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering" ACM Transactions on Graphics, volume 42(4), July 2023
[cb] 	Wang et al., "Image Quality Assessment: From Error Visibility to Structural Similarity", IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

* * * Next Change * * * *
7	3DGS content creation
[Editor’s note: Placeholder for the description of the 3DGS content creation processes]
[bookmark: _Toc213713592]7.1	3DGS generic workflow
As an example, a 3DGS model construction from the capture of 2D data follows the production workflow as illustrated in figure 1:
 [image: Une image contenant texte, capture d’écran, bande dessinée

Le contenu généré par l’IA peut être incorrect.]
Figure 1: 3DGS model production workflow from a 2D video
The workflow consists of three parts. First, the capture phase. During this phase, we acquire numerous views of a real-world object or scene from different positions, typically as photos or video frames.
Next, a 3D motion reconstruction (SfM) step estimates the camera's intrinsic parameters and poses and reconstructs a sparse 3D structure, which serves as initialization for a set of Gaussians roughly aligned with the object. If the captures were performed using 3D scanning, this step may use depth information to improve accuracy.
Finally, during training, we compare the rendered image of the current Gaussian scene to the corresponding real-world image for each view and minimize the photometric error. As optimization progresses, the Gaussians are split or pruned, resized, reoriented, and their color/opacity is adjusted, progressively densifying and refining the scene to produce an accurate and consistent 3D representation with viewpoints.

7.12	Capture 
Content acquisition for 3D Gaussian Splats (3DGS) relies on capturing accurate 3D data from real-world objects and environments. Primary methods include:
-	2D image and video capture: video sequences or sets of 2D images capture from various positions and orientations offer coverage of dynamic or complex environments. Sequential frames may provide dense colour and positional cues for downstream 3D reconstruction and Gaussian splat generation, making it practical for capturing motion or large-scale scenes efficiently.
· 3D Scanning: High-precision laser or LiDAR scanners provide accurate spatial measurements of objects and scenes, capturing dense geometric detail suitable for Gaussian splat representation. These devices enable large-scale and high-fidelity acquisition, though they require specialized equipment and controlled capture conditions.
-	Multi-Image Capture: Still images taken from multiple viewpoints allow detailed reconstruction of object surfaces. Overlapping images ensure sufficient coverage and colour information for later conversion to 3DGS format. This approach is cost-effective and flexible, particularly for small to medium scale scenes.
These capture methods focus on acquiring raw visual and spatial data, forming the foundation for 3DGS content generation.

[bookmark: _Toc213713593]7.23	Structure from Motion
[Editor's note: This section presents the global processes used for static 3DGS content. The specifics of these processes for dynamic 3DGS content must also be described.]
The Structure from Motion (SfM) step consists in operating the feature extraction and matching and retrieving the camera parameters when unknown. After image alignment, the process creates a sparse point cloud that is further densified with depth calculation methods.
Camera parameters, often known by the capturing system include the focal length and centre and its distortion model from the lens. Even if the focal parameters may be estimated from the captured video from the SfM software, the lens distortion model if ignored may result in an anamorphic 3d model.
Given frames with unknown intrinsics/extrinsics :
· Feature detection and matching: detect keypoints (e.g., using Scale-Invariant Feature Transform (SIFT) or Oriented FAST and Rotated BRIEF (ORB), build tracks and a view graph, then perform geometric verification.
· Relative pose: estimate the essential matrix  via a 5‑point solver within RANdom SAmple Consensus (RANSAC); decompose to  and select the cheirality‑consistent solution.
· Incremental Structure from Motion (SfM)+ Bundel Adjustments (BA): grow the reconstruction, triangulate , and refine intrinsics/extrinsics/structure with bundle adjustment (BA) using a robust loss and optional radial distortion .
This translates into the following optimization problem, with observations  and projection :

This equation minimizes the reprojection error between observed 2D points and projected 3D points across multiple views, where:
· - Camera parameters for each view : 
· : Intrinsic calibration matrix (focal length, principal point, skew)
· : Rotation matrix (camera orientation)
· : Translation vector (camera position)
· - 3D coordinates of the -th point in the scene (the sparse reconstruction) 
· : Visibility set, pairs  where point  is visible in camera 
· : Observed 2D pixel coordinates of point in image 
· : Projection function that maps 3D point  to 2D image coordinates using camera parameters and optional distortion 
· : Squared L2 norm for squared Euclidean distance
· : Robust loss function (e.g., Huber, Cauchy) to reduce influence of outliers
The goal is to minimize the difference between where points actually appear in images () and where they should appear given the estimated 3D structure and camera parameters ().
[bookmark: _Toc213713594]Popular SfM software include COLMAP, ReCap and Meshroom.
7.4	Training
[Editor's note: This section presents the global processes used for static 3DGS content. The specifics of these processes for dynamic 3DGS content must also be described.]
7.4.1 Introduction
The third step is about the creation of the gaussian splats associated to each 3D point using iterative optimization process that will search for the splats that match as much as possible the source video for a given pose (position + orientation) by optimizing the size, shape, colour and transparency of the splats.
7.4.2 Gaussian initialization
From the sparse cloud, instantiate an anisotropic Gaussian per point/patch with mean , rotation , scales , and covariance 
Each splat has opacity scale  and view‑dependent color encoded by SH coefficients , a standard low‑order lighting basis. 
7.4.3 Projective footprint
In camera :

Using perspective with Jacobian  at , the screen‑space ellipse is

For pixel ,

Front‑to‑back alpha compositing (Porter–Duff) yields [ca]:

7.4.4 Loss and optimization
For training, we supervise the reconstruction using observed frames  and corresponding masks  with the following objective: 

where  follows the structural similarity metric of [cb].
The 3DGS generation becomes a differentiable optimization problem where the entire rendering pipeline, from 3D Gaussian parameters through projection, alpha blending, to final pixel colors, may be backpropagated through to compute gradients. 
This differentiability enables machine learning techniques to automatically refine all parameters simultaneously: 3D positions {μᵢ}, covariances {Σᵢ}, opacities {αᵢ}, colors {cᵢ}, and camera parameters {Kₖ, Rₖ, tₖ}. Machine learning optimizers like Adaptive Moment Estimation (Adam) then use gradients to iteratively minimize error through gradient descent, just as in neural network training. 
7.4.5 Existing frameworks 
Many tools are available to perform the generation of the 3DGS content. Per example, we may site: Brush, Gsplat, 3DGStream…

* * * End of Changes * * * *
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