Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-S4 #134 Meeting	S4-251738
Dallas, TX, USA, 17 - 21 November 2025
Agenda item: 	9.7
Source: 	Qualcomm Inc.
Title: 	[FS_3DGS_MED] GS generation and rendering
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Introduction
In this contribution, we describe state of the art capture and rendering of gaussian splats.
1. 3DGS Capture and Rendering
2.1		Capture
2.1.1	Self‑calibration and sparse reconstruction
Given frames with unknown intrinsics/extrinsics :
· Feature detection and matching: detect keypoints (e.g., using SIFT Scale-Invariant Feature Transform (SIFT) or Oriented FAST and Rotated BRIEF (ORB)), build tracks and a view graph, then perform geometric verification.
· Relative pose: estimate the essential matrix via a 5‑point solver within RANdom SAmple Consensus (RANSAC); decompose to and select the cheirality‑consistent solution.
· Incremental SfMStructure from Motion (SfM) + Bundel Adjustments (BA): grow the reconstruction, triangulate , and refine intrinsics/extrinsics/structure with bundle adjustment (BA) using a robust loss and optional radial distortion .
This translates into the following optimization problem, with observations and projection :

This equation minimizes the reprojection error between observed 2D points and projected 3D points across multiple views, where:
· - Camera parameters for each view :
· : Intrinsic calibration matrix (focal length, principal point, skew)
· : Rotation matrix (camera orientation)
· : Translation vector (camera position)
· - 3D coordinates of the -th point in the scene (the sparse reconstruction)
· : Visibility set, pairs where point is visible in camera
· : Observed 2D pixel coordinates of point in image
· : Projection function that maps 3D point to 2D image coordinates using camera parameters and optional distortion
· : Squared L2 norm for squared Euclidean distance
· : Robust loss function (e.g., Huber, Cauchy) to reduce influence of outliers
The goal is to minimize the difference between where points actually appear in images () and where they should appear given the estimated 3D structure and camera parameters ().
2.1.2	Gaussian initialization
From the sparse cloud, instantiate an anisotropic Gaussian per point/patch with mean , rotation , scales , and covariance
Each splat has opacity scale and view‑dependent color encoded by SH coefficients , a standard low‑order lighting basis.
2.1.3	Projective footprint
In camera :

Using perspective with Jacobian at , the screen‑space ellipse is

For pixel ,

Front‑to‑back alpha compositing (Porter–Duff) yields [1]:

2.1.4	Loss and optimization
For training, we supervise the reconstruction using observed frames and corresponding masks with the following objective:

where follows the structural similarity metric of [2].
The 3DGS generation becomes a differentiable optimization problem where the entire rendering pipeline, from 3D Gaussian parameters through projection, alpha blending, to final pixel colors, can be backpropagated through to compute gradients.
This differentiability enables machine learning techniques to automatically refine all parameters simultaneously: 3D positions {μᵢ}, covariances {Σᵢ}, opacities {αᵢ}, colors {cᵢ}, and camera parameters {Kₖ, Rₖ, tₖ}. Machine learning optimizers like Adaptive Moment Estimation (Adam) then use gradients to iteratively minimize error through gradient descent, just as in neural network training.
2.2 	Rendering
2.2.1	Spatial Binning to Image Tiles	Comment by Julien Ricard: Tile optimizaiton is not mandatory.
Each 3D Gaussian projects to a 2D ellipse characterized by its center and covariance matrix . We compute an axis-aligned bounding box for each ellipse by extracting the contour (typically with) from using either eigen-decomposition or direct bounds computation.
Each Gaussian is then assigned to all overlapping pixel tiles in the image. For each tile, we store pairs where is the Gaussian index and is the camera-space depth of the Gaussian's center, or an occlusion-aware depth proxy [1].
2.2.2	Front-to-Back Ordering via Radix Sort	Comment by Julien Ricard: Radix sort is one example other sorting methods can be use.
To achieve correct alpha blending, Gaussians within each tile must be sorted by depth in front-to-back order. We quantize the depth values to fixed-width integer keys:

where is a scaling factor that maps the depth range to the integer key space. We then perform a stable least-significant-digit (LSD) radix sort per tile, typically using either three 8-bit passes or two 12-bit passes [3].
2.2.3	Per-Pixel Fused Evaluation and Early Termination	Comment by Julien Ricard: Early stopping is not mandatory in term of rasterization, but greatly improved rendering performances.
For each pixel within a tile, we iterate through the depth-sorted Gaussian indices. For each Gaussian that passes the ellipse membership test:
we compute the Gaussian weight and opacity in a fused manner to minimize memory bandwidth consumption. We then accumulate the color and transmittance using the over operator [4]:

where is the accumulated color, is the remaining transmittance, and is the view-dependent color of Gaussian evaluated at viewing direction . The iteration terminates early when the transmittance falls below a threshold , as subsequent Gaussians contribute negligibly to the final pixel color.
2.2.4	Numerical Precision and Robustness
All accumulation operations use float32 (32-bit floating point) precision with alpha values clamped to the range . The transmittance is biased away from zero to avoid denormal floating-point numbers, which can significantly degrade performance. The depth scaling factor must be chosen to preserve correct near-to-far ordering throughout the depth range, with special consideration for reverse-Z depth buffer configurations if employed. As an optional optimization, per-tile occlusion culling can terminate processing once the cumulative transmittance for all pixels in the tile drops below a threshold, thereby reducing computational work in densely populated regions of the scene.
3 Proposal
We propose to agree this contribution and document the content of section 2 in the TR.	Comment by Julien Ricard: Propose to merge this contribution in corresponding PCRs: 251877 about content generation and 251879 about rendering
4 References
[1]	 	Kerbl et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering”, ACM Transactions on Graphics, volume 42(4), July 2023
[2] 	Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004
[3] 	Satish et al., “Designing Efficient Sorting Algorithms for Manycore GPUs”, Proceedings of IEEE International Symposium on Parallel & Distributed Processing (pp. 1-10).
[4] 	Porter et al., “Compositing Digital Images”, Computer Graphics (SIGGRAPH '84 Proceedings), 18(3), 253-259.
- 12/13 -
