	
3GPP TSG-SA4 Meeting #134	 													 S4-260189Rev1
Goa, India, 9th-13th Nov 2025 Revision of S4-251771

Source:	Interdigital Finland Oy.
Title:	[AIML_IMS-MED] AI intermediate data format
Agenda item:	10.5
Document for:	Discussion and Agreement

1. Introduction
In this contribution, we propose to define intermediate data carriage derived from inputs of TR 26.927.
Specifically, this contribution introduces following text
1. A description of Intermediate data.
2. A definition of Intermediate data structure
3. An example of Intermediate date format structure candidate to be an Annex including
a. An AI Parameter Set (AIPS) specifying AI-related parameters for intermediate data.
b. A TLV encapsulation of both AIPS and intermediate data.
The revisison1 propose a refinement of the definition of “Intermediate data”
2. Discussion
Split inferencing, as approved and mandated in 5G, is one of the key objectives of the work item. Split inferencing supports different input data types, producing intermediate data that can represent multiple media modality (e.g., video, audio, or text) without being restricted to one. Therefore, an agnostic transport format is required to support the 5G use cases.
As requested in the previous meeting, we would like to clarify the source of the proposed intermediate format. The format is derived from the user-plane data structure defined in Clause 6.8 of TR 26.927, with the addition of a splitpartition-point identifier (highlighted in yellow) as defined in clause 6.6 of TR 26.927. This split pointpartition identifier enables the selection of a pre-configured split point configuration partitioning negotiated during the configuration phase.
As described in TR 26.927, tensor characteristics are not static and may change dynamically, for example depending on the resolution or content of the input inference. Consequently, these characteristics need to be conveyed through the user plane to ensure accurate interpretation at the receiving end.
Table 6.8-1: User-plane metadata.
	Metadata category
	Metadata type
	Definition
	Examples

	User-plane metadata
	Partition identifier
	Key identifier of the partition passed in metadata format
	Urn of the partition

	
	Tensor list
	List of Tensors that composed the intermediate data
	

	
	
	Tensor identifier
	A unique identifier for the tensor. The identifier may be a name, an index of a tensor list or table, a combination thereof, a hash value.
	Tensor1
10

	
	
	Tensor shape
	Tensor shape is a tuple of positive integers, where the size of the tuple represents the dimension of the tensor, and each value represents the size in each dimension.
	[1,64,64,64].

	
	
	Tensor data type
	The data type of each intermediate data tensor
	Float32, int32

	
	
	Tensor compression algorithm profile identifier
	Identifies the selected compression algorithm profile
	FCM high 5.1, FCM main 5.3, FCM 6.4
NNC xxx 5.7.9, NNC yyy 5.8, NNC yyy 6.4

	Intermediate data payload
	
	Tensor data
	
	[]

3. Proposal
We propose to add the following changes to a base CR.
· Incorporate change 1 and 2 into a base CR
· Include change 3 in a dedicated annex for illustration purpose

* * * change * * (all new)

* * * First change * * *
X.X Intermediate data
X.X.1 General
Intermediate data (also referred to as intermediate data representation) refers means to the output tensor(s) generated by the terminating model(s) or submodel(s) of a an inference stage in a split inference configuration computed by the Head sub-model up to a defined split point and transferred between across execution endpoints (e.g., device, edge, server) to serve as input to thea Tail model(s) or sub-model(s) executing for a subsequent inference stage.
The characteristics of such output tensor(s) (including, but not limited to, shape, size, and data format) may vary as a function of the split inference configuration, the input data, and the runtime configuration.
The tensor(s) may be compressed and/or encoded prior to transmission, provided that such processing does not alter the semantics required by the receiving model or submodel.The tensor(s) may be compressed and/or encoded before transmission, provided such processing shall not alter the semantics required by the Tail submodel. Intermediate data are non-persistent, dynamic, and context dependent. Its characteristics (including, but not limited to, shape, size, and format) may vary as a function of the input data, the selected split point, and the runtime configuration.

* * * end of First change * * *

* * * second change * * *
X.X.2 Intermediate data structure
The structure of the intermediate data payload may be defined and exchanged between endpoints at the configuration stage, referred to as the split point configuration.
· The input media size or resolution used for inference may change the resulting tensor shape.
· The selected split point identifies the active split point among a set of available pre-configured split points.
· The selected compression profile (including algorithm and parameter) which may have been negotiated among a predefined set of profiles to optimize compression efficiency.

During the inference loop, variations in the input media size or resolution may cause corresponding changes in the resulting tensor shape.
The following information needs to be carried in the intermediate data format:
· Tensor identifier.
· Inferred tensor length, derived from the current tensor shape.
· Split-point identifier, referencing the negotiated split-point configuration.
· Compression profile identifier, indicating the compression method applied to the tensor.

To accommodate these elements, an AI Parameter Set (AIPS) is defined in clause X.X.3 to capture the information that applies to all the tensors and their associated data.
* * * end of second change * *

* * * third Change * *

X.X.3 AI Parameter Set (AIPS)
Metadata associated with the intermediate data payload, referred as tensor metadata can be carried through the AI Parameter Set (AIPS) data structure as defined in Table X.X.3-1.
The AIPS contains AI-level parameters applicable to AI/ML intermediate data that includes one or more tensors data. It shall be parsed before decoding AI/ML intermediate data. The AIPS lifetime defines the period during which the AIPS remains valid and references in the bitstream.
The lifetime starts when the decoder first receives and parses an AIPS TLV unit containing the AIPS information.
The lifetime ends when a new AIPS with the same or different ai_parameter_set_id is received, when a new session begins, when the decoder is reset or when the number of tensors, tensor shape of tensors are changed.
AIPS may include the fields as shown in Table X.X.3-1:
Table X.X-3-1 AI Parameter Set Information
	Field
	meaning

	ai_parameter_set_id
	unique ID of AIPS

	split_point_id
	key identifier of the split point

	num_tensors
	number of tensors

	for( tensorIdx = 0; tensorIdx < num_tensors; tensorIdx ++ ) {
	

	 tensor_id
	tensor identifier

	 dtype
	data type of tensor data

	 rank
	number of dimensions

	 for( dimIdx = 0; dimIdx < rank; dimIdx ++ ) {
	

	 dimension
	size of a dimension

	 }
	

	 compression_profile_id
	compression profile identifier

	}
	

Figure X.X.3-1 illustrates a representation of AIPS data structure.
[image:]
Figure X.X.3-1 Representation of an AIPS data.
* * * end of third change * *

* * * fourth Change * *
X.X.4 TLV encapsulation
This section proposes TLV format for carrying the intermediate data generated during a split inference process.
X.X.4.1 TLV message definition
A TLV message includes:
· A type indicating information of the payload as described in Table X.X.4-1, which can be
· AIPS (0x1)
· Intermediate data (0x2)
· The length value of the payload
· Payload data
Table X.X.4-1 TLV unit types
	Type value
	Description

	0
	Reserved

	1
	AI Parameter set data (AIPS)

	2
	Intermediate data

	3 – 255
	Undefined

X.X.4.2 Encapsulating AIPS data into a TLV unit
Figure X.X.4.2-1 illustrates a TLV unit encapsulating AIPS data as defined in clause 1.3.

Figure X.X.4.2-1 TLV unit encapsulating AIPS data.

X.X.4.3 Encapsulating Intermediate data with 1 tensor into a TLV unit
Figure X.X.4.3-1 illustrates a TLV unit encapsulating one tensor data. The TLV unit value comprises the AIPS identifier and the tensor data. The tensor data comprises the tensor identifier, the tensor length (optional) and the tensor payload data to be decoded. The “tensor payload data” contains the tensor’s byte array, which is flattened and may be compressed with the compression profile ID indicated in the AIPS.

Figure X.X.4.3-1 TLV unit encapsulating one tensor data information
X.X.4.4 Encapsulating Intermediate data with multiple tensors into a TLV unit
Figure X.X.4.4-1 illustrates a TLV unit encapsulating more than one tensor data.

Figure X.X.4.4-1 TLV unit encapsulating one or more tensors data
* * * end change * * * *
[bookmark: _CRA_1_1][bookmark: _CRA_1_2][bookmark: _CRA_1_3]

image1.emf
AI

parameter

set id

Tensor

1 info

Split point

ID

Tensor

2 info

Tensor

n info

Compression

Profile ID

Tensor info

Number of

dimensions

(int)

Dim 1 Dim 2 Dim n

Number

of

Tensors

Tensor Shape

Tensor

data type

(int8,Float 32)

Tensor ID

Tensor

Shape

image2.emf
AIPS (0x01)

Type

Length

Total payload

length

Value

AIPS data

Microsoft_Visio_Drawing.vsdx
AIPS (0x01)
Type
Length
Total payload length
Value
AIPS data

image3.emf
Intermediate

data type

(0x02)

Tensor

1 data

Type Length

Total payload

length

Tensor data

Value

AIPS

ID

Tensor ID

Tensor

length

Tensor

data

payload

Microsoft_Visio_Drawing1.vsdx
Intermediate data type (0x02)
Tensor 1 data
Type
Length
Total payload length
Tensor data
Value
AIPS ID
Tensor ID
Tensor
length
Tensor data payload

image4.emf
Intermediate

data type

(0x02)

Tensor

1 data

Type Length

Total payload

length

Tensor

2 data

Tensor

n data

Value

Tensor data Tensor ID

Tensor

length

Tensor

data

payload

AIPS

id

Microsoft_Visio_Drawing2.vsdx
Intermediate data type (0x02)
Tensor 1 data
Type
Length
Total payload length
Tensor 2 data
Tensor n data
Value
Tensor data
Tensor ID
Tensor
length
Tensor data payload
AIPS
id

