	
3GPP TSG-SA4 Meeting #SA4-e (AH) RTC SWG post 134	 S4-260183Rev1
Goa, India, 9th-13th February 2026 Revision of S4aR260010

Source:	Interdigital Finland Oy.
Title:	[AIML_IMS-MED] Negotiation messages for split inferencing
Agenda item:	10.5
Document for:	Discussion and Agreement

1. Introduction
This contribution proposes additional messages and associated metadata to enable split inferencing. This contribution is an update to, and a delta from, contribution S4aR260009 definition generic message. The updates and the differences between device inferencing and split inferencing are highlighted in red.

The objective is to clarify and further specify a complete solution, including the definition of the messages and parameters exchanged at each step of the communication between the UE and the remote endpoint.
An update is provided to align with the agreed split inferencing configuration call flow for the configuration step.

2. Discussion
As a first change, a summary table (table A4.2-1) of the negotiation messages illustrated in the device split inferencing call flow is introduced in A.4.2. The table identifies the metadata used as parameters, as defined in the generic negotiation message contribution and specific message described in A.4.3A.4.3 and in A.4.4.
As a second change, a description of the metadata defined in A.4.3 and carried by the negotiation messages is provided. In addition, A.4.4It provides a description of metadata specific to enabling split inferencing. The metadata may be included in a standalone manifest when delivered to the UE, as discussed in Dallas.
As a third change, a generic format for AI metadata negotiation messages carried over a data channel is defined.
3. Proposal
It is proposed to update the base CR by
· defining the set of negotiation messages corresponding to the inferencing call flow
· adding a description of the associated metadata for applications, endpoint capabilities, AI/ML models, and submodel partitioning.
· adding a generic negotiation message format for AI metadata exchange including negotiation message between local and remote endpoints for split inferencing.

* * * first change * * * *

A.4.2 Negotiation message
Table A4.2-1: Negotiation message summary table

	Message
	Application-layer example
	related metadata

	Split Inference configuration request (e.g.
SPLIT_CONFIGURATION_REQUEST)
	HTTP POST
	URN of selected configuration

	Split Inference configuration response (e.g. SPLIT_CONFIGURATION _RESPONSE)
	HTTP RESPONSE
	Selected AI/ML models and/or submodel(s) binary data and the associated metadata

	Message
	
	related metadata

	AI_APPLICATION_DISCOVERY_REQUEST
	
	Family or type of AI/ML applications to be discovered

	AI_APPLICATION_DISCOVERY_RESPONSE
	
	list of AI/ML application(s)

	AI_APPLICATION_REQUEST
	
	URN of selected AI/ML application

	AI_APPLICATION_RESPONSE
	
	Selected AI/ML application binary data and the associated metadata

	

	

	

	AI_MODEL_SELECTION_REQUEST
	
	URN(s) of selected AI/ML models and/or submodel(s) (s)

	AI_MODEL_SELECTION_RESPONSE
	
	Selected AI/ML models and/or submodel(s) binary data and the associated metadata

* * * end of first change * * * *

* * * second change * * * *

A.4.3	Common metadata information (used in messages)
A.4.3.1	Application metadata
Application metadata defines the characteristics and requirements of an application and its associated AI/ML media processing tasks, and may include performance, accuracy, energy constraints, and supported models.
The payload of the AI_APPLICATION_RESPONSE message may provide a list of application metadata, as defined in the following table to propose a set of candidate applications. Application metadata may also include information indicating the supported split and remote inference modes and whether the model supports partitioning.
The selection of one application from the candidate set shall be performed using the AI_APPLICATION_REQUEST message, which conveys the URN of the selected application.
A.4.3.2	Endpoint capabilities metadata
endpointCapabilities metadata describes the hardware and software characteristics of an endpoint that are relevant to AI/ML model selection and execution. These capabilities are divided into static and dynamic capabilities to distinguish between properties that are inherent to the endpoint and those that vary over time.
Static capabilities may describe characteristics that are fixed or change infrequently, and may include the endpoint’s processing architecture, peak compute capacity, supported AI/ML frameworks, available execution engines (e.g., CPU, GPU, NPU), supported numerical precisions, and hardware acceleration features. These capabilities define the theoretical execution envelope of the endpoint and are typically used to determine whether a given model or submodel can be executed at the endpoint or not.
Dynamic capabilities describe runtime-dependent characteristics that may change frequently during operation, and may include information such as available memory, current compute load, energy mode, battery level, and accelerator availability.
These capabilities reflect the current operational state of the endpoint and may be used to adapt model selection, quality level, or deployment decisions in response to changing resource conditions.
By separating static and dynamic capabilities, the system enables more accurate and flexible decision-making, allowing long-term compatibility checks to be complemented by short-term runtime optimization.
A.4.3.3 Model information metadata
modelInformation metadata describes the functional, structural, and performance characteristics of an AI/ML model, and may include its supported tasks, input and output specifications, resource requirements, latency and energy metrics, and framework-related information. The metadata may indicate whether the model supports partitioning.
This metadata enables support for model discovery, selection, and deployment.

A.4.34	Metadata information specific to split inferencing (used carried in messages)
The following section provides a high-level description of the metadata information carried within the messages
A.4.34.1. Submodel Split configuration mpartitioning metadata
The submodelPartitioning metadata describes how an AI/ML model may be partitioned into multiple submodels for split inferencing. It may include identifiers for the overall partitioning configuration and for individual submodels, enabling identification, deployment, and composition of model partitions.
For each submodel, the metadata may indicate the intended execution endpoint category (e.g. UE or remote), the supported subtask types, and the role within the split inference pipeline. It may further describe the input and output interfaces, performance-related attributes, and framework or versioning information to support compatibility and execution decisions.

The splitConfiguration metadata uniquely identifies a split configuration and specify the associated model (or submodel) and the characteristics of the corresponding output tensor(s).

	Name
	Type
	Cardinality
	Description

	splitConfiguration
	object
	1..n
	Split configuration object

	 splitConfigurationIdentifier
	urn or Number
	1..1
	Unique identifier of the split configuration.

	
	modelIdentifier
	urn or string
	0..1
	Identifier of the associated model or submodel

	
	 outputTensors
	object
	1..n
	Definition of the output tensor(s) and their characteristics.

	
	
	identifier
	string
	1..1
	Identifier for the output tensor.

	
	
	dataType
	string
	1..1
	Data type of the tensor (integer, float32, float16,…)

	
	
	shape
	string
	1..1
	Output tensor shape (e.g. (1,81,8732)

	
	
	compression
	string
	0..1
	Compression method applied to the tensor (e.g., None, Quantization-8bit-int).

An example of a split configuration manifest/JSON format, is shown below.
{
 "splitConfiguration": [
 {
 "splitConfigurationIdentifier": "urn:example:split-1",
 "modelIdentifier": "urn:example:model-1",
 "outputTensors": [
 {
 "identifier": "Tensor1",
 "dataType": "float32",
 "shape": "(1,81,8732)",
 "compression": "None"
 }
]
 },
 {
 "splitConfigurationIdentifier": "urn:example:split-2",
 "modelIdentifier": "urn:example:model-2",
 "outputTensors": [
 {
 "identifier": "Tensor2.1",
 "dataType ": "float32",
 "shape": "(1,N,6)",
 "compression": "Quantization-8bit-int"
 },
 {
 "identifier": "Tensor2.2",
 "dataType ": "uint8",
 "shape": "(1,1,4)",
 "compression": "None"
 }
]
 }
]
}

* * *end of second change * * * *

* * *third change * * * *

A.4.5 Negotiation message format for split inferencing
A metadata message is described. A data channel message shall carry one or more AI metadata messages as defined in the following table.
[bookmark: _Ref208332743]Table 5: AI Metadata Messages Format
	Name
	Type
	Cardinality
	Description

	messages
	Array(Message)
	1..n
	A list of AI metadata messages. Each message shall be formatted according to the Message data type as defined in the following table

Each metadata message shall follow the format specified in the following table.
[bookmark: _Ref208332752]Table 6: Metadata Message Data Type
	Name
	Type
	Cardinality
	Description

	id
	string
	1..1
	A unique identifier of the message in the scope of the data channel session.

	type
	number
	1..1
	An identifier of the subtype of the intermediate data negotiation message defined as:
· SPLIT_CONFIGURATION_REQUEST
· SPLIT_CONFIGURATION_RESPONSE AI_APPLICATION_DISCOVERY_REQUEST
· AI_APPLICATION_DISCOVERY_RESPONSE
· AI_APPLICATION_REQUEST
· AI_APPLICATION_RESPONSE
AI_SERVER_CONFIGURATION_REQUEST
· AI_SERVER_CONFIGURATION_RESPONSE
· AI_MODEL_SELECTION_REQUEST
· AI_MODEL_ SELECTION_RESPONSE
·
other values are reserved for future use.

	payload
	object
	1..1
	The message payload depends on the message type.

	sessionId
	string
	1..1
	Identifier of the associated multimedia session.

	sendingAtTime
	number
	0..1
	The wall clock time when the AI metadata message is transmitted.

* * *end of third change * * * *

