	
3GPP TSG-SA4 Meeting #135	S4-260181Rev1
Goa, India, 9th-13th February 2026 Revision of S4aR260012

Source:	Interdigital Finland Oy.
Title:	[AIML_IMS-MED] Negotiation messages with detailed metadata
Agenda item:	10.5
Document for:	Discussion and Agreement

1. Introduction
This contribution revision proposes additional details for the negotiation messages and associated parameters described as metadata in support of the refined call flow S4aR260014 discussed in S4aR250205r1 (Samsung/Nokia/InterDigital).agreed as a basis for future work.
We provide aThe revision that more explicitly details examples of the message metadata expressed in JSON format. This can serve as an alternative to discussing the metadata/manifest proposal described in S4aR250213 and S4aR250208 and S4aR260011.
We provide an update of table negotiation message in
cluding new ADC message Model List Request/Response and Model Request/Response as part of the DCAS repository proposal.
Revision 1 incorporates the description as agreed in the meeting minutes:
“It would be good to include the final summary table and map the ADC messages. The type of metadata required in those messages is related to the app manifest discussion.”

2. Discussion
As a first change, a table (table A4.2-1) of the negotiation messages illustrated in the device inferencing call flow is introduced in A.4.2. The table identifies the metadata used as parameters, as defined in A.4.3.
As a second change, a description of the metadata example defined in A.4.3 and carried by the negotiation messages is provided. The metadata may be included in a standalone manifest when delivered to the UE, as discussed in Dallas.
As a third change, a generic format for AI metadata negotiation messages carried over a data channel is defined. The format is independent of the underlying transport protocol and does not impose constraints on its selection (e.g., HTTP).

3. Proposal
It is proposed to update the base CR by
· defining the set of negotiation messages corresponding to the call flow
· adding a description of the associated metadata for applications, endpoint capabilities, and AI/ML models.
· adding a generic negotiation message format for AI metadata exchange

* * * first change * * * *

A.4.2 Negotiation message
Table A4.2-1: Negotiation message summary table
	Message
	
	related metadata

	AI_APPLICATION_DISCOVERY_REQUEST

	
	Family or type of AI/ML applications to be discovered

	
	
	Optional static UE capabilities for application filtering

	AI_APPLICATION_DISCOVERY_RESPONSE
	
	list of AI/ML application(s)

	AI_APPLICATION_REQUEST
	
	URN of selected AI/ML application

	
	
	UE capabilities

	AI_APPLICATION_RESPONSE
	
	Selected AI/ML application binary data and the associated metadata

	
	
	

	
	
	List of candidate AI/ML models

	
	
	

	
	
	

	AI_MODEL_SELECTION_REQUEST
	
	URN(s) of selected AI/ML model(s)

	AI_MODEL_SELECTION_RESPONSE
	
	Selected AI/ML model(s) binary data and the associated metadata

* * * end of first change * * * *

* * * second change * * * *

A.4.3	Metadata information (used in messages)
The following section provides a high-level description of the metadata information carried within the messages.
A.4.3.1	Application metadata
Application metadata defines the characteristics and requirements of an application and its associated AI/ML media processing tasks, and may include performance, accuracy, energy constraints, and supported models.
The payload of the AI_APPLICATION_RESPONSE message may provide a list of application metadata, as defined in the following table to propose a set of candidate applications.
The selection of one application from the candidate set shall be performed using the AI_APPLICATION_REQUEST message, which conveys the URN of the selected application

[bookmark: _Ref219736641]Table A-4.3.1: Application information format
	Name
	Type
	Cardinality
	Description

	application
	Object
	1..1
	Application

	applicationIdentifier
	Urn
	1..1
	Urn of the Application

	taskList
	object
	0..1
	The Task object list

	
	taskTypeIdentifier
	string
	1..1
	An identifier of the task

	
	taskTypeSupported
	string
	1..1
	Task type supported, such as ASR (Automatic Speech Recognition), TTS (Text To Speech), Translation (with the indication of input and output languages).

	
	maximumTaskInferenceLatency
	number
	0..1
	The maximum inference latency requirement specified for a given AI/ML media task, in milliseconds. In the case of split inferencing, this requirement includes the delivery latency of the intermediate data between the first and second split inference entities.

	
	minimumTaskInferenceAccuracy
	string
	0..1
	The minimum accuracy specified for a given AI/ML media task.

	
	
	
	
	

	
	taskAccuracy
	string
	0..1
	The expected task accuracy (e.g mAP score for object detection)

	
	maximumLocalEnergyConsumption
	Number
	0..1
	The maximum energy consumed by the AI/ML model locally (in joules)

	
	taskOperationalCharacteristics
	object
	0..1
	List of task operational characteristics

	
	
	computeIntensity
	String
	0..:n
	Low, Medium, High

	
	
	memoryFootprint
	String
	0..:n
	small, moderate, large

	
	
	latencySensitivity
	String
	0..:n
	real-time, near-real-time, best-effort

	
	
	energySensitivity
	String
	0..:n
	battery-aware, energy-intensive

	
	associatedModels
	
	string
	1..n
	List of Model

	
	
	modelName
	string
	1..1
	e.g. Yolox,

	
	
	modelDescription
	string
	1..1
	Description of what the model do

A.4.3.2	Endpoint capabilities metadata
endpointCapabilities metadata describes the hardware and software characteristics of an endpoint that are relevant to AI/ML model selection and execution. These capabilities are divided into static and dynamic capabilities to distinguish between properties that are inherent to the endpoint and those that vary over time.
Static capabilities may describe characteristics that are fixed or changed infrequently, and may include the endpoint’s processing architecture, peak compute capacity, supported AI/ML frameworks, available execution engines (e.g., CPU, GPU, NPU), supported numerical precisions, and hardware acceleration features. These capabilities define the theoretical execution envelope of the endpoint and are typically used to determine whether a given model or submodel can be executed at the endpoint or not.
Dynamic capabilities describe runtime-dependent characteristics that may change frequently during operation, and may include information such as available memory, current compute load, energy mode, battery level, and accelerator availability.
These capabilities reflect the current operational state of the endpoint and may be used to adapt model selection, quality level, or deployment decisions in response to changing resource conditions.
By separating static and dynamic capabilities, the system enables more accurate and flexible decision-making, allowing long-term compatibility checks to be complemented by short-term runtime optimization.

An example of endpoint metadata is described in the table below
Table A.4.3.2-1: endpoint capabilities format
	endpointCapabilities
	object
	0..1
	Root object

	
	staticCapabilities
	object
	0..1
	Static endpoint capabilities

	
	
	endpointIdentifier
	string
	0..1
	Abstract endpoint identifier

	
	
	flopsProcessingCapabilities
	number
	0..1
	Peak compute capability in FLOPS

	
	
	macOpProcessingCapabilities
	number
	0..1
	Compute complexity in MAC operations

	
	
	supportedAiMlFrameworks
	array<string>
	0..1
	Supported AI/ML frameworks

	
	
	accelerationSupported
	boolean
	0..1
	Hardware acceleration support

	
	
	supportedEngines
	array<string>
	0..1
	CPU, GPU, NPU

	
	
	supportedPrecision
	array<string>
	0..1
	FP32, FP16, INT8

	
	dynamicCapabilities
	object
	0..1
	Dynamic endpoint capabilities

	
	
	availableMemorySize
	number
	0..1
	Available memory

	
	
	currentComputeLoad
	number
	0..1
	Current processing load

	
	
	energyMode
	string
	0..1
	Eco / Balanced / Performance

	
	
	batteryLevel
	number
	0..1
	Battery level

	
	
	acceleratorAvailability
	array<string>
	0..1
	Available accelerators

A.4.3.3 Model information metadata
modelInformation metadata describes the functional, structural, and performance characteristics of an AI/ML model, and may include its supported tasks, input and output specifications, resource requirements, latency and energy metrics, and framework-related information.
This metadata enables support for model discovery, selection, and deployment
An example of model information metadata is described in the table below
[bookmark: _Ref209012496]Table A-4.3.3-1: model information format
	Name
	Type
	Cardinality
	Description

	modelInformation
	Object
	1..1
	Model information objects, each corresponding to one or several AI/ML Tasks

	
	 modelIdentifier
	Urn
	1..1
	An identifier for an AI/ML model (or variants of it) specified for a certain AI/ML media service. The identifier may be a name, a number, a combination thereof, a hash value. The identifier is defined during the configuration stage.
URN of the model

	
	taskIdentifier
	string
	1..N
	An identifier for the task type to be supported by the AI/ML model, such as ASR (Automatic Speech Recognition), TTS (Text To Speech), Translation (with the indication of input and output languages).
A model may serve a set of several tasks, known as multitask model.

	
	 modelSize
	number
	1..1
	The size of the AI/ML model file in megabytes.

	
	 modelInputs
	object
	1..N
	Model properties for its inputs

	
	
	inputMediaIdentifier
	string
	1..1
	An identifier for the input media (name, number, …)

	
	
	inputType
	string
	1..1
	Input type (integer, float32, float16,…)

	
	
	inputShape
	string
	1..1
	Input shape (e.g. (1,3,300,300) for one image or (bs, colour components (typically 1 or 3), width, height) for a batch size of images having a dynamic dimension

	
	 modelOutputs
	object
	1..N
	Model properties for its outputs

	
	
	outputIdentifier
	string
	1..1
	An identifier for the output (name, number, …)

	
	
	outputType
	string
	1..1
	Output type (integer, float32, float16…)

	
	
	outputShape
	string
	1..1
	Output shape (e.g. (1,81,8732)

	
	
	outputAccuracy
	Number
	0..1
	The trained accuracy of the AI/ML model as a percentage for one output (e.g. early exit model)

	
	 targetInferenceLatency
	object
	0..N
	The target inference latency specified for a given AI/ML model in milliseconds. Such latency is measured between the input and output layers of the AI/ML model at inference. This value is related to the service inference latency requirement of the service for which the AI/ML model is provided, as well as the typical hardware capabilities of an entity performing the inference of the model.

	
	
	inferenceLatency
	number
	1..1
	Inference latency on the full model on the associated platform

	
	
	hardwarePlatformIdentifier
	string
	0..1
	Hardware platform identifier on which the latency has been measured

	
	Format
	string
	0..1
	The format used to express the AI/ML model (e.g. PyTorch model in .pt and ONNX model in .onnx)

	
	formatVersion
	number
	0..1
	The version of the file structure used to store a model

	
	framework
	string
	0..1
	The framework with which the AI/ML model is built and trained (e.g. PyTorch , TensorFlow)

	
	frameworkVersion
	number
	0..1
	The version of the software library used to build and train the model

	
	
	
	
	

	
	flopsProcessingCapabilities
	number
	0..1
	Estimated computational power capabilities such as the computational cost, expressed in FLOPS for processing the model

	
	macOpProcessingCapabilities
	number
	0..1
	Estimated computational complexity expressed in MAC operations

	
	energyEstimation
	number
	0..N
	Estimated Energy of a full inference

	
	
	energy
	number
	1..1
	Estimated Energy of a full inference on the associated platform in joules

	
	
	hardwarePlatformIdentifier
	string
	0..1
	Hardware platform identifier on which the energy consumption has been measured

	
	modelDataType
	string
	0..1
	Uint8, Float 32, Float16

* * *end of second change * * * *

* * *third change * * * *

A.X.X4.4 Negotiation message format for ADC
A metadata message format is described. A data channel message shall carry one or more AI metadata messages as defined in the following table. The format is independent of the underlying transport protocol and does not impose constraints on its selection (e.g., HTTP).
[bookmark: _Ref208332743]Table A.5X.X-1: AI Metadata Messages Format
	Name
	Type
	Cardinality
	Description

	messages
	Array(Message)
	1..n
	A list of AI metadata messages. Each message shall be formatted according to the Message data type as defined in the following table

Each metadata message shall follow the format specified in the following table.
[bookmark: _Ref208332752]Table 6A.X.X-2: Metadata Message Data Type
	Name
	Type
	Cardinality
	Description

	id
	string
	1..1
	A unique identifier of the message in the scope of the data channel session.

	type
	number
	1..1
	An identifier of the subtype of the intermediate data negotiation message defined as:
·
·
·
· AI_APPLICATION_DISCOVERY_REQUEST
· AI_APPLICATION_DISCOVERY_RESPONSE
· AI_APPLICATION_REQUEST
· AI_APPLICATION_RESPONSE
· AI_MODEL_SELECTION_REQUEST
·
· AI_MODEL_ SELECTION_RESPONSEE
·
· …. TBC

other values are reserved for future use.

	payload
	object
	1..1
	The message payload depends on the message type.

	sessionId
	string
	1..1
	Identifier of the associated multimedia session.

	sendingAtTime
	number
	0..1
	The wall clock time when the AI metadata message is transmitted.

* * *end of third change * * * *

