	
3GPP TSG-SA WG4 Meeting #135	S4-260101
9-13 February 2026, Goa, India	revision of S4aR260013

Source:	Nokia, NTT
Title:	[FS_Q4RTC_MED] pCR on QUIC-based media delivery protocols
Agenda item:	10.7
Document for:	Agreement

1. Introduction
The study item FS_Q4RTC_MED was agreed in SA4#134 and approved in SA#110 [SP-251661].
One of the objectives of FS_Q4RTC_MED is:
· Identify existing and emerging QUIC-based media delivery protocols suitable for real-time communication and document their features, benefits, limitations and current applications.
This contribution provides information on the existing QUIC-based media delivery protocols that are potentially suitable for real-time communication scenarios, describing their features, benefits/limitations, as well as their current applications.
NOTE: Revision marks in clause 4 are shown against S4aR260013.
2. Discussion
QUIC is a user-space UDP-based transport protocol developed by IETF with built‑in encryption (TLS 1.3), connection migration, stream multiplexing, pluggable congestion control (runs in user space), and optional unreliable datagrams defined in an extension to the core protocol. 	Comment by Richard Bradbury: I think there would be value in including some text a bit like this in the introduction to the Technical Report.	Comment by Serhan Gül (r03): Agreed, I will take this as basis and work on a QUIC background clause for Goa.	Comment by Serhan Gül: In the SA4#135 submission S4-260102, I've proposed to integrate most of this text into the introduction of TR 26.836.
The core QUIC specifications are:
- RFC 9000 (QUIC: A UDP-Based Multiplexed and Secure Transport): The foundational document defining QUIC's core mechanisms.
- RFC 9001 (Using TLS to Secure QUIC) specifies how TLS 1.3 is integrated for security.
- RFC 9002 (QUIC Loss Detection and Congestion Control) specifies how QUIC handles packet loss and manages network congestion.
- RFC 8999 (Version-Independent Properties of QUIC) describes properties that don't change between QUIC versions.
Beyond the core specifications, IETF has specified multiple extensions such as HTTP/3 (RFC 9114) and QPACK (RFC 9204), as well as operational specifications relating to applicability (RFC 9308) and manageability (RFC 9312) of the QUIC protocol.
Ongoing QUIC related work in IETF includes extensions to the UDP proxying protocol (connect-udp) [RFC 9298] for QUIC aware proxying [draft-ietf-masque-quic-proxy] developed in the MASQUE WG. Additionally, the SCONE WG is developing a solution that allows networks to indicate to endpoints the maximum available sustained throughput, or throughput advice, related to the UDP flows that QUIC exchanges, allowing applications to adapt their send rates accordingly [draft-ietf-scone-protocol].
As QUIC has seen broader adoption in recent years, its role in improving media transport compared to earlier TCP and UDP-based methods has become increasingly significant. QUIC-based media transport protocols can benefit from QUIC’s security, multiplexing, low-latency features to deliver media with finer control over reliability and ordering. Some key motivations to use QUIC for media transport are:
Lower latency and faster start-up: 1-RTT handshake with optional 0-RTT resumption shortens join time for live/interactive sessions. User-space pacing algorithms can be applied to space packets over a round-trip time (RTT) rather than sending them at once, minimizing burstiness and thus potentially reducing jitter.
Independent stream processing: Independent streams prevent one stalled media flow (e.g. a large video frame) from blocking others (e.g. audio, timed metadata), ensuring no head‑of‑line blocking across different streams. Support of DATAGRAM frames [RFC 9221] allows best‑effort delivery (no retransmission) for latency‑critical content.
Selective reliability and prioritization: QUIC stream priority allows applications to signal the importance of different data flows, enabling the transport layer to allocate resources effectively. Applications can mix reliable streams carrying critical data with datagrams for unreliable delivery of non-critical and delay-sensitive data.
Always-on security: Due to the built-in TLS 1.3 encryption and authentication, no separate DTLS layer is needed. Connection IDs (CIDs) and encrypted headers improve privacy and resillience to middlebox ossification.
Better mobility and robustness: Connection migration enables IP/port changes (e.g. Wi‑Fi to cellular) without call drops that lead to renegotiations and disrupt audio/video continuity.
Currently, various QUIC-based application protocols are being standardized by IETF to address different application scenarios including real-time communication. Those protocols are:
· Media over QUIC Transport (MOQT): https://datatracker.ietf.org/doc/draft-ietf-moq-transport/
· RTP over QUIC (ROQ): https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-over-quic/
· WebTransport: https://datatracker.ietf.org/doc/draft-ietf-webtrans-overview/
3. Proposal
It is proposed to agree the following changes to 3GPP TR 26.836.

[bookmark: _Hlk61529092]* * * First Change * * * *
[bookmark: _Toc216450505][bookmark: _Toc220004437][bookmark: _Toc216450512]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
…
[3]	3GPP TS 23.501: "System architecture for the 5G System (5GS)".
…
[draft-ietf-moq-transport]	S. Nandakumar, V. Vasiliev, I. Swett, A. Frindell; draft-ietf-moq-transport-16, "Media over QUIC Transport", Work in Progress, Internet-Draft, 13 January 2026.
[RFC9000]	IETF RFC 9000: "QUIC: A UDP-Based Multiplexed and Secure Transport", May 2021.
[draft-ietf-webtrans-overview]	E. Kinnear and V. Vasiliev; draft-ietf-webtrans-overview-11, "The WebTransport Protocol Framework", Work in Progress, Internet-Draft, 20 October 2025.
[draft-ietf-moq-loc]		M. Zanaty, S. Nandakumar and P. Thatcher, draft-ietf-moq-loc-01, "Low Overhead Media Container", Work in Progress, Internet-Draft, 8 January 2026.
[draft-ietf-moq-msf]	W. Law, draft-ietf-moq-msf-00, "MOQT Streaming Format", Work in Progress, Internet-Draft, 19 January 2026.
[RFC9221]	IETF RFC 9221: "An Unreliable Datagram Extension to QUIC", March 2022.
[draft-ietf-avtcore-rtp-over-quic]	M. Engelbart, J. Ott and S. Dawkins, draft-ietf-avtcore-rtp-over-quic-14, “RTP over QUIC (RoQ)”, Work in Progress, Internet-Draft, 20 March 2025.
https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-over-quic/
[RFC3550]	IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications", July 2003.
[RFC8866]	IETF RFC 8866, “SDP: Session Description Protocol”, January 2021.
[draft-ietf-avtcore-sdp-roq]	S. Dawkins and V.Pascual, draft-ietf-avtcore-sdp-roq-00, “SDP Offer/Answer for RTP over QUIC (RoQ)”, Work in Progress, Internet-Draft, 11 October 2025.
[draft-ietf-rmcat-gcc]	S. Holmer et al., draft-ietf-rmcat-gcc-02, "A Google Congestion Control Algorithm for Real-Time Communication", Internet-Draft, 8 July 2016.
[RFC8298]	IETF RFC 8298: "Self-Clocked Rate Adaptation for Multimedia", December 2017.
[SCReAM]	Ericsson Research, "SCReAM (Self-Clocked Rate Adaptation for Multimedia)", https://github.com/EricssonResearch/scream
[draft-navarre-quic-flexicast]	L. Navarre and O. Bonaventure, draft-navarre-quic-flexicast-01, "Flexicast QUIC: combining unicast and multicast in a single QUIC connection", 7 July 2025.
[RFC9113]	IETF RFC 9113: "HTTP/2", June 2022.
[RFC9114]	IETF RFC 9114: "HTTP/3", June 2022.
[draft-ietf-webtrans-http2]	A. Frindell et al., draft-ietf-webtrans-http2-07, "WebTransport over HTTP/2", Work in Progress, Internet-Draft, 20 October 2025.
[draft-ietf-webtrans-http3]	A. Frindell, E. Kinnear and V. Vasiliev, draft-ietf-webtrans-http3-14, "WebTransport over HTTP/3", Work in Progress, Internet-Draft, 20 October 2025.
[WebTransport]	N. Jaju, V. Vasiliev, J. Bruaroey, "WebTransport", W3C Working Draft, 17 December 2025.
https://www.w3.org/TR/webtransport
* * * Next Change (all new) * * * *
4	QUIC-based media delivery protocols
[bookmark: _Toc220004438]4.1	General
Editor’s note:	This clause introduces existing and emerging QUIC-based media delivery protocols in each subclause.IETF has been working on the standardization of several QUIC-based application protocols. This clause documents the ones that are considered relevant to real‑time and interactive communication.
[bookmark: _Toc220004439]4.2	Considered protocols
Editor’s note:	Each subsequent clause describes an individual protocol.
4.2.1	Media over QUIC Transport (MOQT)	Comment by Liangping Ma: I suggest creating a table, listing MOQT, ROQ, WebTransport, and the metrics (session set up delay, overhead, …) for clarity.	Comment by Serhan Gül (r02): If you check the draft TR skeleton, the plan is to have a summary of the protocols in clause 4.3. Such table can be added there after we complete the description of protocols.	Comment by Serhan Gül: Liangping (S4aR260001r02_QCOM):
That makes sense. But then, the X.1.3, benefits and limitations, would be in the context of real time communication.
4.2.1.1	Introduction
Media over QUIC Transport (MOQT) [draft-ietf-moq-transport] is a binary data transport protocol that is under development by the IETF MOQ Working Group since 2023, designed to run either directly over QUIC [RFC9000] or via WebTransport [draft-ietf-webtrans-overview]. Although the protocol was originally created for media applications as its name suggests, its flexible design also allows it to transmit various other types of data.	Comment by Rufael Mekuria: Draft still states it is a media transport protocol	Comment by Serhan Gül (r01): True, but I'm reluctant to say media because from the protocol design and the discussions in the MOQ WG, it is clear that the intention is to develop a rather generic protocol. The spec text may change soon, there are open editorial issues on that like this one, reflecting the main contributors' views: https://github.com/moq-wg/moq-transport/issues/859

That said, we could change to meda transport protocol and add an EN, if there is a strong preference to stick to the wording in the current draft.
In separate Internet Drafts, the MOQ WG also develops container formats that specify encapsulation of MOQT data and media streaming formats operating over MOQT that specify media packaging as well as signaling mechanisms for negotiation between MOQT endpoints. Examples of such formats include the Low Overhead Media Container (LOC) [draft-ietf-moq-loc] and the MOQT Streaming Format (MSF, formerly known as WARP) [draft-ietf-moq-msf].
The MOQT protocol stack is shown in figure 4.2.1.1-1.
[image: A white rectangular object with black text

AI-generated content may be incorrect.]
Figure 4.2.1.1-1: MOQT protocol stack
4.2.1.2	Features
4.2.1.2.1	Introduction
Below is a non-exhaustive summary of MOQT's key features. For further details, please refer to [draft-ietf-moq-transport]. the latest version of the MOQT draft under: https://datatracker.ietf.org/doc/draft-ietf-moq-transport/
4.2.1.2.2	Object-based data model
MOQT’s data model represents each schedulable unit of content as an Object within a named Track, organized into Groups and Subgroups. Objects are identified by an Object ID within a Group/Subgroup and carry metadata including Track Alias, Group ID, Object IDs, Publisher Priority, and optional extension headers.
A Track is a named content stream published under a specific Track Namespace. Tracks are referenced on the wire by a numeric Track Alias, which is assigned when a subscription is established. Publishers may provide multiple tracks for identical content, offering alternatives such as varying quality levels.	Comment by Rufael Mekuria: What it means referenced on the wire ?	Comment by Serhan Gül (r01): Track Alias is an optimization for wire efficiency, i.e. optimizing the overhead of the serialized protocol fields carried over the network. Instead of using the Full Track Name (track namespace + track name), a small integer value, Track Alias, is assigned when the subscription is set up, and this is what appears in the headers of the subsequent data/control messages to indicate which track a given object belongs to. For example, a subscriber may ask for namespace "live/game1" and track "video/1080p", and the publisher assigns Track Alias = 7 for that subscription. All subsequent interactions can just include the value 7 then to refer to that specific track.
See here for more detail: https://www.ietf.org/archive/id/draft-ietf-moq-transport-16.html#name-track-alias
A Track is a collection of Groups that are temporal sequences of Objects. Groups are typically aligned with a codec’s synchronization point, e.g., a MOQT Group can be a Group of Pictures (GOP) defined in the H.264/AVC and H.265/HEVC video specifications. So, Group boundaries act as random access points in the stream of Objects such that subscribers can join and begin decoding without requiring information from earlier Groups.	Comment by Rufael Mekuria: Is it direct carriage of AVC/HEVC or encapsulated carriage in a container format ? Maybe good to indicate presence of encapsulation if needed	Comment by Serhan Gül (r01): I think this example is valid in either case if an Object is a video frame. See the MOQ object mapping in LOC here:
https://www.ietf.org/archive/id/draft-mzanaty-moq-loc-05.html#name-moq-object-mapping
4.2.1.2.3	Publish/Subscribe workflow
MOQT’s publish/subscribe workflow enables publishers to make media Tracks available within designated namespaces, allowing subscribers to select only the only the namespaces and Tracks they need.
Publishers are endpoints that handles subscriptions by sending requested Objects from the requested Track; the initial publisher of a given track is called the original publisher. Subscribers are endpoints that subscribes to and receives tracks. Relays are protocol entities that efficiently cache and route content, acting as intermediaries that handle subscription requests, retrieve data from upstream sources, and distribute it to downstream subscribers.
Publishers and subscribers are decoupled, enabling relays to fan out to large audiences; the original publisher (i.e. the initial publisher of a given track) need not push to every endpoint. Publishers generate Tracks carrying different media content (e.g. audio, video or metadata) and transmit them to subscribers/relays either by responding to SUBSCRIBE and FETCH messages from subscribers/relays or by initiating subscriptions themselves using PUBLISH messages. SUBSCRIBE only requests newly published or received Objects while Objects from the past are retrieved using FETCH.	Comment by Rufael Mekuria: Relay is not yet described	Comment by Serhan Gül (r01): Moved the relay definition up and defined publisher and subscriber as well to provide context	Comment by Rufael Mekuria: Publisher ?	Comment by Serhan Gül (r01): The correct MOQT term is original publisher: "The initial publisher of a given track.".
MOQT relies on out-of-band mechanisms for discovery of MOQT servers. However, an in-band means of discovery of publishers for a given namespace is provided by SUBSCRIBE_NAMESPACE, PUBLISH and PUBLISH_NAMESPACE messages. A subscriber can send a SUBSCRIBE_NAMESPACE message to a publisher to request the current set of matching published namespaces and/or subscriptions, as well as future updates to the set. A publisher can send a PUBLISH_NAMESPACE message to advertise that it has tracks available within a given Track Namespace.
Subscribers can also specify subscription filters indicating to the publisher which Objects to send, such as defining a starting point or choosing an exact range of Objects.
4.2.1.2.4	Data transport over streams and datagrams
Objects are transmitted either on QUIC streams (reliable, ordered) or QUIC DATAGRAM frames (unreliable, unordered) as defined in RFC 9221 [RFC9221]. The choice may affect media latency and robustness, as datagrams are typically not retransmitted upon loss and are not subject to head‑of‑line blocking, in contrast to streams.	Comment by Rufael Mekuria: I agree on the content, but for the study I think it makes sense to also have a clause on QUIC, also applies to rest of the section	Comment by Serhan Gül (r01): I agree that it would be good to have a QUIC background separately to avoid repetition. Here, the second sentence applies to QUIC in general, but the first sentence talks about the delivery of MOQT objects.	Comment by Serhan Gül: Removed the second sentence. See S4-260102 which proposes to cover the general QUIC aspects in the spec intro.
Grouping mutually dependent Objects together in a QUIC stream can provide operational advantages, such as improved prioritization. This is achieved by using Subgroups that are distinct segments within a Group, with each Subgroup delivered over a single QUIC stream. Each Object has an associated Forwarding Preference, specifying whether it is sent in a Subgroup (reliable stream) or datagram (unreliable); this is a property of an individual Object and can vary among the Objects in the same Track.
When Objects are sent in datagrams, each is encapsulated within a variable-length OBJECT_DATAGRAM message containing a single Object. When QUIC streams are used, Objects are sent on unidirectional streams that start with a variable-length integer indicating the stream type (SUBGROUP_HEADER or FETCH_HEADER). The specification only specifies two uses of bidirectional streams: the control stream which begins with a CLIENT_SETUP message and stream carrying SUBSCRIBE_NAMESPACE messages.
Editor’s note: It is expected that future versions of the draft will allow sending other control messages in bidirectional streams as well: https://github.com/moq-wg/moq-transport/pull/1389
4.2.1.2.5	Relay behaviour and scalability
MOQ Relays support both fan-in and fan-out: they can ingest tracks from multiple publishers (fan-in), acquire Tracks once and serve many subscribers (fan-out), thereby facilitating scalable distribution in a manner analogous to Content Delivery Networks (CDNs). Furthermore, relays function as policy enforcement points by validating both subscription and publication requests at the network edge.	Comment by Richard Bradbury: I believe the MoQ Relay concept is also intended to be used for “fan-in”, i.e., working in the opposite direction for scalable media contribution.	Comment by Serhan Gül (r03): Yes, relays support collecting multiple upstream publications and redistributing them. E.g an SFU-like functionality may be provided in a conferencing setup where relays fan in many participants and fan out selected tracks per subscriber.
Edited the sentence to clarify.
Objects and Tracks can have relay-visible fields by means of Extension Headers that allow publishers to inform relays about publisher preferences/settings (e.g. delivery timeout, max cache duration) and Object metadata (e.g. publisher priority). As endpoints, relays terminate QUIC transport sessions, providing visibility into Object metadata including data carried in optional extension headers that might be necessary for distribution. However, Object payload may be encrypted, and relays are required to treat the Object payload as opaque; they are not allowed to modify, split or combine payloads.	Comment by Rufael Mekuria: OK in HTTP there are also headers visible to caches for example CMSD	Comment by Serhan Gül (r01): Moved this up to the relay behavior part
Relays may cache recent Objects to reduce load of the original publisher, enable quicker late joins and recovery from loss.	Comment by Rufael Mekuria: Publisher ? 	Comment by Serhan Gül (r01): Original publisher. A relay is both a publisher and a subscriber.
4.2.1.3	Benefits and limitations	Comment by Rufael Mekuria: This clause is quite inconsistent in the different sections, if WebRTC is truly the baseline we should probably compare WebRTC, also maybe good to define requirements from WebRTC that we need and what additional features we need.	Comment by Serhan Gül (r01): We can hava separate clause where benefits/limitations of QUIC common to all protocols can be described to avoid repetition and inconsistency. Specific protocol aspects can be described here.

If needed, I think we can refine the benefits/limitations of each protocol after the evaluation against the WebRTC/RTP benchmark is completed.	Comment by Serhan Gül: Removed common QUIC aspects and made more RTC-specific.
Benefits:
-	Leverage the features of QUIC for real-time media delivery (e.g., multiple streams, prioritization) and provides means for integration to a CDN infrastructure.including:	Comment by Rufael Mekuria: Agree on the content but maybe useful to have a general clause on QUIC as these are QUIC specific not MoQT specific	Comment by Serhan Gül (r01): okay	Comment by Serhan Gül: Moved the QUIC-specific aspects to the spec introduction, see S4-260102.
-	Independent stream processing: QUIC’s per stream independence ensures that a blocked stream does not stall others and cause Head-of-Line (HoL) blocking.
-	Selective reliability and prioritization: Allows applications to signal the importance of different data flows.
-	Security and mobility: QUIC provides encryption (TLS 1.3) and connection migration.
-	Lower latency and faster start-up: 1-RTT handshake with optional 0-RTT resumption shortens join time for live/interactive sessions
-	Convergence to a single media delivery protocol suitable for from ingest to distribution reduces the need forsimplifies workflows for intermediary servers to repackage content and service providers to maintain multiple workflowsand enables a unified infrastructure for real-time and streamed media in the long run.	Comment by Rufael Mekuria: Yes but still publisher and subscriber need to support the same formats/encoding configurations	Comment by Serhan Gül (r01): Agreed, but this is about reducing the burdan of operating workflows with different protocols.
-	Scalable publish-subscribe architecture that uses relays to fan out Objects to many subscribers, with the aim of enabling independent scaling of producers and consumers as well as efficient content distribution.	Comment by Rufael Mekuria: Ok, this is according to MoQT maybe good to make that explicit, it is basically like an application layer multicast, the thing is this existed already in the internet but it was not so successful	Comment by Serhan Gül (r01): Okay, added that this is the goal.
Sure, MOQT is conceptually similar to application-layer multicast and overlay networks. One motivation behind selecting this architecture was to bring the success of pub-sub systems (MQTT, Kafka, etc.) to real-time media which has been very successful in other domains like IoT. My understanding is ALM didn't take off due to operational issues such as CDN support and NAT traversal/connectivitiy issues. Considering the wide support of CDN providers behind MOQT and QUIC-nativeness, I think it is not fair to draw a direct analogy.
-	Potentially reduced session setup delay compared to WebRTC, as WebRTC commonly incurs multiple RTTs for operations such as ICE gathering, DTLS, SCTP/data channel setup, etc.
-	MOQT relays can examine metadata in object extension headers and perform network optimizations, such as the 5G User Plane Function (UPF) integrating a MOQT relay and parsing the PDU Set information from an extension header, as defined in TS 23.501 [3].
Limitations:	Comment by Liangping Ma: QUIC is claimed to be fast in session setup. But MOQT uses pub/sub. Will that change the session setup delay, by how much?

Is relay relevant for RTC? In X.1.2 said relay enables “fan out large audiences.” 	Comment by Serhan Gül (r02): There are different aspects here, First a QUIC connection is established, which typically takes 1-RTT. Then MOQT setup takes place via Setup messages exchanged beween the endpoints. (Endpoint discovery is out of scope of the MOQT protocol and needs to be provided by the underlying system.) Regarding delay, there are no evaluations yet, but in comparison to WebRTC, I'd expect MOQT to reduce the session setup delay as WebRTC commonly incurs multiple RTTs for things like ICE gathering, DTLS, SCTP/Datachannel setup, etc.

Regarding the relevance of relays, they can be useful in many RTC scenarios. For example, they can do selective forwarding like SFUs, where the subscriber only receives selected layers e.g. in a scalable video scenario. Also, they can look into relay-visible data in object extension headers and perform optimizations, as in the case of PDU Set information where the UPF can integrate a MOQ relay.
	Comment by Serhan Gül: Liangping (S4aR260001r02_QCOM):
Could you incorporate this into X.1.3? A call flow in X.1.2 will help.	Comment by Serhan Gül: Integrated the benefits I mentioned above in 4.2.1.3. A call flow could be added later to illustrate an example workflow, but would perhaps be more appropriate in an annex.
-	MOQT is still evolving (the IETF draftspecification [draft-ietf-moq-transport] is not yet finalized), meaning limited production implementations, debugging tools, and operational experience.
-	Initial deployment costs for the new architecture and protocol implementation
-	Additional testing and operational experience are needed to validate scalability.
Editor’s note: Further alignment of these benefits and limitations for specific RTC relevant application scenarios is FFS.
4.2.1.4	Current applications	Comment by Rufael Mekuria: According to TR 21.801 use of tradename should be avoided if possible, and if needed it can be provided in a note, overall this is good evidence for the support of MoQT	Comment by Serhan Gül (r01): Replaced the trade names with their description.
-	Several open-source implementations of the IETF draft exist. A non-exhaustive list is given below:
-	Google’s production-ready implementation supports MOQT: https://github.com/google/quiche
-	Meta provides an experimental MOQT rRelay and live encoder/player designed to work with it:
-	Relay: https://github.com/facebookexperimental/moxygen
-	Encoder/player: https://github.com/facebookexperimental/moq-encoder-player
-	Ozyegin University provides a MOQT library with publisher, subscriber and relay components, featuring various live and on-demand demo applications using the LOC and CMAF formats: https://moqtail.dev/
-	Cloudflare provides an implementation of the MOQT protocol for live media delivery over QUIC: https://github.com/cloudflare/moq-rs
-	Cloudflare relay network implementation – Deployed on Cloudflare datacenter servers. https://blog.cloudflare.com/moq/
- 	Bitmovin web player– Integrated MOQT playback, bringing sub-second latency to modern web browsers. Leverages WebTransport and the WebCodecs API. https://bitmovin.com/blog/sub-second-streaming-bitmovin-player-web-x-moq-playback/
-	Vindral live streaming solution – Integrated MOQT into their low-latency live streaming platform. https://vindral.com/live/features/moq/
-	Red5 announced upcoming support for MOQT-based live streaming in their cloud-based live video streaming and real-time communications solutions in early 2026. https://www.red5.net/media-over-quic-moq/
* * * Next Change (all new) * * * *
4.2.2	RTP over QUIC (ROQ)
4.2.2.1	Introduction
RTP over QUIC (ROQ) [draft-ietf-avtcore-rtp-over-quic] is a protocol that has been under development by the IETF AVTCORE (Audio/Video Transport Core Maintenance) WG since 2022. ROQ specifies a minimal mapping for encapsulating Real-time Transport Protocol (RTP) [RFC3550] and RTP Control Protocol (RTCP) packets within the QUIC protocol.
The latest version of the ROQ draft can be found under: https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-over-quic/
4.2.2.2	Features
ROQ allows multiplexing multiple RTP and RTCP streams over a single QUIC connection using flow identifiers. For example, one flow ID can be assigned to audio-related RTP/RTCP packets and another to video stream packets.
ROQ offers two ways to map RTP/RTCP packets onto QUIC:
1.	Transmit each RTP packet in a separate QUIC stream. This mapping is not recommended, as creating thousands of short‑lived streams (one per RTP packet) leads to excessive per-packet overhead and state due to additional stream metadata and lifecycle management (creation, flow control accounting).	Comment by Rufael Mekuria: RTP packet or RTP stream ?	Comment by Serhan Gül (r01): Removed this because opening a QUIC stream per RTP packet is not recommended.	Comment by Richard Bradbury: Better in that case to document it, and to explain that this mode of operation is not recommended.
Even better to cite an external document stating that it is not recommended.	Comment by Serhan Gül (r03): Explained why this is not a desired mapping.
2.	Multiple RTP packets are sent within the same QUIC stream using ROQ’s in-stream framing (each packet is length-prefixed for delineation).	Comment by Rufael Mekuria: RTP packet or RTP stream ?	Comment by Serhan Gül (r01): RTP packet is correct. Made some edits to clarify the usage, also see here: https://www.ietf.org/archive/id/draft-ietf-avtcore-rtp-over-quic-14.html#name-stream-encapsulation
This allows e.g. placing all RTP packets of each video frame in a separate QUIC stream to allow prioritization, similar to MOQT.
3.	Use QUIC datagrams: Each QUIC DATAGRAM frame carries one RTP/RTCP packet—only the flow ID is needed, no additional length field is required.
Selecting between streams and datagrams, as well as determining the number of streams, depends on application needs and expected impact of HoL blocking. Datagrams are better suited to applications that require unordered, unreliable packet delivery and need to avoid HoL blocking entirely. On the other hand, streams are preferable in scenarios that require reliable, ordered delivery and allow explicit prioritization. While some HoL blocking within a stream may occur after packet loss, streams prevent HoL blocking between separate streams, allowing independent data transfer across multiple streams.ROQ aims to minimize RTCP traffic by utilizing data already accessible in QUIC. For example, QUIC acknowledgments can be used to compute the lost packet statistics, which are typically derived from RTCP reports in RTP applications.	Comment by Richard Bradbury: Would be good to expand on this, or at least provide a reference to a document explaining the considerations for choosing.	Comment by Serhan Gül (r03): Added some considerations but now realized that these are rather common QUIC aspects not unique to RoQ. So, I think this entire paragraph needs to be moved to the new QUIC section, documenting here additional RoQ-specific considerations, if any.	Comment by Serhan Gül: Integrated this part to the spec introduction in S4-260102.	Comment by Rufael Mekuria: Only for QUIC Streams ?	Comment by Serhan Gül (r01): Also possible in datagram mode, as DATAGRAM frames are ack-eliciting. See here: https://datatracker.ietf.org/doc/html/rfc9221#name-acknowledgement-handling
 "Although DATAGRAM frames are not retransmitted upon loss detection, they are ack-eliciting ([RFC9002])"
RTP applications often rely on the Session Description Protocol (SDP) [RFC8866] as their signalling protocol to establish connections and media negotiation. For ROQ, [draft-ietf-avtcore-sdp-roq] describes how SDP Offer/Answer can be used to set up an RTP connection using QUIC.
4.2.2.3	Benefits and limitations
Benefits:
-	Reuse established RTP payload formats, media semantics and timing, A/V lip-sync across multiple streams, etc.
-	Built-in authentication and encryption via QUIC/TLS 1.3 (no need for separate DTLS-SRTP).
Limitations:
-	Flow identifiers introduce some overhead in addition to the header overhead of RTP and QUIC. They are encoded as QUIC variable-length integers, adding 1–8 bytes per packet. So, in typical deployments with ≤63 flows, the overhead would be 1 byte per RTP/RTCP packet.	Comment by Liangping Ma: Can we quantify the header overhead?	Comment by Serhan Gül (r02): The flow ID is encoded as a QUIC variable-length integer, adding 1–8 bytes per packet. So, in typical deployments with ≤63 flows, it is 1 byte per RTP/RTCP packet.
-	RTP applications often implement application-layer rate control (e.g. Google Congestion Control [draft-ietf-rmcat-gcc], SCReAM [RFC8298, SCReAM]) while QUIC enforces transport-level congestion control (e.g. CUBIC, BBR). Coordination between the two is necessary to prevent conflicts and performance degradation. Currently, there is no API defined for communication between app-layer rate control and transport-layer congestion control algorithms.	Comment by Richard Bradbury: For completeness, you should also cite Ericsson’s mobile-optimised congestion control algorithm, SCReAM, I think.
https://github.com/EricssonResearch/scream	Comment by Serhan Gül (r03): Added SCReAM, will add proper references later	Comment by Serhan Gül: Added the references. There is also an experimental RFC for SCReAM from 2017, but the Github repo contains the recent updates and seems like a better reference.
-	Not suitable for point-to-multipoint topologies, as QUIC is not yet defined for multicast operation, although several draft proposals exist, including the most recent Flexicast QUICInternet Draft [draft-navarre-quic-flexicast].	Comment by Rufael Mekuria: This limitation also applies to MoQT even tough rely tries to address this, again a general QUIC section might be useful to discuss the general advantages/disadvantages of QUIC	Comment by Serhan Gül (r01): MOQT relays address this by providing app-layer fanout, but such mechanism doesn't exist for ROQ. We can mention the QUIC's lack of IP multicast support separately.	Comment by Richard Bradbury: https://dl.acm.org/doi/10.1145/3750832.3750834
https://datatracker.ietf.org/doc/draft-navarre-quic-flexicast/	Comment by Serhan Gül: Thanks
-	Limited ecosystem and adoption in the industry so far.
4.2.2.4	Current applications
Open-source implementations exist:
-	Go implementation by TUM: https://github.com/mengelbart/roq
-	Gstreamer plugin by BBC: https://github.com/bbc/gst-roq	Comment by Richard Bradbury: Thanks for citing my team’s work
-	Meetecho C library imquic implements ROQ in addition to MOQT: https://github.com/meetecho/imquic/
No commercial deployments have been identified, further exploration is FFSfor further study.	Comment by Rufael Mekuria: I suggest to move this down and make it a bit less strong statement	Comment by Serhan Gül (r01): okay
* * * Next Change (all new) * * * *
4.2.3	WebTransport
4.2.3.1	Introduction
WebTransport is a modern web API and protocol framework that enables secure, low‑latency, bidirectional communication between browsers or web apps and servers. The IETF defines the WebTransport protocol framework [draft-ietf-webtrans-overview], including the mappings to HTTP/2 [RFC9113] and HTTP/3 [RFC9114] mappings found in [draft-ietf-webtrans-http2] and [draft-ietf-webtrans-http3], respectively, while the W3C specifies the web API [WebTransport] that allows data to be exchanged between a browser and server.
The protocol and API are designed to work within the Web security model (origin verification, TLS), and are aimed at real-time scenarios such as gaming, interactive streaming, collaboration, and IoT telemetry. Non-browser clients, such as native apps, might instead benefit from using QUIC directly for greater control and efficiency.
4.2.3.2	Features
WebTransport utilizes QUIC to provide both unidirectional and bidirectional streams, ensuring reliable and ordered delivery of byte streams. It also allows for unreliable delivery using QUIC datagrams. The API exposes readable/writable streams and datagrams to developers.
When layered over HTTP/3, a WebTransport session is established via an HTTP/3 CONNECT with :protocol=webtransport and negotiated SETTINGS. All data then flows over QUIC streams/datagrams. Applications gain high-level access to QUIC’s capabilities through the WebTransport API. However, arbitrary crafting of QUIC packets or frames is not allowed; the developers interact with QUIC through the WebTransport API’s streams and datagrams mapped onto QUIC.
Congestion control is hinted via an API preference ("throughput" or "low-latency") but not directly selectable or configurable; actual algorithms are defined by the user agent.
4.2.3.3	Benefits and limitations
Benefits:
-	Leverage benefits of QUIC within the standard web security model providing browser support
-	Simpler deployment compared to WebRTC DataChannels (no ICE/STUN/TURN)
-	WebTransport adds only minimal overhead on top of QUIC: a one-time HTTP/3 CONNECT for session setup, after which MOQT messages use normal QUIC streams/datagrams with typically just a one-byte session ID per stream and no additional cryptographic overhead since it reuses the existing QUIC connection and encryption.
Limitations:
-	Browser support is evolving; no support in Safari as of early 2026.	Comment by Rufael Mekuria: Should browser support not be a benefit as moqT and q- rtp do not have browser support at all ? or now we compare with webRTC ? I geuss if WebRTC is the benchmark we should consistently compare with webRTC ?	Comment by Serhan Gül (r01): WT enables QUIC to work within the web security model, this is covered in the first bullet under benefits. This bullet is just saying that it is not possible to use WT with all browsers so far.

MOQT can run in browsers if it is layered over WT, which is one of the two ways to use it (the other one is over native QUIC).

I think this clause should generally talk about benefits and limitations of the protocol, not particularly against WebRTC pr RTP, because it gives an overview of the protocols. For the evaluation, RTP/WebRTC would be the benchmark as defined in the SID.
-	An application-layer protocol is required to deliver media, utilizing either a custom frame format with message boundaries and headers or MOQT. Same for per-stream prioritization.
-	Intentionally exposes only a high-level subset of QUIC features considered safe within the web security model, not allowing full control over QUIC configuration.
4.2.3.4	Current applications
MOQT can be layered on top of WebTransport.	Comment by Liangping Ma: Will this increase overhead even further?	Comment by Serhan Gül (r02): I don't think there is a significant overhead. There is a one-time HTTP/3 CONNECT request/response for the WT session setup. After establishing the WT session, MOQT messages use QUIC streams or datagrams as usual. I think the only overhead is a WT session ID associating the session to QUIC stream. This is also a varint, but in typical case this would be 1-byte per stream.
There is no extra crypto overhead as WT uses the existing QUIC connection and encryption.	Comment by Serhan Gül: Liangping (S4aR260001r02_QCOM):
Could we incorporate your answer in X.3.3?.	Comment by Serhan Gül: Integrated into the benefits part in clause 4.2.3.3.
Many open-source implementations exist. Some examples:
-	Google QUICHE supports WebTransport: https://github.com/google/quiche
-	Rust WebTransport library: https://github.com/moq-dev/web-transport
* * * End of Changes * * * *
image1.png
Application

MOQ media format

Media over QUIC Transport (MOQT)

WebTransport

Quic

including datagram extension

uDP

IP

