

	
3GPP TSG-SA4 Meeting #135	S4-260357
Goa, India, 9th – 13th February 2026
	CR-Form-v12.4

	CHANGE REQUEST

	

	
	26.870
	CR
		-
	rev
	
	Current version:
	0.0.1
	

	

	[bookmark: _Hlt497126619]For HELP on using this form: comprehensive instructions can be found at
https://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	pCR on Network Emulation and AI Testbed

	
	

	Source to WG:
	Qualcomm Inc.

	Source to TSG:
	S4

	
	

	Work item code:
	FS_6G_MED
	
	Date:
	2026-02-03

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-20

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	Adding a description of the network emulator and the AI traffic characterization testbed.

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	Annex AD (new).

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

==============First change==============
[bookmark: _Toc212547003][bookmark: _Toc216796689][bookmark: _Toc219448220]6.2	Work topic #2: 6G media
6.2.X	AI Traffic Characterization
The network emulator in Annex A is used for emulating different network profiles for the purpose of evaluation AI traffic characteristics.
The testbed for the AI traffic characterization is defined in Annex B. Other platforms complementing the network emulator are also considered for the evaluation of AI traffic characteristics.
==============Next change==============
Annex A:
Network Emulator
A.1	Background
The emulator supports one-way delay, jitter, loss, bandwidth shaping, and advanced netem controls (correlation, distributions, loss models, reordering, duplication, corruption, and queue limits). It can combine Hierarchical Token Bucket (HTB) rate limiting with netem impairments and is controlled via YAML profiles.
Standard profiles may include ideal_6g (1 ms), 5g_urban (20 ms/0.1% loss/100 Mbit), wifi_good, cell_edge (120 ms/1% loss/5 Mbit), satellite (600 ms/0.5% loss/10 Mbit), congested (200 ms/3% loss/1 Mbit), plus 5QI-derived profiles mapped from PDB/PER values. These profiles align with the study need for realistic and comparable impairments.
NOTE: alternative network emulators may be considered on need basis.
A.2	Network Emulator Architecture
The network emulator is built on Linux Traffic Control (tc) with netem qdisc, providing precise control over network characteristics. The architecture implements a layered approach where network conditions are applied at the interface level, enabling transparent emulation for any media delivery protocol without requiring modifications to the client or server implementations.
A.2.1	5QI-based Network Profiles
The emulator provides pre-defined network profiles derived from 3GPP 5QI specifications. Each profile maps the Packet Delay Budget (PDB) to network delay and the Packet Error Rate (PER) to loss percentage. Key profiles include 5QI 1 (100ms delay, 1% loss for Conversational Voice), 5QI 2 (150ms delay, 0.1% loss for Conversational Video), 5QI 7 (100ms delay, 0.1% loss for Voice and Live Streaming), and 5QI 80 (10ms delay, 0.0001% loss for Low-latency eMBB and AR applications).
A.2.2	Advanced Netem Controls
Beyond basic delay and loss parameters, the emulator supports advanced netem controls for more realistic network modeling. These include delay distribution models (normal, pareto, paretonormal), delay correlation, loss correlation, Gilbert-Elliott loss models, packet corruption and reordering, bandwidth shaping with HTB (Hierarchical Token Bucket), and configurable packet buffer limits. These capabilities enable simulation of realistic mobile network behavior including bursty loss patterns and variable delay characteristics observed in real deployments.
The following YAML examples shows the definition of several network emulation profiles:
	# Network Profile Configuration for 6G AI Traffic Characterization Testbed
Each profile defines network impairment parameters for tc/netem

profiles:
 example_full_profile:
 # === DELAY PARAMETERS ===

 # One-way packet delay in milliseconds
 # Maps to: tc qdisc add dev eth0 root netem delay <delay_ms>ms
 delay_ms: 50

 # Delay variation (jitter) in milliseconds
 # Adds random variation to base delay using specified distribution
 # Maps to: tc qdisc ... delay 50ms 10ms (adds +/- jitter)
 jitter_ms: 10

 # Delay distribution model
 # Options: "normal", "pareto", "paretonormal"
 # - normal: Gaussian distribution (symmetric around mean)
 # - pareto: Heavy-tailed distribution (models bursty delays)
 # - paretonormal: Combination for realistic mobile networks
 # Maps to: tc qdisc ... delay 50ms 10ms distribution pareto
 delay_distribution: "normal"

 # Correlation between consecutive packet delays (0-100%)
 # Higher values create smoother delay variations (less random)
 # Maps to: tc qdisc ... delay 50ms 10ms 25%
 delay_correlation_pct: 25

 # === LOSS PARAMETERS ===

 # Random packet loss percentage (0-100)
 # Maps to: tc qdisc ... loss 0.5%
 loss_pct: 0.5

 # Loss correlation for bursty loss patterns (0-100%)
 # Higher values create loss bursts rather than random drops
 # Maps to: tc qdisc ... loss 0.5% 25%
 loss_correlation_pct: 25

 # Gilbert-Elliott loss model for realistic loss simulation
 # Defines a two-state Markov model (Good/Bad states)
 # Maps to: tc qdisc ... loss gemodel p h 1-k
 loss_model:
 type: "gemodel" # Gilbert-Elliott model
 p: 0.01 # Probability of transitioning Good -> Bad
 r: 0.10 # Probability of transitioning Bad -> Good
 h: 0.0 # Probability of loss in Good state (1-h)
 k: 0.95 # Probability of loss in Bad state (1-k)

 # === BANDWIDTH PARAMETERS ===

 # Bandwidth limit in Mbps
 # When set, enables HTB (Hierarchical Token Bucket) with netem as leaf
 # Maps to: tc qdisc add dev eth0 root handle 1: htb default 1
 # tc class add dev eth0 parent 1: classid 1:1 htb rate 100mbit
 # tc qdisc add dev eth0 parent 1:1 handle 10: netem ...
 rate_mbit: 100

 # Queue buffer size in packets
 # Controls how many packets can be queued before drops occur
 # Maps to: tc qdisc ... limit 1000
 limit_packets: 1000

 # === ADDITIONAL IMPAIRMENTS ===

 # Packet reordering percentage
 # Causes specified percentage of packets to be delayed further
 # Maps to: tc qdisc ... reorder 5% 50%
 reorder_pct: 0.0
 reorder_correlation_pct: 0

 # Packet duplication percentage
 # Causes specified percentage of packets to be sent twice
 # Maps to: tc qdisc ... duplicate 0.1%
 duplicate_pct: 0.0

 # Packet corruption percentage
 # Introduces bit errors in specified percentage of packets
 # Maps to: tc qdisc ... corrupt 0.01%
 corrupt_pct: 0.0

 # === EXAMPLE PROFILES ===

 ideal_6g:
 # Baseline profile for reference measurements
 # Represents ideal 6G conditions with minimal impairments
 delay_ms: 1
 jitter_ms: 0
 loss_pct: 0.0
 # No rate limit (unlimited bandwidth)

 5g_urban:
 # Typical 5G deployment in urban environment
 # Based on field measurements from dense urban deployments
 delay_ms: 20
 jitter_ms: 5
 delay_distribution: "normal"
 delay_correlation_pct: 25
 loss_pct: 0.1
 loss_correlation_pct: 25
 rate_mbit: 100

 wifi_good:
 # Home/office WiFi with good signal
 delay_ms: 30
 jitter_ms: 10
 delay_distribution: "normal"
 loss_pct: 0.1
 rate_mbit: 50

 cell_edge:
 # Poor cellular coverage (cell edge conditions)
 # Models challenging radio conditions
 delay_ms: 120
 jitter_ms: 40
 delay_distribution: "pareto"
 delay_correlation_pct: 50
 loss_pct: 1.0
 loss_correlation_pct: 50
 rate_mbit: 5

 satellite:
 # LEO satellite access (e.g., Starlink)
 # High latency but reasonable bandwidth
 delay_ms: 600
 jitter_ms: 50
 delay_distribution: "normal"
 loss_pct: 0.5
 rate_mbit: 10

 congested:
 # Severe network congestion scenario
 delay_ms: 200
 jitter_ms: 100
 delay_distribution: "pareto"
 delay_correlation_pct: 75
 loss_pct: 3.0
 loss_correlation_pct: 75
 rate_mbit: 1
 limit_packets: 100 # Small buffer causes additional drops

 # === 5QI-DERIVED PROFILES ===
 # Based on 3GPP TS 23.501 Table 5.7.4-1
 # PDB (Packet Delay Budget) -> delay_ms
 # PER (Packet Error Rate) -> loss_pct

 5qi_1:
 # 5QI 1: Conversational Voice
 # GBR, PDB 100ms, PER 10^-2
 delay_ms: 100
 jitter_ms: 20
 loss_pct: 1.0

 5qi_2:
 # 5QI 2: Conversational Video (Live Streaming)
 # GBR, PDB 150ms, PER 10^-3
 delay_ms: 150
 jitter_ms: 30
 loss_pct: 0.1

 5qi_7:
 # 5QI 7: Voice, Video, Interactive Gaming
 # Non-GBR, PDB 100ms, PER 10^-3
 delay_ms: 100
 jitter_ms: 20
 loss_pct: 0.1

 5qi_80:
 # 5QI 80: Low Latency eMBB (AR)
 # Non-GBR, PDB 10ms, PER 10^-6
 delay_ms: 10
 jitter_ms: 2
 loss_pct: 0.0001

=== GLOBAL CONFIGURATION ===
defaults:
 # Default interface to apply impairments
 interface: "eth0"

 # Default profile if none specified
 default_profile: "ideal_6g"

 # Whether to apply impairments bidirectionally
 # (requires IFB device for ingress shaping)
 bidirectional: true

A.2.3	Deployment Scenarios
The emulator supports multiple deployment configurations. Standalone deployment allows the emulator to run on a single host for client-side testing. Docker deployment enables containerized execution with NET_ADMIN capabilities for consistent cross-platform testing. Network bridge deployment positions the emulator between client and server segments for transparent traffic shaping. The emulator can also integrate with existing network simulation frameworks such as ns-3 for more comprehensive evaluation scenarios.
The following example shows how the network emulator can be setup:
	from netemu import NetworkEmulator

emulator = NetworkEmulator(
 interface="eth0",
 profiles_path="profiles.yaml"
)

Apply a named profile for uplink and downlink
emulator.apply_profile("poor_cellular",
 ingress_profile="5g_urban")

... run tests ...

emulator.clear()

The source code for the testbed can be found under: https://github.com/5G-MAG/6G-Testbed.git
==============Next change==============
[bookmark: _Toc219448227]Annex B:
AI Traffic Characterization Testbed
[bookmark: motivation-background]B.1 	Introduction
FS_6G_MED targets media aspects for 6G and requires quantitative characterization of emerging AI-based media services under diverse network conditions. The testbed provides an end-to-end framework to run scenarios, emulate network conditions, and log metrics in a reproducible manner.
Key capabilities include orchestration of scenarios, provider adapters for different commercial and self-hosted models, L3/L4 capture (tcpdump), optional L7 capture (mitmproxy), and SQLite-based logging for large-scale analysis.
Metrics include TTFT/TTLT, latency percentiles, success rate, UL/DL bytes and ratios, token rate, tool-call latency, burstiness, streaming stall statistics, as well as all pcap-enabled analysis.
Editor’s Note: Whether and how TTFT, TTLT and tool-call latency can be used for AI traffic evaluation is FFS.
Trace logging provides visibility into protocol and payload behavior. The testbed enables trace generation, e.g. WebRTC SDP samples and exact agent request/response payloads, which can be enabled by setting TRACE_PAYLOADS=1.
[bookmark: architecture-and-code-structure]B.2	Architecture and code structure
The testbed architecture is orchestrator-centric with clear separation of scenarios, clients, network emulation, capture, and analysis:
· orchestrator.py coordinates scenario runs, applies network profiles, handles retries, and generates reports.
· scenarios/* implement traffic patterns (chat, agent, direct search, realtime, multimodal, image, video, computer use).
· clients/* provide provider adapters, including OpenAI, Gemini, DeepSeek (OpenAI-compatible), and vLLM for self-hosted models.
· netem: external dependency on the network emulator module that is proposed to be common to all studies [1].
· capture/* provides L3/L4 pcap capture and L7 capture via mitmproxy.
· analysis/* logs to SQLite, computes 3GPP-aligned metrics, and generates plots.
[bookmark: how-to-use-the-testbed-summary]B.3	How to use the testbed
The testbed is designed to be easily usable and highly configurable. The following steps are typical steps for running an evaluation:
· Configure scenarios and models in configs/scenarios.yaml and network profiles in configs/profiles.yaml.
· Run a single scenario: python orchestrator.py –scenario chat_basic –profile 5g_urban –runs 10
· Run the full matrix: python orchestrator.py –scenario all –runs 5
· Enable L3/L4 capture: –capture-pcap
· Enable L7 capture: –capture-l7
[bookmark: extending-the-testbed]New scenarios can be added by creating a class in scenarios/ that extends BaseScenario, registering it in scenarios/init.py, and adding a YAML entry in configs/scenarios.yaml.
New providers can be added by implementing a client in clients/ that subclasses LLMClient and registering it in the orchestrator client factory.
[bookmark: vllm-for-self-hosted-models]The testbed includes a vLLM client (clients/vllm_client.py) and example scenarios in configs/scenarios.yaml (e.g., chat_vllm). This enables evaluation of self-hosted models via the OpenAI-compatible API provided by vLLM, supporting the same metrics and logging pipeline as hosted providers.
The source code for the testbed can be found under: https://github.com/5G-MAG/6G-Testbed.git
==============End of change==============

