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1. Introduction
This document discusses AI native formats that can be used to address the important generic AI related tasks of generation, comprehension, information retrieval and recommendation which can be important in advanced multimedia use cases and services, sometimes referred as multi-modal AI.
Compared to earlier work in 5G:
A) These tasks are more generic covering a broader range of popular applications used today, instead of detection/segmentation/tracking only. In this paper we focus on the very generic reconstruction, comprehension, recommendation and information retrieval cases.
B) Support the use of Multi-Modal Large language models. 
C) Generic multi-modal native AI formats potentially combining modalities like text, image, video and audio i.e. multimodal AI. 
D) Alternative approach to split inference when compared to model-splitting by using AI native format generation, AI pre-training. 
We believe standardization of such formats is difficult at this stage as the field is constantly evolving and AI native formats may be task specific. However, we do believe SA4 should document and study these formats in FS_6G_MED and track progress in this area of work with an aim to understand the characteristics of these type of formats including QoS related requirements that may apply and be relevant to the 3GPP network.
Also these formats should be taken into account when considering the AI related traffic characteristics.
The papers surveyed here are based on work from industry giants in this area like Meta, OpenAI, DeepSeek AI, Google, Tencent and other multi modal AI leaders and represent current state of the art in multi-modal AI native formats.
2. AI processing and related Native AI Formats
Recent advances in Artificial intelligence enable many new application and services. In particular advances in large language models have facilitated use cases in generation, comprehension, information retrieval and recommendation. Multi-modal large language models also incorporate other modalities like image, video and audio and are particularly relevant to advanced media applications but this requires some AI related pre-processing in AI native formats. 
The inclusion of these modalities for such models require some form of processing to handle the dense data and to let applications generate an AI native format that can utilize the power of the large language model. Currently AI pre-processing and multi-modal formatting for these modalities is an important topic of industry research and practice and different services use different processing, in many cases also open sourcing implementations. 
The reasons for the AI split processing and native AI formatting:
· Distribute the AI work load possibly offloading privacy sensitive parts and computationally offloading the services (i.e. similar as in split inferencing studied in 5G)
· Enable input that is suitable to Auto regressive LLM/MLM (discrete information carried in a vector with information relevant to the model) as well as (non-generative) world models.
· Combine modalities e.g. text, image, video into relevant features if needed.
· Reduce the data size, the resulting latency and bandwidth required.
· Optimize for potential tasks that benefit from different features such as reconstruction versus comprehension.
The recent survey provided by [Jian Jia et al. 2025] was extended and this paper added new techniques from 2025.
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Figure 1 Survey of AI coding and Native AI data unit intermediate formats based on [Jian Jia et al. 2025]
In Figure 1 shows the general AI processing used in multi-modal AI that can result in intermediate AI native formats. 
The input modalities are fed to an encoder that is responsible for the feature extraction mapping. 
This encoder generally maps the input from tensor to latent vector z. Some example techniques that could be used that may also include some customized steps specific to the processing/training technique are the following:
Transformer: [Vaswani et al 2017] attention model has shown significant performance enhancement across tasks. For text information it is usually processed by tokenization and then fed in transformers. For 2D input it is usually required to segment the 2Dd image into smaller patches and then the patches are treated as a sequence and fed in the transformers encoder/decoder network. For 3D input the data is sliced in the temporal dimension and 2D patches can be represented as 3D Tubes [Wang et al 2024b]. Transformers can handle large parameter size efficiently and is becoming increasingly popular.
Convolutional neural network CNN [O'Shea 2015] CNN is especially popular in context for image modalities for feature extraction such as in UNet [Ronneberger et al 2015].  For audio intermediate formats they may be used as well. They can also extend to video using 3D-CNN that incorporate the temporal dimension alongside the spatial dimension. 
Multi-layer perceptron MLP: this earlier neural network architecture was sometimes used to create embeddings used in recommender systems, for example, MLP is employed to perform latent space mapping [Rajput et al., 2023; Singh et al., 2024]. They have been popular in earlier stages, and they are sometimes used to create the embeddings for latent space mapping.
The decoder usually applies related transforms for reconstruction, but may also include different models to complete specific tasks like generation, recommendation or information that can potentially be jointly optimized with the encoder.
The supervision step can be used to minimize the error between the reconstruction based on the output of the decoder and the input of the encoder, for example using the square l2 norm distance between original and reconstructed signal. This applies to the case of reconstruction of the original based on the intermediate data format. In case of other applications like comprehension, information retrieval the supervision may need to take into account other information to establish a ground truth and perform the training. 
Besides input reconstruction, the different encoder and decoder processing can serve different applications with different models:
· Generation: can be reconstruction of the content but also potentially generating other related content 
· Comprehension: understanding of the input, such as providing textual description or labelling. 
· Information retrieval: retrieve related documents and sources available using semantic features of the input 
· Recommendation: provide recommendations on related items (mainly on historical behaviour as recommendation id usually do not contain semantic features).
These applications are usually achieved by different models in the decoder and different processing/training in the encoder making the native AI format in many cases specific to the application.
Regardless of the application, the intermediate vectors are usually eventually quantized using quantization or codebook or other compressed representation strategy (see quantization part in Figure 1). This quantization step is applied to discretize the latents.
This can use typical quantization techniques that we also label and mark in this survey following the approach in [Jian Jia et al. 2025] can be summarized as follows.
Vector Quantization (VQ): 	Vanilla vector quantization [Juang and Gray, 1982], e.g. using the minimum distance codebook entry.
Level Wise Quantization (RQ): 	quantization error allowed is based on the current level of quantization (i.e) smaller quantization error for smaller values
Group wise quantization (GRVQ): splits the vector in multiple sub-components and quantizes each separately
Lookup Free Quantization and variants (LFQ): quantization without a specific lookup table
Finite Scalar quantization and variants (FSQ): 	project the vector in a few dimensions enable rounded representation to a set of small values.
Potentially other quantization could be deployed in emerging works, this survey is just to give an indication of current 
practices. Some tokenizers may not have a quantization technique and rely on floating point arithmetic.
In some cases the native AI formats have been used to develop an AI based codec such as in JPEG AI [ISO/IEC 6048-1] and deep render codec (from interdigital) which is also available on FFMPEG and VLC platforms [Deep Render].
3. Survey of AI processing for Native AI Formats
Table 1 presents the overview based on [Jian Jia et al. 2025] with added methods from 2024 based on the discussion in clause 2.
Table 1 Overview of native AI data formats and the related AI pre-processing.
	Pre-processing technique
	Modality/Media Type
	Encoder type
	Quantization Type
	Target Task/application

	VQVAE [Van Den Oord et al., 2017] 
	Image
	CNN
	VQ
	Generation

	VQGAN [Esser et al., 2021] 
	Image
	CNN
	VQ
	Generation

	ViT-VQGAN [Yu et al., 2022] 
	Image
	Transformer
	VQ
	Generation

	RQVAE [Lee et al., 2022] 
	Image
	CNN
	RQ
	Generation

	LQAE [Liu et al., 2023] 
	Image
	CNN
	VQ
	Generation

	SEED [Ge et al., 2024] 
	Image
	Transformer
	VQ
	Generation, Comprehension

	TiTok [Yu et al., 2024b] 

	Image
	Transformer
	VQ
	Generation

	MAGVIT [Yu et al., 2023] 
	Image, Video
	CNN
	VQ 
	Generation

	MAGVIT-v2 [Yu et al., 2024a] 

	Image, Video
	CNN
	LFQ
	Generation

	OmniTokenizer [Wang et al., 2024b] 

	Image, Video
	Transformer
	VQ
	Generation

	SweetTokenizer [Tan et al., 2024] 

	Image, Video
	Transformer
	VQ
	Generation, Comprehension

	Cosmos [NVIDIA, 2025] 

	Video
	CNN, Transformer
	FSQ
	Generation

	VidTok [Tang et al., 2024] 
	Video
	CNN
	FSQ
	Generation

	TEAL [Yang et al., 2023b] 
	Image, Audio, text
	Transformer
	VQ
	Comprehension

	AnyGPT [Zhan et al., 2024] 
	Image, Audio, Text
	Transformer
	VQ
	Generation, Comprehension

	LaViT [Jin et al., 2024c] 
	Image
	Transformer
	VQ
	Generation & comprehension

	Video-LaViT [Jin et al., 2024b]
	Video
	Transformer
	VQ
	Generation & Comprehension

	ElasticTok [Yan et al., 2024] 
	Image, Video
	Transformer
	VQ, FSQ
	Generation, Comprehension

	Chameleon [Team, 2024] 
	Image, Text
	CNN, Transformer
	VQ
	Generation & Comprehension

	ShowO [Xie et al., 2024] 
	Image, Text
	CNN Transformer
	LFQ
	Generation, Comprehension

	SoundStream [Zeghidour et al., 2021] 
	Audio
	CNN
	RQ
	Generation

	HiFiCodec [Yang et al., 2023a] 
	Audio
	CNN
	GRVQ
	Generation

	RepCodec [Huang et al., 2024] 
	Audio
	CNN, Transformer
	RQ
	Comprehension

	SpeechTokenizer [Zhang et al., 2024] 
	Audio
	CNN, Transformer
	RQ
	Generation and Comprehension

	NeuralSpeech-3 [Ju et al., 2024] 
	Audio
	CNN, Transformer
	VQ
	Generation & comprehension

	TIGER [Rajput et al., 2023] Text MLP RQ Recommendation 
	Text
	MLP
	RQ
	Recommendation

	SPM-SID [Singh et al., 2024] Text MLP RQ Recommendation 
	Text
	MLP
	RQ
	Recommendation

	TokenRec [Qu et al., 2024] 
	Text
	MLP
	VQ
	Recommendation

	VQ-Rec [Hou et al., 2023] 
	Text
	MLP
	RQ
	Recommendation

	LC-Rec [Zheng et al., 2024] 
	Text
	MLP
	RQ
	Recommendation

	LETTER [Wang et al., 2024c] 
	Text
	MLP
	RQ
	Recommendation

	CoST [Zhu et al., 2024] 
	Text
	MLP
	RQ
	Recommendation

	ColaRec [Wang et al., 2024d]  
	Text
	MLP
	VQ
	Recommendation

	SEATER [Si et al., 2024] Text MLP VQ Recommendation 
	Text
	MLP
	VQ 
	Recommendation

	QARM [Luo et al., 2024] 
	Text
	MLP
	VQ
	Recommendation

	DSI [Tay et al., 2022] 
	Text
	Transformer
	VQ
	Information Retrieval

	Ultron [Zhou et al., 2022] 
	Text
	Transformer
	RQ
	Information Retrieval

	GenRet [Sun et al., 2024] 
	Text
	Transformer
	VQ
	Information Retrieval

	LMINDEXER [Jin et al., 2024a] Text Transformer VQ Information Retrieval 
	Text
	Transformer
	VQ
	Information Retrieval

	RIPOR [Zeng et al., 2024] 
	Text
	Transformer
	RQ
	Information Retrieval

	iRVQGAN [Kumar et al., 2024]  
	Audio
	CNN
	RQ
	Generation

	Spectral image tokenizer [Esteves et al 2025]
	Image
	Transformer
	VQ
	Generation

	Subobject-level [Chen et al 2024]
	Image
	Transformer, CNN
	VQ
	Generation

	One-d-piece [Miwa et al 2025]
	Image
	Transformer
	VQ
	Generation, Comprehension

	Atoken [J Lu et al 2025]
	Image, Video
	Transformer
	FSQ
	Generation, Comprehension

	HieraTok [Chen et al 2025]
	Image, Video
	Transformer
	VQ
	Generation

	Semhitok [Chen et al 2025]
	Image
	Transformer
	LFQ
	Generation, Comprehension

	Ming-univision [Z Huang et al]
	Image
	Transformer
	N/A
	Generation, Comprehension

	SetTok [Geng et al 2025]
	Image
	Transformer
	LFQ
	Generation

	UniTok [Chuofan Ma et al 2020]
	Image
	CNN
	LFQ
	Generation, Understanding

	GloTok [Zhao et al 2025]
	Image
	Transformer
	VQ
	Generation

	GaussianToken [Jiajun et al 2025]
	Image
	CNN
	VQ
	Generation

	Cat Content adaptive image tokenization [Shen et al 2025]
	Image
	Transformer, CNN
	VQ
	Generation

	OpenAI CLIP [CLIP: Connecting text and images | OpenAI] https://keras.io/keras_hub/api/models/clip/clip_tokenizer/
	Image, text
	CNN
	N/A
	Generation, Comprehension

	MPEG FCM [Eimond et al 2025]
	Image, Video
	CNN
	VQ
	Comprehension

	JPEG AI [ISO/IEC 6048-1]
	Image
	CNN, Transformer
	VQ
	Reconstruction, Comprehension*

	Grace [Cheng et. al 2024]
	Video
	CNN
	VQ
	Reconstruction



4. Conclusion and proposal(s)
a) 	Take this information into account when developing an overview of AI traffic characteristics with native AI format or codec besides options for traditional codec usage. 
b) 	Consider for the 6G split inferencing that the split operation may include such AI processing/formatting in addition to the more traditional and direct model splitting considered in 5G.
c)	Add text and diagram based on clause 2 to TR for FS_6G_MED (see PcR below).
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6.2.4.X	Native AI Formats
Recent advances in Artificial intelligence enable many new application and services. In particular advances large language models have facilitated use cases in generation, comprehension, information retrieval and recommendation. Multi-modal large language models also incorporate other modalities like image, video and audio and are particularly relevant to advanced media applications but they require, in some cases AI related pre-processing/pre-encoding into AI native formats. 
The inclusion of these modalities for such models require some form of processing to handle the dense data and to let applications generate an AI native format that can utilize the power of the large language model. Currently AI pre-processing and multi-modal formatting for these modalities are important topics of industry research and practice and different services use different (pre-) processing. In many cases also open source implementations are available. 
The reasons for the AI split processing and native AI formatting include the following:
· Distribute the AI work load possibly offloading privacy sensitive parts and computationally offloading the services (i.e. similar as in split inferencing studied in 5G)
· Enable input that is suitable to Auto regressive LLM/MLM (discrete information carried in a vector with information relevant to the model)
· Combine modalities e.g. text, image, video into relevant features if needed.
· Reduce the data size, meeting the resulting latency and bandwidth required.
· Optimize for potential tasks that benefit from different features such as reconstruction versus comprehension.
The recent survey provided by [x1, Jian Jia et al. 2025] was extended and this paper added new techniques from 2025.
[image: ]
Figure 6.2.4.X 1 Survey of AI coding and Native AI data unit intermediate formats based on [x1, Jian Jia et al. 2025]
Figure 1 shows the general AI processing used in multi-modal AI that can result in intermediate AI native formats. 
The input modalities are fed to an encoder that is responsible for the feature extraction mapping. 
This encoder generally maps the input from tensor to latent vector z. Some example techniques that could be used that can also include some customized steps specific to the processing/training technique are the following:
Transformer: [x4, Vaswani et al 2017] attention model has shown significant performance enhancement across tasks. For text information it is usually processed by tokenization and then fed in transformers. For 2D input it is usually required to segment the 2d image into smaller patches and then the patches are treated as a sequence and fed in the transformers encoder/decoder network. For 3D input the data is sliced in temporal dimension and 2D patches can be represented as 3D Tubes [x6, Wang et al 2024b]. Transformer can handle large parameter size efficiently and is becoming increasingly popular.
Convolutional neural network CNN [O'Shea 2015] CNN especially popular in context for image modalities for feature extraction such as in UNet [x5, Ronneberger et al 2015]. For audio intermediate formats they may be used as well. They can also extend to video using 3D-CNN that incorporate the temporal dimension alongside the spatial dimension. 
Multi-layer perceptron MLP: this earlier neural network architecture was sometimes used to create embeddings used in recommender systems, for example, MLP is employed to perform latent space mapping [x7, Rajput et al., 2023; x10 Singh et al., 2024]. They have been popular in earlier stages, and they are sometimes used to create the embeddings for latent space mapping.
The decoder usually applies related transforms for reconstruction, but may also include different models to complete specific tasks like generation, recommendation or information that can potentially be jointly optimized with the encoder.
The supervision step can be used to minimize the error between the reconstruction based on the output of the decoder and the input of the encoder, for example using the square l2 norm distance between original and reconstructed signal. This applies to the case of reconstruction of the original based on the intermediate data format. In case of other applications like comprehension, information retrieval the supervision may need to take into account other information to establish a ground truth and perform the training. 
Besides input reconstruction, the different encoder and decoder processing can serve different applications with different models:
· Generation: can be reconstruction of the content but also potentially generating other related content 
· Comprehension: understanding of the input, such as providing textual description or labelling. 
· Information retrieval: retrieve related documents and sources available using semantic features of the input 
· Recommendation: provide recommendations on related items (mainly on historical behaviour as recommendation id usually do not contain semantic features).
These applications are usually achieved by different models in the decoder and different processing/training in the encoder making the native AI format in many cases specific to the application.
Regardless of the application, the intermediate vectors are usually eventually quantized using quantization or codebook strategy (see quantization part in Figure 1) or another compressed representation. This step is applied to discretize the latents.
This can use typical quantization techniques that we also label and mark in this survey following the approach in [x1, Jian Jia et al. 2025] can be summarized as follows.
Vector Quantization (VQ): 	Vanilla vector quantization [x3, Juang and Gray, 1982], e.g. using the minimum distance codebook entry.
Level Wise Quantization (RQ): 	quantization error allowed is based on the current level of quantization (i.e) smaller quantization error for smaller values
Group wise quantization (GRVQ):  splits the vector in multiple sub-components and quantizes each separately
Lookup Free Quantization and variants (LFQ): quantization without a specific lookup table
Finite Scalar quantization and variants (FSQ): 	project the vector in a few dimensions enable rounded representation to a set of small values.
Potentially other quantization could be deployed in emerging works, this survey is just to give an indication of current 
practices. Some tokenizer/AI native format may not have a quantization technique and rely on floating point arithmetic.
In some cases the native AI formats have been used to develop an AI based codec such as in JPEG AI [x2, ISO/IEC 6048-1]. 
Observation: These formats should be considered and evaluated for their format characteristics in regard to traffic characteristics of AI traffic such as for representation size, bit-rate, error tolerance, frame rate, frame size variation and potentially others. Many of the native AI format coders have been made available in open source and can be evaluated by SA4 for specific use cases.
Proposition: 	SA4 can consider evaluating a subset of publicly available native AI formats and models and result characteristics to understand some of the related traffic characteristics such as error tolerance/loss resilience and byte sizes of frames.
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