

	
3GPP TSG-SA4 Meeting#135																		S4-260233
9-13 February 2026, Goa, India	

Source:	Fraunhofer IIS, Apple Inc.
Title:	On reference code and model format
Spec:	3GPP TR 26.940
Agenda item:	7.8
Document for:	Discussion/Agreement

1. Goal
This document explores potential ML model format options for the ULBC reference algorithmic implementation. For an ML-based speech codec, primary objectives include portability across different hardware platforms, availability of model conversion tools, and adaptability to future hardware evolution.
A key question is whether to provide reference implementation for the entire codec, including all its neural network components in C or define specific parts of the codec based on an ML model format (e.g., ONNX, PyTorch, TensorFlow, etc). As discussed in [7] and in Clause 6.4 in TR 26.940, UE vendors may have custom optimizations to port a typical ML model format into their internal formats that can be substantially optimized. However, if the codec deliverables include an integrated C implementation in its entirety, this will limit UE vendors to fully leverage custom architectures and optimizations.
In the following the usage of model formats for ULBC is discussed in the form of a pCR to TR 26.940Pdoc considering a new clause 6.4.2.
* * * First Change * * *
[bookmark: _Toc214653549]6.4.2	Model format as intermediate representation
6.4.2.1	Background
Considerations for a ULBC reference implementation entirely in C, for complexity evaluations have been discussed in [2], [6].
Reference implementations for earlier generations of 3GPP speech and audio codecs are in C. Having a reference implementation entirely in C may help utilize some of the existing STL tools for WMOPS and memory estimation [3] [4]. However, using the WMC tool [4] for instrumenting an ML-based speech codec may not effectively consider vector & parallel compute optimizations.
In the following limitations of leveraging WMC tool [3] [4] for theoretical complexity measurement are listed:
· The weights reported in Table 18.3 of [3] do not account for the vectorized implementations of matrix multiplications that are widely used in AI-based processing. Consequently, any theoretical complexity estimation from the WMC tool may not reflect the actual runtime complexity and potentially not account for the diversity of various target platforms.
· Hardware and platform dependencies: C implementation may be platform‑specific that relies on intrinsics and vectorization pragmas. It may not be easily portable to specialized NPUs for example without substantial rewrites or vendor‑specific libraries.
· Unoptimized reference code: A reference C code may be unoptimized for certain platforms.
· Compiler and toolchain dependencies: Intrinsics and vectorization pragmas are compiler-specific.
· Maintenance burden during the standard development: Maintaining a reference C implementation up to date with new ML operators and architectures may be costly and error-prone.
6.4.2.2 Definitions
A graph format describes a neural network as a computational graph: nodes represent operations (e.g., convolutions, activations), and edges represent tensors flowing between them. It usually captures only the structure of the computation, not the trained parameters.
A model format (e.g., ONNX .onnx, CoreML .mlmodel) typically combines a graph representation, the trained parameters (e.g., weights, biases, etc.) and optionally metadata (e.g., input/output dimensions, etc.). Such model formats can be self-contained and directly runnable on compatible runtimes.
A model format can then serve as an intermediate representation (IR) between the high-level framework where the ML model is designed and the runtimes (e.g. TensorRT, ONNX RT, vendor runtimes) where it is executed. The intermediate representation of a model may be used inside tooling pipeline to analyze, transform, and optimize the model before final execution or deployment.
It should be noted that PyTorch does not contain a graph format and requires therefore a model definition as Torchcode.
In the following, the advantages of using a model format as an IR for standardization are discussed, as well as the support of different open-source model formats across various AI engines.
6.4.3.2	Advantages
Platform portability
Model format and IR specify what is computed (the structure and parameters of the model), not how it is executed on a given processor. The same graph or IR can be compiled or translated to different target processors (CPUs, GPUs, DSPs, NPUs) using custom toolchains.
It is also usually framework-agnostic and models can be exported from different training frameworks (e.g., PyTorch, TensorFlow) into a common format.
As a result, specifying a model format or IR allows each vendor to use their own toolchain to generate optimized code for their hardware.
Hardware evolution
Dedicated AI processors and hardware evolve fast. Model formats provide a future-proof method to make use of the latest developments (at least for the ML parts of ULBC) while providing compatibility and keeping maintenance effort low.
Combination with standard C-code
ULBC may consist of ML parts and classic signal processing parts written in ANSI C which can be combined using a backend runtime in C for the ML part. Consequently, a reference implementation of ULBC in C can be established as provided for other 3GPP codecs.

6.4.3.3 Overview of common ML model formats
	Format
	Type / Scope
	Pros
	Cons

	ONNX
	Framework-agnostic Intermediate Representation
	Cross-framework portability, widely supported on different runtimes and hardware; good for interchange
Runs natively on different recent OS (Windows and Linux)

Dedicated C/C++ Runtime available
	Operator coverage limitations may require implementation of custom operations.
Support of dynamic graph limited.

	TensorFlow Lite (TFLite / LiteRT)
	Edge/embedded-focused IR (FlatBuffer)
	Optimized for mobile/edge; strong Android ecosystem; tools for quantization & model optimization

Dedicated C/C++ Runtime available
	Primarily TensorFlow-centric; partially vendor specific maintenance.

	PyTorch/Python
	Torch.nn.Module
and
checkpoints
	Easy prototyping in ML research.

Highly optimized tools supporting conversion to vendor specific HW engine formats
	In its native format, it is suboptimal for real-world testing, e.g. stream-processing, combination with classic DSP, not optimized for embedded platforms.
Dependency to Python and other packages versioning and long-term compatibility.

No C/C++ runtime without python dependencies.

	TorchScript
	PyTorch-specific serialized IR
	It converts regular PyTorch nn.Module models into a static computational graph without dependencies to Python.
It preserves model logic; supports custom ops. Can be used as source representation for conversion to vendor-specific deployment-IRs.

Runtime through LibTorch possible only for C++ API

	PyTorch‑specific

TorchScript is tagged as deprecated and will be replaced by ExportedProgram [16]

	ExportedProgram and ExecuTorch
	Two IRs:
ExportedProgram and
ExcuTorch .pte
	Intended to replace TorchScript pipeline. ExportedProgram is the new canonical PyTorch export IR.

Dedicated C++ Runtime available for .pte IR which can be compiled from ExecutedProgam IR.
	PyTorch‑specific

ExportedProgram IR needs to be compiled to another IR to be used in a ExecuTorch RT and any vendor-specific RT.

New pipeline still not completely mature and stable for various operations and backends

	OpenVINO IR
	Intel/CPU-centric IR
	Strong optimization for Intel CPUs/GPUs; good tooling on PC/server
	Not a natural fit for mobile SoCs; extra step for mobile vendors

	Proprietary vendor IRs (CoreML, DLC, CIRCLE, etc.)
	Vendor-specific internal IR
	Highly optimized for specific hardware; used by vendor SDKs
	Not portable across vendors; require conversions from an open IR like ONNX/TFLite

A PyTorch [footnoteRef:2]model format preserves the full dynamism, custom operations, and intricate control flow of underlying tensors, states, etc. This makes it the "source" for the model, providing the reference across various model conversion environments and therefore may allow best flexibility, transparency, and direct programmatic control for ML codec deployment. However, this approach may come at the cost of long-term compatibility as the PyTorch format is evolving and may behave platform and version dependent. [2: A model format such as PyTorch (*.pth or .pt) typically saves the `state_dict`, which is a Python dictionary mapping layer names to their learned parameter tensors (e.g., weights, biases, etc). Loading such a model requires the prior definition of its neural network architecture as a Python class. This class must then be instantiated, and the `state_dict` subsequently loaded into the instantiated model. The `state_dict` itself only stores the parameter values and does not encapsulate the network's computational structure, which is instead provided by the Python class.
]

In contrast, formats like ONNX or TFLite, are primarily designed for inference deployment and cross-platform compatibility, often involving a conversion process that may abstract away or simplify certain aspects of the original PyTorch graph. While these formats are excellent for optimized execution on target hardware, they may represent a static, optimized snapshot of the model, which may be less flexible for iterative optimization or when dealing with complex, framework-specific constructs. As these formats have been developed as platform interchangeable model formats and are established as industry standards, a certain long term compatibility can be assumed.
In any case, the ULBC ML parts will likely be based on pyTorch format which can be converted to other stable formats such as ONNX or TFLite.
6.4.3.4	SoC AI Engines and Model Format Support
Major smartphone System-on-Chips (SoCs) are equipped with a range of AI processing hardware, including dedicated Neural Processing Units (NPUs), Digital Signal Processors (DSPs), and Tensor Processing Units (TPUs, where applicable), in addition to leveraging general-purpose GPUs and CPUs. SoC manufacturers provide their own specialized runtime environments and software development kits (SDKs) to harness the power of these accelerators [9-15]. Consequently, these vendors often utilize native or preferred internal model formats (sometimes referred to as vendor-specific intermediate representations) that are highly optimized for their particular hardware architecture.
Despite these proprietary preferences, a common pattern across the industry is the provision of mechanisms to convert models originating from popular, open-source machine learning frameworks. This typically includes formats like ONNX, TFLite, and direct conversions from frameworks such as PyTorch and TensorFlow, allowing developers to train models using their preferred high-level frameworks and then deploy them onto diverse hardware ecosystems, ensuring broad compatibility while still benefiting from hardware capabilities. From [9-15], PyTorch, Tensorflow, ONNX, and TFLite formats can be considered potential baseline formats.
6.4.3.5 Summary
A model-format / IR-based reference implementation has clear advantages over a pure C reference implementation:
· It decouples algorithm definition from hardware-specific implementation.
· It leverages existing SoC vendor compilers, AI accelerators, and runtimes.
· It is significantly more portable, maintainable, and future-proof across targets.

Based on these observations, it is recommended for ULBC that the reference implementation should be based on an ML model-format and any potential auxiliary signal processing steps in C as per below:
· A neural network model-format including the operator set and version.
· Both ONNX and PyTorch as ML model-formats as part of the reference implementation.
· The I/O interfaces of these ML models and any auxiliary signal processing steps in C.
· The reference implementation can be used to illustrate integration, allow verification, and testing.

* * * End of Change * * *

Proposal
The sources invite discussions regarding the selection of one or more model formats which can be used for a reference implementation in support of the standardization of ULBC. Furthermore, the principle using a model format as part of the ULBC standardization reference model should be agreed and documented
It is proposed to document the findings on reference model formats into TR 26.940ULBC Pdoc under a new clause 6.4.2.

 References
[1] SP-250378 “New SID on Ultra Low Bitrate Speech Codec”
[2] S4aA250127 “[FS_ULBC] On complexity evaluation of ULBC audio codec”
[3] G.191 : Software tools for speech and audio coding standardization
[4] https://github.com/openitu/STL/tree/dev/src/wmc_tool
[5] S4-251326 “[FS_ULBC] On ULBC complexity design constraints”
[6] SA4-251747 “[FS_ULBC] On complexity constraints for ULBC”
[7] S4aA250205 [FS_ULBC] Complexity and Memory Considerations
[8] https://ds.jpeg.org/documents/jpegai/wg1n101029-105-COM-JPEG_AI_Overview_Slides.zip
[9] https://docs.qualcomm.com/doc/80-70015-15B/topic/snpe-port-model.html
[10] https://apple.github.io/coremltools/docs-guides/source/unified-conversion-api.html
[11] https://soc-developer.semiconductor.samsung.com/global/development/ai-studio/document/documentation/ai-studio/features-overview/ir-converter
[12] https://mediatek.gitlab.io/genio/doc/tao/ml-mtk-tao.html#nvidia-tao-toolkit
[13] https://ai.google.dev/edge/litert/conversion/overview
[14] https://github.com/sithu31296/PyTorch-ONNX-TFLite
[15] https://developer.huawei.com/consumer/en/doc/hiai-Guides/dev-process-0000001052965551
[16] https://docs.pytorch.org/docs/stable/jit.html
