3GPP TSG-SA WG4 Meeting #135	S4-260126
9-13 February 2026, Goa, India

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]
Source:	Bytedance
Title:	[FS_ULBC] Analysis on complexity evaluation of ULBC with WMOPS
Agenda item:	7.8
Document for:	Discussion & Agreement
1. Introduction
During the discussion of defining complexity metric for ULBC, it is observed that WMOPS [1] has been included as one of the possible metrics [2,3]. In [4], WMOPS data of existing codecs are reported. As the traditional way of evaluating 3GPP speech codecs complexity, WMOPS is automatedly counted with floating point C code using the WMS tool [5].
In this proposal, the source provides observations using this WMS tool for WMOPS calculation.
2. WMOPS with the WMC tool
In clause 18.12.7 (page 293) of [1], examples of WMOPS calculation with floating point code are listed. We write some sample script with simple operators and use the WMC tool to exam the WMOPS as follow:
2.1 Operator ‘Move’
Relate example in Table 18.4 of [1]:
	Operation
	Counter used
	Explanation

	b = a / L
	MULT(1);
	When L is constant; (1/L) is a constant too, so b = a*(1/L)

Test Code:
[image:]
 Output of WMC tool:
[image:]
	Output in theory
	Output of WMC
	Difference

	1 MULT
	1 MULT + 1 MOVE
	1 MOVE

2.2 Operator ‘++’:
Relate example in Table 18.4 of [1]:
	Operation
	Counter used
	Explanation
	

	(*rnd_T0)++
	ADD(1); STORE(1);
	It can be replaced by *rnd_T0 = *rnd_T0 +1;

Test Code:
[image: A screenshot of a computer program

Description automatically generated]
Output of WMC tool:
[image: A test paper with numbers and letters

Description automatically generated with medium confidence]
	Output in theory
	Output of WMC
	Difference*

	1 ADD + 1 STORE
	0
	1 ADD + 1 STORE

* This difference may not influence the actual complexity as pointer increment can be done in combination with other operations with a DSP with no extra cost.

2.3 Operator ‘AND/OR’:
Relate example in Table 18.4 of [1]:
	Operation
	Counter used
	Explanation
	

	If (a!=b || c==d){…}
	ADD(2); BRANCH(1); TEST(1);
	BRANCH for if, TEST for additional condition, ADD for two tests against non-zero value

Test code:
[image:]
Output of WMC tool:
[image: A screen shot of a test

Description automatically generated]
	Output in theory
	Output of WMC
	Difference

	2 ADD + 12 BRANCH+1TEST
	2 ADD + 12 BRANCH
	1 TEST

2.4 Operator ‘Indirect addressing’:
Relate example in Table 18.4 of [1]:
	Operation
	Counter used
	Explanation
	

	Indice[0] = indirect_dico1[indice[0]]
	INDIRECT(2)
	Double indirection

Test code:
[image: A screen shot of a computer code

Description automatically generated]
Output of WMC tool:
[image: A close up of a test

Description automatically generated]
	Output in theory
	Output of WMC
	Difference

	2 IND
	1 MOVE
	2 IND; 1 MOVE	Comment by Tommy Vaillancourt: In the actual version of the wmops, the indirection seems not to be penalized anymore

2.5 Instrumentation with ‘move’:

By design, tThe instrumentation tool is observed to not counting arithmetic operations inside the array subscript.
Relate example in Table 18.3 of [1]:
	Operation
	Counter
	Example
	Complexity weights

	Indirect addressing
	INDIRECT()
	a=b.c,a=b[c],a=b[c][d],a=*b,a=*(b+c)22,
st−>array
st−>value
	2

Test code:
[image: A screenshot of a computer program

Description automatically generated]
Output of WMC tool:
[image: A test paper with text

Description automatically generated with medium confidence]
	Output in theory	Comment by Milan Jelinek: Pointer arithmetic is not taken into account
	Output of WMC
	Difference

	1 INDIRECT + 1 MOVEMULT + 1 ADD
	1 MOVE
	1 INDIRECT + 1 MULT + 1 ADD; 1 MOVE

3. Observations
1. Difference has been observed between the description in ITU-T standards documentation and WMC tool implementation on WMOPS. There are cases where WMC tools counted both more operators and less operators. Some of these difference may influence the WMOPS data of an codec significantly, such as the counting of operator ‘MOVE’ and the instrumentation inside arrays.
2. The influence of these observed WMOPS calculation differences in Clause 2 on an AI codec are to be further investigated.
3. These differences need to be carefully handled and the way of calculating the WMOPS need to be clearly defined if WMOPS is included as one of the metrics for ULBC complexity.

4. Proposal
The source would like to propose to document clause 2 and clause 3 in clause 6.2 of the pdoc.
References
[1] ITU-T Software Tool Library 2024 User’s Manual
[2] S4aA250269, “[FS_ULBC] On ULBC complexity design constraints”
[3] S4aA250267, “[FS_ULBC] On complexity constraints for ULBC”
[4] S4-251793, “[FS_ULBC] Analysis of AI Codec Complexity Scaling”
[5] WMC Tool · Wiki · IVAS Codec Public Collaboration / IVAS Codec · GitLab. (2023, February 24). GitLab. https://forge.3gpp.org/rep/ivas-codec-pc/ivas-codec/-/wikis/Contributions/WMC-Tool

image4.png
1 Function ADD ABS MULT MAC MOVE STORE LOGIC SHIFT BRNCH DIV
SQRT TRANS FUNC LOOP IND PTR TEST POW LOG MISC

image5.png
Code block

pop_wmops () ;
return_/*AddedByWMC_Tool*/;

1 void test_if(int a, int b, int c, int d)
2 { func_start_

3 push_wmops ("if");

4 $("NeEe") if_ (a !=b ||__ c ==d){

S5

6 }

7

8

image6.png
1 |Funct'ion ADD ABS MULT MAC MOVE STORE LOGIC SHIFT BRNCH DIV
SQRT TRANS FUNC LOOP IND PTR TEST POW LOG MISC

image7.png
Code block

void test_indirect(int *indice, int *indirect_dicol)
{ func_start_
push_wmops("indirect");
S(C"LIMII™) indice[0] = dindirect_dicol[indice[0]];
pop_wmops () ;
return_/*AddedByWMC_Tool*/;

~N o b~ W N

image8.png
|Funct'ion ADD ABS MULT MAC MOVE STORE LOGIC SHIFT BRNCH DIV
SQRT TRANS FUNC LOOP IND PTR TEST POW LOG MISC

indirect 0 0 0 (0]
(¢} (¢} 0 (0} 0 (0] (¢} 0 (0} (0}

image9.png
Code block

void test_array(int xa, int *x, int b, 1int c, int d)
{ func_start_
push_wmops ("array");
S("LIMI™) xa = x[b * ¢ + d];
pop_wmops () ;
return_/*AddedByWMC_Tool*/;

~N o b~ W N

image10.png
Function ADD ABS MULT MAC MOVE STORE LOGIC SHIFT BRNCH
DIV SQRT TRANS FUNC LOOP IND PTR TEST POW LOG MISC

image1.png
Code block

void test_move(int a, int b)
{ func_start_
push_wmops ("move") ;
$('M=") b =a /2
pop_wmops () ;
return_/*AddedByWMC_Tool*/;

~N o b~ W N

image2.png
1 Function ADD ABS MULT MAC MOVE STORE LOGIC SHIFT BRNCH DIV
SQRT TRANS FUNC LOOP IND PTR TEST POW LOG MISC

image3.png
Code block

void test_add(int *xrnd_TO)

{ func_start_
push_wmops ("add") ;
(*rnd_TO) ++;
pop_wmops () ;
return_/*AddedByWMC_Tool*/;

~N o b~ W N

