

	
3GPP TSG-SA4 Meeting #134	S4-251839S4-251949
Dallas, United States, 17th Nov 2025 - 21st Nov 2025	Revision of S4-251839
	CR-Form-v12.4

	CHANGE REQUEST

	

	
	26.258
	CR
	0004
	rev
	-1
	Current version:
	18.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
https://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Corrections to the IVAS Codec Software (floating-point), Rel. 18

	
	

	Source to WG:
	Dolby Laboratories Inc., Ericsson LM, Fraunhofer IIS, Huawei Technologies Co Ltd., Nokia, NTT, Orange, Panasonic Holdings Corporation, Philips International B.V., Qualcomm Incorporated, VoiceAge Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	IVAS_Codec
	
	Date:
	2025-11-11

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	Various corrections to the IVAS Codec software (floating-point), which improve software stability, audio quality and interoperability.

	
	

	Summary of change:
	Numerous bugfixes have been applied to the IVAS Codec software and framework. The corrections include:
· Corrections for various crashes, sanitizer errors
· Corrections to improve interoperability FL <-> FX
· Corrections to reduce memory demand and complexity
· Corrections to various quality outliers (clicks, noise-burst, differences in loudness, etc.)
· Provide missing implementation of RTP payload writing and parsing (conformant with TS 26.253)
· Corrections to HRTF File-Format: Use fixed-point representation for interoperability with FX
· Various corrections to codec interface to allow for a decoder-side object editing
· Various corrections to the codec framework to allow for format switching
The full list of changes is available at https://forge.3gpp.org/rep/ivas-codec-pc/ivas-codec/-/wikis/Documentation/Releases/IVAS-3.0-Release#floating-point-code.

Further on, corrections have to be made to the specification text in TS 26.258, to mirror the changes to the software. In addition, the specification text has to be corrected wrt 6-DoF support for head-rotation and missing parameters in the renderer text file.

	
	

	Consequences if not approved:
	Erroneous IVAS codec software, which exhibits severe quality and interoperability issues.

	
	

	Clauses affected:
	Clauses 2, 4, 4.1, 4.2, 5.10, 5.11, 5.14.2, 5.18 (new), 5.19 (new), Electronic Attachment

	
	

	
	Y
	N
	
	

	Other specs
	X
	
	 Other core specifications	
	TS 26.251

	affected:
	X
	
	 Test specifications
	TS 26.252 CR 0003

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	Rev 1: Inclusion of electronic attachment

Page 1

==============First change==============
[bookmark: _Toc170398600]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[bookmark: definitions][2]	3GPP TS 26.253: "Codec for Immersive Voice and Audio Services (IVAS); Detailed Algorithmic Description including RTP payload format and SDP parameter definitions".
[3]	3GPP TS 26.254: "Codec for Immersive Voice and Audio Services (IVAS); Rendering ".
[4]	3GPP TS 26.255: "Codec for Immersive Voice and Audio Services (IVAS); Error concealment of lost packets ".
[5]	3GPP TS 26.256: "Codec for Immersive Voice and Audio Services (IVAS); Jitter Buffer Management ".
[6]	3GPP TS 26.252: "Codec for Immersive Voice and Audio Services (IVAS); Test sequences ".
[7]	IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications".
[8]	Recommendation ITU-T G.191 (03/23): "Software tools for speech and audio coding standardization".
[9]	Recommendation ITU-T G.192: "A common digital parallel interface for speech standardization activities".
[10]	ISO/IEC 23008-3:2015: “High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio”
[11]	ISO/IEC 23091-3:2018: “Coding-independent code points — Part 3: Audio“
[12]	3GPP TS 26.442: "Codec for Enhanced Voice Services (EVS); ANSI C code (fixed-point)".
[13]	3GPP TS 26.443: "Codec for Enhanced Voice Services (EVS); ANSI C code (floating-point)".
[14]	3GPP TS 26.452: "Codec for Enhanced Voice Services (EVS); ANSI C code; Alternative fixed-point using updated basic operators".
[15]	3GPP TS 26.114: "IP Multimedia Subsystem (IMS); Multimedia Telephony; Media handling and interaction".
[16]	3GPP TR 26.902: "Video codec performance".

==============Next change==============
[bookmark: _Toc170398605]4	C code structure
This clause gives an overview of the structure of the floating-point C code and provides an overview of the contents and organization of the C code attached to the present document.
The C code has been verified on the following platforms:
-	IBM PC compatible computers with Windows 10 operating systems and Microsoft Visual C++ 2017 compiler, 32-bit.
C was selected as the programming language because portability was desirable.
==============Next change==============
[bookmark: _Toc170398606]4.1	Contents of the C source code
The C code is organized as listed in Table 1:
[bookmark: _CRTable1]Table 1: Source code directory structure
	Directory
	Description

	readme.txt
	information on how to compile and use

	Makefile
	UNIX style encoder Makefile

	Workspace_msvc/
	Directory for the MSVC 2017 (or newer) project files

	apps/
	Source code files used solely for the encoder/decoder/renderer applications; these applications make use of the libraries built from lib_com, lib_dec, lib_enc, lib_rend, and lib_util

	lib_com/
	Source code files used both in encoder and decoder

	lib_dec/
	Source code files used solely in the decoder

	lib_enc/
	Source code files used solely in the encoder

	lib_isar/
	Source code files used solely for split rendering

	lib_lc3plus/
	Source code files used solely for split rendering

	lib_rend/
	Source code files used solely in the renderer

	lib_util/
	Source code files solely for utility functions used by the applications

	scripts/
	Auxiliary scripts for the conversion of HRTFs to the HRTF filter files (clause 5.10) and generation of binary renderer config metadata format" (clause 5.14.1)

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The table ROM data is contained in files named "rom_*" and “ivas_rom_*” with suffix "c".
Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is installed, this directory will have a compiled version of the encoder (named IVAS_cod), the decoder (named IVAS_dec), the renderer (named IVAS_rend) and the split rendering post-renderer (named ISAR_post_rend). In addition, this directory will have a compiled version of the encoder with support for format switching (named IVAS_cod_fmtsw) and an example program for Ambisonics format conversion (named ambi_converter).
==============Next change==============
[bookmark: _Toc170398607]4.2	Program execution
The codec for Immersive Voice and Audio Services is implemented in four programs and two utility executables:
-	IVAS_cod: encoder;
-	IVAS_dec: decoder;
- 	IVAS_rend: renderer;
- 	ISAR_post_rend: split rendering post-renderer.;
-	IVAS_cod_fmtsw: encoder with support for format switching;
-	ambi_converter: example program for Ambisonics format conversion.
The programs should be called like:
-	IVAS_cod [encoder options] <input file> <bitstream file>;
-	IVAS_dec [decoder options] <bitstream file> <output file>;
- 	IVAS_rend [renderer options] -i <input file> -if <input format> -o <output file> -of <output format>;
-	ISAR_post_rend [post-renderer options] -i < bitstream file or input file> -if <input format> -o <output file>.;
-	IVAS_cod_fmtsw <format_switching_file>;
-	ambi_converter <input file> <output file> <input convention> <output convention>.
The input and output files contain 16-bit linear encoded PCM samples (headerless or in WAVE format) and the bitstream file contains encoded data.
The encoder, decoder, and renderer options will be explained by running the programs without any input arguments. See the file readme.txt for more information on how to run the IVAS_cod, IVAS_dec, IVAS_rend, and ISAR_post_rend, IVAS_cod_fmtsw, ambi_converter programs.
==============Next change==============
[bookmark: _Toc26263326][bookmark: _Toc170398609][bookmark: _Toc170398619]5.1	Audio Input/output file format
For the input files read by the encoder/renderer and output files written by the decoder/renderer the following formats are supported:
-	Headerless format: 16-bit integer words per each data sample. The byte order in each word depends on the host architecture (e.g. LSB first on PCs, etc.).
-	WAVE format: 16-bit little-endian integer words per each data sample.
Both the encoder and the decoder program process complete frames corresponding to multiples of 20 ms.
The encoder will pad the last frame to integer multiples of 20ms frames, i.e. n speech frames will be produced from an input file with a length between [(n-1)*20ms+1 sample; n*20ms]. The files produced by the decoder will always have a length of n*20ms.
Input/output audio shall follow configurations as specified in Table 2. Ambisonics components follow the ACN ordering where for real-valued spherical harmonics components of order and degree , where and .
[bookmark: _CRTable2][bookmark: tab_AudioTrackConfig]Table 2: Audio track configurations
	Audio format (designator)
	Number of tracks
	Index

	Configuration
(incl. ordering)
	Azimuth Range
	Elevation Range

	Mono (M)
	1
	1
	M
	-
	-

	Stereo (ST)
	2
	1,2
	L, R
	-
	-

	Binaural (BIN)
	2
	1,2
	L, R
	-
	-

	Multi-channel 5.1 (MC51)
	6
	1
	CH_A+030_E+00
	+30
	0

	
	
	2
	CH_A-030_E+00
	-30
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+110_E+00
	+100 … +120
	0 … +15

	
	
	6
	CH_A-110_E+00
	-100 … -120
	0 ... +15

	Multi-channel 7.1 (MC71)
	8
	1
	CH_A+030_E+00
	+30 ... +45
	0

	
	
	2
	CH_A-030_E+00
	-30 … -45
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+110_E+00
	+85 … +110
	0

	
	
	6
	CH_A-110_E+00
	-85 … -110
	0

	
	
	7
	CH_A+135_E+00
	+120 … +150
	0

	
	
	8
	CH_A-135_E+00
	-120 … -150
	0

	Multi-channel 5.1+4 (MC514)
	10
	1
	CH_A+030_E+00
	+30
	0

	
	
	2
	CH_A-030_E+00
	-30
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+110_E+00
	+100 … +120
	0 … +15

	
	
	6
	CH_A-110_E+00
	-100 … -120
	0 … +15

	
	
	7
	CH_A+030_E+35
	+30 … +45
	+30 … +55

	
	
	8
	CH_A-030_E+35
	-30 … -45
	+30 … +55

	
	
	9
	CH_A+110_E+35
	+100 … +135
	+30 … +55

	
	
	10
	CH_A-110_E+35
	-100 … -135
	+30 … +55

	Multi-channel 7.1+4 (MC714)
	12
	1
	CH_A+030_E+00
	+30 … +45
	0

	
	
	2
	CH_A-030_E+00
	-30 … -45
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+135_E+00
	+120 … +150
	0

	
	
	6
	CH_A-135_E+00
	-120 … -150
	0

	
	
	7
	CH_A+090_E+00
	+85 … +110
	0

	
	
	8
	CH_A-090_E+00
	-85 … -110
	0

	
	
	9
	CH_A+030_E+35
	+30 … +45
	+30 … +55

	
	
	10
	CH_A-030_E+35
	-30 … -45
	+30 … +55

	
	
	11
	CH_A+135_E+35
	+100 … +150
	+30 … +55

	
	
	12
	CH_A-135_E+35
	-100 … -150
	+30 … +55

	FOA (SBA1)
	4
	1…4
	Ambisonics components with 0,1,2,3
	-
	-

	HOA*
(SBA)
	
	1…
	Ambisonics components with 0,1, 2,… -1
	-
	-

	Mono objects (OBA)
	1…4
	1…4
	Object(s) with ID 1…4
	-
	-

	Metadata-assisted spatial audio, mono (MASA1)
	1
	1
	M
	-
	-

	Metadata-assisted spatial audio, stereo (MASA2)
	2
	1,2
	L, R
	-
	-

	Combined mono MASA and OBA
	2...5
	1..4
2...5
	Object(s) with ID 1…4
M MASA

	-
-
	-
-

	Combined stereo MASA and OBA

	3...6
	1..4
5,6
	Object(s) with ID 1…4
L, R MASA

	-
-
	-
-

	Combined
HOA*
(SBA)
and OBA
	

	1…
	Object(s) with ID 1…4
Ambisonics components with 0,1, 2,… -1
	-
	-

* = Ambisonics order
For Ambisonics, SN3D normalization is assumed.
The azimuth ranges are expressed in degrees; positive values rotate to the left when facing the front, i.e. counter clockwise when looking from above. The elevation ranges are expressed in degrees where positive values indicate angles above the horizontal plane.
==============Next change==============
5.10	HRTF filter file (decoder/renderer input)
Head related filters for the binaural rendering may be provided to the decoder or the renderer by using dynamic loading of external binary file. Examples code to generate such a binary file from a set of SOFA file is provided in the folder “binauralRenderer_interface” in the “script” folder of the C source code. Please refer to the readme file of this folder and sub-folder.
The main script to is the matlab script called “generate_ivas_binauralizer_tables_from_sofa.m”. It required matlab (version >= R2017b and Signal Processing Toolbox). It also requires to first generate two executables “generate_crend_ivas_tables” and “tables_format_converter”. The process to generate these two executables is decribed in the readme file. It requires c compiler and CMake to be installed.
Running the matlab script whitout modifications will generate the binaural rom tables for the different renderers for floating code (ivas_rom_binaural_crend_head.c|h, ivas_rom_binauralRenderer.c|h, ivas_rom_TDbinauralRenderer.c|h) and fixed-point code (ivas_rom_binaural_crend_head_fx.c|h, ivas_rom_binauralRenderer_fx.c|h, ivas_rom_TDbinauralRenderer_fx.c|h). It will also generate 3 binaural binary files (ivas_binaural_48kHz.bin, ivas_binaural_32kHz.bin, ivas_binaural_16kHz.bin). These 3 binary files contain default values corresponding to the values in the rom tables. By changing the sofa file used by the matlab script you can generate custom binaural binary files. The scripts are provided as example as they may not work will all sofa files.
The decoder program should be called with option -hrtf <binary_file>. This option can be used with the output configurations BINAURAL, BINAURAL_ROOM_IR and BINAURAL_ROOM_REVERB.
The binaural binary file has a specific container format with a header and a sequence of entries.
The header of a binaural binary file is defined according to Table 3A as follows:
[bookmark: _CRTable7_42]Table 3A: Binary file header
	Offset
	Format
	Length
(in bytes)
	Description

	0
	string
	8
	File identifier: “IVASHRTF”

	8
	integer
	4
	Size of file in bytes (header of file included)

	12
	integer
	2
	Number of entries (HR filters)

	14
	integer
	4
	Max size of raw data (HR filter in binary format)

Every entry contains a header followed by the related raw data which is the binary representation of the HR filter. The binary format for the different renderer except HRTF_READER_RENDERER_BINAURAL_OBJECTS_TD are described in table from 6 to 9. For the HRTF_READER_RENDERER_BINAURAL_OBJECTS_TD please refer to the C Source Code (./utils/ hrtf_file_reader.c|h or to matlab code ./scripts/ td_object_renderer/modeling_tool/Gen_Hrf_IVAS_Binary.m)
The header of each entry is defined as given in Table 3B:
[bookmark: _CRTable7_43]Table 3B: Entry headers

	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	4
	Renderer type

The renderer type is defined according to the enumeration RENDERER_TYPE among the following values :
-	HRTF_READER_RENDERER_BINAURAL_FASTCONV
-	HRTF_READER_RENDERER_BINAURAL_FASTCONV_ROOM
-	HRTF_READER_RENDERER_BINAURAL_PARAMETRIC
-	HRTF_READER_RENDERER_BINAURAL_OBJECTS_TD
-	HRTF_READER_RENDERER_BINAURAL_MIXER_CONV
-	HRTF_READER_RENDERER_BINAURAL_MIXER_CONV_ROOM
-	HRTF_READER_RENDERER_REVERB_ALL

	4
	integer
	4
	Input audio configuration

The input audio configuration is defined according to the enumeration BINAURAL_INPUT_AUDIO_CONFIG among the following values :
-	BINAURAL_INPUT_AUDIO_CONFIG_COMBINED
-	BINAURAL_INPUT_AUDIO_CONFIG_HOA3
-	BINAURAL_INPUT_AUDIO_CONFIG_HOA2
-	BINAURAL_INPUT_AUDIO_CONFIG_FOA
-	BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED

	8
	integer
	4
	Sampling frequency (16000, 32000, 48000)

	12
	integer
	4
	Raw data size in bytes

The format of the raw data depends on the rendering and the HR filters are represented in fix point.
Note:
-	The HR filters for the renderer types HRTF_RENDERER_BINAURAL_PARAMETRIC, HRTF_RENDERER_BINAURAL_FASTCONV and HRTF_RENDERER_BINAURAL_FASTCONV_ROOM are fully defined at 48kHz.
-	For the renderer type HRTF_RENDERER_BINAURAL_OBJECTS_TD the input audio configuration is always BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED.
-	renderer type HRTF_READER_RENDERER_REVERB_ALL should be associated with HRTF_READER_RENDERER_BINAURAL_OBJECTS_TD and/or HRTF_READER_RENDERER_BINAURAL_CREND to specify the binaural reverberation parameters jointly with new HRIR parameters. They shall be computed on the same HRIR set.
-	The binary file does not have to contain all data (HR filter) for all renderers. The following minimal configurations are accepted or any combination of those:
	HRTF_READER_RENDERER_BINAURAL_FASTCONV
	BINAURAL_INPUT_AUDIO_CONFIG_COMBINED

	Contains data for Combined HRIR

	HRTF_READER_RENDERER_BINAURAL_FASTCONV
	BINAURAL_INPUT_AUDIO_CONFIG_HOA3

	Contains data for HOA3

	HRTF_READER_RENDERER_BINAURAL_FASTCONV
	BINAURAL_INPUT_AUDIO_CONFIG_HOA2
	Contains data for HOA2

	HRTF_READER_RENDERER_BINAURAL_FASTCONV
	BINAURAL_INPUT_AUDIO_CONFIG_FOA

	Contains data for FOA

	HRTF_READER_RENDERER_BINAURAL_FASTCONV_ROOM
	BINAURAL_INPUT_AUDIO_CONFIG_COMBINED

	Contains data for combined BRIR

	HRTF_READER_RENDERER_BINAURAL_PARAMETRIC

	BINAURAL_INPUT_AUDIO_CONFIG_HOA3

	Contains data for HOA3, HOA2, FOA and reverberation from BRIR

	HRTF_READER_RENDERER_BINAURAL_OBJECTS_TD

	BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED
	Contains data for HRIR

	HRTF_READER_RENDERER_BINAURAL_CREND

	BINAURAL_INPUT_AUDIO_CONFIG_COMBINED

	Contains data for combined HRIR

	HRTF_READER_RENDERER_BINAURAL_CREND

	BINAURAL_INPUT_AUDIO_CONFIG_HOA3

	Contains data for HOA3

	HRTF_READER_RENDERER_BINAURAL_CREND

	BINAURAL_INPUT_AUDIO_CONFIG_HOA2

	Contains data for HOA2

	HRTF_READER_RENDERER_BINAURAL_CREND

	BINAURAL_INPUT_AUDIO_CONFIG_FOA

	Contains data for FOA

	HRTF_READER_RENDERER_BINAURAL_CREND_ROOM

	BINAURAL_INPUT_AUDIO_CONFIG_COMBINED

	Contains data for combined BRIR only (BINAURAL_ROOM_IR)

	HRTF_READER_RENDERER_REVERB_ALL
	

	Contains data for HRIR with reverberation (BINAURAL_ROOM_REVERB)when TD renderer or mixerconv are used

Table 3C: HR filters for binaural renderer Fastconv Impulse response binary entries
	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	2
	Scaling factor for latency value

	2
	integer
	4
	Latency value*

	6
	integer
	2
	Number of Binaural convolution bands (Nb)

	8
	integer
	2
	Number of channels (Nc)

	10
	integer
	2
	Number of taps per filter (Nt)

	12
	integer
	2
	Scaling factor for filters taps

	14
	integers
	2 * Nb * Nc * Nt
	Left ear real taps values*

	14 + 2 * Nb * Nc * Nt
	integers
	2 * Nb * Nc * Nt
	Left ear imaginary taps values*

	14 + 2 * 2 * Nb * Nc * Nt
	integers
	2 * Nb * Nc * Nt
	Right ear real taps values*

	14 + 3 * 2 * Nb * Nc * Nt
	integers
	2 * Nb * Nc * Nt
	Right ear imaginary taps values*

Table 3D: HR filters for binaural renderer Fastconv Room Impulse Response binary entries
	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	2
	Scaling factor for latency value

	2
	integer
	4
	Latency value*

	6
	integer
	2
	Number of Binaural convolution bands (Nb)

	8
	integer
	2
	Number of channels (Nc)

	10
	integer
	2
	Number of taps per filter (Nt)

	12
	integer
	2
	Scaling factor for filters taps

	14
	integers
	2 * Nb * Nc * Nt
	Left ear real taps values*

	14 + 2 * Nb * Nc * Nt
	integers
	2 * Nb * Nc * Nt
	Left ear imaginary taps values*

	14 + 2 * 2 * Nb * Nc * Nt
	integers
	2 * Nb * Nc * Nt
	Right ear real taps values*

	14 + 3 * 2 * Nb * Nc * Nt
	integers
	2 * Nb * Nc * Nt
	Right ear imaginary taps values*

	14 + 4 * 2 * Nb * Nc * Nt
	integer
	2
	CLDFB max number of channels (Nm)

	16 + 4 * 2 * Nb * Nc * Nt
	integer
	2
	Scaling factor for reverberation time values

	18 + 4 * 4 * Nb * Nc * Nt
	integers
	2 * Nm
	reverberation time values*

	18 + 4 * 4 * Nb * Nc * Nt + 2 * Nm
	integer
	2
	Scaling factor for energies corrections values

	20 + 4 * 4 * Nb * Nc * Nt + 2 * Nm
	integers
	2 * Nm
	Energies corrections values *

Table 3E: HR filters for binaural renderer parametric
	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	2
	Number of channels (Nc)

	2
	integer
	2
	Number of bins (Nb)

	4
	integer
	2
	Scaling factor for filters taps

	6
	integers
	2 * 2 * Nc * Nb
	Real taps values* one for each ear

	6 + 2 * 2 * Nc * Nb
	integers
	2 * 2 * Nc * Nb
	Imaginary taps values* one for each ear

	6 + 2 * 2 * 2 * Nc * Nb
	integer
	2
	Scaling factor for reverberation time values

	8 + 2 * 2 * 2 * Nc * Nb
	integers
	2 * Nm
	reverberation time values*

	8 + 2 * 2 * 2 * Nc * Nb + 2 * Nm
	integer
	2
	Scaling factor for energies corrections values

	10 + 2 * 2 * 2 * Nc * Nb + 2 * Nm
	integers
	2 * Nm
	Energies corrections values *

	10 + 2 * 2 * 2 * Nc * Nb + 4 * Nm
	integer
	2
	Scaling factor for early part energies corrections values

	12 + 2 * 2 * 2 * Nc * Nb + 4 * Nm
	integers
	2 * Nm
	Early part energies corrections values *

Table 3F: HR filters for binaural renderer Crend entries
	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	2
	Scaling factor for latency value

	2
	integer
	4
	Latency value*

	6
	integer
	2
	Number of HRIR/BRIR (Nc)

	8
	integer
	2
	Number of Binaural channels (Nb = 2)

	10
	integer
	2
	Max number of block iterations (Ni)

	12
	integers
	2 * Nc * Nb
	Number of iteration per channel

	12 + 2 * Nc * Nb
	integer
	2 * Nc * Nb * Ni
	Max frequency value for each block of direct part (Nf[c][b][i] Tri dimensional tab of size [Nc][Nb][Ni])

	12 + 2 * Nc * Nb + 2 * Nc * Nb * Ni
	integers
	2
	Max number of iterations for diffuse part (Nid)

	14 + 2 * Nc * Nb + 2 * Nc * Nb * Ni
	integers
	2 * Nb
	Number of diffuse iterations per binaural channel

	14 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb
	integers
	2 * Nb * Nid
	Max frequency value for each block of diffuse part (Nfdiff[b][i] Twoi dimensional tab of size [Nb][Ni])

	14 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid
	integer
	2
	Max frequency value over all diffuse blocks

	16 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid
	integer
	2
	Scaling factor for inverse diffuse weight values

	18 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid
	integers
	2 * Nc
	Left ear inverse diffuse weight values*

	18 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * Nc
	integers
	2 * Nc
	Right ear inverse diffuse weight values*

	18 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc
	integer
	4
	Max number of bins over all HRIR/BRIR for direct part (Nbin =)

	22 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc
	integer
	2
	Scaling factor for filters taps

	24 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc
	integers
	2 * Nbin
	Direct part real taps values*

	24 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc + 2 * Nbin
	integers
	2 * Nbin
	Direct part imaginary taps values*

	24 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc + 2 * 2 * Nbin
	integer
	4
	Max number of bins over all HRIR/BRIR for diffuse part (Nbindiff =)

	24 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc + 2 * 2 * Nbin
	integers
	2 * Nbindiff
	Diffuse part Real taps values*

	24 + 2 * Nc * Nb + 2 * Nc * Nb * Ni + 2 * Nb + 2 * Nb * Nid + 2 * 2 * Nc + 2 * Nbdir + 2 * Nbindiff
	integers
	2 * Nbindiff
	Diffuse part imaginary taps values*

Table 3G: Binary format for HRTF_READER_RENDERER_BINAURAL_OBJECTS_TD

Void
HR filters for the binaural rendering may be provided to the decoder by using dynamic loading of external binary file.

The decoder program should be called with option -hrtf <binary_file>. This option can be used with the output configurations BINAURAL, BINAURAL_ROOM_IR and BINAURAL_ROOM_REVERB.

A binary file has a specific container format with a header and a sequence of entries.

The header of a binary file is defined as follows:

	Offset
	Format
	Length
(in bytes)
	Description

	0
	string
	8
	File identifier: “IVASHRTF”

	8
	integer
	4
	Size of file in bytes (header of file included)

	12
	integer
	2
	Number of entries (HR filters)

	14
	integer
	4
	Max size of raw data (HR filter in binary format)

Every entry contains a header followed by the related raw data which is the binary representation of the HR filter.

The header of each entry is defined as follows :

	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	4
	Renderer type

The renderer type is defined according to the enumeration RENDERER_TYPE among the following values:
- RENDERER_BINAURAL_FASTCONV
- RENDERER_BINAURAL_FASTCONV_ROOM
- RENDERER_BINAURAL_PARAMETRIC_ROOM
- RENDERER_BINAURAL_OBJECTS_TD
- RENDERER_BINAURAL_MIXER_CONV
- RENDERER_BINAURAL_MIXER_CONV_ROOM

	4
	integer
	4
	Input audio configuration

The input audio configuration is defined according to the enumeration BINAURAL_INPUT_AUDIO_CONFIG among the following values:
- BINAURAL_INPUT_AUDIO_CONFIG_COMBINED
- BINAURAL_INPUT_AUDIO_CONFIG_HOA3
- BINAURAL_INPUT_AUDIO_CONFIG_HOA2
- BINAURAL_INPUT_AUDIO_CONFIG_FOA
- BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED

	8
	integer
	4
	Sampling frequency (16000, 32000, 48000)

	12
	integer
	4
	Raw data size in bytes

The format of the raw data depends on the rendering and the HR filters are represented in floating point.

Note :
-	With renderer type RENDERER_BINAURAL_PARAMETRIC_ROOM, the HR filters contain always one set of data which is independent of input audio configuration (set as BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED) and sampling rate (48 kHz always). This provides full data for use in the parametric binaural renderer in all situations including renderer type RENDERER_BINAURAL_PARAMETRIC.
-	The HR filters for the renderer types RENDERER_BINAURAL_FASTCONV and RENDERER_BINAURAL_FASTCONV_ROOM are fully defined at 48kHz.
-	For the renderer type RENDERER_BINAURAL_OBJECTS_TD the input audio configuration is always BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED.
==============Next change==============
[bookmark: _Toc170398620]5.11	Head rotation trajectory file (decoder/renderer input)
In the reference implementation of the codec, input data representing the current rotation of the listeners head can be provided to the decoder in an ASCII formatted file comprising four columns separated by commas. These columns contain floating-point numbers representing either a quaternion or a Euler angle. The distinction between these two input formats is made by a magic number in the first column. If this value is set to -3.0, it is assumed that the remaining three columns contain three Euler angles. Otherwise, all four columns are interpreted as a Quaternion. The input is expected to have one line for each subframe of 5 ms.
In the case of Quaternion-based input, the columns are the w, x, y, z components of a unit quaternion. Proper normalization to 1 shall be maintained in the input. The coordinate system is defined such that the x-axis points into the direction of view, the y axis points right towards the left ear, and the z axis point from bottom to top. The origin is in the center of the head. See also TS 26.253, clause 7.4.3 [2]. For example, an approximate 90-degree rotation around the horizontal vertical (z) axis would be represented by the following input line:
0.707107,0.000000,0.000000,0.70710
In the case of Euler-angle input, the first column contains the magic number -3.0, and the next three columns are the Euler angles yaw, pitch, and roll. The rotations are applied in the order yaw-pitch-roll. The yaw angle rotates around the z axis. The pitch angle rotates around the new y axis. The roll angle rotates around the new x axis. The equivalent of the example line above is then:
-3.0,90.000035,0.000000,0.000000
In case of 6 DoF support in the renderer, the head rotation trajectory file may also include a listener position in absolute Cartesian coordinates on the x-, y- and z-axis. Note that the listener position is expressed in absolute coordinates, while the listener orientation is expressed as scene displacement. An example of a listener positioned at x=3.0, y=4.0 and z=0 would be:
-3.0,90.000035,0.000000,0.000000,3.0,4.0,0.0
Note that the listener position applies for listener orientation expressed both in Quaternions and Euler angles.
==============Next change==============
[bookmark: _Toc170398627]5.14.2	Text renderer config metadata format
The text based renderer configuration file contains the following syntax elements:
[general]	header of general metadata
binaryConfig = path;	path to the binary configuration file
[roomAcoustics]	header of room acoustic metadata group
frequencyGridCount = N;	number of frequency grids
acousticEnvironmentCount = N;	number of acoustic environments
[frequencyGrid:N] 	header of a frequency grid, where N is a zero-based, sequential grid index
method = individualFrequencies | startHopAmount | defaultBanding;
specifies frequency grid representation method
nrBands = N;	number of frequency bands, applicable for individual frequencies and start-hop-amount representation methods
frequencies = [...];	center frequencies for individualFrequencies representation method, a comma separated list of N numeric values (ints or floats)
startFrequency = value;	starting frequency for start-hop-amount representation method
frequencyHop = value;	frequency hop for start-hop-amount representation method. Center frequencies for a grid are computed as fcn = fcn-1 * hop
defaultGrid = N;	default grid identifier. The available default grids are as in Annex B.1, Table B.4.
defaultGridOffset = N;	it is possible to use a subset of a default grid by specifying an offset - index of the first center frequency of the default grid and
defaultGridNrBands = N;	number of bands from the default grid to be used
[acousticEnvironment:N]	header of an acoustic environment element, where N is a zero-based grid index (does not have to be sequential)
frequencyGridIndex = N;	index of the frequency grid (see above) used for frequency dependent parameters
preDelay = value;	a delay at which DSR (diffuse to source ratios) were measured
rt60 = [...];	RT60 values per frequency band
dsr = [...];	diffuse to source sound energy ratio per frequency band
earlyReflectionsSize = [x, y, z];	shoebox model room size in x, y, z dimension in meters
absorptionCoeffs = [x1, x2, y1, y2, z1, z2];
early reflections absorption coefficients per wall
listenerOrigin = [x, y, z];	early reflections listener origin (optional) as offset from the room center
lowComplexity = TRUE | FALSE;	early reflection low-complexity mode flag (FALSE by default)
[directivitySetting]	header of the directivity data group
directivityCount = N;	number of directivity components
[directivityPattern:N]	header of a directivity pattern element, where N is a zero-based element index
[distanceAttenuation]	header of the distance attenuation data group
maxDist = md;	Max distance for distance attenuation function
refDist = rd;	Ref (minimum) distance for distance attenuation function
rolloffFactor = rf;	Rolloff-factor for distance attenuation function
directivity = [ia, oa, og];	directivity data: ia – inner angle, oa – outer angle, og – outer gain.
[SPLITREND]	header of split rendering group
BITRATE = R;	split rendering bitrate
DOF = N;	degree of freedom (N ranging from 0 to 3)
HQMODE = N;	High quality mode for 3DOF (N can be 0 or 1), adds more complexity at pre-renderer
CODEC = X; 	split rendering transport codec (X can be LCLD or LC3plus or NONE)	
FRAMESIZE = [5, 10, 20]	frame size in ms of the split rendering transport codec. Note: LC3plus supports 5 and 10 ms framesize, LCLD supports 5, 10 and 20 ms framesize.
The config file format supports comments starting with a hash sign #. It also supports splitting data into multiple lines, useful in case of larger arrays.
==============Next change==============
5.18	Object editing file (decoder input)
For object based audio input (including the combined formats OBA + MASA and OBA + SBA), the decoder supports editing of object characteristics while decoding/rendering. This allows for a scene adjustment on receiver side.
The parameters for the object editing in decoder for the supported formats are provided via a text parameter file. Each row of the file corresponds to one 20ms IVAS frame. The row contains one or more of the following parameters separated by a comma, as described in Table 7.
Table 7: Object Editing File Parameters
	Parameter
	Description

	bg_gain=<float>
	linear gain to be applied on the SBA/MASA component in OSBA/OMASA, no effect for ISM

	obj_<int>_gain=<float>
	linear gain to be applied on object <int>, 0-based indexing

	obj_<int>_relgain=0|1
	if 1, obj_<int>_gain is interpreted as a relative modification. default is absolute modification

	obj_<int>_azi=<float>
	azimuth angle in degrees to be applied on object <int>, 0-based indexing

	obj_<int>_relazi=0|1
	if 1, obj_<int>_azi is interpreted as a relative modification. default is absolute modification

	obj_<int>_ele=<float>
	elevation angle in degrees to be applied on object <int>, 0-based indexing

	obj_<int>_relele=0|1
	if 1, obj_<int>_ele is interpreted as a relative modification. default is absolute modification

In addition to these metadata parameters, editing of extended metadata parameters is supported for Discrete ISM, OMASA Discrete ISM and OSBA Discrete ISM input formats. Extended metadata parameters consist of radius, yaw and pitch, and they are described in Table 8.
Table 8: Object Editing File Extended Metadata Parameters
	Parameter
	Description

	obj_<int>_radius=<float>
	linear radius to be applied on object <int>, 0-based indexing

	obj_<int>_relradius=0|1
	if 1, obj_<int>_radius is interpreted as a relative modification. default is absolute modification

	obj_<int>_yaw=<float>
	yaw angle in degrees to be applied on object <int>, 0-based indexing

	obj_<int>_relyaw=0|1
	if 1, obj_<int>_yaw is interpreted as a relative modification. default is absolute modification

	obj_<int>_pitch=<float>
	pitch angle in degrees to be applied on object <int>, 0-based indexing

	obj_<int>_relpitch=0|1
	if 1, obj_<int>_pitch is interpreted as a relative modification. default is absolute modification

If a parameter is not specified, that parameter is not edited. An empty line in the file corresponds to not editing any parameter in the item.
5.19	RTPDUMP file (encoder output, decoder input)
The rtpdump file format is used as the interchange format of IVAS when RTP packing or unpacking is included as part of the encoder or decoder operation, respectively.
The rtpdump file format has already been used in the EVS decoder [12, 13, 14], MTSI [15] and TR 26.902 [16]. It has been originally proposed by Henning Schulzrinne, see http://www.cs.columbia.edu/IRT/software/rtptools/. Within the scope of this IVAS, only the binary version of the file format is of relevance. The file is constructed as follows:
The file starts with one line of ASCII coded text, indicating:
#!rtpplay1.0 address/port\n

wherein "address" stands for an IP address (e.g. 192.168.1.2) and port stands for a port number, e.g. 1234. Neither value is used by the toolchain employed in this report. "\n" stands for carriage return/linefeed.
The ASCII header is followed by one binary header (RD_hdr_t) and one RD_packet_t structure for each received packet. All fields are in network byte order. The RTP and RTCP packets are recorded as-is.
typedef struct {
 struct timeval start; /* start of recording (GMT) */
 u_int32 source; /* network source (multicast address) */
 u_int16 port; /* UDP port */
} RD_hdr_t;

typedef struct {
 u_int16 length; /* length of packet, including this header (may
 be smaller than plen if not whole packet recorded) */
 u_int16 plen; /* actual header+payload length for RTP, 0 for RTCP */
 u_int32 offset; /* milliseconds since the start of recording */
} RD_packet_t;

==============End of change==============

