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1. Introduction
The contribution adds a results section to the evaluation PD v0.3.0 for the object detection scenario and adds results from the ssd300 experimentations. We propose to move the Retinanet results to the results section as well.
4. Proposal
It is proposed to agree the following changes to the evaluation PD v0.3.0
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* * * First Change * * * *
10.3	Split inferencing for object detection and labeling
10.3.1	Motivation and use case relevance
Object detection and tracking finds prevalent applications in today’s world. These applications range from surveillance, image-based gallery and web search, media annotation, autonomous driving and more. 
TR 22.874 section 5.2 describes these scenarios where deep learning-based object detection and tracking is performed.
10.3.2	Description of the scenario
In this scenario, a pre-trained model is used to detect objects in a video sequence. The output of the inference may consist of the following:
· Detected object labels per image
· Bounding boxes for the detected objects
· Masks describing pixel-accurate location of the object

In this scenario, it is assumed that the end device is resource constrained and may not have sufficient memory/processing capabilities, or battery power to perform the object detection task.
It is proposed that by splitting the model into 2 parts, where one part is inferred in the device and the other part is inferred in the network, the device will be able to perform the inference within its capabilities.
Two configurations are possible, based on the exact use cases:
· The image/video is captured on the device and inference is run on the image/video to produce feature maps that are then sent to the network for further inference. This step may be performed to protect user privacy. The device will then receive the results once, the inference is performed by the network. An example of such a use case is image/video-based web search, where the user captures an image/video and receives web search results. Another such use case is where the user captures an image/video and attempts to remove a specific object from the image/video.
· The image/video is provided by a content provider and processed by the network to enable the user to perform different tasks. The video is processed by a deep network to produce distilled features, which are then used by the device to perform task-specific inference. Different users viewing the same image/video may run different tasks. An example of such a use case is a sports game streaming service, where different users may have different interests in the game. One user may configure their application to track and annotate the players of their favorite team. Another user may be interested in extracting statistics about the ball. The core of the network produces a set of features that can be used to perform both tasks, where each user will run the model head specific to their selected task.
10.3.3	Supporting companies and 3GPP members
· Qualcomm, Interdigital.
10.3.4	Anchor AI/ML DNN model(s) for the scenario
The evaluation using the PyTorch framework includes several DNN models belonging to the table below:
· Retinanet 
· The SSD300 model from Nvidia [1].
	Model
	Size (MB)
	No. of parameters

	Retinanet 
	TBC
	TBC

	SSD300 (ResNet-50)
	89 MB
	23 million



10.3.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.


Figure 10.3.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network. 
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.X.1.
The anchor model used is shown in Table 10.3.4-1.
Test network latencies are not considered to ensure scenario reproducibility. 
Multiple model split configurations are considered as described in clause 10.2.6.
10.3.6	Test configuration factors, constraints, and settings
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions. 

. 
Figure 10.3.6-1 Testbed configuration

10.3.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network. 
10.3.8	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects and the SFU-HW-Tracking datasets are used for this evaluation scenario. 
A set of scripts is made available under the 5G-MAG rt-ml-ai-evaluation-framework repository: 5G-MAG/rt- ai-ml-evaluation-framework (github.com).
Two models are evaluated with different scripts adapted for each following model.
10.3.8.1	FPN/RPN Retinanet scripts
The scripts are:
· convert_model.py: a script to convert a pre-trained model into an ONNX model
· inferonnx.py: this script is used to run an object detection inference model and produce predication results in the following format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score]. The model is used to produce results for the anchors, where the full model is run locally on the device or completely in the network.
	usage: inferonnx.py [-h] [--mask] dataset_name model_location
inferonnx.py: error: the following arguments are required: dataset_name, model_location


· split_retinanet.py: this script is used to split the RetinaNet represented in the ONNX format. It takes the model at models/retinanet.onnx and splits at the four feature pyramid network (FPN) feature maps, as shown by the 4 nodes with red arrows pointed to in Figure 2.3-1, together with four other auxiliary operations (two of which are pointed to by the blue arrows in Figure 2.3-1 and there are two similar ones on the right side of the graph but not shown) that provide the input image shape information for later stages of the network. Note that the split needs 8 split points, rather than a single split point, due to branching and joining present in the structure of RetinaNet. 
The splitting results in two partial models, called retinanet_part1.onnx and retinanet_part2.onnx, also in ONNX format. The input to part 1 is the input image. The feature maps in the output of part 1 is part of the input to part 2. The correct operation of part 2 needs additional input which is the shape of the input image. However, it makes no sense to feed the input image (together with the feature maps) as input to part 2. To resolve this problem, a dummy image of the same shape as the input image is used to generate the shape needed by part2. As a result, there is an overlap between part 1 and part 2. The overlap is chosen in such a way that only the portion of the graph directly contributing to generating the shape of the dummy image is included to minimize the additional processing. This is corroborated by the sizes of the models: 
· retinanet.onnx: 149.433MB
· retinanet_part1.onnx: 120.731MB
· retinanet_part2.onnx: 28.840MB
from which we see that the sum of the two partial models is only 0.14MB bigger than the size of the whole model, indicating that the overlap is negligible and so is the additional processing for generating the shape of the dummy image.
The two parts are fed into infer_split.py for split inference.
· infer_split.py: this script is used to run split inference. It is passed the two parts of the model. It runs the first part of the model and saves the results in numpy binary format NPZ. Then it proceeds to run inference using the second part of the model, which loads the NPZ files as input and produces the object detection results. A flag SAVE_FEATURES_IN_FILEs controls whether to write the FPN feature maps to the NPZ files, and it can be set to 0 to save storage, and in that case the feature maps out of the execution of part 1 are directly fed to part 2. This script also compares the performance between split inference and non-split inference in terms of normalized MSE.
· 
	usage: splitinfer.py [-h] [--mask] dataset_name model_part1_location model_part2_location
Run split inference using ONNX models
positional arguments:
  dataset_name          Dataset name
model_location       Path to the unsplit ONNX Model
  model_part1_location  Path to 1st part of the ONNX Model
  model_part2_location  Path to 2nd part of the ONNX Model
optional arguments:
  -h, --help            show this help message and exit
  --mask                Indicates if output of model is a Mask and needs to be converted


· calc_map.py: this script is used to calculate the mean Average Precision (mAP) score for the predictions. It compares the predicted labels and their bounding boxes to the ground truth annotations that are provided by the dataset.
	usage: calc_map.py [-h] [--ds DATASET_NAME] [--threshold THRESHOLD] video_name
Calculate the mAP for the object detection prediction.
positional arguments:
  video_name         The name of the video sequence, e.g. Kimono.
optional arguments:
  -h, --help            show this help message and exit
  --ds DATASET_NAME  Name of the dataset. Defaults to SFU-HW-Objects.
  --threshold THRESHOLD
                    The threshold for the prediction confidence to consider the prediction.



· visualize.py: The visualize script takes the ground truth annotations or the predictions and renders them on top of the video. This script is useful to inspect the prediction results.
	usage: visualize.py [-h] [--sleep_time SLEEP_TIME] video_fn annotation_path
Visualize Object Detection.
positional arguments:
  video_fn              Path to the video file
  annotation_path       Path to the folder with annotations/predictions
optional arguments:
  -h, --help            show this help message and exit
  --sleep_time SLEEP_TIME
                      Specifies the inteval between the display of 2 consecutive frames



Instructions to download the dataset with the annotations are provided in the README.md file of the datasets folder of the repo.
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Figure 10.3.8.1-1: 6 of the 8 split points of the RetinaNet shown in Netron. The 4 red arrows point to the 4 FPN layers corresponding to “FPN 6”, “FPN 2”, “FPN 1”, “FPN 0” in Table 2.3-1, respectively.
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Figure 10.3.8.1-2:  Zoom in of the node “/backbone/fpn/extra_blocks/p6/Conv” of the graph in Figure 10.3.3-1.

The following screenshots show examples of the object detection predictions and results.
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Figure 10.3.3-3: Examples of the object detection predictions and results.
For the SFU-HW-Objects data set, the difference between split inference and non-split inference in bounding box coordinates and in scores in terms of normalized MSE is less than 10-5 for 99.25% of all video frames. This shows that the performance is essentially the same, whether split inference is used or not.
Below are some exemplary feature maps (one shown for each FPN layer in the RetinaNet) for the first frame (frame 0) of the Traffic video sequence.
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	FPN 2
	FPN 6

	[image: A close-up of a field

Description automatically generated]
	[image: ]
	[image: ]
	[image: ]


Figure 10.3.3-4: Example feature maps.
The sizes of the intermediate data are:
Table 10.3.3-1: the size of the feature maps
	FPN Layer
	Size (assuming batch size of 1)

	0
	256 × 100 × 160

	1
	256 × 50 × 80

	2
	256 × 25 × 40

	6
	256 × 13 × 20



Note that the intermediate data is about 22MB of size per image. In contrast, the original image size is about 3MB. A better split point should be pursued with retraining of the model parts and compression of the intermediate feature maps.
10.3.8.2	 SSD300 scripts
The scripts are:
· convert_ssd300_to_onnx.py
This script converts the pytorch ssd_300 model to ONNX.
Usage: python convert_ssd300model.py <output_path_to_directory>
Output: <output_path_to_directory>/ssd_resnet.onnx 
Example: From rt-ml-ai-evaluation-framework directory :
python scripts/objectdetection/ssd300/convert_ssd300model.py ./models

· split_onnx.py
This script splits an ONNX file at identified bottlenecks points.
Usage: python split_onnx.py <path_to_onnx file> <split_point_name> <split_flag>
split_flag :’before’ to split before the split_point_name , ‘after’ to split after the split_point_name 

Example: python split_onnx.py ./models/ssd_resnet.onnx /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_2/Relu before

Output : First and second part of the split in “./models”
Special character “/” in split_point_name is replaced with a “_”.

Output example: /models/ssd_resnet_Part_I__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx
./models/ssd_resnet_Part_II__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx

· infer_onnx.py
This script is used to run the inference of ssd300 model on an image or on a video. 
It infers the first part and the second part of the model sequentially in GPU or in CPU.
The predictions are saved with the format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score], compatible with the scripts visualize.py and calc_map.py
Intermediate data are saved in numpy binary format .npz. s
The visual prediction results, the image with the boxes, are saved with the .png format. For video, only the first visual prediction is saved.

Usage:  python infer_onnx.py [-h] [-c PATH_TO_CONFIG] [-s INPUT_SOURCE] [-loop LOOP] [-partI PARTI] [-partII PARTII] [-anchor ANCHOR] [-results_filename RESULTS_FILENAME] -results_dir RESULTS_DIR [-no_CPU_anchor] [-no_GPU_anchor] [-ref_split REF_SPLIT] [-no_split]
	
Help:
infer_onnx is a script that run the inference of a ssd resnet model, full model or split.
	Options:
  -h, --help            show this help message and exit
  -c PATH_TO_CONFIG, --path_to_config PATH_TO_CONFIG    Path to config file
  -s INPUT_SOURCE, --input_source INPUT_SOURCE          Path to input source
  -loop LOOP            loop inference
  -partI PARTI          Path to model part I
  -partII PARTII        Path to model part II
  -anchor ANCHOR        Path to model anchor
-results_filename RESULTS_FILENAME                    Path to results file  -results_dir RESULTS_DIR	Path to results directory hosting predictions
  -no_CPU_anchor        no inference with CPU on model anchor
  -no_GPU_anchor        no inference with GPU on model anchor
  -ref_split REF_SPLIT  reference split label
  -no_split             no split (just anchor for instance)

10.3.9	Results
10.3.9.1	FPN/RPN Retinanet results
The following screenshots show examples of the object detection predictions and results.
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Figure 10.3.3-3: Examples of the object detection predictions and results.
For the SFU-HW-Objects data set, the difference between split inference and non-split inference in bounding box coordinates and in scores in terms of normalized MSE is less than 10-5 for 99.25% of all video frames. This shows that the performance is essentially the same, whether split inference is used or not.
Below are some exemplary feature maps (one shown for each FPN layer in the RetinaNet) for the first frame (frame 0) of the Traffic video sequence.
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Figure 10.3.3-4: Example feature maps.
The sizes of the intermediate data are:
Table 10.3.3-1: the size of the feature maps
	FPN Layer
	Size (assuming batch size of 1)

	0
	256 × 100 × 160

	1
	256 × 50 × 80

	2
	256 × 25 × 40

	6
	256 × 13 × 20



Note that the intermediate data is about 22MB of size per image. In contrast, the original image size is about 3MB. A better split point should be pursued with retraining of the model parts and compression of the intermediate feature maps.
10.3.9.2	SSD300 Results

	Nodes

	Inference Time (ms)
	intermediate data size (Mbytes)

	
	Nodes name
	UE (CPU)
	Server (GPU)
	Total
	

	Anchor GPU 
	
	0
	62.817
	62.817
	1.08

	split_node_1
	/feature_extractor/feature_extractor/
feature_extractor.2/Relu
	1.803
	62.709
	64.512
	5.76

	split_node_3
	/feature_extractor/feature_extractor/
feature_extractor.4/feature_extractor.4.0/conv1/Conv
	1.44
	62.623
	64.063
	1.44

	split_node_10
	/feature_extractor/feature_extractor
/feature_extractor.4/feature_extractor.4.0/relu_2/Relu
	3.261
	61.647
	64.908
	5.76

	split_node_17
	/feature_extractor/feature_extractor
/feature_extractor.4/feature_extractor.4.1/relu_2/Relu
	4.811
	60.911
	65.722
	5.76

	split_node_24
	/feature_extractor/feature_extractor
/feature_extractor.4/feature_extractor.4.2/relu_2/Relu
	6.195
	59.812
	66.008
	5.76

	split_node_25
	/feature_extractor/feature_extractor
/feature_extractor.5/feature_extractor.5.0/conv1/Conv
	8.936
	59.527
	68.463
	5.76

	split_node_39
	/feature_extractor/feature_extractor
/feature_extractor.5/feature_extractor.5.1/relu_2/Relu
	9.304
	55.596
	64.901
	2.96

	split_node_46
	/feature_extractor/feature_extractor
/feature_extractor.5/feature_extractor.5.2/relu_2/Relu
	11.208
	53.902
	65.11
	2.96

	split_node_54
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.0/conv1/Conv
	12.315
	52.667
	64.983
	2.96

	split_node_62
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.1/conv1/Conv
	25.952
	47.153
	73.105
	5.91

	split_node_68
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.1/relu_2/Relu
	28.759
	42.74
	71.5
	5.91

	split_node_69
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.2/conv1/Conv
	32.515
	42.44
	74.955
	5.91

	split_node_75
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.2/relu_2/Relu
	34.516
	37.91
	72.425
	5.91

	split_node_76
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.3/conv1/Conv
	42.894
	37.355
	80.248
	5.91

	split_node_82
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.3/relu_2/Relu
	61.896
	33
	94.896
	5.91

	Anchor CPU 
	
	77.645
	0
	77.645
	0



Note : Predictions are the same for all inferences of the table:
	Ground Truth
	Split Predictions
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	person 427 226 704 720
person 717 200 988 485
person 933 163 1281 517
person 89 151 130 196
person 131 154 159 191
person 104 201 135 238
person 144 192 169 227
person 196 123 277 261
person 328 216 363 244
person 384 244 422 337
person 518 123 590 236
person 429 166 460 195
person 451 200 465 224
person 476 192 493 214
person 466 158 479 187
person 602 220 618 242
person 600 242 623 265
person 636 242 659 265
person 634 217 653 238
person 678 242 710 319
person 658 253 684 308
potted_plant 1 216 175 566
cup 537 449 589 503
cup 682 443 730 501
cup 1051 446 1098 509
person 189 223 441 721
chair 921 310 1012 480
chair 658 325 733 481
cup 343 401 399 455
	bottle 502 438 36 62 0.51
dining table 32 481 674 214 0.52 
dining table 7 464 1237 213 0.55 
person 1052 169 219 345 0.67 
person 180 202 255 313 0.80 
person 741 195 245 288 0.82 
person 434 162 275




Experimentation was carried out on a laptop. Inference is made with CPU to emulate a low end UE device, and with GPU to emulate a server side. The specific device used and detailed below are for reference only.
Laptop reference: DELL LATITUDE 5501:
OS:
PRETTY_NAME="Ubuntu 22.04.3 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.3 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy

Hardware:
Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:         39 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  12
  On-line CPU(s) list:   0-11
Vendor ID:               GenuineIntel
  Model name:            Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz
    CPU family:          6
    Model:               158
    Thread(s) per core:  2
    Core(s) per socket:  6
    Socket(s):           1
    Stepping:            13
    CPU max MHz:         4600.0000
    CPU min MHz:         800.0000
    BogoMIPS:            5199.98
 Display               
    description: 3D controller
    product: GP107M [GeForce MX150] GPU
    vendor: NVIDIA Corporation
 
     description: VGA compatible controller
     product: CoffeeLake-H GT2 [UHD Graphics 630]
    vendor: Intel Corporation

The test environment used include PyTorch and ONNX frameworks.

* * * End of Changes * * * *
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