14

3GPP TSG-SA WG4 Meeting #127	S4-240192
Sophia-Antipolis, France, 29 January - 2 February 2024

Source:	NTT
Title:	[FS_eiRTCW] Pseudo-CR on Solution #3 C-Plane signalling protocol
Spec:	3GPP TR 26.930
Agenda item:	10.9
Document for:	Agreement

1. Introduction
The draft solution for Key Issue #3 C-Plane signalling protocol is described in FS_eiRTCW Permanent Document v800. This pseudo-CR proposes a solution for Key Issue #3 C-Plane signalling protocol which is incorporated in TR 26.930.
2. Reason for Change
The solution for C-Plane signalling protocol needs to be incorporated in TR 26.930 based on the agreement in FS_eiRTCW PD with modification.
3. Proposal
-	Addition of terminology in clause 3.1 (i.e., Terms)
-	Modification of the wording to keep consistency between Terms definition and descriptions.
-	Clarification of the basic principle of the RESEPCT as Key features of the RESPECT protocol.
-	Modification of individual keys name and definition.
-	Addition of clause for describing Response code
-	Addition of clause for describing Originating ID and verification using signature verification and attestation information
-	Addition of clause for describing General call flow and procedure
-	Addition of clause for describing SDP
-	Addition of Annex for message example
-	Addition of Annex for JSON data format for RESPECT

* * * First Change * * * *
[bookmark: _Toc156496758][bookmark: _Hlk156939407][bookmark: _Toc156913471]6.4	Solution #3: C-Plane signalling protocol
[bookmark: _Hlk156938859]Editor’s note: Description will be added.
[bookmark: _Toc156496759]6.4.1	Solution description
This solution addresses key issue #3.
This clause describes a control plane signalling protocol for WebRTC-based immersive RTC session management supporting the inter-operator connection (i.e., collaboration scenario 4 in 3GPP TS 26.506 [xx]) based on the enhanced architecture described in clause 6.2 (Solution #2) and functional requirements for C-Plane in clause 6.3 (Solution #3). This control plane protocol is also applicable to collaboration scenario 3 since collaboration scenario 4 is an extension of collaboration scenario 3.
The C-Plane signalling protocol specification in this document is named as RESPECT (REaltime&REality media Setup Protocol, Extensible and CompacT).
[bookmark: _Toc156496760]6.4.2	Overview
[bookmark: _Toc156496761]6.4.2.1	General
The RESPECT is a signalling protocol intended for various media session as described in the clause 4 (motivation).
This clause describes the architectural model considered in the design of signalling protocol.
[bookmark: _Toc156496762]6.4.2.2	Basic connection model
[bookmark: _Toc156496763]6.4.2.2.1	General
This clause describes basic connection model considered in the design of RESPECT protocol.
[bookmark: _Toc156496764]6.4.2.2.2	Trapezoid model
The RESPECT protocol is designed under the trapezoid model as shown in Figure 6.4.2.2.2-1.

Figure 6.4.2.2.2-1:	Trapezoid model in the protocol design
WebRTC Signalling Function (WSF) and Media Function (MF) in the network are responsible for providing reliable high-quality RTC services.
The WSF for C-Plane terminates all signalling messages from the WebRTC endpoints and the other WSFs. This behaviour is equivalent to the behaviours of a back-to-back user agent (B2BUA) in SIP as defined in IETF RFC 7092 [xx]. By terminating all signalling messages, the WSF fully manages the media session and provides QoS interacting with the 5GC and the MF.
The MF for U-Plane involves all media/data paths of WebRTC endpoints unless a direct media session is established between the WebRTC endpoints, or the other function (e.g., Transport Gateway Function (TGF)) provides U-Plane functionalities instead of the MF. The MF can control and monitor all media/data sessions.
[bookmark: _Toc156496765]6.4.2.2.3	Client-Server model
The RESPECT protocol is also designed under the client-server model between two entities. Figure 6.4.2.2.3-1 shows an example model between a WebRTC endpoint as a RESPECT client and a WSF as a RESPECT server.

Figure 6.4.2.2.3-1:	Client – Server model in the protocol design
The WebRTC endpoint on the UE is aware of a single entity (i.e., a WSF in the network). The WSF takes care of everything behind the WSF toward the destination RESPECT endpoint in case where three or more RESPECT endpoint(s) are involved in a media session like trapezoid model.
The benefits brought by the model is simplification of the protocol between two entities (e.g., client and server) rather than among three and more (e.g., two endpoints and servers). For example;
-	All request/response messages are defined between two RESPECT endpoints (e.g., WebRTC endpoints on the UE and WSF in the network). The WebRTC endpoint on the UE does not need to care the transactions behind the connected WSF.
-	Signalling message routing is performed by the network without involvement of UE. Therefore, only thing to do at the UE for routing of signalling messages is to specify the destination identifier like a URI.
-	The endpoint/application specific characteristics (e.g., capabilities and services) can be converted/terminated by the server in the network.
[bookmark: _Toc156496766]6.4.2.3	Target use case
See clause 6.2.4.2 (Target use cases from network view) and annex A (use cases) as examples of media connection to be achieved by the media session control of the RESPECT protocol.
[bookmark: _Toc156496767]6.4.2.4	Target architecture and reference points
See clause 6.2.8 (Proposed enhancements on RTC architecture). The RESPECT protocol is intended to be applied on C-Plane signalling interfaces (i.e., RTC-4s and RTC-Ys) on the enhanced RTC architecture.
6.4.2.5	Protocol stack
See clause 6.3.3.4 (Proposed Protocol Stack) for the protocol stack of C-Plane interface.
See clause 6.5.3 (Protocol Stack) for the protocol stack of U-Plane interface.
[bookmark: _Toc156496772]6.4.3	High-level features
[bookmark: _Toc156496773]6.4.3.1	General
This clause describes the high-level features of C-Plane signalling required to be considered for realizing RTC services.
6.4.3.2	List of high-level features
The high-level features to be considered in the RESPECT protocol design are described as follows.
1)	Transport usage and management for signalling messages
-	Signalling messages are exchanged over the Secure WebSocket connection as described in clause 6.3.3.
-	The principle for the Secure WebSocket connection usage and management (e.g., keep alive) for RESPECT protocol needs to be considered to fulfil the functional requirements for transport of signalling message described in clause 6.3.2.3.
-	The principle of usage and management of Secure WebSocket connection is described in clause 6.4.4.
2)	Media session control and management
-	The RESPECT protocol uses two types of sessions for reliable media session control to fulfil requirements described in clause 6.3.2.4; one is "control session", and the other is "media session".
-	The "control session" is a Secure WebSocket between two directory connected RESPECT endpoints managed with a state of authentication by using RESPECT protocol.
-	The "media session" is a concept for managing the media/data transported over U-Plane at C-Plane entities. This media session is identified by media session ID set in the signalling message.
-	The principles of these session are described in clause 6.4.5.2.2 and clause 6.4.5.2.3.
3)	Transaction management
-	The RESPECT protocol is transaction-based protocol. To comply with RTC service requirements, transaction timeout feature is supported.
-	The principles of transaction management are described in clause 6.4.5.2.4.
4)	Supported method
-	The following types of methods are supported to fulfil the functional requirements for media session control and management described in clause 6.3.2.4. The RESPECT defines the minimum set of method type and its extensibility and flexibility is achieved by the information elements in a request and response, or application specific method if needed.
i)	Authentication
-	This method is used by the RESPECT client to get authenticated by the RESPECT server. To enable the RESPECT client to send / receive signalling messages other than the signalling messages for authentication, the RESPECT client needs be authenticated by the RESPECT server.
ii)	Media session control (set up / update / disconnect)
-	The following methods are used by the RESPECT endpoint to control media session(s).
a)	Media session set up
b)	Media session update (modification)
c)	Media session disconnection
iii)	Information query
-	This method provides the alternative to the information queries instead of using RTC MSH and RTC AF via RTC-5 interface. The RESPECT client is allowed to send an information query request to the RESPECT endpoint in the network for getting information from the network.
iv)	application specific method
-	Application specific method(s) is required to be applicable. The application specific method is required to be distinguished from the method defined in 3GPP specifications and guaranteed the uniqueness between any applications.
5)	Feature negotiation
-	To support the use of application specific features, a feature negotiation mechanism is required to be supported in the signalling message.
-	The principles of feature negotiation are described in clause 6.4.5.2.7.
6)	Identification of users and media resources
-	The destination identities used for RESPECT are required to be defined for media session set up with appropriate media resource. Also, the originating user's identities are required to be defined to fulfil the functional requirements described in clause 6.3.2.4.
-	The specification of these identities is defined in the subsequent clauses. The requirements specific to the originating user's identities are addressed in Key Issue #10 (Security considerations).
The high-level features to be considered in the RESPECT endpoint are described as follows.
1)	WSF discovery
-	A RESPECT client is required to be able to find a WSF where RESPECT messages are sent to. This mechanism is described in Solution #6 (WSF Discovery mechanism).
2)	Message routing
-	To enable authentication and media session setup, the WSF is required to resolve a next hop of a request in collaboration with the ASWF. The IWF is also required to support this feature.
-	The procedures for this feature are described in the subsequent clauses.
3)	QoS control
-	The WSF is responsible for the QoS control of media sessions (i.e., U-Plane traffic). The WSF is required to interact with the 5GC (i.e., PCF or NEF) to reserve resources for a media session according to 3GPP TS 23.501 [xx], 3GPP TS 23.502 [xx], 3GPP TS 23.503 [xx]. The WSF is required to support the functionality to interact with MF to enforce IP packet flow control (e.g., Gate control, traffic policing, QoS packet marking).
NOTE:	The WSF determines the QoS policy for the media session, based on the media session related information (e.g., User subscription, media type, SDP information) and operator policy.
4)	IMS interworking
-	An RTC network supports the interworking with IMS network. This feature is addressed in Solution #10 (Protocol-level interworking between RTC network and IMS network).
[bookmark: _Toc156496774]6.4.4	Transport of signalling massage
[bookmark: _Toc156496775]6.4.4.1	General
The signalling massage of RESPECT protocol is sent over Secure WebSocket connection specified as one of the transport protocol for C-Plane in 3GPP TS 26.113 [xx]. The WebSocket URI is required to be consistent with the URI in clause 6.4.5.4 of this document.
For the purposes of this document, the following terminologies are used in this document as defined in clause 3.1.
-	RESPECT client: A signalling agent supporting RESPECT protocol acting as a Secure WebSocket client.
-	RESPECT server: A signalling agent supporting RESPECT protocol acting as a Secure WebSocket server.
-	RESPECT endpoint: A signalling agent acting as RESPECT client or RESPECT server or both.
The Origin header field is not required to be set in an HTTP request. If an Origin header field is included in the HTTP request, RESPECT endpoint acting as a WebSocket server ignores the Origin header field.
[bookmark: _Toc156496776]6.4.4.2	WebSocket connection establishment
The relationship of RESPECT client and server per interface is given as follows:
-	UNI (Between a RESPECT client (UE) and a RESPECT server (WSF)):
*	A RESPECT client (UE) is required to initiate and establish a WebSocket connection with a RESPECT server (WSF) according to IETF RFC 6455 [xx].
*	Only one WebSocket connection is established between a RESPECT client (UE) and a RESPECT server (WSF). When activating multiple RESPECT clients on a UE, each RESPECT client (UE) needs to establish one WebSocket connection.
-	NNI (Between RESPECT endpoints (IWFs)):
*	WebSocket connection is required to be established between IWFs according to IETF RFC 6455 [xx].
*	How to establish and keep the WebSocket connection(s) and how may WebSocket connections are required are determined based on inter-operator agreement.
-	Internal interface in the operator network (Between RESPECT endpoints in the operator network):
*	WebSocket connection is required to be established between RESPECT endpoints in the operator network (i.e., between WSFs, between a WSF and an IWF) according to IETF RFC 6455 [xx].
*	How to establish and keep the WebSocket connection are determined based on operator policy.
A RESPECT endpoint is allowed to send a RESPECT request on a WebSocket connection, regardless of whether the RESPECT endpoint initiated the WebSocket connection or not. A RESPECT endpoint is required to send a RESPECT response on the WebSocket connection where a RESPECT request was received.
A RESPECT endpoint is allowed to send multiple requests for different purpose (e.g., establish/modify different media session, use different service) in parallel on the single WebSocket connection.
If the RESPECT client re-establishes the WebSocket connection with the RESPECT server after the unexpected closure of WebSocket connection, the RESPECT client is required to process the WebSocket connection establishment procedure according to the closure reason, the information received from RESPECT server.
[bookmark: _Toc156496777]6.4.4.3	WebSocket connection keep alive
The Ping frame and Pong frame specified in IETF RFC 6455 [xx] are used for WebSocket connection keep alive. The RESPECT endpoint is required to support Ping frame and Pong frame.
The RESPECT server is required to send a Ping frame to the WebSocket client on the WebSocket connection. Upon receipt of a Ping frame, the RESPECT client is required to immediately send a pong frame to the RESPECT server which sent the ping frame.
The RESPECT client (UE) is allowed to send a Ping frame to the RESPECT server on the WebSocket connection. To prevent congestion in the network, the interval of sending Ping frame is required to be greater than 10 seconds.
[bookmark: _Toc156496778]6.4.4.4	WebSocket connection closure
When a RESPECT client detects the failure of sending/receiving signalling message to/from the other RESPECT server (e.g., due to loss of IP connectivity), the RESPECT endpoint needs to close the WebSocket connection by sending a Close frame according to IETF RFC 6455 [xx].
When a RESPECT server detects the following events, the RESPECT server needs to close the WebSocket connection according to IETF RFC 6455 [xx].
-	Expiration of authentication period
-	Failure of application level keep alive
-	Server internal error
6.4.4.5	Sending a RESPECT message over WebSocket
When a RESPECT endpoint sending a request or response to another RESPECT endpoint, the RESPECT endpoint is required to send a request or response in a single data frame, in order to ease the parse of JSON as a RESPECT signalling message at the RESPECT endpoint.
[bookmark: _Toc156496779]6.4.4.6	Error handling
[bookmark: _Toc156496780]6.4.4.6.1	General
This clause describes error handling during the WebSocket connection set up.
[bookmark: _Toc156496781]6.4.4.6.2	Protocol version error
When a RESPECT endpoint (WSF) does not support the protocol version specified in the WebSocket URI, the RESPECT endpoint (WSF) will respond to the HTTP GET request for WebSocket establishment from a RESPECT endpoint (UE) by sending an error response, such as 404 (Not Found) response, 30x response.
A RESPECT endpoint (UE) receiving the 30x response to the HTTP GET request for WebSocket establishment should retry the establishment by specifying the other protocol version into the WebSocket URI.
[bookmark: _Toc156496782]6.4.4.6.3	Network congestion error
When receiving a 5xx response (e.g., 503 (Service Unavailable), 502 (Bad Gateway)) to the HTTP GET request for WebSocket establishment, the RESPECT endpoint (UE) is required to perform the following procedure since there is a possibility of congestion in the connecting network.
1)	If the 5xx response contains a Retry-After header field, the RESPECT endpoint (UE) is required not to send a HTTP request in the period specified in a Retry-After header field.
2)	If the 5xx response does not contain Retry-After header field, the RESPECT endpoint (UE) is recommended not to send a HTTP request in the random period greater than or equal to 0.4 times and less than 0.5 times of the expiration time used in the auth procedures of RESPECT protocol.
6.4.4.6.4	Timeout error
When encountering the failure of UPGADE on the established TCP connection in a specific period, the RESPECT endpoint (UE) is required to perform as if the 5xx response not containing a Retry-After header field was received.
[bookmark: _Toc156496783]6.4.5	RESPECT (signalling protocol)
[bookmark: _Toc156496784]6.4.5.1	General
This clause describes the details of RESPECT specification.
AsyncAPI [xx] could be used as Interface Definition Language (IDL) for the RESPECT protocol.
[bookmark: _Toc156496785]6.4.5.2	Key features of the RESPECT protocol
[bookmark: _Toc156496786]6.4.5.2.1	General
This clause describes key feature of the RESPECT protocol to aid with the readability of the RESPECT protocol specification. The details of protocol such as messages, procedures are described in the subsequent clauses.
The RESPECT is transaction-based signalling protocol. Each transaction consists of a request and a response to the request. For signalling format for RESPECT request and response message, the JavaScript Object Notation (JSON) format is applied, and the RESPECT messages are exchanged over the control session established between two RESPECT endpoints. For the control session, WebSocket Secure is used in order securely to transport the RESPECT messages. Over the control session, RESPECT transactions are performed for authentication, establishment of media session, getting information from the RTC network.
As key features of the RESPECT protocol, the following is described in the subsequent clauses.
1)	Control session management
2)	Media session management
3)	Transaction management
4)	Simplified mechanism on SDP offer/answer
5)	Feature negotiation
[bookmark: _Toc156496787]6.4.5.2.2	Control session management
The "control session" is a Secure WebSocket between two directory connected RESPECT endpoints managed with a state of authentication by using RESPECT protocol. Figure 6.4.5.2.2.1 shows lifetime of control session.
After the successful establishment of a WebSocket connection between two RESPECT endpoints, the status of the control session transits to "Unauth" status.
Upon a successful authentication by using auth mechanism of RESPECT protocol by a RESPECT client, the status of the control session transits to "Authed" status. In case where any authentication using RESPECT protocol, the status of the control session transits to "Authed" immediately after the successful establishment of a WebSocket connection.
NOTE 1:	For example, two RESPECT endpoints in same operator network, the authentication can be achieved by implicit manner (e.g., adaptation of ACL control) instead of authentication using RESPECT protocol.
Upon a successful transition to "Authed" status for a control session, the RESPECT endpoints can exchange a RESPECT message over the control session for media session setup, update, release. When expired the authentication, the status of the control session transits to "Unauth" status.
NOTE 2:	In the auth mechanism of the RESPECT protocol, the RESPECT client receives the expiration time for authentication from the RESPECT server.
When the WebSocket connection is disconnected, the status of the control session transits to "Terminated" status unless a feature to keep a state of a control session in a grace period is applied on that control session. If this feature is applied on a control session, a state of a control session transits to "Moratorium" state. In this state, a state of a control session is inherited if a new WebSocket connection between two RESPECT endpoints is established within a grace period.
For details related to control session, see the signalling procedures, message definitions and call flow example described in the subsequent clauses.
[image:]
Figure 6.4.5.2.2-1:	Lifetime of control session
[bookmark: _Toc156496788]6.4.5.2.3	Media session management
The "media session" is a concept for managing the media/data transported over U-Plane at C-Plane entities. The media/data setup by media session corresponds to the media/data processed in a "RTCPeerConnection" object defined in W3C WebRTC 1.0 [xx].
This media session is identified at C-Plane entities by media session ID set in the signalling message. This media session ID is unique per each section on the signalling path and is generated by sender of media session setup. In the trapezoid model, three different media session ID is used on the signalling path for a media session; a media session ID between an originating UE and a WSF, a media session ID between two WSF and a media session ID between a WSF and a terminating UE.
The RESPECT endpoints in the RTC network manage the state of media session in the two perspectives; one is the state of whole media session, and the other is the state per media stream / STCP stream over data channel. To be more precise, these status is managed at a terminating RESPECT endpoint for a media session in the RTC network. The terminating RESPECT endpoints notifies these status of the adjacent RTC endpoints, and the adjacent RTC endpoints deliver these status to the proceeding or succeeding RTC endpoints. Therefore, all RTC endpoints involved in the media session can know the same status of the media session.
For the state of whole media session, the RESPECT endpoint in the RTC network manages "accepted", "connecting", "routed", "updateRequesting" and "updating" statuses. The meaning of these status is given as follows:
1)	"accepted" indicates the media session setup request is reached to the terminating RESPECT endpoint in the RTC network, but the SDP offer/answer for the media session is not completed;
2)	"connecting" indicates the media session setup request is reached to the terminating RESPECT endpoint in the RTC network and the SDP offer/answer for the media session is completed. The terminating RESPECT endpoint regards the SDP offer/answer is completed by sending a signalling message containing SDP answer.
3)	"connected" indicates the U-Plane transport between a UE and the adjacent U-Plane entity in the RTC network is ready, but the media routing in the RTC network is not enabled;
4)	"routed" indicates the U-Plane transport between a UE and the adjacent U-Plane entity in the RTC network is ready, but the media routing in the RTC network is enabled;
5)	"updateRequesting" indicates the subsequent SDP offer/answer for the media session is not completed after the "connected" or "routed" state;
6)	"updating" indicates the subsequent SDP offer/answer for the media session is completed after the "connected" or "routed" state, but there is at least one media stream or one SCTP stream whose status is not "connected".
For the state per media stream / STCP stream over data channel, the RESPECT endpoint in the network manages "connected" and "routed" statuses. The meaning of these status is same as the status mentioned above.
For details related to media session, see the signalling procedures, message definitions and call flow example described in the subsequent clauses.
[bookmark: _Toc156496789]6.4.5.2.4	Transaction management
The RESPECT is transaction-based protocol. The transaction consists of a single request and a response corresponding to the request over the authenticated control session.
The pair of a request and a response in a transaction is identified by transaction ID. Transaction ID is generated by sender of a new request and the ID is set into the request. The same transaction ID is set into the response corresponding to the request. The transaction Id is unique on a control session between two RESPECT endpoints, and the transaction ID is managed at each RESPECT endpoint.
For media session control, the transactions for media session setup, update, disconnection are performed for a specific media session ID over a control session.
6.4.5.2.4.1	Transaction timeout
The RESPECT defines transaction timer to comply with RTC service requirements.
For example, if a RESPECT endpoint in the network sends a media session setup request to a RESPECT endpoint of a UE acting as RESPECT endpoint client but no response is received for a long time, the network may not be able to a RTC service requirement due to this waiting time. Furthermore, the RESPECT endpoints over a signalling path for the media session needs to maintain server resource; this could be a security risk.
For transaction timer, the RESPECT defines the two timer; "T1" and "T2".T1 timer is a transaction timeout timer. A sender of a request needs to set T1 timer immediately after sending the request. Before expiration of T1 timer, the sender of the request needs to be prepared to receive a response to the request. Upon expiration of T1 timer, the sender of the request recognizes the timeout of the request and maintain transaction state before the expiration of "T2" timer.
In case the sender of the request is an intermediator of the request, the intermediator needs to send an error response indicating transaction timeout to the succeeding RESPECT endpoint. After sending the error response, if the intermediator receives;
-	an error response from a proceeding RESPECT endpoint, then the intermediator discards the response;
-	a successful response from a proceeding RESPECT endpoint, then the intermediator needs to disconnect the media session, if the request is for media session setup and update.
T2 timer is a timer for maintaining transaction state and T2 timer is longer than T1. A sender of a request needs to set T2 timer immediately after sending the request. Before expiration of T2 timer, the sender of the request needs to maintain the transaction state. Upon expiration of T2 timer, the sender of the request needs to free the transaction state.
Figure 6.4.5.2.4.1-1 shows a simple flow when a destination of a request does not respond to a request.
[image:]
Figure 6.4.5.2.4.1-1:	A destination of a request does not respond
For the value of T1 timer, round trip time of a transaction (2T) - time from sending a request at an originator of a request to receiving a response to the request at the originator of the request, is applied as a concept. This value may depend on the used access network, the number of intermediators, etc. For simplicity, the RESPECT protocol defines 10 seconds for the value of T1 timer.
For the value of T2 timer, 3T is applied considering the time for receiving an error response indicating transaction timeout from an intermediator to an originator of a request. The RESPECT protocol defined 15 seconds for the value of T2 timer.
The value of "T1" and "T2" is common for all RESPECT endpoint on a signalling path; therefore, an originator of a request is the first to recognize timeout.
6.4.5.2.4.2	Retransmission
The RESPECT does not currently define a retransmission of a signalling message since a signalling message is transported over the reliable transport.
However, if a RESPECT endpoint receives a request which has a transaction ID previously received, the request is processed as if the re-transmission of the request was received, and the request is ignored at the RESPECT endpoint.
The same principle is applied to a response.
[bookmark: _Toc156496790]6.4.5.2.5	Simplified mechanism on SDP offer/answer
In the RESPECT protocol, the Session Description Protocol (SDP) defined in IETF RFC 8866 [xx] is applied to negotiate media/data used, as it is required as WebRTC application as defined in W3C WebRTC 1.0 [xx].
The RESPECT protocol explicitly specifies the type of SDP message (e.g., offer, answer, info) in the signalling message, so that a receiver of an SDP can determine what the receiver performs in an explicit manner, unlike SDP message transported over SIP. This information would be helpful for the processing of SDP at the RESPECT endpoint and for trouble shooting.
As types of SDP, the RESPECT protocol defines four types.
1)	The "offer" indicates an SDP offer.
2)	The "answer" indicates an SDP answer.
3)	The "preOffer" indicates a tentative SDP offer. The "preOffer" type of SDP is allowed to be used only at an originating UE acting as RESPECT client, and how to handle this type of SDP is determined by a RESPECT endpoint in the network. For example, the RESPECT endpoint in the network will handle it as "offer" if this type of SDP is to be sent to a terminating UE acting as RESPECT client. Also, the RESPECT endpoint in the network will discard it and send "offer" type of SDP towards the originating UE if this type of SDP is to be sent to a RESPECT endpoint in the network serving a VR space. Since this type of SDP is not "offer" nor "answer", the originating UE acting as RESPECT client is required not to set local description by using setLocalDescription() method defined in W3C WebRTC 1.0 [xx].
4)	The "info" indicates that this is information and not "offer" nor "answer".
As an SDP offer / answer, the RESPECT protocol adopts the following principle:
-	Initial SDP offer and corresponding initial SDP answer containing a session description and media descriptions is transported in a signalling message. The SDP is formatted in an array and each description is formatted in a object of the array.
-	As for the subsequent SDP offer and corresponding SDP answer, only the description(s) added or modified from the previously negotiated is transported in a signalling message. The SDP is constructed from the part of description(s) at both ends on the signalling path who need to handle the SDP offer/answer.
The background on adoptation of the above principle is as follows.
-	In the WebRTC world, the multi-party real-time communication (e.g., VR space, online conference) are basically privided rather than peer-to-peer communication. Therefore, if an SFU is applied in the media function of the network, a signalling server (here, we call it WSF) needs to be send a new SDP offer to all the participants joining in s room, after generating an SDP offer reflecting the media descriptions for joining participant and leaving participant. As a result, both UEs and signalling server in a network need to handle huge number of "m=" line per paticipant;
-	To detect change on the received subsequent SDP offer, the answerer needs to check if session-version in the "o=" line of the received SDP is changed from the previously negociaed SDP, then the answerer needs to check the modified descriptions by inspecting all the line of SDP. This process is realistic in a small SDP (like regacy voice call), but difficult in a big SDP containing fuge number of media descriptions.
-	Therefore, the above principle for subsequest SDP offer/answer is useful for reducing the computing resource at the RTC endpoints.
For details related to simplified mechanism on SDP offer/answer and extension of SDP metadata, see the signalling procedures, message definitions and call flow example described in the subsequent clauses.
[bookmark: _Toc156496792]6.4.5.2.7	Feature negotiation
The RESPECT protocol provides feature negotiation mechanism in a request-response exchange.
A RESPECT endpoint is allowed to indicate the supported feature(s) information to other RESPECT endpoint in a request or a response.
A RESPECT endpoint is allowed to require the use of the feature(s) for the service by including the required feature(s) information in the request. The RESPECT endpoint which receives the request requiring the use of the feature is allowed to accept or reject the required feature(s). If the RESPECT endpoint rejects the required feature(s) due to non-support of the feature, the RESPECT endpoint is required to indicate the feature(s) which is not supported by the RESPECT endpoint in the response corresponding to the received request.
A RESPECT endpoint is allowed to require the use of a feature(s) for the service by including the required feature(s) information in the response. A RESPECT endpoint is not allowed to require the feature(s) which is not indicated in the supported feature information of the corresponding request.
[bookmark: _Toc156496793]6.4.5.3	Protocol usage on UNI/NNI
[bookmark: _Toc156496794]6.4.5.3.1	General
[bookmark: _Toc156496797]RESPECT uses control session and media session for media session control and management as described in clause 6.4.5.2.2 and clause 6.4.5.2.3. This clause describes the usage of these sessions at the UNI and NNI.
[bookmark: _Toc156496795]6.4.5.3.2	UNI
The RESPECT client (UE) establishes only one control session with the RESPECT server (network). For the control session, Secure WebSocket are used as an underlying transport protocol. Every signalling message is terminated at the network. Then, no signalling messages are directly sent from UE to the RESPECT endpoint other than that UE connected to.
At the UNI, the network authenticates the UE connected to the network. Multiple UEs are able to use the single RTC user ID to connect with the network (however, operators are able to restrict the number of UEs allowed to be connected to the network based on the service policy). The authentication of the UE is performed on the control session.
Once the authentication is successfully completed, the UE and the network are able to send a media session setup request to the other. If the request is successfully proceeded, the media session is established over the UNI. Multiple media session is allowed to be setup using the single control session (however, operators are able to restrict the number of media sessions per control session, based on the service policy). Figure 6.4.5.3.2-1 shows the image of control sessions and media sessions over the UNI.

[image:]
Figure 6.4.5.3.2-1:	Control Sessions and Media Session over UNI
[bookmark: _Toc156496796]6.4.5.3.3	NNI
At the NNI, the RESPECT client (in the other operator or SP network) is allowed to establish one or more control sessions with the RESPECT server (in the operator network). The operator is able to restrict the number of control session simultaneously connected to the operator network based on the bi-lateral agreement. For the control session, Secure WebSocket is used as an underlying transport protocol.
The control session of the UNI and the control session of the NNI do not have one-to-one correspondence.
At the NNI, there are cases that the RESPECT server in the operator network authenticates the RESPECT client of the other networks (the other operator or SP). This procedure for the authentication is same as UNI, however, the authentication could be skipped as mentioned in clause 6.4.5.2.2.
Multiple media session is allowed to be setup using the single control session (however, the operator of the RESPECT server is able to restrict such as the number of media sessions simultaneously established and/or bandwidth, based on the bi-lateral agreements). Figure 6.4.5.3.3-1 shows the image of control sessions and media sessions over the NNI.

[image:]
Figure 6.4.5.3.3-1:	Control Sessions and Media Session over NNI
6.4.5.4	Protocol and version identification
The protocol name and the protocol version are required to be included in the WebSocket URI path as specified in 3GPP TS 26.113 [xx] as follows:
{protocolRoot}/<protocolName>/<protocolVersion>
The WebSocket URI of the present version of RESPECT is required be set as follows:
-	<protocolName> is set to "3gpp-respect"
-	<protocolVersion> is set to "v1"
NOTE 1:	{protocolRoot} is set as specified in 3GPP TS 26.113 [xx] (i.e., "wss" schema is used).
The present version of RESPECT, the Sec-WebSocket-Protocol header field with "3gpp-respect.v1" subprotocol identifier is required to be included in the HTTP upgrade request.
NOTE 2:	IANA registration is required for new subprotocol identifier in normative phase.
6.4.5.5	RESPECT messages
[bookmark: _Toc156913472]6.4.5.5.1	General
RESPECT is defined as a text-based protocol and use the UTF-8 charset (IETF RFC 3629 [RFC3629]). Each line in a RESPECT message is required to be terminated by carriage-return line-feed sequence (CRLF). The JavaScript Object Notation (JSON) format described in IETF RFC 8259 [RFC8259] is required to be used for encoding/decoding a payload of RESPECT message. Then default content type is required to be "application/json".
[bookmark: _Toc156913473]6.4.5.5.2	Signalling message definition
[bookmark: _Toc156913474]6.4.5.5.3.1	General
The RESPECT message is either a request or a response to the request. Request is a RESPECT message sent from a RESPECT endpoint to the other RESPECT endpoint, for the purpose of invoking a particular operation corresponding to an indicated method. Response is a RESPECT message sent from a RESPECT endpoint to the RESPECT endpoint which sent the request triggering the response, for indicating the result of the corresponding request prosessing. Both RESPECT client a RESPECT server is allowed to send requests.
Editor’s Note: The definition of "request" and "response" need to be described.
All RESPECT message is required to include following information elements as the first level key of the message. These keys are specified as common key.
-	Message type ("msgType")
-	Method type ("method")
-	Transaction ID ("transactionId")
A RESPECT message is allowed to include individual keys described in clause 6.4.5.5.4.3.
A RESPECT message is allowed to include application specific keys which are not specified for RESPECT. Application specific keys are required to be used as described in clause 6.4.5.5.4.4.
An RESPECT endpoint is allowed to ignore any keys which are not used by the RESPECT endpoint, unless the key is required to be processed.
The length of key name is required to be less than/equal to 64 octets. The keys are allowed to appear in any order in RESPECT message. The string of key name and value in RESPECT messages are required to be case-sensitive unless the key name and value are specified in IETF RFC 8259 [27] or RESPECT specification.
NOTE:	The purpose of supporting application specific key is to enable RESPECT endpoint to use application specific capability between directly connected RESPECT endpoints. Application specific key is not intended for end-to-end operation.
[bookmark: _Toc156913475]6.4.5.5.3.2	Request
Message type ("msgType") key of the message is set to "request".
If the RESPECT endpoint is pending status (i.e., the RESPECT endpoint has not received a response to the request which the RESPECT endpoint sent, the RESPECT endpoint is allowed to send new request (not resending of the request in pending status). For UNI, the maximum number of requests in pending status is specified by the operator policy. For NNI, the maximum number of requests in pending status is specified by the bilateral agreement between operators.
A pair of request and response which has same transaction ID ("transactionId") is called transaction.
[bookmark: _Toc156913476]6.4.5.5.3.3	Response
Message type ("msgType") key of the message is set to "response". Method type ("method") key and Transaction ID ("transactionId") key are set to same value of the keys in the corresponding request.
Result of the request processing ("success") key is required to be set into the response. When the Result of the request processing ("success") key is set to "false", Error details ("problemDetails") key is required to be set into the response. When "success" key is set to "true", the response is called successful response. When "success" key is set to "false", the response is called error response.
The RESPECT is not required to send responses in sequential order of receiving request. The RESPECT endpoint which sent requests is required to be able to receive response in any order.
A single response is required to be sent to a single request. If the RESPECT endpoint receives multiple response which has same Transaction ID ("transactionId") key to the request, the RESPECT endpoint is required to process only the first response.
If the Transaction ID ("transactionId") of the received response is not match with the request in pending status, the response is required to be ignored.
[bookmark: _Toc156913477]6.4.5.5.3	Supported methods
[bookmark: _Toc156913478]6.4.5.5.3.1	General
RESPECT supports the methods as shown in Table 6.4.5.5.3.1-1. Each method consists of a single request and a response to the request. RESPECT endpoint is required to support all methods described in Table 6.4.5.5.3.1-1.
Table 6.4.5.5.3.1-1: Supported methods description
	Method
	Description

	auth
	A method for requesting authentication.

	msetup
	A method for requesting initiation of media session set up.

	mupdate
	A method for requesting media session status update (modification).

	mdisc
	A method for requesting media session disconnection.

	getinfo
	A method for retreaving information.

[bookmark: _Toc156913479]6.4.5.5.3.2	Authentication method ("auth")
Authentication method ("auth") is used by RESPECT client (UE) to request authentication of the RESPECT client (UE) to the RESPECT server (WSF) over the UNI.
When the authentication request is successfully processed, RESPECT client (UE) is authenticated and the binding information (the combination of RTC user ID and control session) is registered to the database in the network.
Applicable keys in the request / response of Authentication method ("auth") are described in clause A.4.
[bookmark: _Toc156913480]6.4.5.5.3.3	Media session set up method ("msetup")
Media session set up method ("msetup") is used for requesting media session set up.
A RESPECT client (UE) which sends Media session set up request over the UNI is called originating RTC UE. A RESPECT client (UE) which receives Media session set up request over the UNI is called terminating RTC UE. A network which sends Media session set up request over the NNI as a RESPECT endpoint is called as originating RTC network. A network which receives Media session set up request over the NNI as a RESPECT endpoint is called as terminating RTC network.
Applicable keys in the request / response of Media session set up method ("msetup") are described in clause A.4.
[bookmark: _Toc156913481]6.4.5.5.3.4	Media session update method ("mupdate")
Media session update method ("mupdate") is used for requesting modification of an existing media session.
The RESPECT endpoint which receives Media session update ("mupdate") request is required to check the received keys which need to be processed for the requested modification. The following keys are used for modification of the media session.
-	Offer/answer ("offerDesc"/"answerDesc")
-	Media session state ("mediaSessionState")
-	Originating ID ("preferredOid” / "AssertedOid") / Terminating ID ("preferredTid" / "assertedTid")
Application specific key is also applicable for the target of Media session update method ("mupdate").
If the RESPECT endpoint sent/received Media session setup request ("msetup") or Media session update request ("mupdate") and the RESPECT endpoint has not received/sent a response to the corresponding request, the media session (identified by Media session ID) is in the pending status. The RESPECT endpoint is not allowed to send a new Media session update request for the media session in pending status. If, a race condition is caused by crossover of requests, the RESPECT endpoint is required to ignore the Media session update request ("mupdate") and send error response to the request.
If the RESPECT endpoint receives an error response to the Media session update request ("mupdate"), the media session update is failed and the existing media session is not modified.
Applicable keys in the request / response of Media session update method ("mupdate") are described in clause A.4.
[bookmark: _Toc156913482]6.4.5.5.3.5	Media session disconnect method ("mdisc")
Media session disconnect method ("mdisc") is used for requesting release of the media session.
The RESPECT endpoint is allowed to send Media session disconnect request ("mdisc") to the media session in pending status, if Media session ID ("mediaSessionId") is assigned for the media session. The followings are example situation.
-	The RTC operator network is allowed to send a Media session disconnect request ("mdisc") for media session disconnection when the RTC operator network sent a Media session set up request ("msetup") or Media session update request ("mupdate") including Media session ID ("mediaSessionId") key to a RESPECT endpoint and has not received a response to the request from the RESPECT endpoint.
-	The RESPECT client (UE) is allowed to send a Media session disconnect request ("mdisc") for media session disconnection when the RESPECT endpoint sent a Media session update request ("mupdate") including Media session ID ("mediaSessionId") key to a RESPECT server (WSF) and has not received a response to the request from the RESPECT server (WSF).
Applicable keys in the request / response of Media session disconnect method ("mdisc") are described in clause A.4.
[bookmark: _Toc156913483]6.4.5.5.3.6	Information query method ("getinfo")
Information query method ("getinfo") is used for getting information (e.g., STUN/TURN server address) from the operator network. The queried information is indicated by Requested information list ("resourcesReq") key.
This method provides the alternative to the information queries on RTC-5 interface.
Applicable keys in the request / response of Information query method ("getinfo") are described in clause A.4.
[bookmark: _Toc156913484]6.4.5.5.4	Keys (information elements) included in RESPECT messages
[bookmark: _Toc156913485]6.4.5.5.4.1	General
This clause defines the information elements included in a signalling message as a JSON key. Information Elements are categorised as following key types.
-	Common key
An information element which is required to be set into all RESPECT messages.
-	Individual key
An information element which is required to be set into a RESPECT message based on the individual requirement (e.g., type of message, type of method, selected capability, etc.).
-	Application specific key
An information element which is specific to an application. RESPECT allows to use application specific method and application specific keys for flexibility.
[bookmark: _Hlk488929525]NOTE:	As a convention, data types in the present specification are written with an upper-case letter in the beginning. Parameters are written with a lower-case letter in the beginning. As an exception, data types that are also defined in AsyncAPI [AsyncAPI] can use a lower-case case letter in the beginning for consistency.
[bookmark: _Toc156913486]6.4.5.5.4.2	Common key
[bookmark: _Toc156913487]6.4.5.5.4.2.1	General
Common key is an information element which is required to be set into all RESPECT messages. This clause describes common keys.
[bookmark: _Toc156913488]6.4.5.5.4.2.2	Message type ("msgType")
This key indicates the message type of RESPECT massage. If the message is request, then "msgType" key is set to "request". Otherwise (i.e., the message is response), "msgType" key is set to "response".
The data type of "msgType" key is "enum". The applicable values are "request" or "response". If the RESPECT endpoint receives a RESPECT message includes other value, the RESPECT endpoint is required to discord the received message.
[bookmark: _Toc156913489]6.4.5.5.4.2.3	Method type ("method")
This key indicates the method type of RESPECT message. The method supported by RESPECT is defined in Table 6.4.5.5.3.1-1 of this document.
The data type of "method" key is "string". The value is required to be set to the value of "Method" column of Table 6.4.5.5.3.1-1.
The supported methods are possibly extended in future releases. However, the method of RESPECT message is not allowed to include "." in method name.
RESPECT allows to send application specific methods for immersive RTC applications. The application specific method name is required to include reverse order of the internet domain which owned by the operator or the SP who provide the RTC service, before the application specific method (e.g., com.example.specificMethod). This rule enables to avoid confliction of method name.
[bookmark: _Toc156913490]6.4.5.5.4.2.4	Transaction ID ("transactionId")
This key indicates the transaction ID of the RESPECT message. The pair of a request and a response corresponding to the request is identified as transaction by transaction identifier (ID).
The RESPECT endpoint which sends new request is required to generate a transaction ID and set the transaction ID to the "transactionId" key of the request.
The data type of "transactionId" key is required to be 64-bit unsigned integer and unique for all transactions on the WebSocket connection. Transaction ID is not allowed to be reused for another transaction on the WebSocket connection. To avoid collision of Transaction ID among different transactions, RESPECT endpoint is required to generate a Transaction ID as follows:
i)	at the UNI
-	the RESPECT client (UE) is required to generate even-numbered transaction ID. Transaction ID for an initial request on the control session is required to be set to "0".
-	the RESPECT server (WSF in the network) is required to generate odd-numbered transaction ID. Transaction ID for an initial request on a control session is required to be set to "1".
ii)	at the NNI
-	the RESPECT client is required to generate even-numbered transaction ID. Transaction ID for an initial request on the control session is required to be set to "0".
-	the RESPECT server is required to generate odd-numbered transaction ID. Transaction ID for an initial request on a control session is required to be set to "1".
iii)	Transaction ID is incremented by "2", when the transaction ID is issued for a new transaction on the WebSocket connection.
iv)	If the bit-field of transaction ID crosses 64-bit boundary, the value is wraparound to initial value (i.e., "0" or "1")
[bookmark: _Toc156913491]6.4.5.5.4.3	Individual key
[bookmark: _Toc156913492]6.4.5.5.4.3.1	General
Individual key is an information element which is required to be set into a RESPECT message based on the individual requirement (e.g., type of message, type of method, selected capability, etc.). This clause describes individual keys.
[bookmark: _Toc156913493]6.4.5.5.4.3.2	Result of the request processing ("success")
This key indicates the result of the request processing. The data type of "success" key is Boolean. When the request is successfully processed, the "success" key is set to "true", otherwise, set to "false". When "success" key is set to "true", the response is called successful response. When "success" key is set to "false", the response is called error response.
[bookmark: _Toc156913494]6.4.5.5.4.3.3	Error details ("problemDetails")
This key indicates the detailed information of the failure reason.
Error responses are required to include "problemDetails" key which indicates the factor of the error. "mdisc" request is allowed to include "problemDetails" key to indicate the reason for disconnection of the session.
The data type of "problemDetails" key is "object" according to Problem Details JSON Object (IETF RFC 7807 [RTC7807]). "statustype" sub-key is required to be set. The data type of "type" sub-key is "string" Other sub-keys are allowed to be set.
Details of the applicable string for "type" sub-key is described in clause 6.4.5.5.6.
[bookmark: _Toc156913495]6.4.5.5.4.3.4	Required extensional capability ("requiredExtension")
This key indicates the extended feature(s) which is required to process the RESPECT message at the received RESPECT endpoint.
When this key is included in the request, the indicated feature is required to be applied for processing the request. When this key is included in the response, the indicated feature is required to be applied for processing the response. When the request includes the "requiredExtension" key, the response other than the error response which includes the "problemDetails" key set to Bad Extension is implicitly treated as the indicated feature in the corresponding request is required, even if the response does not include the "requiredExtension" key.
The data type of "requiredExtension" key is "array". Only "string" data type values indicating extended feature are allowed to be set into "requirdExtension" key. If the array of "requiredExtension" key does not has the element, "requiredExtension" key is not allowed to be set in the RESPECT message.
[bookmark: _Toc156913496]6.4.5.5.4.3.5	Unsupported extensional capability ("unsupportedExtension")
This key indicates the extended feature(s) which is not supported by the RESPECT endpoint.
When the RESPECT endpoint receives the "requiredExtension" key including extended feature(s) which the RESPECT endpoint does not support, the RESPECT endpoint includes the "unsupportedExtension" key including unsupported extended feature(s) in the response corresponding to the request.
The data type of "unsupportedExtension" key is "array". Only "string" data type values indicating extended feature are allowed to be set into "unsupportedExtension" key. If the array of "unsupportedExtension" key does not has the element, "unsupportedExtension" key is not allowed to be set in the RESPECT message.
[bookmark: _Toc156913497]6.4.5.5.4.3.6	Supported extensional capability ("supportedExtension")
This key indicates the extended feature(s) which is supported by the RESPECT endpoint.
The data type of "supportedExtension" key is "array". Only "string" data type values indicating extended feature are allowed to be set into "supportedExtension" key. If the array of "supportedExtension" key does not has the element, "supportedExtension" key is not allowed to be set in the RESPECT message.
[bookmark: _Toc156913498]6.4.5.5.4.3.7	Retry restriction timer ("retryAfter")
RESPECT endpoints in the operator network at the UNI, RESPECT endpoints in the operator network and RESPECT endpoints SP network at the NNI are allowed to include the "Retry-After" key in the top of the error response which includes the "problemDetails" key set to Bad Gateway, Service Unavailable or Server Time-out. The value of the "Retry-After" indicates how long the RESPECT endpoints is required to wait before sending a RESPECT message. The RESPECT endpoint which received the response which include "Retry-After" is not allowed to send any new RESPECT message on the control session (excluding a pending response to a received request.).
AT the UNI, RESPECT endpoint (on UEs) is not allowed to send the "Retry-After" key in the response.
The data type of "Retry-After" key is 32-bit "number". The value means seconds.
[bookmark: _Toc156913499]6.4.5.5.4.3.8	Target of redirection ("location")
This key indicates the preferred target resource for redirecting the request.
When RESPECT endpoints (in the operator network) send an error response which includes the "problemDetails" key set to 307 (Temporary Redirect) or 308 (Permanent Redirect), the response is required to include "location" key.
The data type of "location" key is "string". The value target RTC resource ID for redirecting the request.
[bookmark: _Toc156913500]6.4.5.5.4.3.9	RTC user ID ("rtdUserId")
RTC user ID is set into this key.
The data type of "rtcUserId" key is "string". The format of the value is URI format defined in IETF RFC 3986 [RFC3986].
The URI scheme is "3gpp-respect-v1" for RESPECT version 1. The host part is set to the internet domain which owned by the operator or the SP who provide the RTC service to the user.
If this key is set to "auth" request, the RESPECT client set the RTC user ID which is used to authentication of the RESPECT client.
[bookmark: _Toc156913501]6.4.5.5.4.3.10	Authentication type ("authType")
This key indicates the type of authentication in the "auth" request.
The data type of "authType" key is "string". The value is required to be set to one of "Basic", "Digest" and "Bearer", according to HTTP "auth-scheme" (IETF RFC 9110 [RFC9110]). The value is case-insensitive.
NOTE: The values are possibly extended in future releases.
[bookmark: _Toc156913502]6.4.5.5.4.3.11	Authentication information ("authorization")
This key indicates the authentication information in the "auth" request.
The data type of "authorization" key is "string". The value is required to be set according to HTTP "credential" (IETF RFC 9110 [RFC9110]). The value is case-insensitive.
Therefore, "auth-scheme" is set to the same value of "authType" key in the request and the following "token68" or "auth-params" is set to the value according the type of authentication of "authType" key (e.g., JWT).
[bookmark: _Toc156913503]6.4.5.5.4.3.12	Authentication and media session retention timer ("disconnectTtl")
This key indicates the duration which the network keeps the authentication status and media session state related to the RESPECT endpoints, if the WebSocket connection is disconnected.
The data type of "disconnectTtl" key is "number" and the value is unsigned 32-bit integer.
The RESPECT endpoint (UE) is allowed to include this key in the "auth" request to indicate requesting use of the Authentication and media session retention timer. The value is set to the duration (seconds) which the RESPECT endpoint (UE) wished to keep the authentication and media session, when the WebSocket connection is disconnected.
The RESPECT endpoint (AS) is required to include the applied duration in the response to the "auth" request. If the requested value in the "auth" request exceeds the maximum duration of the operator policy, the RESPECT endpoint (AS) include the maximum value to the "disconnectTtl" key in the response to the "auth" request. If "0" is set to the "disconnectTtl" key in the response to the "auth" request, it indicates that Authentication and media session retention timer is not applied.
Editor’s Note: The detailed definition of this key needs to be described.
[bookmark: _Toc156913504]6.4.5.5.4.3.13	Credential for authentication restoration ("webrtcReaquthCredential")
This key indicates the credential for re-authentication when the WebSocket connection is disconnected unexpectedly. The data type of "webrtcReauthCredential" key is "string". The value is the token issued by the RESPECT endpoint (AS).
The RESPECT endpoint (UE) receives the "webrtcReauthCredential" key in the "auth" response, if the authentication restoration is applicable. The RESPECT endpoint (UE) is allowed to include the "webrtcReauthCredential" key in the "auth" request for re-authentication after the re-connection of WebSocket connection. If the re-authentication is successfully proceeded, the control session state before the WebSocket disconnection is restored for the new control session.
Editor’s Note: The detailed definition of this key needs to be described.
[bookmark: _Toc156913505]6.4.5.5.4.3.14	Authentication challenge ("wwwAuthenticate")
This key is used for indicating the information related to authentication from the RESPECT server to the RESPECT client.
In the case of Digest authentication (i.e., "Digest" is set to "authType" key of the "auth" reqeust), RESPECT server is required to request the RESPECT client to send the "auth" request again, based on the authentication information provided by eiRTCW server. This key is included in the 401 error response for indicating authentication information from RESPECT server to RESPECT client.
The data type of "wwwAuthenticate" key is "object". The value is encoded according to HTTP WWW-Authenticate header field (IETF RFC 9110 [RFC9110]). The "authScheme" sub-key of "wwwAuthenticate" key is corresponding to "scheme" of WWW-Authenticate header field.
[bookmark: _Toc156913506]6.4.5.5.4.3.15	Duration of the authentication ("expires")
This key indicates the expiration time duration that the RESPECT client is authenticated. When the timer is expired, the RESPECT client is de-authenticated and transitions to unauthenticated status. To keep being authenticated, the RESPECT client is required to send "auth" request and be re-authenticated during the indicated expiration time duration in the "expires" key.
This key is set into the "auth" response when the authentication is successfully processed.
The data type of "expires" key is "number" and the value is unsigned 64-bit integer. The value means seconds.
[bookmark: _Toc156913507]6.4.5.5.4.3.16	Destination ID ("dId")
This key indicates a destination of a media session setup request. Destination ID ("dId") key is required to be included in the "msetup" request and is allowed to be included in the "mupdate" request. The data type of the "dId" key is "object".
For the "dId" key, any one of the following fields is allowed to be set. Regarding "ds" field, only a originating RESPECT endpoint (UE) is allowed to be set in the "msetup" request towards an RTC network.
-	"uri"
-	"tn"
-	"ds"
The data type of "uri", "tn" and "ds" fields are "string". The value of each fields is set as follows.
-	"uri": either RTC resource ID or RTC user ID
-	"tn": telephone number (global number digits excluding "+")
-	"ds": dialstring
The applicable URI scheme for RTC resource ID is "3gpp-respect-v1" for native RTC resources. The host part is set to the internet domain which owned by an operator or an SP who provides the RTC service to the user. The userinfo part is assigned by the operator or the SP who provides the RTC service to the user.
[bookmark: _Toc156913508]6.4.5.5.4.3.17	Media session ID ("mediaSessionId")
This key indicates the media session ID used for identification of a media session over a control session. This key is always set in the RESPECT message related to media session (i.e., request and response of "msetup", "mupdate" and "mdisc"). Uniqueness of the media session ID is guaranteed per control session where the media session is established.
The data type of this key is "string". The length of this key is required to be less than/equal to 128 octets.
When sending an "msetup" request over an established control session, the RESPECT endpoints need to newly generates the media session ID and set the generated media session ID into "mediaSessionId" key.
When receiving the "msetup" request for the media session, the RESPECT endpoints need to set the same media session ID as with that of the request into "mediaSessionId" key of an "msetup" response.
When sending a subsequent RESPECT request (i.e., "mupdate" and "mdisc" request), the RESPECT endpoints need to set the media session ID which is targeted media session of the request.
When receiving the subsequent RESPECT request for the media session, the RESPECT endpoints need to set the same media session ID as with that of the request into "mediaSessionId" key of a response.
[bookmark: _Toc156913509]6.4.5.5.4.3.18	Media session state ("mediaSessionState")
This key indicates the overall state of the media session (identified by the "mediaSessionId" key).
The terminating RESPECT endpoint (AS) is required to manage the state of the media session state and indicate the state to other RESPECT endpoints of the media session.
Terminating RESPECT endpoint (AS) refers to following RESPECT endpoints based on the destination indicated by the "dId" key:
-	"dId" key is set to RTC resource ID:
The WSF which the RTC resource ID is assigned to.
-	"dId" key is set to RTC user ID:
The WSF which the RESPECT endpoint (UE) is connected to.
-	"dId" key is set to telephone number (i.e., IMS UE):
The IWF which the IBCF of the IMS network where the IMS UE is registered to.
The data type of "mediaSessionState" key is "string". The value of "mediaSessionState" key is "enum" and only following values are applicable.
-	"accepted"
-	"connecting"
-	"connected"
-	"routed"
-	"updating"
"accepted" indicates the media session is in following state.
-	The "msetup" request is reached to the terminating RESPECT endpoint (AS) of the "dId" key.
-	The offer/answer for the media session is not completed.
"connecting" indicates the media session is in following state.
-	The "msetup" request is reached to the terminating RESPECT endpoint (AS) of the "dId" key.
-	The offer/answer for the media session is completed (the state of the message which sends answer is treated as offer/answer is completed).
-	At least one of the "connected" field of the "state" of the "mc" sub-key or "dc" subkey in the "mediaInfo" key is not set to "true".
"connected" indicates the media session is in following state.
-	The offer/answer for the media session is completed (the state of the message which sends answer is treated as offer/answer is completed).
-	All the "connected" field of the "state" of the "mc" sub-key or "dc" subkey in the "mediaInfo" key is set to "true".
-	At least one of the "routed" field of the "state" of the "mc" sub-key or "dc" subkey in the "mediaInfo" key is not set to "true".
"routed" indicates the media session is in following state.
-	The offer/answer for the media session is completed (the state of the message which sends answer is treated as offer/answer is completed).
-	All the "connected" field of the "state" of the "mc" sub-key or "dc" subkey in the "mediaInfo" key is set to "true".
-	All the "routed" field of the "state" of the "mc" sub-key or "dc" subkey in the "mediaInfo" key is set to "true".
"updateRequesting" indicates the media session is in following state.
-	The offer/answer for the media session setup was completed.
-	The offer/answer for the media session is not completed.
"updating" indicates the media session is in following state.
-	The offer/answer for the media session setup was completed.
-	The offer/answer for the media session update is completed (the state of the message which sends answer is treated as offer/answer is completed).
-	At least one of the "connected" field of the "state" of the "mc" sub-key or "dc" subkey in the "mediaInfo" key is set to "true".
Editor’s Note: The detailed definition of this key needs to be described.
[bookmark: _Toc156913510]6.4.5.5.4.3.19	Media Information ("mediaInfo")
This key indicates the following information related to the media session identified the media session ID.
-	SDP description
-	Metadata of the media channel and data channel
The data type of "mediaInfo" key is "object". The "mediaInfo" key has following 5 sub-keys.
1)	"type"
2)	"sdp"
3)	"mc"
4)	"dc"
5)	"participantDesc"
The details of the above sub-keys are followings.
(1)	"type" sub-key:
This sub-key indicates the requested treatment of the information in the "mediaInfo" key. The data type of the "type" key is "string" and only following values are applicable.
a)	"offer":
This indicates the "mediaInfo" key includes an SDP description as an initial offer or a subsequent offer specified in IETF RFC 8829 [34].
b)	"preOffer":
This indicates that the "mediaInfo" key includes an SDP description as a preoffer.
c)	"answer":
This indicates that the "mediaInfo" key includes an SDP description as an initial answer or a subsequent answer specified in IETF RFC 8829 [34].
d)	"info":
This indicates that the "mediaInfo" key includes media related metadata, however, does not include SDP description.

(2)	"sdp" sub-key:
This sub-key indicates the SDP description and the label of the SDP description. The SDP description can be a complete SDP description or a part of SDP description. The data type of "sdp" sub-key is "object". The "sdp" sub-key has following sub-keys.
1)	"part"
2)	"label"
"part" sub-key includes SDP description. The data type of "part" sub-key is "array" and includes following fields.
-	"index":
This field includes the index number of the "lines" field. The data type of "index" field is unsinged 32-bit "number". Index number "0" indicate the "lines" is session-level section. Index number "1" and subsequent number indicates media description per" m=" line. The number is required to be incremented sequentially from "1" for media description.
-	"lines":
This field includes the session level section and the media description of the SDP description. The data type of "lines" field is "array[string]". Strings included in the array is the SDP description per line without CRLF.
<example>
"lines": ["v=0","o=...", "s=-", "c=...", "t=0 0"]
"label" sub-key includes the unique ID of the media session. The ID is expected to be used by APIs related to the medina handling. Then the ID included in "label" sub-key is required to be unique per RTC resource.
The data type of "label" sub-key is "string".
If a "sdp" sub-key is included in the RESPECT message sent from the network connected with CP and for initial offer/preoffer/answer, the "sdp" sub-key is required to include the "label". "label" sub-key is not allowed to included other cases.
NOTE 1:	The label of the media session can be the corresponding media session ID. However, media session ID is unique per control session (i.e., If WSF use the label, the WSF needs to care about that the media session ID is different between control sessions).

(3)	"mc" sub-key:
This sub-key indicates the metadate related to media channel. "The data type of "mc" sub-key is "object".
When the "part" sub-key includes the media description for media channel, the corresponding information is required to be included. This key is allowed to be included in the "mediaInfo" key, even if the corresponding "part" sub-key of "sdp" sub-key is not included in the "mediaInfo" key.
This key has the following sub-key.
1)	"metadata"
"metadata" sub-key includes the information related to media channel. The data type of "metadata" sub-key is "array[object]" and includes following information.
-	"index":
This field indicates dependency with the corresponding media description described in the "part" sub-key of "sdp" sub-key. Then the index number of "index" field is set to the index number of the "index" field of "part" sub-key of "sdp" sub-key corresponding to the metadata. This field is not allowed to be used for media description for data channel. The data type of "index" field is unsinged 32-bit "number".
-	"actType":
This field indicates the intention of the media description specified by "index" key This field is not allowed to be used for session description. The data type "actType" is "string" and only following values are applicable depends on the "type" sub-key of "mediaInfo" key.
<values for offer/preOffer>
-	"add"	: indicates the addition of the media channel or resume of inactive media channel.
-	"del"	: indicates the deletion of the media channel
-	"mod"	: indicates the modification of the media channel
<values for answer>
-	"aly"	: the requested offer (add/del/mod) is accepted by the answerer.
-	"dcl"	: the requested offer (add) is declined by the answerer.
NOTE 2:	If the whole the offer is refused, sends error response to the "msetup"/"mupdate" request.
-	"groupLabel":
This field indicates the group label which expected to be used by APIs related to the media handling. The data type of "groupLabel" is string. The string is not allowed to include ".".
The group label is used as category. Then there are multiple media descriptions which has same group label in the media session.
The group label is deleted if the media channel is deleted (by setting "actType" to "del"). If the media channel is re-added, a group label different from the previous label is allowed to be assigned.
This field is applicable for:
-	The metadata is media description for media channel.
-	The metadata is for offer (initial offer/subsequent offer/preoffer) which "actType" is set to "add".
-	"label":
This field indicates the unique ID of the media channel or session description. The ID for session description indicates the media session, not individual media channels.
The data type of "label" sub-key is "string". The ID is expected to be used by APIs related to the medina handling. Then the ID included in "label" sub-key is required to be unique per RTC resource.
If a "sdp" sub-key is included in the RESPECT message sent from the network connected with CP and "actType" sub-key is set to "add", the "label" sub-key is required to be included in the "metadata". "label" sub-key is not allowed to included other cases.
The "label" is deleted when the media channel is deleted.
-	"state":
This field indicates the communication state of the media channel. Only the terminating RESPECT endpoint (AS) is allowed to set this field. The data type of this field is "object" and has following fields.
-	"connected":
This field indicates whether the media channel is connected between UE and network (i.e., MF or TGF) or not. The data type of "connected" field is "boolean". "true" means the media channel is connected between UE and network or update of the media channel is successfully completed. "false" means the media channel is not yet connected or updated between UE and network. Note that the SRTP packet can be arrived at UE or network, even if the "connected" key is set to "false".
-	"routed":
This field indicates whether the media routing is completed or not on the connected media channel. The data type of "routed" field is "boolean". "true" means the media routing is completed for all media channels related to the media session at the RTC resource or the UE. "false" means the media routing is not yet completed for all media channels.
-	"handlingPref":
This sub-key indicates the user preference for the media channel. This sub-key is allowed to be set only when the media description is for offer/preoffer and "actType" is set to "add"/"mod". The data type of "handlingPref" sub-key is "object" and has following fields.
-	"index":
This field indicates dependency with the corresponding media description described in the"part" sub-key of "sdp" sub-key. Then the index number of "index" field is set to the index number of the "index" field of "part" sub-key of "sdp" sub-key corresponding to the metadata. The data type of "index" field is unsinged 32-bit "number".
-	"connectedToDevice":
This field indicates the expected device which the media channel is connected to. The data type of "connectedToDevice" is "string" and only following values are applicable. The values other than follwoings are ignored.
-	"audioIn":		Audio input device such as microphone.
-	"audioOut":	Audio output device such as speaker or headphone.
-	"videoIn":		Video input device such as camera
-	"display":		Video output for specific area on the display
-	"videoOut":	Video output for full screen on the display
-	"preferredStyle":
This field indicates the specific characteristics of the connected media. The data type of "preferredStyle" is "string" and following values are specified for the case "connectedToDevice" field is seto to "display".
-	"thumbnail"
-	"mainview"
-	"screenshare"
-	"prticipandId":
This field indicates the participant ID. The participant ID of the "participantDesc" sub-key of the "mediaInfo" key is included in the "participantId" field of the "handlingPref" sub-key, when the media is associated with the participant ID. The data type of "participandId" field is "string".

(4)	"dc" sub-key:
This sub-key indicates the metadate related to data channel. "The data type of "dc" sub-key is "object".
When the "part" sub-key includes the media description for data channel, the corresponding information is included. This key is allowed to be included in the "mediaInfo" key, if the corresponding "part" sub-key of "sdp" sub-key is not included in the "mediaInfo" key.
This key has the following sub-key.
1)	"sdpIndex"
2)	"metadata"
"sdpIndex" sub-key indicates the dependency with the corresponding media description for data channel described in the "part" sub-key of "sdp" sub-key. The data type of "index" field is unsinged 32-bit "number"
"metadata" sub-key includes the information related to the data channel. The data type of "metadata" sub-key is "array[object]" and includes following information.
-	"index":
This field indicates stream identifier of the corresponding data stream. The data type of "index" field is unsinged 16-bit "number".
-	"actType":
This field indicates the handling of the data stream specified by "index" key. The data type "actType" is "string" and only following values are applicable depends on the "type" sub-key of "mediaInfo" key.
<values for offer/preOffer>
-	"add"	: indicates the addition of the data stream to the data channel.
-	"del"	: indicates the deletion of the data stream from the data channel
<values for answer>
-	"aly"	: the requested offer (add/del) is accepted by the answerer.
-	"dcl"	: the requested offer (add) is declined by the answerer. As a result, the data stream is not added.
NOTE 2:	If the requested handling is "del", "dcl" is not applicable for the media stream.
-	"groupLabel":
This field indicates the group label which expected to be used by APIs related to the data channel stream handling. The data type of "groupLabel" is string. The string is not allowed to include ".".
The group label is used as category. Then there are multiple data channel stream which has same group label in the media session.
The group label is deleted if the media channel is deleted (by setting "actType" to "del"). If the media channel is re-added, a group label different from the previous label is allowed to be assigned.
This field is applicable for:
-	The metadata is media description for data channel.
-	The metadata is for offer (initial offer/subsequent offer/preoffer) which "actType" is set to "add".
-	"label":
This field indicates the unique ID of the data channel stream.
The data type of "label" sub-key is "string". The ID is expected to be used by APIs related to the medina handling. Then the ID included in "label" sub-key is required to be unique per RTC resource.
If a "sdp" sub-key is included in the RESPECT message sent from the network connected with CP and "actType" sub-key is set to "add", the "label" sub-key is required to be included in the "metadata". "label" sub-key is not allowed to included other cases.
-	"state":
This field indicates the communication state of the data channel stream. Only the terminating RESPECT endpoint (AS) is allowed to set this field. The data type of this field is "object" and has following fields.
-	"connected":
This field indicates whether the data channel stream is connected between UE and network (i.e., MF or TGF) or not. The data type of "connected" field is "boolean". "true" means the data channel stream is connected between UE and network. "false" means the data channel stream is not yet connected between UE and network. Note that the SRTP packet can be arrived at UE or network, even if the "connected" key is set to "false".
-	"routed":
This field indicates whether the data routing is completed or not for the connected data channel stream. The data type of "routed" field is "boolean". "true" means the data routing is completed for all data channel streams related to the media session at the RTC resource or the UE. "false" means the data routing is not yet completed for all data channel streams.
-	"subprotocol":
This field is equivalent to "a=dcmap subprotocol-opt" specified in IETF RFC 8864 [xx]. The data type of "subprotocol" field is "string". This field is only applicable for the "mediaInfo" which the "type" sub-key is set to "offer"/"preoffer" and "actType" sub-key of the "dc" sub-key is set to "add".
-	"ordered":
This field is equivalent to "a=dcmap ordering-opt" specified in IETF RFC 8864 [xx]. The data type of "ordered" field is "boolean". This field is only applicable for the "mediaInfo" which the "type" sub-key is set to "offer"/"preoffer" and "actType" sub-key of the "dc" sub-key is set to "add".
-	"maxretr":
This field is equivalent to "a=dcmap maxretr-opt" specified in IETF RFC 8864 [xx]. The data type of "maxretr" field is unsigned 32-bit "number". This field is only applicable for the "mediaInfo" which the "type" sub-key is set to "offer"/"preoffer" and "actType" sub-key of the "dc" sub-key is set to "add".
-	"maxtime":
This field is equivalent to "a=dcmap maxtime-opt" specified in IETF RFC 8864 [xx]. The data type of "maxtime" field is unsigned 32-bit "number". This field is only applicable for the "mediaInfo" which the "type" sub-key is set to "offer"/"preoffer" and "actType" sub-key of the "dc" sub-key is set to "add".
-	"priority":
This field is equivalent to "a=dcmap priority-opt" specified in IETF RFC 8864 [xx]. The data type of "priority" field is unsigned 16-bit "number". This field is only applicable for the "mediaInfo" which the "type" sub-key is set to "offer"/"preoffer" and "actType" sub-key of the "dc" sub-key is set to "add".

(5)	"participantDesc" sub-key:
This sub-key indicates the information of the participant in the media session. The included information is deference of the participant information from previous status. "participantDesc" key is allowed to be included in the when the SDP information is not included in the "mediaInfo" key. In that case, the "type" of the "mediaInfo" key is set to "info". This key is allowed to be included only for the RESPECT message is sent from a network. The data type of "participantDesc" sub-key is "array[object]" and includes following information.
-	"actType":
This field indicates the handling of the data stream specified by "index" key. The data type "actType" is "string" and only following values are applicable.
-	"add"	: indicates the addition of the participant information.
-	"del"	: indicates the deletion of the the participant information
-	"mod"	: indicates the modification of the participant information
-	"participantId":
This field indicates the anonymized RTC user ID. The data type of "participantId" field is "string".
-	"displayText":
This field indicates the string which is represented as the RTC user name on the display. The data type of "displayText" is "string". This field is only applicable when the "actType" field of the "participantDesc" sub-key is set to "add" or "mod".
-	"displayImage":
This field indicates the URI of the picture/image which is shown as the RTC user icon on the display. The data type of "displayImage" is "string". This field is only applicable when the "actType" field of the "participantDesc" sub-key is set to "add" or "mod".
-	"oId":
This field is equivalent to the "oId" key. This field is set in the "participantDesc" sub-key only when the "actType" sub-key of the "participantDesc" sub-key is set to "add" and the RTC user Id of the RTC user is allowed to indicated to the distination.
-	"userState":
This field indicates the status of the participant. The data type of "userState" sub-key is "string" and only following values are applicable.
-	"joiningIn"	: the participant is joining in the media session.
-	"alearting"	: the participant is in alerting status.
-	"joined"		: the participant has joined in the media session.
-	"leaving"		: the participant is left from the media session and proceeding the leaving.
Editor’s Note: The detailed definition of this key needs to be described.
[bookmark: _Toc156913511]6.4.5.5.4.3.20	Originating ID ("oId")
This key is used for conveying the identifier(s) of an originating RTC user to the target RESPECT endpoint of the request. Originating ID ("oId") key is allowed to be included in the "msetup" and "mupdate" request/response. The data type of the "oId" key is "object". The "oId" key has following 4 sub-keys:
-	"user"
-	"network"
-	"privacy"
-	"passport"
The "user" sub-key is used for conveying an originating ID provided by an originating RTC user. The data type of "user" sub-key is "object".
The "network" sub-key is used for conveying the network-asserted originating ID provided by a RESPECT endpoint (AS). A RESPECT endpoint (AS) needs to delete this sub-key before sending a RESPECT message containing this sub-key to an entity outside the trust domain. The data type of "network" sub-key is "object".
Both the "user" and "network" sub-keys have following fields:
-	"uri"
-	"tn"
-	"displayName"
The data type of "uri", "tn" and "displayName" fields are "string". The value of each field is set as follows.
"uri": RTC user ID
"tn": telephone number (global number digits excluding "+")
"displayName": display name of the RTC user
The "privacy" sub-key is used for indicating the privacy setting of an originating ID requested by an RTC user. The data type of "privacy" sub-key is "array(string)". When this sub-key is not contained in the RESPECT message from an RESPECT endpoint (UE), then RESPECT endpoints (AS) will forward "user" and "network" sub-key towards a RESPECT endpoint (UE). The following value is applicable to indicate privacy setting.
"id": This value indicates the "network" sub-key containing a network-asserted originating ID is required to be removed when the RESPECT message is sent to a RESPECT endpoint (UE). If this value is set into the "privacy" sub-key, a RESPECT endpoint (UE) is not allowed to set "user" sub-key in the "oId" key.
The "passport" sub-key is used for conveying a signature of originating ID provided by an originating RTC network, to verify an originating ID in a terminating RTC network. A RESPECT endpoint (AS) needs to delete this sub-key before sending a RESPECT message containing this sub-key to an entity outside the trust domain. The data type of "passport" sub-key is "object". The "passport" sub-key has following fields.
-	"identity"
-	"info"
-	"alg"
-	"ppt"
The "identity" sub-key contains a signature of the PASSporT generated as specified in IETF RFC 8225 [x6] and IETF RFC 8588 [x7]. Only full form PASSporT is allowed to be included in the "identity" sub-key. When creating the PASSporT at an originating RESPECT endpoint (AS), PASSporT header and PASSporT payload are set as follows, then a signature is generated using these header and payload according to IETF RFC 8825 [x6].
<PASSporT header>
-	The "typ" is required to be set to "passport" as specified in IETF RFC 8225 [x6].
-	The "alg" is required to be set to the cryptographic algorithm for the signature part. In this version of the RESPECT, the "alg" is required to be set to "ES256".
-	The "x5u" is required to be set to the URI referring to the resource for the X.509 public key certificate corresponding to the key used to generate the PASSporT signature.
-	The "ppt" is required to be set to "shaken" as specified in IETF RFC 8588 [x7].
<PASSporT payload>
-	The "attest" is required to be set to the attestation level as specified in IETF RFC 8588 [x7]. In this version of the RESPECT, the "attest" claim is required to be set to "A" since every RTC user ID is authenticated by an operator or a SP.
-	The "dest" is required to be set to the same value of the "dId" key of the "msetup" request.
-	The "iat" is required to be set to the date and time of issuance of the PASSporT signature as specified in IETF RFC 8225 [x7].
-	The "orig" is required to be set to the same value of the "tn" or "uri" of the "network" sub-key in the "oId" key of the request.
-	The "origid" is required to be set to the UUID as specified in IETF RFC 8588 [x7]. How to generate the UUID and the granularity of the "origid" is determined by an operator policy.
-	The "mky" is not allowed to be used.
The "info" sub-key is required to be included in the "passport" sub-key. This sub-key is used for indicating the URI referring to the resource for the X.509 public key certificate corresponding to the key used to generate the PASSporT signature as same as the "info" parameter specified IETF RFC 8224 [x5].
The "alg" sub-key is allowed to be included in the "passport" sub-key. This sub-key is used for indicating the encryption algorithms of used to generate the PASSporT signature as same as the "alg" parameter specified IETF RFC 8224 [x5].
The "ppt" sub-key is allowed to be included in the "passport" sub-key. This sub-key is used for indicating the required PASSporT extension needed to be supported for verification as same as the "alg" parameter specified IETF RFC 8224 [x5].
[bookmark: _Toc156913512]6.4.5.5.4.3.21	Requested information list ("resourcesReq") / Information list ("resourcesRes")
"getinfo" request is allowed to include "resourcesReq" key. The data type of "resourcesReq" key is "array". Only "string" data which indicates the item name of the requested information is allowed to be set into the allay.
"getinfo" response is allowed to include "resourcesRes" key. The data type of "resourcesRes" key is "object". The sub-key of the "resourcesRes" key consists of a key which is the item name of the requested information and a value representing the information. If the information is not available, the sub-key corresponding to the information is not included in the "resourceRes" key.
The applicable information is defined in clause A.x.x. The string representing the item name of the information is required to start from "/". The application specific item name of the information is allowed to be used. To avoid the confliction with other item names, the application specific item name is required to include reverse order of the internet domain which owned by the operator or the SP who provide the RTC service, before the application specific item name (e.g., /com.example/net/conf/appSpecificItem). This rule enables to avoid confliction of key name. The internet domain part of the item name is required to be lower-case letter. The data type of application specific item is allowed to be any data type.
[bookmark: _Toc156913513]6.4.5.5.4.3.22	Updating key list ("updatingKeys")
This key indicates the keys which are requested to be updated in the "mupdate" request. The data type of "updatingKeys" key is "array" Only "string" data type values indicating key is allowed to be set into the array of "updatingKeys" key.
[bookmark: _Toc156913514]6.4.5.5.4.3.23	Updated key list ("updatedKeys")
This key indicates the keys which are updated by the "mupdate" request. The data type of "updatedKeys" key is "array" Only "string" data type values indicating key is allowed to be set into the array of "updatedKeys" key.
[bookmark: _Toc156913515]6.4.5.5.4.3.24	Called party ID ("cId")
This key indicates the RTC user ID or RTC resource ID which is used as destination ID. Called party ID ("cId") key is allowed to be included in the "msetup" request sent from an RESPECT endpoint (AS). The data type of "cId" key is "object".
For the "dId" key, any one of the following fields is allowed to be set.
-	"uri"
-	"tn"
The data type of "uri" and "tn" fields are "string". The value of each fields is set as follows.
-	"uri": either RTC resource ID or RTC user ID
-	"tn": telephone number (global number digits excluding "+")
The applicable URI scheme for RTC resource ID is "3gpp-respect-v1" for native RTC resources. The host part is set to the internet domain which owned by an operator or an SP who provides the RTC service to the user. The userinfo part is assigned by the operator or the SP who provides the RTC service to the user.
[bookmark: _Toc156913516]6.4.5.5.4.3.25	User data ("userData")
This key is able to be used for conveying user specified data in free format. The data type of "userData" key is "object". This key is allowed to be included in "msetup", "mupdate", "mdisc" request/response. Note that this key is delivered to the endpoint of the media session (e.g., from originating UE to terminating UE).
Editor’s Note: The detailed definition of this key needs to be described.
[bookmark: _Toc156913517]6.4.5.5.4.4	Application specific key
[bookmark: _Toc156913518]6.4.5.5.4.4.1	General
RESPECT allows to use application specific keys for flexibility.
The application specific key name is required to include reverse order of the internet domain which owned by the operator or the SP who provide the RTC service, before the application specific key (e.g., com.example.specificKey). This rule enables to avoid confliction of key name.
The data type of application specific Key is specified by the application.
[bookmark: _Toc156913519]6.4.5.5.5	Response code for error response
[bookmark: _Toc156913520]6.4.5.5.5.1	General
This clause describes the applicable URL string for "type" sub-key of "problemDetails" key.
The "type" sub-key indicates the URL string of the error/problem details. The URL is required to be following format.
<scheme>://<error-type>/<error-details>
-	<scheme> is required to be "3gpp-respect"
-	<error-type> is required to be set as follows:
-	"error"		: This context indicates the method or the setup/modification of media session is failed to process by a reason indicated by <error-details>. "error" is not allowed to be used for indicating the error caused by timeout.
-	"timeout"	: This context indicates the method or the setup/modification of media session is failed is not successfully proceeded before a time expires. The detailed time is expected to be explained in <error-details>
-	<error-details> is required to be set to the following context based on the reason of the error:
-	"method-unsupported":
This context indicates that the method of the request is not supported at the destination RESPECT endpoint.
-	"feature-unsupported":
This context indicates that the feature required in the request is not supported at the destination RESPECT endpoint.
-	"feature-required":
This context indicates that a required feature(s) is not included in the request. The request/response indicating this context is requited to include "requiredFeature" key contains the value(s) indicating required feature(s).
-	"mediaSession-id-not-found":
This context indicates that the media session which specified by the "mediaSessionId" ID is not existing.
-	"mediaSession-offer-required":
This context indicates that the request is required to include SDP offer in the "msetup" request or "mupdate" request. The RESPECT endpoint is allowed to generate another "msetup"/"mupdate" request including SDP offer.
-	"mediaSession-offer-rejected":
This context indicates that the SDP offer included in the request is rejected by the destination RESPECT endpoint.
-	"destination-not-found":
This context indicates that the destination which specified by "dId" key in the request is not found.
-	"destination-rejected":
This context indicates that the media session setup to the destination specified in "dId" key is rejected by the destination.
-	"auth-failed":
This context indicates that the "auth" request is failed. The reason for the failure is not provided. If the "retryAfter" key is included in the response, the RESPECT endpoint is not allowed to send an "auth" request during the duration indicated in the "problemDetails" key.
-	"congested":
This context indicates that the RESPECT request is failed due to congestion of a C-Plane path. The RESPECT endpoint which receives the response including this "type" sub-key is not allowed to send any request during the duration indicated in the "retryAfter" in the "problemDetails" key.

[bookmark: _Toc156913521]6.4.5.5.6	Originating ID and verification using signature verification and attestation information
[bookmark: _Toc156913522]6.4.5.5.6.1	General
This clause describes the following feature of RESPECT.
-	Handling of the originating ID
-	Originating ID verification using signature verification and attestation information
[bookmark: _Toc156913523]6.4.5.5.6.2		Handling of originating ID
[bookmark: _Toc156913524]6.4.5.5.6.2.1	General
This clause describes the procedures for handling of originating ID.
[bookmark: _Toc156913525]6.4.5.5.6.2.2	User-provided originating ID
When initiating a media session, the RESPECT endpoint (UE) is allowed to include an originating ID in the "user" sub-key of the "oId" key in the "msetup" request.
When receiving the "msetup" request, the RESPECT endpoint (AS) receives the "msetup" request, the RESPECT endpoint (AS) is required to copy the "user" sub-key of the "oId" key in the received "msetup" request into the "user" sub-key of the "oId" key in the sending "msetup" request.
[bookmark: _Toc156913526]6.4.5.5.6.2.3	Network-asserted originating ID
The RESPECT endpoint (UE) is not allowed to include an originating ID in the "network" sub-key of the "oId" key in the "msetup" request.
When receiving the "msetup" request from a RESPECT endpoint (UE), the RESPECT endpoint (AS) retrieves an ID assigned to the RESPECT endpoint (UE). Before sending the "msetup" request to the entity within the trust domain, the RESPECT endpoint (AS) is allowed to include the retrieved IDs in the "network" sub-key of the "oId" key as a network-asserted ID.
When receiving the "network" sub-key from the preceding RESPECT endpoint, the RESPECT endpoint (AS) is required not to include the "network" sub-key in the "msetup" request if the request is sent to the entity outside the trust domain.
NOTE:	RESPECT endpoint (AS) is expected to be able to retrieve the originating ID (e.g., RTC user Identity of the originating RESPECT endpoint (UE)) from the ASWF.
[bookmark: _Toc156913527]6.4.5.5.6.2.4	Privacy
The RESPECT endpoint (UE) is allowed to include privacy indication information in the "privacy" sub-key of the "oId" key in the "msetup" request when the RESPECT endpoint (UE) initiates the "msetup" request. The privacy indication information is set as described in clause 6.4.5.5.4.3.20.
When receiving the "privacy" sub-key of the "oId" key in the "msetup" request, the RESPECT endpoint (AS) is required to copy the "privacy" sub-key of the "oId" key in the received "msetup" request to the "privacy" sub-key of the "oId" key in the "msetup" request which sent to another RESPECT endpoint in the trust domain.
When receiving the "privacy" sub-key set to "id" from the preceding RESPECT endpoint, the RESPECT endpoint (AS) is required not to include the "network" and "privacy" sub-keys in the "msetup" request, if the request is sent to the RESPECT endpoint (UE).
When receiving the "privacy" sub-key from the preceding RESPECT endpoint, the RESPECT endpoint (AS) is required not to include the "privacy" sub-key in the "msetup" request if the request is sent to the entity outside the trust domain.
[bookmark: _Toc156913528]6.4.5.5.6.3		Originating ID verification using signature verification and attestation information
[bookmark: _Toc156913529]6.4.5.5.6.3.1	General
The RESPECT protocol supports the Originating ID verification using signature verification and attestation information. This clause describes the procedure for the originating ID verification using signature verification and attestation information.
[bookmark: _Toc156913530]6.4.5.5.6.3.2	Signing for the originating ID
The RESPECT endpoint (AS) in the originating RTC network is allowed to include PASSporT in the "identity" field of the "passport" sub-key of the "oId" key in the "msetup" request which sent to the RESPECT endpoint in the trust domain. The PASSporT is generated as described in clause 6.4.5.5.4.3.20.
[bookmark: _Toc156913531]6.4.5.5.6.3.3	Verification of the originating ID
The RESPECT endpoint (AS) in the terminating RTC network is allowed to use the PASSporT in the "identity" field of the "passport" sub-key of the "oId" key in the received "msetup" request for verification of originating ID in the "network" sub-key.
When sending the "msetup" request to the entity outside the trust domain, the RESPECT endpoint (AS) is required not to include "passport" sub-key in the request.
[bookmark: _Toc156913532]6.4.5.6	General call flow and procedure
[bookmark: _Toc156913533]6.4.5.6.1	General
This clause describes the general call flows and procedures for RESPECT listed in Table 6.4.5.6.1-1.
Table 6.4.5.6.1-1: RESPECT Call flows
	No.
	Title
	related CS #
	Signalling path
	clause
	message example

	1
	Authentication
	CS #3, CS #4
	UE1 - WSF
	6.4.5.6.2
	B.2

	2
	[bookmark: _Hlk156744551]Media session setup and disconnection for the operator self-contained RTC resource
	CS #3
	UE1 - WSF
	6.4.5.6.3
	B.3

	3
	Media session setup and disconnection for the RTC resource provided by other operator
	CS #4
	UE1 - WSF1 - IWF1 - IWF2 - WSF2
	6.4.5.6.4
	B.4

	4
	Media session setup and disconnection between UEs within a single operator network
	CS #3
	UE1 - WSF - UE2
	6.4.5.6.5
	B.5

	5
	Media session setup and disconnection between UEs over inter-operator networks
	CS #4
	UE1 - WSF1 - IWF1 - IWF2 - WSF2 -UE2
	6.4.5.6.6
	B.6

<Premises of the message flow>
-	The RTC user established a secure WebSocket connection (i.e., control session) with the WSF in the connected operator network.
In this clause, RESPECT endpoint is described as follows.
-	RESPECT endpoint (UE):	UE, originating UE, terminating UE
-	RESPECT endpoint (AS) indicating WSF:	WSF, IWF
-	RESPECT endpoint (AS) indicating IWF:		IWF
In this clause, the preceding control session means that the control session which the RESPECT endpoint (AS) received a request message from another RESPECT endpoint (AS) and the succeeding control session means the control session which the RESPECT endpoint (AS) sends the request to another RESPECT endpoint. Then the RESPECT endpoint (AS) receives the response message corresponding to the request message on the succeeding control session and sends the response message on the preceding control session which the corresponding request message is received.
In this clause, the response message includes "success" key is set to "true" is described as follows:
-	success response
In this clause, the response message includes "success" key is set to "false" is described as follows:
-	error response
[bookmark: _Toc156913534]6.4.5.6.2	Authentication
When the UE established a secure WebSocket connection with the WSF, the UE is required to be authenticated by the WSF in the operator network to use RESPECT for media session control. This clause describes the general message flow and procedure for authentication.
<Premises of the message flow>
-	The UE has the JSON Web Signature (JWS) credential through preceding authentication with the operator network or an external identity provider (IdP).

Figure 6.4.5.6.2-1: Authentication
1.	After the establishment of the secure WebSocket connection with the WSF in the operator network, the UE sends "auth" request for requesting authentication to the WSF over the secure WebSocket connection. The "auth" request is required to include the information used for the authentication as follows.
a)	The RTC user ID requested to be authenticated (i.e., "rtcUserId" key).
b)	The authentication type and credential for the authentication. In this flow, token based bearer authentication is applied (i.e., "authType" key and "authorization" key).
2.	The WSF processes the authentication of the RTC user ID using the received token. If the authentication is successful, the WSF:
i.	registers the binding information to the database (ASWF) in the operator network and
ii.	sends "auth" success response to the UE. The "auth" success response is required to include the following information.
a)	The duration that the authentication is valid (i.e., "expires" key). The duration is determined by the operator policy.
After the successful authentication, the UE is allowed to send RESPECT messages other than "auth" request. Also the UE is able to called from other UEs since the WSF/IWF can identify the UE by using the registered binding information is in the database.
When the authentication period expires, the authentication and the registered binding information is deleted. Then, the UE is not able to set up new media session and the existing media session is disconnected.
To avoid the deletion of the authentication and registered binding information, the UE is required to send the authentication request before the previous authentication is expired, after the successful authentication.

Figure 6.4.5.6.2-2: Re-authentication
1.	The UE sends "auth" request for requesting re-authentication to the WSF over the secure WebSocket connection. The "auth" request is required to include the information used for the authentication as same as the previous authentication. If there are any updates on the information used for the authentication, the latest information is required to be used.
2.	The WSF processes the authentication of the RTC user ID using the received token. If the authentication is successful, the WSF is required to
i.	update the registered binding information of the database (ASWF) in the operator network and
ii.	send "auth" success response to the UE as same as the previous authentication.
[bookmark: _Toc156913535]6.4.5.6.3	Media session setup and disconnection for the operator self-contained RTC resource
This clause describes the general call flow and procedure for media session setup and disconnection with the RTC resource in the connected operator network.

Figure 6.4.5.6.4-1: Media session setup and disconnection between UE1 and RTC resource provided by the operator network
NOTE 1:	Dashed arrows in the Figure 6.4.5.6.4-1 show the service control API interactions and outside the scope of this solution.

1.	UE1 sends "msetup" request for requesting a media session setup to the WSF over the secure WebSocket connection. The "msetup" request is required to include following information.
a)	RTC resource ID of the RTC resource where the media session is connected to (i.e., "dId" key).
b)	Media session ID of the media session which is requested to be set up (i.e., "mediaSessionId" key). This Media session id is generated by the UE and is required to be unique on the control session.
c)	Media information including "preOffer" description of the UE for the media session (i.e., "mediaInfo" key).
2.	The WSF detects the RTC resource ID of the destination in the received "msetup" request is valid and the RTC resource is assigned to the WSF. If the UE (RTC user ID) is allowed to connect to the media resource:
i.	the WSF sends the "msetup" success response to the UE for indicating the result of the "msetup" request and media session state immediately. The "msetup" success response includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key). The media session ID in the response is same ID included in the "msetup" request.
b)	Current media session state (i.e., "mediaSessionState" key) to notify the media session state transitions to "accepted" since the WSF is acting as terminating RESPECT endpoint (AS).
c)	Media Information including the participant description (i.e., "participantDesc" sub-key of the "meidaInfo" key), if available.
ii.	The WSF interact with the RTC resource (i.e., MF) to reserve the U-plane resource for the requested media session set up and obtain the SDP information.
3.	Upon the U-Plane resource becomes available, the WSF sends "mupdate" request to the UE for the offer/answer negotiation of the media session. The "mupdate" request includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key).
b)		Media information including the complete SDP offer description. The SDP offer description is generated based on the information received from RTC resource (i.e., "mediaInfo" key).
c)	The information which intended to be updated (i.e., "updatingKeys" key)
4.	If the received "mupdate" request is valid and included SDP offer is acceptable for the UE, the UE sends "mupdate" success response to the WSF for sending SDP answer to the received SDP offer. The "mupdate" response includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key). The media session ID in the response is same ID included in the "mupdate" request.
b)		Media information including complete "answer" description of the UE for the media session (i.e., "mediaInfo" key).
c)	The updated information by the "mupdate" method (i.e., "updatedKeys" key). In this case, the information included in the "mediaInfo" key is updated.
5.	If the offer/answer for the media session is successfully completed, the WSF allocate the U-Plane media resource to the MF. Upon the media routing for the media session is successfully configured, the WSF send the "mupdate" request to the UE for indicating the media session setup is successfully completed. The "mupdate" response includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key).
b)	Current media session state (i.e., "mediaSessionState" key) since the media session state transitions from "accepted" to "routed".
c)	Media information including metadata of the updated participant information (i.e., "participantDesc" sub-key" of the "mediaInfo" key).
d)	The information which intended to be updated (i.e., "updatingKeys" key)
6.	If the received "mupdate" request is valid, the UE store the updated information indicated in the "updatingKeys" key and sends "mupdate" success response to the WSF for indicating the result of "mupdate" request. The "mupdate" response includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key). The media session ID in the response is same ID included in the "mupdate" request.
b)		The updated information by the "mupdate" method (i.e., "updatedKeys" key). In this case, the information included in the "mediaSessionState" key and the "mediaInfo" key are updated.
7.	The UE sends the "mdisc" request to disconnect the media session. After sending the "mdisc" request, the UE is allowed to disconnect the media session before receiving "mdisc" success response. The "mdisc" request includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key).
8.	If the received "mdisc" request is valid, the WSF instruct the RTC resource to release the U-Plane resource for the media session and sends the "mdisc" success response to disconnect the media session. The "mdisc" request includes following information.
a)	Media session ID indicating the target media session of the method (i.e., "mediaSessionid" key). The media session ID in the response is same ID included in the "mdisc" request.
[bookmark: _Toc156913536]6.4.5.6.4	Media session setup and disconnection for the RTC resource provided by other operator
This clause describes the general call flow and procedure for media session setup and disconnection with the RTC resource in the connected operator network.

Figure 6.4.5.6.4-1: Media session setup and disconnection for the RTC resource provided by other operator
NOTE 1:	Dashed arrows in the Figure 6.4.5.6.4-1 show the service control API interactions and outside the scope of this solution.

1.	This process is same as process 1 of clause 6.4.5.6.3.
2.	WSF1 detects the destination of the "msetup" request is in other network by the domain of the URI and proceeds the following steps to send the "msetup" request to the destination.
i.	WSF1 retrieves the information of IWF1 which is acting as the exit point of the operator network and connected to the IWF in the network where RTC resource is assigned to.
NOTE 2:	How to retrieve the IWF1 information is FFS.
ii.	WSF1 sends the "msetup" request to the retrieved IWF1. The "msetup" request is constructed as follows.
a)	Media session ID is newly generated by the WSF1 since the uniqueness of the media session ID is guaranteed per control session. WSF1 is required to store the relationship between the received media session ID on the preceding control session and the generated media session ID on the succeeding media session. This relationship is necessary to identify the appropriate RESPECT endpoint where a received request message is sent to, when the RESPECT endpoint (AS) received a request message for requesting update/disconnect the media session.
b)		The individual keys in the "msetup" request from UE1 is copied to the "msetup" request sent to IWF1.
3.	IWF1 detects the destination of the "msetup" request is in other network by domain of the URI and proceeds following steps to send "msetup" request to the destination.
i.	IWF1 retrieves the information of IWF2 which is acting as the entry point of the network where RTC resource is assigned to.
NOTE 3:	How to retrieve the IWF2 information is FFS.
ii.	IWF1 sends the "msetup" request to the retrieved IWF2 in the network where the RTC resource is assigned to. The "msetup" request is constructed as follows.
a)	Media session ID is newly generated and stored by IWF1 as same as process 2-ii-a) in this clause.
b)		The individual keys in the "msetup" request from WSF1 is basically copied to the "msetup" request sent to the IWF2. IWF1 acts as a gateway (exit point) of the network, then IWF1 is allowed to modify the values in the individual keys based on the operator policy. (e.g., hiding of the operator network specific information, modification of SDP description to involve TGF1 in the media path.)
	If TGF1 is applied as media gateway, IWF1 instructs TGF1 to reserve U-Plane resource and receives the media related information from TGF1.
4.	IWF2 detects the destination of the "msetup" request is in the network by domain of the URI and proceeds following steps to send "msetup" request to the destination.
i.	IWF2 retrieves the information of WSF2 which the RTC resource is assigned to.
NOTE 3:	How to retrieve the WSF2 information is FFS.
ii.	IWF2 sends the "msetup" request to the retrieved WSF2 in the network where RTC resource is assigned to. The "msetup" request is constructed as follows. IWF2 is required to store the relationship between the received media session ID and the generated media session ID.
a)	Media session ID is newly generated and stored by IWF2 as same as process 2-ii-a) in this clause.
b)		The individual keys in the "msetup" request from IWF1 is basically copied to the "msetup" request sent to IWF2. IWF2 acts as a gateway (entry point) of the network, then IWF2 is allowed to modify the values in the individual keys based on the operator policy. (e.g., screening of the received information, modification of SDP description to involve TGF2 in the media path.)
	If TGF2 is applied as media gateway, IWF2 instructs TGF2 to reserve U-Plane resource and receives the media related information from TGF2.
5.	This process is same as process 2 of clause 6.4.5.6.3. To refer the process, "UE1" is replaced with "IWF2", and "WSF1" is replaced with "WSF2".
6.	IWF2 checks the transaction ID of the "msetup" success response and sends the "msetup" success response to the IWF1 which sent the corresponding "msetup" request identified by the transaction ID. The "msetup" success response is constructed as follows:
a)	The media session ID in the response is same media session ID included in the corresponding "msetup" request on the control session.
b)		The individual keys in the "msetup" success response from WSF2 is basically copied to the "msetup" success response sent to IWF1. IWF2 acts as a gateway (exit point) of the network, then IWF2 is allowed to modify the values in the individual keys based on the operator policy. (e.g., hiding of the operator network specific information.)
7.	IWF1 checks the transaction ID of the "msetup" success response and sends the "msetup" success response to the WSF1 which sent the corresponding "msetup" request identified by the transaction ID. The "msetup" response is constructed as follows:
a)	The media session ID in the response is same media session ID included in the corresponding "msetup" request on the control session.
b)		The individual keys in the "msetup" success response from IWF2 is basically copied to the "msetup" success response sent to WSF1. IWF1 acts as a gateway (entry point) of the network, then IWF1 is allowed to modify the values in the individual keys based on the operator policy. (e.g., screening of the received information)
8.	WSF1 checks the transaction ID of the "msetup" success response and sends the "msetup" success response to the UE1 which sent the corresponding "msetup" request identified by the transaction ID. The "msetup" response is constructed as follows:
a)	The media session ID in the response is same media session ID included in the corresponding "msetup" request on the control session.
b)		The individual keys in the "msetup" success response from IWF1 is copied to the "msetup" success response sent to UE1.
	UE1 stores the received information and mupdates the media session related information (i.e., media session state and media session information) indicated by the media session ID in the received "msetup" success response.
9.	This process is same as process 3 of clause 6.4.5.6.3. To refer the process, "UE1" is replaced with "IWF2", and "WSF1" is replaced with "WSF2".
10.	IWF2 checks the media session ID of the "mupdate" request and sends the "mupdate" request to IWF1 which has the control session corresponding to the media session identified by the media session ID. The "mupdate" request is constructed as follows:
a)	The media session ID in the "mupdate" request on the succeeding control session is set to the media session ID of the media session which corresponding to the media session indicated in the received "mupdate" request on the preceding control session.
b)		The individual keys in the "mupdate" request from WSF2 is basically copied to the "mupdate" request sent to IWF1. IWF2 acts as a gateway (exit point) of the network, then IWF2 is allowed to modify the values in the individual keys based on the operator policy. (e.g., hiding of the operator network specific information. modification of SDP description to involve TGF2 in the media path.)
11.	IWF1 checks the media session ID of the "mupdate" request and sends the "mupdate" request to WSF1 which has the control session corresponding to the media session identified by the media session ID. The "mupdate" request is constructed as follows:
a)	The media session ID in the "mupdate" request on the succeeding control session is set as same as process 10-a) in this clause.
b)		The individual keys in the "mupdate" request from IWF2 is basically copied to the "mupdate" request sent to WSF1. IWF1 acts as a gateway (entry point) of the network, then IWF1 is allowed to modify the values in the individual keys based on the operator policy. (e.g., screening of the received information, modification of SDP description to involve TGF1 in the media path.)
12.	WSF1 checks the media session ID of the "mupdate" request and sends the "mupdate" request to UE1 which has the control session corresponding to the media session identified by the media session ID. The "mupdate" request is constructed as follows:
a)	The media session ID in the "mupdate" request on the succeeding control session is set as same as process 10-a) in this clause.
b)		The individual keys in the "mupdate" request from IWF1 is basically copied to the "mupdate" request sent to UE1.
	UE1 stores the received information and updates the media session related information (i.e., media session state and media session information) indicated by the media session ID in the received "mupdate" request.
13.	This process is same as process 4 of clause 6.4.5.6.3.
14.	WSF1 checks the transaction ID of the "mupdate" success response and sends the "mupdate" success response to the IWF1 which sent the corresponding "mupdate" request identified by the transaction ID. The "mupdate" response is constructed as follows:
a)	The media session ID in the response on the preceding control session is set to the media session ID of the media session which corresponding to the media session indicated in the received "mupdate" success response on the succeeding control session.
b)		The individual keys in the "msetup" success response from UE1 is copied to the "mupdate" success response sent to IWF1.
15.	IWF1 checks the transaction ID of the "mupdate" success response and sends the "mupdate" success response to the IWF2 which sent the corresponding "mupdate" request identified by the transaction ID. The "mupdate" response is constructed as follows:
a)	The media session ID in the response on the preceding control session is set to the media session ID of the media session is set as same as process 14-a) in this clause.
b)		The individual keys in the "msetup" success response from WSF1 is basically copied to the "mupdate" success response sent to IWF2. IWF1 acts as a gateway (exit point) of the network, then IWF1 is allowed to modify the values in the individual keys based on the operator policy. (e.g., hiding of the operator network specific information, modification of SDP description to involve TGF1 in the media path.)
	If TGF1 is applied as media gateway, IWF1 instructs the TGF1 to allocates the U-Plane resource and receives the media related information from TGF1.
16.	IWF2 checks the transaction ID of the "mupdate" success response and sends the "mupdate" success response to the WSF2 which sent the corresponding "mupdate" request identified by the transaction ID. The "mupdate" response is constructed as follows:
a)	The media session ID in the response on the preceding control session is set to the media session ID of the media session is set as same as process 14-a) in this clause.
b)		The individual keys in the "msetup" success response from IWF1 is basically copied to the "mupdate" success response sent to WSF2. IWF2 acts as a gateway (entry point) of the network, then IWF2 is allowed to modify the values in the individual keys based on the operator policy. (e.g., screening of the received information, modification of SDP description to involve TGF2 in the media path.)
	If TGF2 is applied as media gateway, IWF2 instructs the TGF2 to allocates the U-Plane resource and receives the media related information from TGF2.
17.	This process is same as process 5 of clause 6.4.5.6.3.
18.	IWF2 checks the media session ID of the "mupdate" request and sends the "mupdate" request to IWF1 which has the control session corresponding to the media session identified by the media session ID as same as process 10.
19.	IWF1 checks the media session ID of the "mupdate" request and sends the "mupdate" request to WSF1 which has the control session corresponding to the media session identified by the media session ID as same as process 11.
20.	WSF1 checks the media session ID of the "mupdate" request and sends the "mupdate" request to UE1 which has the control session corresponding to the media session identified by the media session ID as same as process 12.
	UE1 stores the received information and updates the media session related information (i.e., media session state and media session information) indicated by the media session ID in the received "mupdate" request.
25.	This process is same as process 7 of clause 6.4.5.6.3.
26.	WSF1 checks the media session ID of the "mdisc" request and sends the "mdisc" request to IWF1 which has the control session corresponding to the media session identified by the media session ID as same as process 2.
27.	IWF1 checks the media session ID of the "mdisc" request and sends the "mdisc" request to IWF2 which has the control session corresponding to the media session identified by the media session ID as same as process 3.
28.	IWF2 checks the media session ID of the "mdisc" request and sends the "mdisc" request to WSF2 which has the control session corresponding to the media session identified by the media session ID as same as process 4.
29.	This process is same as process 8 of clause 6.4.5.6.3.
30.	IWF2 checks the media session ID of the "mdisc" request and sends the "mdisc" request to IWF1 which has the control session corresponding to the media session identified by the media session ID as same as process 6.
31.	IWF1 checks the media session ID of the "mdisc" request and sends the "mdisc" request to WSF1 which has the control session corresponding to the media session identified by the media session ID as same as process 7.
32.	WSF1 checks the media session ID of the "mdisc" request and sends the "mdisc" request to UE1 which has the control session corresponding to the media session identified by the media session ID as same as process 8.
[bookmark: _Toc156913537]6.4.5.6.5	Media session setup and disconnection between UEs within a single operator network
This clause describes the general call flow and procedure for media session setup and disconnection with the RTC resource in the connected operator network.

Figure 6.4.5.6.5-1: Media session setup and disconnection between UE1 and UE2 within a single operator network

1.	UE1 sends an "msetup request for requesting a media session setup to WSF1 over the control session (i.e., secure WebSocket connection). The "msetup" request includes following information.
a)	RTC user ID of the RESPECT endpoint (i.e., UE2, in this case) which the media session is connected to (i.e., "dId" key).
b)	Media session ID of the media session which is requested to be set up (i.e., "mediaSessionId" key). This Media session id is generated by the UE and is required to be unique on the control session.
c)	Media information including "preOffer" description of the UE for the media session (i.e., "mediaInfo" key).
2.	WSF1 detects the destination of the "msetup" request is in the network by the domain of the URI and proceeds the following steps to send the "msetup" request to the destination.
i.	WSF1 retrieves the information of WSF2 which UE2 is connected to.
NOTE 1:	WSF2 is expected to be able to use a database which stores the binding information..
NOTE 2:	If the UE2 is connected to WSF1, WSF atcs as WSF2 of this call flow.
ii.	WSF1 sends the "msetup" request to the retrieved WSF2 as same as process 2-ii of clause 6.4.5.6.4.
3.	WSF2 detects the destination of the "msetup" request is the RESPECT endpoint (UE) connected to WSF2 via the valid control session. WSF2 proceed the following steps.
i.	WSF2 stores the received information in the "msetup" request.
ii.	WSF2 instruct MF2 to reserve U-Plane resource for the media session based on the received "preOffer" and the constructed initial SDP offer for sending "msetup" request to UE2.
iii.	WSF2 sends "msetup" success response to WSF1 for indicating the result of the "msetup" request and media session state immediately. The "msetup" success response includes following information.
a)	Media session ID in the response is set to same ID included in the "msetup" request.
b)	Current media session state (i.e., "mediaSessionState" key) to notify the media session state transitions to "accepted" since the WSF is acting as terminating RESPECT endpoint (AS).
c)	Media Information including the participant description (i.e., "participantDesc" sub-key of the "meidaInfo" key), if available.
4.	WSF1 checks the transaction ID of the "msetup" success response and sends the "msetup" success response to the UE1 which sent the corresponding "msetup" request identified by the transaction ID. The "msetup" response is constructed as follows:
a)	The media session ID in the response is same media session ID included in the corresponding "msetup" request on the control session.
b)		The individual keys in the "msetup" success response from IWF1 is copied to the "msetup" success response sent to UE1.
	UE1 stores the received information and updates the media session related information (i.e., media session state and media session information) indicated by the media session ID in the received "msetup" success response.
5.	WSF2 sends an "msetup" request to UE2. The "msetup" request includes following information.
a)	Media session ID which is newly generated and stored by WSF2 as same as process 2-ii-a) in clause 6.4.5.6.4.
b)	Current media session state (i.e., "mediaSessionState" key) to notify the media session state transitions to "accepted" since the WSF is acting as terminating RESPECT endpoint (AS).
c)	Media Information including the complete SDP description for initial offer (which is constructed at step 3-ii in this clause) and participant description (i.e., "sdp" sub-key and "partiscipantDesc" sub-key of the "mediaInfo" key).
	UE2 stores the received information and updates the media session related information (i.e., media session ID, media session state and media information) in the received "msetup" request.
6.	UE2 sends an "msetup" success response to the received "msetup" request, to immediately notify that the "msetup" request is successfully proceeded at UE2. The "msetup" request incudes following information
a)	Media session ID in the response is same ID included in the corresponding "msetup" request (i.e., "mediaSessionid" key).
7.	Upon receiving the "msetup" success response from UE2, WSF2 sends "mupdate" request towards UE1 to notify that the user state of UE2 is updated to "joininIn". The "request" request includes following information.
a)	Media session ID which indicating the target media session of the method (i.e., "mediaSessionId" key).
b)	Media Information including participant description related to the updated information (i.e., "partiscipantDesc" sub-key of the "mediaInfo" key).
c)	The individual keys which intended to be updated (i.e., "updatingKeys" keys).
8.	WSF1 checks the media session ID of the "mupdate" request and sends the "mupdate" request to UE1 which has the control session corresponding to the media session identified by the media session ID. To notify that the user state of UE2 is updated to "joininIn". The "request" request includes following information.
a)	The media session ID in the "mupdate" request on the succeeding control session is set as same as process 12-a) in clause 6.4.5.6.4 (i.e., "mediaSessionId" key).
b)	Other individual keys in the received "mupdate" is basically copied to the "mupdate" request sent to UE1
9.	If the received "mupdate" request is valid, UE1 updates the stored information indicated by the "updatingKeys" key in the received "mupdate" request and sends "mupdate" success response as follows.
a)	Media session ID in the response is same ID included in the corresponding "mupdate" request (i.e., "mediaSessionid" key).
b)		The updated information by the "mupdate" method (i.e., "updatedKeys" key). In this case, the information in the "mediaSessionState" key is updated.
10.	This process is same as process 14 of clause 6.4.5.6.4. To refer the process, "IWF1" is replaced with "WSF2".
11.	UE2 sends an "mupdate" request to complete offer/answer for the media session, when UE2 becomes to be able to connect the media session (e.g., SDP answer description is available and the user is able to join the call). The "mupdate" request includes following information.
a)	Media session ID which indicating the target media session of the method (i.e., "mediaSessionId" key).
b)	Media Information including complete SDP description for initial answer and participant description related to the updated information (i.e., "partiscipantDesc" sub-key of the "mediaInfo" key).
c)	The individual keys which intended to be updated (i.e., "updatingKeys" keys).
12.	If the received "mupdate" request is valid, WSF2 updates the stored information indicated by the "updatingKeys" key in the received "mupdate" request. If the offer/answer for the media session is successfully completed, the WSF allocate the U-Plane media resource to the MF2. Then WSF2 sends the "mupdate" success response as follows.
a)	Media session ID in the response is same ID included in the corresponding "mupdate" request (i.e., "mediaSessionid" key).
b)	Current media session state (i.e., "mediaSessionState" key) to notify the media session state transitions to "connected" since the offer/answer is completed and the media session is connected between WSF2 and UE2.
c)	Media Information including participant description related to the updated information (i.e., "partiscipantDesc" sub-key of the "mediaInfo" key).
d)		The updated information by the "mupdate" method (i.e., "updatedKeys" key). In this case, the information in the "mediaSessionState" key and "mediaInfo" key are updated.
13.	WSF2 sends an "mupdate" request to UE1 via WSF2, to complete the offer/answer for the media session setup. The "mupdate" request includes following information.
a)	Media session ID which indicating the target media session of the method (i.e., "mediaSessionId" key).
b)	Media session state (i.e., "mediaSessionState" key) to notify the media session state transitions to "routed" if the "mupdate" method is successfully completed.
c)	Media Information including complete SDP description for initial answer (which is generated based on the SDP answer received from UE2 and MF2 U-plane resource) and participant description related to the updated information (i.e., "partiscipantDesc" sub-key of the "mediaInfo" key).
d)	The individual keys which intended to be updated (i.e., "updatingKeys" keys").
14.	This process is same as process 8 of this clause.
15.	If the received "mupdate" request is valid, UE1 updates the stored information indicated by the "updatingKeys" key in the received "mupdate" request and sends "mupdate" success response as follows.
a)	Media session ID in the response is same ID included in the corresponding "mupdate" request (i.e., "mediaSessionid" key).
b)		The updated information by the "mupdate" method (i.e., "updatedKeys" key). In this case, the information in the "mediaSessionState" key is updated.
	UE1 establishes the media session using the SDP included in the sent preoffer and the received answer.
16.	This process is same as process 10 of this clause.
17	WSF2 sends an "mupdate" request to UE2 to notify the media session state transition. The "mupdate" request includes the following information.
a)	Media session ID which indicating the target media session of the method (i.e., "mediaSessionId" key).
b)	Media session state (i.e., "mediaSessionState" key) to notify the media session state transitions to "routed".
c)	The individual keys which intended to be updated (i.e., "updatingKeys" keys").
18.	If the received "mupdate" request is valid, UE2 updates the stored information indicated by the "updatingKeys" key in the received "mupdate" request and sends "mupdate" success response as follows.
a)	Media session ID in the response is same ID included in the corresponding "mupdate" request (i.e., "mediaSessionid" key).
b)		The updated information by the "mupdate" method (i.e., "updatedKeys" key). In this case, the information in the "mediaSessionState" key is updated.
19.	This process is same as process 8 of clause 6.4.5.6.3.
20.	This process is same as process 26 of clause 6.4.5.6.4. To refer the process, "IWF1" is replaced with "WSF2"
21.	This process is same as process 29 of clause 6.4.5.6.4. To refer the process, "IWF2" is replaced with "WSF1"
22.	WSF2 sends an "mdisc" request to UE2 to disconnect the media session. The "mdisc" request includes the following information.
a)	Media session ID which indicating the target media session of the method (i.e., "mediaSessionId" key).
23.	This process is same as process 32 of clause 6.4.5.6.4.
24.	If the received "mdisc" request is valid, UE2 disconnects the media session indicated by "mediaSessionId" key and sends "mdisc" success response as follows.
a)	Media session ID in the response is same ID included in the corresponding "mupdate" request (i.e., "mediaSessionid" key).
[bookmark: _Toc156913538]6.4.5.6.6	Media session setup and disconnection between UEs over inter-operator networks
This clause describes the general call flow and procedures for media session setup and disconnection with the RTC user in the operator network other than the connected operator network.

Figure 6.4.5.6.6-1: Media session setup and disconnection between UEs over inter-operator networks
1.	This process is same as process 1 of clause 6.4.5.6.
2.	This process is same as process 2 of clause 6.4.5.4.
3.	This process is same as process 3 of clause 6.4.5.4.
4.	This process is same as process 4 of clause 6.4.5.4.
5.	This process is same as process 5 of clause 6.4.5.4.
6.	This process is same as process 6 of clause 6.4.5.4.
7.	This process is same as process 7 of clause 6.4.5.4.
8.	This process is same as process 8 of clause 6.4.5.4.
9.	This process is same as process 5 of clause 6.4.5.5.
10.	This process is same as process 6 of clause 6.4.5.5.
11.	This process is same as process 7 of clause 6.4.5.5.
12.	This process is same as process 10 of clause 6.4.5.4.
13.	This process is same as process 11 of clause 6.4.5.4.
14.	This process is same as process 8 of clause 6.4.5.5.
15.	This process is same as process 9 of clause 6.4.5.5.
16.	This process is same as process 14 of clause 6.4.5.4.
17.	This process is same as process 15 of clause 6.4.5.4.
18.	This process is same as process 10 of clause 6.4.5.5.
19.	This process is same as process 11 of clause 6.4.5.5.
20.	This process is same as process 12 of clause 6.4.5.5.
21.	This process is same as process 13 of clause 6.4.5.5.
22.	This process is same as process 10 of clause 6.4.5.4.
23.	This process is same as process 11 of clause 6.4.5.4.
24.	This process is same as process 14 of clause 6.4.5.5.
25.	This process is same as process 15 of clause 6.4.5.5.
26.	This process is same as process 14 of clause 6.4.5.4.
27.	This process is same as process 15 of clause 6.4.5.4.
28.	This process is same as process 16 of clause 6.4.5.5.
29.	This process is same as process 17 of clause 6.4.5.5.
30.	This process is same as process 18 of clause 6.4.5.5.
31.	This process is same as process 8 of clause 6.4.5.3.
32.	This process is same as process 26 of clause 6.4.5.4.
33.	This process is same as process 27 of clause 6.4.5.4.
34.	This process is same as process 20 of clause 6.4.5.5.
35.	This process is same as process 21 of clause 6.4.5.5.
36.	This process is same as process 22 of clause 6.4.5.5.
37.	This process is same as process 30 of clause 6.4.5.4.
38.	This process is same as process 31 of clause 6.4.5.4.
39.	This process is same as process 23 of clause 6.4.5.5.
3.	This process is same as process 24 of clause 6.4.5.5.

[bookmark: _Toc156913539]6.4.6	SDP
[bookmark: tsgNames][bookmark: startOfAnnexes][bookmark: _Toc156913540]6.4.6.1	General
RESPECT applies SDP for describing multimedia sessions. This clause describes the usage of SDP for RESPECT.
The SDP description in the RESPECT message is required to comply with SDP specification (IET RFC 8866 [x1]) and JSEP specification (IETF RFC 8829 [34]).
[bookmark: _Toc156913541]6.4.6.2	Session-Level Section
[bookmark: _Toc156913542]6.4.6.2.1	General
This clause describes the usage of session-level section of the session description.
"v=" line (protocol version), "o=" line (origin), "s=" line (session name), "a=group" line (group attribute) which is set to "BUNDLE", "a=ice-ufrag" line and "a=ice-pwd" line is allowed to be included as Session-Level Section of the session description.
Other lines are ignored if the received network does not allow to use the line(s) at the UNI. The support of other lines are based on by-lateral agreements at the NNI.
[bookmark: _Toc156913543]6.4.6.2.2	Protocol Version ("v=")
The "v=" line (protocol version) is required to be set to "0" in accordance with IETF RFC 8866 [18].
[bookmark: _Toc156913544]6.4.6.2.3	Origin ("o=")
The "o=" line (origin) is required to be set as described in IETF RFC 8866 [18] and IETF RFC 8829 [34].
"username" part is required to be set to "-" as described in clause 5.2 of IETF RFC 8866 [18].
"sess-id" is required to be set to the UTC timestamp as described in clause 5.2 of IETF RFC 8866 [18] or a 64-bit quantity with the highest bit set to zero and the remaining 63 bits being cryptographically random as described in clause 5.2.1 of IETF RFC 8829 [34].
"nettype", "addrtype" and "unicast-address" are recommended to set to "IN IP4 0.0.0.0" as described in IETF RFC 8829 [34].
[bookmark: _Toc156913545]6.4.6.2.4	Session Name ("s=")
The "s=" line (session name) is required to be set to " " (single space) or "-" as described in clause 5.3 of IETF RFC 8866 [18].
[bookmark: _Toc156913546]6.4.6.2.5	Time Active ("t=")
The "t=" line (time active) is recommended to be set to "0 0"as described in clause 5.2.1 of IETF RFC 8829 [34].
[bookmark: _Toc156913547]6.4.6.2.6	Group Attribute ("a=group")
The "a=group" line (group attribute) which is set to "BUNDLE" is required to include the mid identifiers of each "m=" section as described in SDP grouping framework specification (IETF RFC 5888 [x1]) and BUNDLE mechanism (IETF RFC 8859 [x2] and IETF RFC 9143 [x3]).
All media descriptions in the SDP description are required to be treated as the target of the BUNDLE mechanism.
[bookmark: _Toc156913548]6.4.6.2.7	"ice-ufrag" and "ice-pwd" attributes
The "a=ufrag" line is required to contain fragment of ICE username as described in IETF RFC 8839 [x2]. The "a=ice-pwd" line is required to contain ICE password as described in IETF RFC 8839 [x2]. These values of the attributes are used for ICE mechanism as specified in IETF RFC 8445 [29].
[bookmark: _Toc156913549]6.4.6.3	Media description
[bookmark: _Toc156913550]6.4.6.3.1	General
For audio or video stream, "m=" is set as follows:
-	<media> is set to "audio" or "video".
-	<proto> is set to "UDP/TLS/RTP/SRVPF" (IETF RFC 5764 [xx]).
For Data channel. "m=" is set as follows:
-	<media> is set to "application"
-	<proto> is set to "UDP/DTLS/SCTP" as described in IETF RFC 8841 [xx].
-	<fmt> is recommended to be set to "webrtc-datachannel" as described in IETF RFC 8841 [xx]. However, RESPECT endpoint is required to be identify the media type from <media> and <proto>, even if the <fmt> is not set to "webrtc-datachannel".
The RESPECT endpoint (UE) sets <port> to "9" (indicating there are no ICE candidate at that time), if the media is not invalid.
The RESPECT endpoint in the network sets <port> to the transport port to which the media/data stream is received or sets <port> to "0" and include "a=bundle-only" line.
If the <port>of the "m=" line in the SDP description for offer is set to "0", the <port>of the corresponding "m=" line in the SDP description for answer is required to be set to "0".
.
[bookmark: _Toc156913551]6.4.6.3.2.2	Audio and video
Media description for audio/video stream is required to be set per media source, according to IETF RFC 8829 [xx].
[bookmark: _Toc156913552]6.4.6.3.2.3	Data channel
Only one media description for Data Channel is allowed to be set in the SDP description.
[bookmark: _Toc156913553]6.4.6.3.2.4	Disabling and (re-)enabling the media description
The RESPECT endpoint (AS) in the network is allowed to disable the media description by sending the SDP offer including a media description which does not include "a=bundle-only" line and sets the port number of the "m=" line to "0", as described in IETF RFC 3264 [xx].
The RESPECT endpoint (AS) is able to use the disabled media description for other purpose by sending the SDP offer including a media description which includes "a=bundle-only" line or sets the port number of the "m=" line to other than "0".
[bookmark: _Toc156913554]6.4.6.3.2.5	Partial non-use of Media description
RESPECT endpoint (UE) is allowed to disable the specific media description by setting the port number of the "m=" line to "0" in the SDP answer (which does not include "a=bundle-only" line). However, The RESPECT endpoint (UE) is not allowed to enable the disabled media description.
The RESPECT endpoint is able to use "a-inactive" line for temporary suspending of the media description.
[bookmark: _Toc156913555]6.4.6.3.3	Connection Information ("c=")
"c=" line is set to the next line after "m=" line.
[bookmark: _Toc156913556]6.4.6.3.4	Media Stream Identification Attribute ("a=mid")
"a=mid" line is set into the media description. The label in the "a=mid" is referred by "a=group:BUNDLE" line in the session-level section. It is recommended to set the sequential number which start from "0" (i.e., "0", "1", "2" ...).
The label in "a-mid" line is also set to he RTP SDES header extension. This enables to identify the dependency between the RTP packet and the media description.
[bookmark: _Toc156913557]6.4.6.3.5	"candidate" Attribute ("a=candidate")
This attribute is set into SDP description according to IETF RFC 8445 [xx].
[bookmark: _Toc156913558]6.4.6.3.6	"ice-lite" Attribute ("a=ice-lite")
This attribute is set into SDP description to indicate the RESPECT endpoint is ice lite implementation. In that case, an reachable IP address is set into the SDP description".
[bookmark: _Toc156913559]6.4.6.3.7	Attribute ("a=ice-options")
If the RESPECT endpoint is full implementation for ICE, this attribute is set to "ice2" or "trikle" depends on the supported ICE implementation.
[bookmark: _Toc156913560]6.4.6.3.8	"ice-ufrag" and "ice-pwd" attributes ("a=ice-ufrag"/"a=ice-pwd")
"a=ice-ufrag" and "a=ice-pwd" line are able to be specified into media description. If these lines are set into both session-level section and media description, the lines in the media description take precedence.
[bookmark: _Toc156913561]6.4.6.3.9	Attribute ("a=extmap")
This attribute indicates the RTP header extension for the media. RESPECT endpoint is required to support "urn:ietf:params:rtp-hdrext:sdes:mid" extension and set this extension to the media description.
[bookmark: _Toc156913562]6.4.6.3.10	Attribute ("a=bundle-only")
If this attribute is set into the SDP media description for offer, it indicates that the corresponding media description is used only for BUNDLE mechanism. Regardless of this attribute is included in the SDP media description for offer or not, BUNDLE mechanism is required to be applied for any media description.
[bookmark: _Toc156913563]6.4.6.3.11	Attribute ("a=rtcp-mux-only")
This attribute is used in an offer to indicate exclusive support of RTP/RTCP multiplexing for the RTP-based media associated with the SDP media description ("m=" line). Regardless of this attribute is included in the SDP media description for offer, or not, RESPECT endpoint is required to uses a single port for RTP and RTCP.
[bookmark: _Toc156913564]6.4.6.3.12	Attribute ("a=rtcp-mux")
This attribute indicates the RESPECT endpoint uses a single port for RTP and RTCP. This attribute is required to be set into the media description.
[bookmark: _Toc156913565]6.4.6.3.13	Attribute ("a=msid")
"a=msid" line is allowed to be set into the media description.
[bookmark: _Toc156913566]6.4.6.3.14	Attribute ("a=ssrc")
"a=ssrc", "a=ssrc cname" and "a=ssrc msid" line are allowed to be set into the media description.
[bookmark: _Toc156913567]6.4.6.3.15	Attribute ("a=sendrecv" / "a=sendonly" / "a=recvonly" / "a=inactive")
Audio stream and video stream are able to set these attributes to specify the direction of the media stream.
[bookmark: _Toc156913568]6.4.6.3.16	Attribute ("a=setup")
This attribute is used for specifying the direction of the DTLS negotiation, it the media description is for Data Channel. Every offer is required to be set to "actpass". The direction of the DTLS negotiation is determined by the value included in the corresponding answer.
[bookmark: _Toc156913569]6.4.6.3.17	Attribute ("a=fingerprint")
This attribute is user for indicating the fingerprint of the public key of the RESPECT endpoint for DTLS negotiation. This attribute needs to be set to all media description applies BUNDLE mechanism.
[bookmark: _Toc156913570]6.4.6.3.18	Attribute ("a=rtpmap" / "a=fmtp")
This attribute specifies the information such as codec, corresponding the payload type in the "m=" line.
[bookmark: _Toc156913571]6.4.6.3.19	Attribute ("a=dcmap")
This attribute specifies the stream number of the data stream of the Data Channel. This attribute is also used for set such as the label of the data stream. This attribute is specified in the offer by the network. The RESPECT endpoint (UE) is required to set the specified value in the answer, if included in the offer.
[bookmark: _Toc156913572]6.4.6.3.20	Attribute ("a=sctp-port")
When the media type of the media description is "application" for Data Channel, "a=sctp-port" attribute is required to be specified.
[bookmark: _Toc156913573]6.4.6.3.21	Attribute ("a=max-message-size")
When the media type of the media description is "application" for Data Channel, "a=max-message-size" attribute is specified by the network. The RESPECT endpoint (UE) is required to handle the attribute, if specified by the network.
[bookmark: _Toc156913574]6.4.6.3.22	Attribute ("a=rtcp-rsize")
When the media type of the media description is "video", "a=rtcp-rsize" attribute is specified by the network. The RESPECT endpoint (UE) is required to handle the attribute, if specified by the network.
[bookmark: _Toc156913575]6.4.7	Solution evaluation
This solution proposes RESPECT as a signalling protocol which support the collaboration scenario 4 and collaboration scenario 3 specified in 3GPP TS 26.506. RESPECT is developed as the signalling protocol applicable to the RTC functional architecture and supports WebRTC technologies-based media handling by the signalling message.
Then, it is proposed to apply RESPECT as base of stage 3 work for specifying RTC signalling protocol supporting collaboration scenario 4 and collaboration scenario 3.
* * * Next Changes * * * *
[bookmark: _Toc156913576]Annex B (informative):
Message Examples for RESPECT call flow
[bookmark: _Toc156913577]B.1	General
This annex provides the message examples for call flow described in clause 6.4.5.6.
-	Authentication (clause B.2)
-	Media session setup and disconnection for the operator self-contained RTC resource (clause B.3)
-	Media session setup and disconnection for the RTC resource provided by other operator (clause B.4)
-	Media session setup and disconnection between UEs within a single operator network (clause B.5)
-	Media session setup and disconnection between UEs over inter-operator networks (clause B.6)
Parameters used in the example call flows is summarized in table B.1-1.
Table B.1-1: Parameters used in message examples
	Parameters
	RTC network A
	RTC network B

	Domain name
	rtc.example.com
	rtc.another.com

	RTC user ID
	3gpp-respect://user1@rtc.example.com (UE1)
3gpp-respect://user2@rtc.example.com (UE2)
	3gpp-respect://user2@rtc.another.com (UE2)

	RTC resource ID
	3gpp-respect://resource1@rtc.example.com
	3gpp-respect://resource2@rtc.another.com

	U-Plane address
	192.0.2.222 (UE1)
192.0.2.234 (UE2)
192.0.2.100 (MF)
192.0.2.200 (MF2)
192.0.2.111 (TGF1 for UE side)
192.0.3.111 (TGF1 for external side)
	192.0.100.222 (UE2)
192.0.100.200 (MF2)
192.0.100.111 (TGF2 for UE side)
192.0.3.222 (TGF2 for external side)

RTC network A: The RTC network where the originating RESPECT endpoint (UE) is connected to.
RTC network B: The RTC network where the RTC network A is connected with.
The RTC network in the call flow does not support the features of "network-asserted identity" and "calling number verification using signature verification and attestation information" yet. However, the WSFs and IWFs in the call flow are within the trust domain for the feature of network asserted identity.

This clause provides message examples for call flow described in clause 6.4.5.6.
[bookmark: _Toc156913578]B.2	Authentication
[bookmark: _Toc156913579]B.2.1	General
This clause provides message examples for the message flow described in clause 6.4.5.6.2.
[bookmark: _Toc156913580]B.2.1	Message examples for authentication
This clause provides message examples for the message flow for authentication described in clause 6.4.5.6.2.
The overall message flow is shown on Figure 5.4.5.6.2-1.
F1.		"auth" request (UE1 to WSF)
	{
 "msgType": "request",
 "method": "auth",
 "transactionId": 0,
 "rtcUserId": "3gpp-respect://user1@rtc.example.com",
 "authType": "Bearer",
 "authorization": "Bearer eyAiYWxnIjogIkhTMjU2IiwgInR5cCI6ICJKV1QiIH0K.eyAiaXNzIjogInRlc3QucmQubnR0IiwgInN1YiI6ICJtZXNzYWdlIGV4YW1wbGUiLCAiZXhwIjogImRteSIsICJlbWFpbCI6ICJkbXkiLCAiZ3JvdXBzIjogImRteS5kbXkiIH0K.OTEyMWEzM2RkN2MxOGZjZjI2NjcxNjQ2MTFiZmFjYjE4YTNhZTY5MmY2YWJkYmZiZGU1ZDQ4YTU5ZjljZGEyZQo="
}

F2.		"auth" success response (WSF to UE1)
	{
 "msgType": "response",
 "method": "auth",
 "transactionId": 0,
 "success": true,
 "expires": 3600
}

[bookmark: _Toc156913581]B.2.2	Message examples for re-authentication
This clause provides message examples for the message flow for authentication described in clause 6.4.5.6.2.
The overall message flow is shown on Figure 5.4.5.6.2-1.
F1.		"auth" request (UE1 to WSF)
	{
 "msgType": "request",
 "method": "auth",
 "transactionId": 100,
 "rtcUserId": "3gpp-respect://user1@rtc.example.com",
 "authType": "Bearer",
 "authorization": "Bearer eyAiYWxnIjogIkhTMjU2IiwgInR5cCI6ICJKV1QiIH0K.eyAiaXNzIjogInRlc3QucmQubnR0IiwgInN1YiI6ICJtZXNzYWdlIGV4YW1wbGUiLCAiZXhwIjogImRteSIsICJlbWFpbCI6ICJkbXkiLCAiZ3JvdXBzIjogImRteS5kbXkiIH0K.OTEyMWEzM2RkN2MxOGZjZjI2NjcxNjQ2MTFiZmFjYjE4YTNhZTY5MmY2YWJkYmZiZGU1ZDQ4YTU5ZjljZGEyZQo="
}

F2.		"auth" success response (WSF to UE1)
	{
 "msgType": "response",
 "method": "auth",
 "transactionId": 100,
 "success": true,
 "expires": 3600
}

[bookmark: _Toc156913582]B.3	Media session setup and disconnection for the operator self-contained RTC resource
This clause provides message examples for the call flow described in clause 6.4.5.6.3. The overall call flow is shown on Figure 5.4.5.6.3-1.
F1.		"msetup" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 30,
 "mediaSessionId": "UE1-WSF1-001",
 "dId": {
 "uri": "3gpp-respect://resource1@rtc.example.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ...",
 "a=ice-ufrag:ief0uBai",
 "a=ice-pwd:ohFee4ne",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2130706543 192.0.2.222 23456 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F2.		"msetup" success response (WSF to UE1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 30,
 "success": true,
 "mediaSessionId": "UE-WSF-001",
 "mediaSessionState": "accepted"
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F3.		"mupdate" request (WSF to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 131,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "UE1-WSF1-001",
 "mediaInfo": {
 "type": "offer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 5223372036854775808 3885262150 IN IP4 198.0.2.101",
 "s=-",
 "c=IN IP4 198.0.2.100",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Ahk3Zah8",
 "a=ice-pwd:phiegh0M",
 "a=setup:actpass",
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 23456 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 23456 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 23456 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F4.		"mupdate" success response (UE1 to WSF)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 131,
 "success": true,
 "updatedKeys": ["mediaInfo"],
 "mediaSessionId": "UE1-WSF1-001",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4611686018427387906 3885262147 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ... ",
 "a=ice-ufrag:ief0uCCC",
 "a=ice-pwd:ohFeeCCC",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2130706544 192.0.2.222 23456 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly"
 },
 {
 "index": 2,
 "actType": "aly"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly"
 }
]
 }
 }
}

F5.		"mupdate" request (WSF to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 133,
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionId": "UE1-WSF1-001",
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "info",
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "actType": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 }
]
 }
}

F6.		"mupdate" success response (UE1 to WSF)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 133,
 "success": true,
 "mediaSessionId": "UE1-WSF1-001",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F7.		"mdisc" request (UE1 to WSF)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 32,
 "mediaSessionId": "UE-WSF-001",
}

F8.		"mdisc" success response (WSF to UE1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 32,
 "success": true,
 "mediaSessionId": "UE-WSF-001",
}

[bookmark: _Toc156913583]B.4	Media session setup and disconnection for the RTC resource provided by other operator
This clause provides message examples for the call flow described in clause 6.4.5.6.4. The overall call flow is shown on Figure 5.4.5.6.4-1.
F1.		"msetup" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 40,
 "mediaSessionId": "UE1-WSF1-004",
 "dId": {
 "uri": "3gpp-respect://resource2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ...",
 "a=ice-ufrag:ief0uBai",
 "a=ice-pwd:ohFee4ne",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2130706543 192.0.2.222 23456 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F2.		"msetup" request (WSF1 to IWF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 440,
 "mediaSessionId": "WSF1-IWF1-004",
 "dId": {
 "uri": "3gpp-respect://resource2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 *** same as F1 ***
 }
}

F3.		"msetup" request (IWF1 to IWF2)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 4440,
 "mediaSessionId": "IWF1-IWF2-004",
 "dId": {
 "uri": "3gpp-respect://resource2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 1123372036854775808 1185262150 IN IP4 198.0.3.112",
 "s=-",
 "c=IN IP4 198.0.3.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Bck3Zah8",
 "a=ice-pwd:hriegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F4.		"msetup" request (IWF2 to WSF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 5540,
 "mediaSessionId": "IWF2-WSF2-004",
 "dId": {
 "uri": "3gpp-respect://resource2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 2223372036854775808 2285262150 IN IP4 198.0.100.112",
 "s=-",
 "c=IN IP4 198.0.100.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Dek3Zah8",
 "a=ice-pwd:Jeiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F5.		"msetup" success response (WSF2 to IWF2)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 5540,
 "success": true,
 "mediaSessionId": "IWF2-WSF2-004",
 "mediaSessionState": "accepted",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F6.		"msetup" success response (IWF2 to IWF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4440,
 "success": true,
 "mediaSessionId": "IWF1-IWF2-004",
 "mediaSessionState": "accepted",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F7.		"msetup" success response (IWF1 to WSF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 440,
 "success": true,
 "mediaSessionId": "WSF1-IWF1-004",
 "mediaSessionState": "accepted",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F8.		"msetup" success response (IWF1 to WSF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 40,
 "success": true,
 "mediaSessionId": "UE1-WSF1-004",
 "mediaSessionState": "accepted",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F9.		"mupdate" request (WSF2 to IWF2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 15541,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "IWF2-WSF2-004",
 "mediaInfo": {
 "type": "offer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 9923372036854775808 9985262150 IN IP4 192.0.100.201",
 "s=-",
 "c=IN IP4 192.0.100.200",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Zyk3Zah8",
 "a=ice-pwd:Yxiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 23456 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 23456 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 23456 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F10.		"mupdate" request (IWF2 to IWF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1541,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "IWF1-IWF2-004",
 "mediaInfo": {
 "type": "offer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 8823372036854775808 8885262150 IN IP4 192.0.3.223",
 "s=-",
 "c=IN IP4 192.0.3.222",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Yxk3Zah8",
 "a=ice-pwd:Xwiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 23456 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 23456 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 23456 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F11.		"mupdate" request (IWF1 to WSF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 141,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "WSF1-IWF1-004",
 "mediaInfo": {
 "type": "offer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 7723372036854775808 7785262150 IN IP4 192.0.2.112",
 "s=-",
 "c=IN IP4 192.0.2.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Yxk3Zah8",
 "a=ice-pwd:Xwiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 23456 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 23456 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 23456 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F12.		"mupdate" request (WSF1 to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 41,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "UE1-WSF1-004",
 "mediaInfo": {
 *** same as F11 ***
 }
}

F13.		"mupdate" success response (UE1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 41,
 "success": true,
 "updatedKeys": ["mediaInfo"],
 "mediaSessionId": "UE1-WSF1-004",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4111686018427387906 3185262147 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ... ",
 "a=ice-ufrag:aef0uCCC",
 "a=ice-pwd:bhFeeCCC",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2130706544 192.0.2.222 23456 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly"
 },
 {
 "index": 2,
 "actType": "aly"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly"
 }
]
 }
 }
}

F14.		"mupdate" success response (WSF1 to IWF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 141,
 "success": true,
 "updatedKeys": ["mediaInfo"],
 "mediaSessionId": "WSF1-IWF1-004",
 "mediaInfo": {
 *** same as F11 ***
 }
}

F15.		"mupdate" success response (IWF1 to IWF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1541,
 "success": true,
 "updatedKeys": ["mediaInfo"],
 "mediaSessionId": "IWF1-IWF2-004",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 1123372036854775809 1185262151 IN IP4 198.0.3.112",
 "s=-",
 "c=IN IP4 198.0.3.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Bck3Zah8",
 "a=ice-pwd:hriegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly"
 },
 {
 "index": 2,
 "actType": "aly"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly"
 }
]
 }
 }
}

F16.		"mupdate" success response (IWF2 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 15541,
 "success": true,
 "updatedKeys": ["mediaInfo"],
 "mediaSessionId": "IWF2-WSF2-004",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4611686018427387906 3885262147 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ... ",
 "a=ice-ufrag:ief0uCCC",
 "a=ice-pwd:ohFeeCCC",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly"
 },
 {
 "index": 2,
 "actType": "aly"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly"
 }
]
 }
 }
}

F17.		"mupdate" request (WSF2 to IWF2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 15543,
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionId": "WSF2-IWF2-004",
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "info",
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "actType": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 }
]
 }
}

F18.		"mupdate" request (IWF2 to IWF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1543,
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionId": "IWF1-IWF2-004",
 "mediaSessionState": "routed",
 "mediaInfo": {
 *** same as F17 ***
 }
}

F19.		"mupdate" request (IWF1 to WSF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 143,
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionId": "WSF1-IWF1-004",
 "mediaSessionState": "routed",
 "mediaInfo": {
 *** same as F18 ***
 }
}

F20.		"mupdate" request (WSF1 to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 43,
 "mediaSessionId": "UE1-WSF1-004",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 *** same as F19 ***
 }
}

F21.		"mupdate" success response (UE1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 43,
 "success": true,
 "mediaSessionId": "UE1-WSF1-004",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F22.		"mupdate" success response (WSF1 to IWF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 143,
 "success": true,
 "mediaSessionId": "WSF1-IWF1-004",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F23.		"mupdate" success response (IWF1 to IWF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1543,
 "success": true,
 "mediaSessionId": "IWF1-IWF2-004",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F24.		"mupdate" success response (IWF2 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 15543,
 "success": true,
 "mediaSessionId": "IWF2-WSF2-004",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F25.		"mdisc" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 42,
 "mediaSessionId": "UE1-WSF1-004"
}

F26.		"mdisc" request (WSF1 to IWF1)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 442,
 "mediaSessionId": "WSF1-IWF1-004"
}

F27.		"mdisc" request (IWF1 to IWF2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 4442,
 "mediaSessionId": "IWF1-IWF2-004"
}

F28.		"mdisc" request (IWF2 to WSF2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 5542,
 "mediaSessionId": "IWF2-WSF2-004"
}

F29.		"mdisc" success response (WSF2 to IWF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 5542,
 "success": true,
 "mediaSessionId": "WSF2-IWF2-004"
}

F30.		"mdisc" success response (IWF2 to IWF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 4442,
 "success": true,
 "mediaSessionId": "IWF2-IWF1-004"
}

F31.		"mdisc" success response (IWF1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 442,
 "success": true,
 "mediaSessionId": "IWF1-WSF1-004"
}

F32.		"mdisc" success response (WSF1 to UE1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 442,
 "success": true,
 "mediaSessionId": "WSF1-UE1-004"
}

[bookmark: _Toc156913584]B.5	Media session setup and disconnection between UEs within a single operator network
This clause provides message examples for the call flow described in clause 6.4.5.6.5. The overall call flow is shown on Figure 5.4.5.6.5-1.
F1.		"msetup" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 50,
 "mediaSessionId": "UE1-WSF1-005",
 "dId": {
 "uri": 3gpp-respect://user2@rtc.example.com
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ...",
 "a=ice-ufrag:ief0uBai",
 "a=ice-pwd:ohFee4ne",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2130706543 192.0.2.222 23456 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F2.		"msetup" request (WSF1 to WSF2)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 550,
 "mediaSessionId": "WSF1-WSF2-005",
 "dId": {
 "uri": "3gpp-respect://user2@rtc.example.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 *** same as F1 ***
 }
}

F3.		"msetup" success response (WSF2 to WSF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 550,
 "success": true,
 "mediaSessionId": WSF1-WSF2-005",
 "mediaSessionState": "accepted"
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
]
 }
}

F4.		"msetup" success response (WSF to UE1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 50,
 "success": true,
 "mediaSessionId": "UE1-WSF1-005,
 "mediaSessionState": "accepted"
 "mediaInfo": {
 *** same as F3 ***
 }
}

F5.		"msetup" request (WSF2 to UE2)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 1551,
 "mediaSessionId": "WSF2-UE2-005",
 "mediaSessionState": "accepted",
 "dId": {
 "uri": "3gpp-respect://user2@rtc.example.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "Offer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 5553372036854775808 5555262150 IN IP4 192.0.2.201",
 "s=-",
 "c=IN IP4 192.0.2.200",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:M253Zah8",
 "a=ice-pwd:M25egh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 },
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joiningIn"
 }
]
 }
}

F6.		"msetup" success response (UE2 to WSF2)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 1551,
 "success": true,
 "mediaSessionId": "WSF2-UE2-005",
}

F7.		"mupdate" request (WSF2 to WSF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 551,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "WSF1-WSF2-005",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joiningIn"
 }
]
 }
}

F8.		"mupdate" request (WSF1 to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 51,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "UE1-WSF1-005",
 "mediaInfo": {
 *** same as F7 ***
 }
}

F9.		"mupdate" success response (UE1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 51,
 "success": true,
 "mediaSessionId": "UE1-WSF1-005",
 "updatedKeys": ["mediaInfo"]
}

F10.		"mupdate" success response (WSF1 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 551,
 "success": true,
 "mediaSessionId": "WSF1-WSF2-005",
 "updatedKeys": ["mediaInfo"]
}

F11.		"mupdate" request (UE2 to WSF2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1550,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "WSF2-UE2-005",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 5591686018427387906 5595262147 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ...",
 "a=ice-ufrag:ief0uBai",
 "a=ice-pwd:ohFee4ne",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2590706544 192.0.2.234 34567 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly"
 },
 {
 "index": 2,
 "actType": "aly"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly"
 }
]
 }
 }
}

F12.		"mupdate" success response (WSF2 to UE2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1550,
 "mediaSessionId": "WSF2-UE2-005",
 "updatedKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "connected",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joined"
 }
]
 }
}

F13.		"mupdate" request (WSF2 to WSF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 553,
 "mediaSessionId": "WSF1-WSF2-005",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 9523372036854775808 9585262150 IN IP4 192.0.2.201",
 "s=-",
 "c=IN IP4 192.0.2.200",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:FFk3Zah8",
 "a=ice-pwd:FFiegh0M",
 "a=setup:actpass",
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 },
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joined"
 }
]
 }
}

F14.		"mupdate" request (WSF1 to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 53,
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaSessionId": "UE1-WSF1-005",
 "mediaInfo": {
 *** same as F13 ***
 }
}

F15.		"mupdate" success response (UE1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 53,
 "success": true,
 "mediaSessionId": "UE1-WSF1-005",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F16.		"mupdate" success response (WSF1 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 553,
 "success": true,
 "mediaSessionId": "WSF1-WSF2-005",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F17.		"mupdate" request (WSF2 to UE2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1553,
 "mediaSessionId": "WSF2-UE2-005",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "info",
 "mc": {
 "metadata": [
 {
 "index": 1,
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 }
]
 }
}

F18.		"mupdate" success response (UE2 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1553,
 "success": true,
 "mediaSessionId": "WSF2-UE2-005",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F19.		"mdisc" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 52,
 "mediaSessionId": "UE1-WSF1-005"
}

F20.		"mdisc" request (WSF1 to WSF2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 552,
 "mediaSessionId": "WSF1-WSF2-005"
}

F21.		"mdisc" success response (WSF2 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 552,
 "success": true,
 "mediaSessionId": "WSF2-WSF1-005"
}

F22.		"mdisc" request (WSF2 to UE2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 1555,
 "mediaSessionId": "WSF2-UE2-005"
}

F23.		"mdisc" success response (WSF1 to UE1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 52,
 "success": true,
 "mediaSessionId": "WSF1-UE1-005"
}

F24.		"mdisc" success response (UE2 to WSF21)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1555,
 "success": true,
 "mediaSessionId": "WSF2-UE2-005"
}

[bookmark: _Toc156913585]B.6	Media session setup and disconnection between UEs over inter-operator networks
This clause provides message examples for the call flow described in clause 6.4.5.6.6. The overall call flow is shown on Figure 5.4.5.6.6-1.

This clause provides message examples for the call flow described in clause 6.4.5.6.5. The overall call flow is shown on Figure 5.4.5.6.5-1.
F1.		"msetup" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 60,
 "mediaSessionId": "UE1-WSF1-006",
 "dId": {
 "uri": 3gpp-respect://user2@rtc.another.com
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ...",
 "a=ice-ufrag:ief0uBai",
 "a=ice-pwd:ohFee4ne",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2130706543 192.0.2.222 23456 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F2.		"msetup" request (WSF1 to IWF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 660,
 "mediaSessionId": "WSF1-IWF1-006",
 "dId": {
 "uri": "3gpp-respect://user2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 *** same as F1 ***
 }
}

F3.		"msetup" request (IWF1 to IWF2)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 6660,
 "mediaSessionId": "IWF1-IWF2-006",
 "dId": {
 "uri": "3gpp-respect://user2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 1123372036854775808 1185262150 IN IP4 198.0.3.112",
 "s=-",
 "c=IN IP4 198.0.3.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Bck3Zah8",
 "a=ice-pwd:hriegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F4.		"msetup" request (IWF2 to WSF1)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 16660,
 "mediaSessionId": "IWF2-WSF2-006",
 "dId": {
 "uri": "3gpp-respect://user2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "preOffer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 2223372036854775808 2285262150 IN IP4 198.0.100.112",
 "s=-",
 "c=IN IP4 198.0.100.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Dek3Zah8",
 "a=ice-pwd:Jeiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 }
}

F5.		"msetup" success response (WSF2 to IWF2)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 16660,
 "success": true,
 "mediaSessionId": "IWF2-WSF2-006",
 "mediaSessionState": "accepted"
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F6.		"msetup" success response (IWF2 to IWF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 6660,
 "success": true,
 "mediaSessionId": "IWF1-IWF2-006",
 "mediaSessionState": "accepted"
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F7.		"msetup" success response (IWF1 to WSF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 660,
 "success": true,
 "mediaSessionId": "WSF1-IWF1-006",
 "mediaSessionState": "accepted"
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F8.		"msetup" success response (IWF1 to WSF1)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 60,
 "success": true,
 "mediaSessionId": "UE1-WSF1-006",
 "mediaSessionState": "accepted"
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 }
]
 }
}

F9.		"msetup" request (WSF2 to UE2)
	{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 1661,
 "mediaSessionId": "WSF2-UE2-006",
 "mediaSessionState": "accepted",
 "dId": {
 "uri": "3gpp-respect://user2@rtc.another.com"
 },
 "oId": {
 "user": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 },
 "network": {
 "uri: "3gpp-respect://user1@rtc.example.com",
 }
 },
 "mediaInfo": {
 "type": "Offer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 5553372036854775808 5555262150 IN IP4 198.0.100.201",
 "s=-",
 "c=IN IP4 198.0.100.200",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:M253Zah8",
 "a=ice-pwd:M25egh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux-only",
 "a=rtcp-mux",
 "a=bundle-only",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "add"
 },
 {
 "index": 2,
 "actType": "add"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "add"
 }
]
 }
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joiningIn"
 },
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joiningIn"
 }
]
 }
}

F10.		"msetup" success response (UE2 to WSF2)
	{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 1661,
 "success": true,
 "mediaSessionId": "WSF2-UE2-006",
}

F11.		"mupdate" request (WSF2 to IWF2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 26661,
 "mediaSessionId": "WSF1-WSF2-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "accepted",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "add",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joiningIn"
 }
]
 }
}

F12.		"mupdate" request (IWF2 to IWF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 6661,
 "mediaSessionId": "IWF1-IWF2-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "accepted",
 "mediaInfo": {
 *** same as F11 ***
 }
}

F13.		"mupdate" request (IWF1 to WSF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 661,
 "mediaSessionId": "WSF1-IWF1-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "accepted",
 "mediaInfo": {
 *** same as F14 ***
 }
}

F14.		"mupdate" request (WSF1 to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 61,
 "mediaSessionId": "UE1-WSF1-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "accepted",
 "mediaInfo": {
 *** same as F15 ***
 }
}

F15.		"mupdate" success response (UE1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 61,
 "success": true,
 "mediaSessionId": "UE1-WSF1-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F16.		"mupdate" success response (WSF1 to IWF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 661,
 "success": true,
 "mediaSessionId": "WSF1-IWF1-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F17.		"mupdate" success response (IWF1 to IWF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 6661,
 "success": true,
 "mediaSessionId": "IWF1-IWF2-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F18.		"mupdate" success response (IWF2 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 16661,
 "success": true,
 "mediaSessionId": "IWF2-WSF2-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F19.		"mupdate" request (UE2 to WSF2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1660,
 "updatingKeys": ["mediaInfo"],
 "mediaSessionId": "WSF2-UE2-006",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 5591686018427387906 5595262147 IN IP4 0 0 0 0",
 "s=-",
 "c=IN IP4 0.0.0.0",
 "t=0 0",
 "a=group:BUNDLE 0",
 "a=ice-options:trickle",
 "a=fingerprint sha-256 ...",
 "a=ice-ufrag:ief0uBai",
 "a=ice-pwd:ohFee4ne",
 "a=setup:actpass",
 "a=candidate 1 1 UDP 2590706544 192.0.2.234 34567 typ host generation 0"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=bundle-only",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly"
 },
 {
 "index": 2,
 "actType": "aly"
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly"
 }
]
 }
 }
}

F20.		"mupdate" success response (WSF2 to UE2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1660,
 "mediaSessionId": "WSF2-UE2-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "connected",
 "mediaInfo": {
 "type": "info",
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joined"
 }
]
 }
}

F21.		"mupdate" request (WSF2 to IWF2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 26663,
 "mediaSessionId": "WSF1-WSF2-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 9523372036854775808 9585262150 IN IP4 192.0.100.201",
 "s=-",
 "c=IN IP4 192.0.100.200",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:FFk3Zah8",
 "a=ice-pwd:FFiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 },
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joined"
 }
]
 }
}

[bookmark: _Hlk156908714]F22.		"mupdate" request (IWF2 to IWF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 6663,
 "mediaSessionId": "IWF1-IWF2-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 8823372036854775808 8885262150 IN IP4 192.0.3.223",
 "s=-",
 "c=IN IP4 192.0.3.222",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Yxk3Zah8",
 "a=ice-pwd:Xwiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 },
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joined"
 }
]
 }
}

F23.		"mupdate" request (IWF1 to WSF1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 663,
 "mediaSessionId": "IWF1-WSF1-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "answer",
 "sdp": {
 "part": [
 {
 "index": 0,
 "lines": [
 "v=0",
 "o=- 7723372036854775808 7785262150 IN IP4 192.0.2.112",
 "s=-",
 "c=IN IP4 192.0.2.111",
 "t=0 0",
 "a=group:BUNDLE 0 1 2",
 "a=ice-lite",
 "a=fingerprint a=fingerprint sha-256 ...",
 "a=ice-ufrag:Yxk3Zah8",
 "a=ice-pwd:Xwiegh0M",
 "a=setup:actpass"
]
 },
 {
 "index": 1,
 "lines": [
 "m=audio 9 UDP/TLS/RTP/SAVPF 96",
 "a=mid:0",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:96 opus/48000/2",
 "a=sendonly"
]
 },
 {
 "index": 2,
 "lines": [
 "m=video 9 UDP/TLS/RTP/SAVPF 97",
 "a=mid:1",
 "a=rtcp-mux",
 "a=rtcp-rsize",
 "a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid",
 "a=rtpmap:97 H264/90000",
 "a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...",
 "a=sendonly"
]
 },
 {
 "index": 3,
 "lines": [
 "m=application 9 UDP/DTLS/SCTP webrtc-datachannel",
 "a=mid:2",
 "a=sctp-port:5000",
 "a=max-message-size:65536",
 "a=dcmap:0"
]
 }
]
 },
 "mc": {
 "metadata": [
 {
 "index": 1,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "actType": "aly",
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 },
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-2",
 "userState": "joined"
 }
]
 }
}

F24.		"mupdate" request (WSF1 to UE1)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 63,
 "mediaSessionId": "UE1-WSF1-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 *** same as F23 ***
 }
}

F25.		"mupdate" success response (UE1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 63,
 "success": true,
 "mediaSessionId": "UE1-WSF1-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F26.		"mupdate" success response (WSF1 to IWF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 663,
 "success": true,
 "mediaSessionId": "WSF1-IWF1-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F27.		"mupdate" success response (IWF1 to IWF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 6663,
 "success": true,
 "mediaSessionId": "IWF1-IWF2-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F28.		"mupdate" success response (IWF2 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 26663,
 "success": true,
 "mediaSessionId": "IWF2-WSF2-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F29.		"mupdate" request (WSF2 to UE2)
	{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1663,
 "mediaSessionId": "WSF2-UE2-006",
 "updatingKeys": ["mediaSessionState","mediaInfo"],
 "mediaSessionState": "routed",
 "mediaInfo": {
 "type": "info",
 "mc": {
 "metadata": [
 {
 "index": 1,
 "state": {
 "connected": "true",
 "routed": "true"
 }
 },
 {
 "index": 2,
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 },
 "dc": {
 "sdpIndex": 3,
 "metadata": [
 {
 "id": 0,
 "state": {
 "connected": "true",
 "routed": "true"
 }
 }
]
 }
 "participantDesc": [
 {
 "acttype": "mod",
 "participantId": "anonymized-RTCuserID-1",
 "userState": "joined"
 }
]
 }
}

F30.		"mupdate" success response (UE2 to WSF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1663,
 "success": true,
 "mediaSessionId": "WSF2-UE2-006",
 "updatedKeys": ["mediaSessionState","mediaInfo"]
}

F31.		"mdisc" request (UE1 to WSF1)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 62,
 "mediaSessionId": "UE1-WSF1-006"
}

F32.		"mdisc" request (WSF1 to IWF1)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 662,
 "mediaSessionId": "WSF1-IWF1-006"
}

F33.		"mdisc" request (IWF1 to IWF2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 6662,
 "mediaSessionId": "IWF1-IWF2-006"
}

F34.		"mdisc" request (IWF2 to WSF2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 16662,
 "mediaSessionId": "IWF2-WSF2-006"
}

F35.		"mdisc" success response (WSF2 to IWF2)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 16662,
 "success": true,
 "mediaSessionId": "WSF2-IWF2-006"
}

F36.		"mdisc" request (WSF2 to UE2)
	{
 "msgType": "request",
 "method": "mdisc",
 "transactionId": 1665,
 "mediaSessionId": "WSF2-UE2-006"
}

F37.		"mdisc" success response (IWF2 to IWF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 6662,
 "success": true,
 "mediaSessionId": "IWF2-IWF1-006"
}

F38.		"mdisc" success response (IWF1 to WSF1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 662,
 "success": true,
 "mediaSessionId": "IWF1-WSF1-006"
}

F39.		"mdisc" success response (WSF1 to UE1)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 62,
 "success": true,
 "mediaSessionId": "UE1-WSF1-006"
}

F40.		"mdisc" success response (UE2 to WSF21)
	{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1665,
 "success": true,
 "mediaSessionId": "WSF2-UE2-006"
}

* * * Next Changes * * * *
[bookmark: _Toc151082652][bookmark: _Toc156913586]Annex D (informative):
JSON data format for RESPECT
This Annex provides the JSON data format for RESPECT.
[bookmark: _Toc156913587]D.1	Information elements for each message
This clause defines the information elements included in the signalling message.
[bookmark: _Toc156913588]D.1.1	Authentication method
This clause describes the JSON format for Authentication method
[bookmark: _Toc156913589]D.1.1.1	auth request
This clause describes the JSON format for "auth" request in Table D.1.1.1-1.
Table D.1.1.1-1: JSON format of auth request
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "auth" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	rtcUserId
	string
	M
	1
	The value is set to RTC user ID which is required to be authenticated, according to clause 6.4.5.5.4.3.9.
	

	authType
	AuthType
	M
	1
	The value is set to the type of authentication, according to clause 6.4.5.5.4.3.10.
	

	authorization
	string
	O
	0..1
	The value is set to the credential token for authentication, according to clause 6.4.5.5.4.3.11.
	

	disconnectTtl
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.12.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913590]D.1.1.2	auth response
This clause describes the JSON format for "auth" response Table D.1.1.2-1.
Table D.1.1.2-2: JSON format of auth response
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "response" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "auth" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	success
	boolean
	M
	1
	The value is set according to clause 6.4.5.5.4.3.2.
	

	problemDetails
	ProblemDetails
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.3.
	

	retryAfetr
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.7.
	

	unsupportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.5.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	expires
	number (int32)
	M
	1
	The value is set according to clause 6.4.5.5.4.3.15.
	

	disconnectTtl
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.12.
	

	webrtcReauthCredential
	string
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.13.
	

	wwwAuthenticate
	WwwAuthenticate
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.14.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913591]D.1.2	Media session setup method
This clause describes the JSON format for media session setup method
[bookmark: _Toc156913592]D.1.2.1	msetup request
This clause describes the JSON format for "msetup" request in Table D.1.2.1-1.
Table D.1.2.1-1: JSON format of msetup request
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	dId
	object
	M
	1
	The value is set to RTC user ID or RTC resource ID, according to clause 6.4.5.5.4.3.9.
	

	mediaSessionId
	string
	M
	1
	The value is set according to clause 6.4.5.5.4.3.17.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.18.
	

	mediaInfo
	MediaInfo
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.19.
	

	oId
	OrigId
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.20.
	

	cId
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.24.
	

	userData
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.25.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913593]D.1.2.2	msetup response
This clause describes the JSON format for "msetup" response in Table D.1.2.2-1.
Table D.1.2.2-1: JSON format of msetup response
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	success
	boolean
	M
	1
	The value is set according to clause 6.4.5.5.4.3.2.
	

	problemDetails
	ProblemDetails
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.3.
	

	retryAfetr
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.7.
	

	unsupportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.5.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	mediaSessionId
	string
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.17.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.18.
	

	mediaInfo
	MediaInfo
	O
	0..1
	The value is set to the credential token for authentication, according to clause 6.4.5.5.4.3.19.
	

	oId
	OrigId
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.20.
	

	userData
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.25.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913594]D.1.3	Media session update method
This clause describes the JSON format for media session update method
[bookmark: _Toc156913595]D.1.3.1	mupdate request
This clause describes the JSON format for "mupdate" request in Table D.1.3.1-1.
Table D.1.3.1-1: JSON format of mupdate request
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	dId
	object
	O
	0..1
	The value is set to RTC user ID or RTC resource ID, according to clause 6.4.5.5.4.3.9.
	

	mediaSessionId
	string
	M
	1
	The value is set according to clause 6.4.5.5.4.3.17.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.18.
	

	updatingKeys
	array[string]
	M
	0..1
	The value is set according to clause 6.4.5.5.4.3.22.
	

	mediaInfo
	MediaInfo
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.19.
	

	oId
	OrigId
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.20.
	

	userData
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.25.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913596]D.1.3.2	mupdate response
This clause describes the JSON format for "mupdate" response in Table D.1.3.2-1.
Table D.1.3.2-1: JSON format of mupdate response
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	success
	boolean
	M
	1
	The value is set according to clause 6.4.5.5.4.3.2.
	

	problemDetails
	ProblemDetails
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.3.
	

	retryAfetr
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.7.
	

	unsupportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.5.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	mediaSessionId
	string
	M
	1
	The value is set according to clause 6.4.5.5.4.3.17.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.18.
	

	updatedKeys
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.23.
	

	mediaInfo
	MediaInfo
	O
	0..1
	The value is set to the credential token for authentication, according to clause 6.4.5.5.4.3.19.
	

	oId
	OrigId
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.20.
	

	userData
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.25.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913597]D.1.4	Media session disconnection method
This clause describes the JSON format for media session disconnection method
[bookmark: _Toc156913598]D.1.4.1	mdisc request
This clause describes the JSON format for "mdisc" request in Table D.1.4.1-1.
Table D.1.4.1-1: JSON format of mdisc request
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	mediaSessionId
	string
	M
	1
	The value is set according to clause 6.4.5.5.4.3.17.
	

	problemDetails
	ProblemDetails
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.3.
	

	userData
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.25.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913599]D.1.4.2	mdisc response
This clause describes the JSON format for "mdisc" response in Table D.1.4.2-1.
Table D.1.4.2-1: JSON format of mdisc response
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	success
	boolean
	M
	1
	The value is set according to clause 6.4.5.5.4.3.2.
	

	problemDetails
	ProblemDetails
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.3.
	

	retryAfetr
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.7.
	

	unsupportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.5.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	mediaSessionId
	string
	M
	1
	The value is set according to clause 6.4.5.5.4.3.17.
	

	userData
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.25.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913600]D.1.5	Get information method
This clause describes the JSON format for get information method
[bookmark: _Toc156913601]D.1.5.1	getinfo request
This clause describes the JSON format for "getinfo" request in Table D.1.5.1-1.
Table D.1.5.1-1: JSON format of getinfo request
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	resourceReq
	array[string]
	M
	1
	The value is set according to clause 6.4.5.5.4.3.21.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913602]D.1.5.2	getinfo response
This clause describes the JSON format for "getinfo" response in Table D.1.5.2-1.
Table D.1.5.2-1: JSON format of getinfo response
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	MsgType
	M
	1
	The value is set to "request" according to clause 6.4.5.5.4.2.2.
	

	method
	Method
	M
	1
	The value is set to "msetup" according to clause 6.4.5.5.4.2.3.
	

	transactionId
	number (int64)
	M
	1
	The value is generated according to clause 6.4.5.5.4.2.4.
	

	success
	boolean
	M
	1
	The value is set according to clause 6.4.5.5.4.3.2.
	

	problemDetails
	ProblemDetails
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.3.
	

	retryAfetr
	number (int32)
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.7.
	

	unsupportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.5.
	

	supportedExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.6.
	

	requireExtension
	array[string]
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.4
	

	resourceRes
	object
	O
	0..1
	The value is set according to clause 6.4.5.5.4.3.21.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913603]D.2	Structured data types
This clause describes structured data types for RESPECT.
[bookmark: _Toc156913604]D.2.1	Type: ProblemDetails
Table D.2.1-1: Definition of ProblemDetails data type
	IE name
	Data type
	Cardinality
	Description

	type
	string
	1
	This IE includes a URI reference as specified in IETF RFC 7807 [xx]. The value is set according to clause 6.4.5.5.5.1.

	title
	string
	0..1
	This IE includes a short, human-readable summary of the problem type as specified in IETF RFC 7807 [xx]

	status
	number
	0..1
	This IE includes the HTTP status code as specified in IETF RFC 7807 [xx]

	detail
	string
	0..1
	This IE includes a human-readable explanation specific to this occurrence of the problem as specified in IETF RFC 7807 [xx]

	instance
	string
	0..1
	This IE includes a URI reference that identifies the specific occurrence of the problem as specified in IETF RFC 7807 [xx]

[bookmark: _Toc156913605]D.2.2	Type: WwwAuthenticate
Table D.2.1-1: Definition of WwwAuthenticate data type
	IE name
	Data type
	Cardinality
	Description

	authScheme
	string
	1
	See IETF RFC 9110 [xx].

	realm
	string
	0..1
	See IETF RFC 9110 [xx].

	domain
	string
	0..1
	See IETF RFC 9110 [xx].

	nonce
	string
	0..1
	See IETF RFC 9110 [xx].

	uri
	string
	0..1
	See IETF RFC 9110 [xx].

	qop
	string
	0..1
	See IETF RFC 9110 [xx].

	nc
	string
	0..1
	See IETF RFC 9110 [xx].

	cnonce
	string
	0..1
	See IETF RFC 9110 [xx].

	response
	string
	0..1
	See IETF RFC 9110 [xx].

	opaque
	string
	0..1
	See IETF RFC 9110 [xx].

	stale
	string
	0..1
	See IETF RFC 9110 [xx].

	algorithm
	string
	0..1
	See IETF RFC 9110 [xx].

[bookmark: _Toc156913606]D.2.3	Type: MediaInfo
This type is required to comply with the provisions defined in table D.2.x-1.
Table D.2.3-1: Definition of MediaInfo data type
	IE name
	Data type
	Cardinality
	Description

	type
	oaType
	1
	Refer to clause 6.5.5.4.3.19.
This information element indicates the type of mediaInfo element.

	sdp
	Sdp
	0..1
	Refer to clause 6.5.5.4.3.19.

	mc
	mediaChannel
	0..1
	Refer to clause 6.5.5.4.3.19.

	dc
	dataChannel
	0..1
	Refer to clause 6.5.5.4.3.19.

	participantDesc
	array
[participantDescElem]
	0..1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913607]D.2.3.1	Type: Sdp
This type is required to comply with the provisions defined in table D.2.3.1-1.
Table D.2.3.1-1: Definition of Sdp data type
	IE name
	Data type
	Cardinality
	Description

	part
	array
[partElem]
	1
	Refer to clause 6.5.5.4.3.19.

	label
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913608]D.2.3.1.1	Type: partElem
This type is required to comply with the provisions defined in table D.2.3.1.1-1.
Table D.2.3.1.1-1: Definition of partElem data type
	IE name
	Data type
	Cardinality
	Description

	index
	number
(uiny32)
	1
	Refer to clause 6.5.5.4.3.19.

	lines
	array
[string]
	1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913609]D.2.3.2	Type: mediaChannel
This type is required to comply with the provisions defined in table D.2.3.2-1.
Table D.2.3.2-1: Definition of mediaChannel data type
	IE name
	Data type
	Cardinality
	Description

	metadata
	array(mcMetadata)
	1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913610]D.2.3.2.1	Type: mcMetadata
This type is required to comply with the provisions defined in table D.2.3.2.1-1.
Table D.2.3.2.1-1: Definition of mcMetadatal data type
	IE name
	Data type
	Cardinality
	Description

	index
	number
(uint32)
	1
	Refer to clause 6.5.5.4.3.19.

	actType
	ActType
	0..1
	Refer to clause 6.5.5.4.3.19.

	groupLabel
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

	label
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

	state
	State
	0..1
	Refer to clause 6.5.5.4.3.19.

	handlingPref
	HandlingPref
	0..1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913611]D.2.3.2.1.1	Type: State
This type is required to comply with the provisions defined in table D.2.3.2.1.1-1.
Table D.2.3.2.1.1-1: Definition of mcMetadatal data type
	IE name
	Data type
	Cardinality
	Description

	connected
	boolean
	1
	Refer to clause 6.5.5.4.3.19. Refer to clause 6.5.5.4.3.19.

	routed
	boolean
	1
	

[bookmark: _Toc156913612]D.2.3.2.1.2	Type: HandlingPref
This type is required to comply with the provisions defined in table D.2.3.2.1.2-1.
Table D.2.3.2.1.2-1: Definition of mcMetadatal data type
	IE name
	Data type
	Cardinality
	Description

	index
	number
(uint32)
	1
	Refer to clause 6.5.5.4.3.19.

	connectToDevice
	ConnectToDevice
	0..1
	Refer to clause 6.5.5.4.3.19.

	preferredStyle
	PreferredStyle
	0..1
	Refer to clause 6.5.5.4.3.19.

	participantId
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913613]D.2.3.3	Type: dataChannel
This type is required to comply with the provisions defined in table D.2.x-1.
Table D.2.3.3-1: Definition of mediaChannel data type
	IE name
	Data type
	Cardinality
	Description

	sdpIndex
	number
(uint32)
	0..1
	Refer to clause 6.5.5.4.3.19.

	metadata
	array(dcMetadata)
	0..1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913614]D.2.3.3.1	Type: dcMetadata
This type is required to comply with the provisions defined in table D.2.x-1.
Table D.2.3.3.1-1: Definition of mcMetadatal data type
	IE name
	Data type
	Cardinality
	Description

	id
	number
(uint16)
	1
	Refer to clause 6.5.5.4.3.19.

	actType
	ActType
	0..1
	Refer to clause 6.5.5.4.3.19.

	groupLabel
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

	label
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

	state
	State
	0..1
	Refer to clause 6.5.5.4.3.19.

	subprotocol
	string
	0..1
	Refer to clause 6.5.5.4.3.19.
equivalent to: a=dcmap subprotocol-opt (RFC8864)

	ordered
	boolean
	0..1
	Refer to clause 6.5.5.4.3.19.
equivalent to: a=dcmap ordering-opt (RFC8864)

	maxretr
	number
	0..1
	Refer to clause 6.5.5.4.3.19.
equivalent to: a=dcmap maxretr-opt (RFC8864)

	maxtime
	number
	0..1
	Refer to clause 6.5.5.4.3.19.
equivalent to: a=dcmap maxtime-opt (RFC8864)

	priority
	number
	0..1
	Refer to clause 6.5.5.4.3.19.
equivalent to: a=dcmap priority-opt (RFC8864)

[bookmark: _Toc156913615]D.2.3.4	Type: participantDescElem
This type is required to comply with the provisions defined in table D.2.3.4-1.
Table D.2.3.4-1: Definition of participantDescElem data type
	IE name
	Data type
	Cardinality
	Description

	actType
	ActType
	0..1
	Refer to clause 6.5.5.4.3.19.

	participantId
	string
	1
	Refer to clause 6.5.5.4.3.19.

	displayText
	string
	0..1
	Refer to clause 6.5.5.4.3.19.

	displayImage
	url
	0..1
	Refer to clause 6.5.5.4.3.19.

	oId
	OId
	0..1
	This information element is applicable only when the "actType" is set to "add".

	userState
	UserState
	0..1
	Refer to clause 6.5.5.4.3.19.

[bookmark: _Toc156913616]D.2.4	Type: OrigId
Table D.2.4-1: Definition of OrigId data type
	IE name
	Data type
	Cardinality
	Description

	user
	object
	0..1
	Refer to clause 6.5.5.4.3.20.

	network
	object
	0..1
	Refer to clause 6.5.5.4.3.20.

	privacy
	array
[string]
	0..1
	Refer to clause 6.5.5.4.3.20.

	passport
	object
	0..1
	Refer to clause 6.5.5.4.3.20.

	NOTE:	Only one IE is allowed to be set in the object.

[bookmark: _Toc156913617]D.2.5	Type: ResourceReq
Table D.2.5-1: Definition of ResourceReq data type
	Information
	Data type
	Description

	/net/conf/iceServers
	object
	The array of the RTCIceServer object for WebRTC API which is available for RESPECT endpoint (UE).

[bookmark: _Toc156913618]D.3	Simple data types
This clause describes simple data types for RESPECT.
[bookmark: _Toc156913619]D.3.1	Enumeration: MsgType
Table D.3.1-1: Enumeration MsgType
	Enumeration value
	Description
	Applicability (NOTE)

	request
	The message is request.
	

	response
	The message is response.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913620]D.3.2	Enumeration: Method
Table D.3.2-1: Enumeration method
	Enumeration value
	Description
	Applicability (NOTE)

	auth
	auth method
	

	msetup
	msetup method
	

	mupdate
	mupdate method
	

	mdisc
	mdisc method
	

	Getinfo
	getinfo method
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913621]D.3.3	Enumeration: MsgType
Table D.3.3-1: Enumeration AuthType
	Enumeration value
	Description
	Applicability (NOTE)

	bearer
	The authentication request intends to use bearer authentication.
	

	basic
	The authentication request intends to use basic authentication.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913622]D.3.4	Enumeration: MediaSessionState
Table D.3.3-1: Enumeration MediaSessionState
	Enumeration value
	Description
	Applicability (NOTE)

	accepted
	Refer to clause 6.5.5.4.3.18.
	

	connecting
	Refer to clause 6.5.5.4.3.18.
	

	connected
	Refer to clause 6.5.5.4.3.18.
	

	routed
	Refer to clause 6.5.5.4.3.18.
	

	updateRequesting
	Refer to clause 6.5.5.4.3.18.
	

	updating
	Refer to clause 6.5.5.4.3.18.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

[bookmark: _Toc156913623]D.3.5	Enumeration: oaType
Table D.3.5-1: Enumeration oaType
	Enumeration value
	Description
	Applicability

	offer
	Refer to clause 6.5.5.4.3.19.
	

	preoffer
	Refer to clause 6.5.5.4.3.19.
	

	answer
	Refer to clause 6.5.5.4.3.19.
	

	info
	Refer to clause 6.5.5.4.3.19.
	

[bookmark: _Toc156913624]D.3.6	Enumeration: ActType
Table D.3.6-1: Enumeration oaType
	Enumeration value
	Description
	Applicability

	add
	Refer to clause 6.5.5.4.3.19.
Only used when the "part" information element is set to "offer" or "preoffer".
	

	del
	Refer to clause 6.5.5.4.3.19.
Only used when the "part" information element is set to "offer" or "preoffer".
	

	mod
	Refer to clause 6.5.5.4.3.19.
Only used when the "part" information element is set to "offer" or "preoffer".
	

	aly
	Refer to clause 6.5.5.4.3.19.
Only used when the "part" information element is set to "answer".
	

	dcl
	Refer to clause 6.5.5.4.3.19.
Only used when the "part" information element is set to "answer".
	

[bookmark: _Toc156913625]D.3.7	Enumeration: ConnectToDevice
Table D.3.7-1: Enumeration ConnectToDevice
	Enumeration value
	Description
	Applicability

	audioin
	Refer to clause 6.5.5.4.3.19.
	

	audioout
	Refer to clause 6.5.5.4.3.19.
	

	videoin
	Refer to clause 6.5.5.4.3.19.
	

	display
	Refer to clause 6.5.5.4.3.19.
	

[bookmark: _Toc156913626]D.3.8	Enumeration: PreferredStyle
Table D.3.8-1: Enumeration PreferredStyle
	Enumeration value
	Description
	Applicability

	mainview
	Refer to clause 6.5.5.4.3.19.
	

	thumbnail
	Refer to clause 6.5.5.4.3.19.
	

	screenshare
	Refer to clause 6.5.5.4.3.19.
	

[bookmark: _Toc156913627]D.3.9	Enumeration: UserState
Table D.3.9-1: Enumeration UserState
	Enumeration value
	Description
	Applicability

	joiningIn
	Refer to clause 6.5.5.4.3.19.
	

	alerting
	Refer to clause 6.5.5.4.3.19.
	

	joined
	Refer to clause 6.5.5.4.3.19.
	

	leaving
	Refer to clause 6.5.5.4.3.19.
	

* * * End of Changes * * * *
3GPP
Microsoft_Visio_Drawing2.vsdx

WebRTC
Signalling
Function
(WSF)

UE
WebRTC
Endpoint
: Signalling path (C-Plane)
: Media/Data path (U-Plane)
Media Function
(MF)

Servers
in the network
WebRTC
Signalling
Function
(WSF)
Media Function
(MF)

Servers
in the network

UE
WebRTC
Endpoint

image2.emf
WebRTC

Signalling

Function

(WSF)

UE

: Signalling path (C-Plane) : Media/Data path (U-Plane)

Media Function

(MF)

Servers

in the network

WebRTC

endpoint

: Signalling message : Media/Data stream

Microsoft_Visio_Drawing3.vsdx

WebRTC
Signalling
Function
(WSF)
UE
: Signalling path (C-Plane)
: Media/Data path (U-Plane)
Media Function
(MF)

Servers
in the network

WebRTC
endpoint
: Signalling message
: Media/Data stream

image3.png
auth request
fail

auth request
fail

(Init)

Unauthed

auth request
success

WebSocket
Disconnected

no disconnectTtl
or

WebSocket Connected

auth timeout

reauth
success

disconnectTt elapsed

ne\év WebS ocket connected
an

succeeded the previous
control session

image4.png
RESPECT client RESPECT server RESPECT client

(Originator of a request) (Intermediator of a request) (Destination of a request)
Request
7~ >
| Request
i AA >
| T1 .
g | T1 |
________ Response i 12

image5.png
Operator Network

suoissas epon

@ LN o1
Uorsag o)

suorssas epon

[z

& a1 01
UorSag o)

[ez]

© N o1
Uorsag diiog

image6.png
Operator Network

Control Sesson

e sesors|_|

T

Other Operator

Network

or
ControlSession

Service Provider
Network

wesnsess ||

T

image7.emf
UE1

WSF

Auth Process

F1. auth req

RTC User ID: ue1@domain1.example

Authorization: Bearer (JWS)

F2. auth res

sucess: true

Establish WebSocket Connection

Microsoft_Visio_Drawing.vsdx
UE1
WSF
Auth Process
F1. auth req
RTC User ID: ue1@domain1.example
Authorization: Bearer (JWS)
F2. auth res
sucess: true
Establish WebSocket Connection

image8.emf
UE1

WSF

Auth Process

F1. auth req

RTC User ID: ue1@domain1.example

Authorization: Bearer (JWS)

F2. auth res

sucess: true

Auth Success

start re-auth procedure

before previous auth expires

Microsoft_Visio_Drawing1.vsdx
UE1
WSF
Auth Process
F1. auth req
RTC User ID: ue1@domain1.example
Authorization: Bearer (JWS)
F2. auth res
sucess: true
Auth Success
start re-auth procedure
before previous auth expires

image9.emf
UE1 WSF/MF

F1. msetup req

dId: resource1@domain1.example

preOffer

F2. msetup res (success: true)

mediaSessionState: accepted

RTC resource is

ready

F3. mupdate req

offer

F4. mupdate res (success: true)

answer

Media routing

setup is

complete

F5. mupdate req

mediaSessionState: routed

F6. mupdate res (success: true)

F8. mdisc res (success: true)

F7. mdisc req

CP

Callback req ("call.in.requested")

RTC resource has been created

with event subscription

Callback req ("call.in.connected")

Callback res

Callback req ("call.disconnected")

Callback res

Callback req ("call.in.accepted")

Callback res

Callback res

Microsoft_Visio_Drawing21.vsdx
UE1
WSF/MF
F1. msetup req
dId: resource1@domain1.example
preOffer
F2. msetup res (success: true)
mediaSessionState: accepted
RTC resource is ready
F3. mupdate req
offer
F4. mupdate res (success: true)
answer
Media routing setup is complete
F5. mupdate req
mediaSessionState: routed
F6. mupdate res (success: true)
Media/data channels can be connected
between UE1 and operator's MF through STUN procedure
F8. mdisc res (success: true)
F7. mdisc req
CP
Callback req ("call.in.requested")
RTC resource has been created
with event subscription
Callback req ("call.in.connected")
Callback res
Callback req ("call.disconnected")
Callback res
Callback req ("call.in.accepted")
Callback res
Callback res

image10.emf
UE1

WSF2/MF2

F1. msetup req

dId: resource2@domain2.example

preOffer

F5. msetup res (success: true)

mediaSessionState: accepted

RTC resource is

ready

F9. mupdate req

offer

F13. mupdate res (success: true)

answer

F17. mupdate req

mediaSessionState: routed

F25. mdisc req

CP

Callback req ("call.in.requested")

RTC resource has been created

with event subscription

Callback req ("call.in.connected")

Callback res

Callback req ("call.disconnected")

Callback res

Callback req ("call.in.accepted")

Callback res

Callback res

WSF1/MF1 IWF1/TGF1

IWF2/TGF2

F2. msetup req

dId: resource2@domain2.example

preOffer

F3. msetup req

dId: resource2@domain2.example

preOffer

F4. msetup req

dId: resource2@domain2.example

preOffer

F6. msetup res (success: true)

mediaSessionState: accepted

F7. msetup res (success: true)

mediaSessionState: accepted

F8. msetup res (success: true)

mediaSessionState: accepted

F10. mupdate req

offer

F11. mupdate req

offer

F12. mupdate req

offer

F14. mupdate res (success: true)

answer

F15. mupdate res (success: true)

answer

F16. mupdate res (success: true)

answer

Media/data channels can be connected between UE1 and MF2 through STUN procedure

Media routing

setup is

complete

F21. mupdate res (success: true)

F22. mupdate res (success: true)

F23. mupdate res (success: true)

F24. mupdate res (success: true)

F18. mupdate req

mediaSessionState: routed

F19. mupdate req

mediaSessionState: routed

F20. mupdate req

mediaSessionState: routed

F26. mdisc req

F27. mdisc req

F28. mdisc req

F29. mdisc res (success: true)

F30. mdisc res (success: true)

F31. mdisc res (success: true)

F32. mdisc res (success: true)

Microsoft_Visio_Drawing32.vsdx
UE1
WSF2/MF2
F1. msetup req
dId: resource2@domain2.example
preOffer
F5. msetup res (success: true)
mediaSessionState: accepted
RTC resource is ready
F9. mupdate req
offer
F13. mupdate res (success: true)
answer
F17. mupdate req
mediaSessionState: routed
F25. mdisc req
CP
Callback req ("call.in.requested")
RTC resource has been created
with event subscription
Callback req ("call.in.connected")
Callback res
Callback req ("call.disconnected")
Callback res
Callback req ("call.in.accepted")
Callback res
Callback res
WSF1/MF1
IWF1/TGF1
IWF2/TGF2
F2. msetup req
dId: resource2@domain2.example
preOffer
F3. msetup req
dId: resource2@domain2.example
preOffer
F4. msetup req
dId: resource2@domain2.example
preOffer
F6. msetup res (success: true)
mediaSessionState: accepted
F7. msetup res (success: true)
mediaSessionState: accepted
F8. msetup res (success: true)
mediaSessionState: accepted
F10. mupdate req
offer
F11. mupdate req
offer
F12. mupdate req
offer
F14. mupdate res (success: true)
answer
F15. mupdate res (success: true)
answer
F16. mupdate res (success: true)
answer
Media/data channels can be connected between UE1 and MF2 through STUN procedure
Media routing setup is complete
F21. mupdate res (success: true)
F22. mupdate res (success: true)
F23. mupdate res (success: true)
F24. mupdate res (success: true)
F18. mupdate req
mediaSessionState: routed
F19. mupdate req
mediaSessionState: routed
F20. mupdate req
mediaSessionState: routed
F26. mdisc req
F27. mdisc req
F28. mdisc req
F29. mdisc res (success: true)
F30. mdisc res (success: true)
F31. mdisc res (success: true)
F32. mdisc res (success: true)

image11.emf
UE1

WSF1/MF1

F1. msetup req

dId: user2@domain1.example

preOffer

F4. msetup res (success: true)

mediaSessionState: accepted

F11. mupdate req

answer

F15. mupdate res (success: true)

F23. mdisc res (success: true)

F19. mdisc req

WSF2/MF2 UE2

Determine the destination WSF

F2. msetup req

dId: user2@domain1.example

preOffer

F3. msetup res (success: true)

mediaSessionState: accepted

F5. msetup req

dId: user2@domain1.example

mediaSessionState: accepted

offer

F6. msetup res (success: true)

F12. mupdate res (success: true)

mediaSessionState: connected

F13. mupdate req

mediaSessionState: routed

answer

F14. mupdate req

mediaSessionState: routed

answer

F16. mupdate res (success: true)

Media / Data

F17. mupdate req

mediaSessionState: routed

F18. mupdate res (success: true)

F20. mdisc req

F22. mdisc req F21. mdisc res (success: true)

F24. mdisc res (success: true)

F9. mupdate res (success: true)

F7. mupdate req

mediaInfo

F8. mupdate req

mediaInfo

F10. mupdate res (success: true)

Determine the destination UE2

Reserve U-Plane resource

Allocate U-Plane resource

Media / Data

Deallocate U-Plane resource

Microsoft_Visio_Drawing4.vsdx
UE1
WSF1/MF1
F1. msetup req
dId: user2@domain1.example
preOffer
F4. msetup res (success: true)
mediaSessionState: accepted
F11. mupdate req
answer
F15. mupdate res (success: true)
F23. mdisc res (success: true)
F19. mdisc req
WSF2/MF2
UE2
Determine the destination WSF
F2. msetup req
dId: user2@domain1.example
preOffer
F3. msetup res (success: true)
mediaSessionState: accepted
F5. msetup req
dId: user2@domain1.example
mediaSessionState: accepted
offer
F6. msetup res (success: true)
F12. mupdate res (success: true)
mediaSessionState: connected
F13. mupdate req
mediaSessionState: routed
answer
F14. mupdate req
mediaSessionState: routed
answer
F16. mupdate res (success: true)
Media / Data
F17. mupdate req
mediaSessionState: routed
F18. mupdate res (success: true)
F20. mdisc req
F22. mdisc req
F21. mdisc res (success: true)
F24. mdisc res (success: true)
F9. mupdate res (success: true)
F7. mupdate req
mediaInfo
F8. mupdate req
mediaInfo
F10. mupdate res (success: true)
Determine the destination UE2
Reserve U-Plane resource
Allocate U-Plane resource
Media / Data
Deallocate U-Plane resource

image12.emf
UE1

WSF2/MF2

F1. msetup req

dId: user2@domain2.example

preOffer

F5. msetup res (success: true)

mediaSessionState: accepted

F21. mupdate req

mediaSessionState: routed

answer

F25. mupdate res (success: true)

F31. mdisc req

UE2

WSF1/MF1 IWF1/TGF1

IWF2/TGF2

F2. msetup req

dId: user2@domain2.example

preOffer

F3. msetup req

dId: user2@domain2.example

preOffer

F4. msetup req

dId: user2@domain2.example

preOffer

F6. msetup res (success: true)

mediaSessionState: accepted

F7. msetup res (success: true)

mediaSessionState: accepted

F8. msetup res (success: true)

mediaSessionState: accepted

F22. mupdate req

mediaSessionState: routed

answer

F23. mupdate req

mediaSessionState: routed

answer

F24. mupdate req

mediaSessionState: routed

answer

F26. mupdate res (success: true)

F27. mupdate res (success: true)

F28. mupdate res (success: true)

F32. mdisc req

F33. mdisc req

F34. mdisc req

F35. mdisc res (success: true)

F37. mdisc res (success: true)

F38. mdisc res (success: true)

F39. mdisc res (success: true)

RTC resource is

reserved

F9. msetup req

dId: user2@domain2.example

mediaSessionState: accepted

offer

F10. msetup res (success: true)

F19. mupdate req

answer

RTC resource is

confirmed

F20. mupdate res (success: true)

mediaSessionState: connected

F36. mdisc req

F40. mdisc res (success: true)

F11. mupdate req

mediaInfo

F15. mupdate res (success: true)

F12. mupdate req

mediaInfo

F13. mupdate req

mediaInfo

F14. mupdate req

mediaInfo

F16. mupdate res (success: true)

F17. mupdate res (success: true)

F18. mupdate res (success:

true)

F29. mupdate res

mediaSessionState: routed

Media/ / Datae Media / Data

F30. mupdate res (success: true)

Microsoft_Visio_Drawing5.vsdx
UE1
WSF2/MF2
F1. msetup req
dId: user2@domain2.example
preOffer
F5. msetup res (success: true)
mediaSessionState: accepted
F21. mupdate req
mediaSessionState: routed
answer
F25. mupdate res (success: true)
F31. mdisc req
UE2
WSF1/MF1
IWF1/TGF1
IWF2/TGF2
F2. msetup req
dId: user2@domain2.example
preOffer
F3. msetup req
dId: user2@domain2.example
preOffer
F4. msetup req
dId: user2@domain2.example
preOffer
F6. msetup res (success: true)
mediaSessionState: accepted
F7. msetup res (success: true)
mediaSessionState: accepted
F8. msetup res (success: true)
mediaSessionState: accepted
F22. mupdate req
mediaSessionState: routed
answer
F23. mupdate req
mediaSessionState: routed
answer
F24. mupdate req
mediaSessionState: routed
answer
F26. mupdate res (success: true)
F27. mupdate res (success: true)
F28. mupdate res (success: true)
F32. mdisc req
F33. mdisc req
F34. mdisc req
F35. mdisc res (success: true)
F37. mdisc res (success: true)
F38. mdisc res (success: true)
F39. mdisc res (success: true)
RTC resource is reserved
F9. msetup req
dId: user2@domain2.example
mediaSessionState: accepted
offer
F10. msetup res (success: true)
F19. mupdate req
answer
RTC resource is confirmed
F20. mupdate res (success: true)
mediaSessionState: connected
F36. mdisc req
F40. mdisc res (success: true)
F11. mupdate req
mediaInfo
F15. mupdate res (success: true)
F12. mupdate req
mediaInfo
F13. mupdate req
mediaInfo
F14. mupdate req
mediaInfo
F16. mupdate res (success: true)
F17. mupdate res (success: true)
F18. mupdate res (success: true)
F29. mupdate res
mediaSessionState: routed
Media/ / Datae
Media / Data
F30. mupdate res (success: true)

image1.emf
WebRTC

Signalling

Function

(WSF)

UE

WebRTC

Endpoint

: Signalling path (C-Plane) : Media/Data path (U-Plane)

Media Function

(MF)

Servers

in the network

WebRTC

Signalling

Function

(WSF)

Media Function

(MF)

Servers

in the network

UE

WebRTC

Endpoint

3GPP

1

3GPP TSG

-

SA WG4 Meeting #127

S4

-

240

192

Sophia

-

Antipolis, France, 29 January

-

2 February 2024

Source:

NTT

Title:

[FS_eiRTCW]

Pseudo

-

CR on

Solution

#

3

C

-

Plane signalling protocol

Spec:

3GPP T

R

26.930

Agenda item:

10

.

9

Document for:

Agreement

1. Introduction

The draft solution for Key Issue #3 C

-

Plane signalling protocol is described in

FS_eiRTCW Permanent Document

v

8

00.

This pseudo

-

CR proposes a solution for Key Issue #3 C

-

Plane signalling protocol which is incorporated in

TR

26.930.

2. Reason for Change

The solution for C

-

Plane

signalling protocol

needs to be

incorporated

in TR

26.9

3

0

based on the agreement in

FS_eiRTCW

PD with modification

.

3

. Proposal

-

Addition of terminology in clause

3.1 (i.e., Terms)

-

Modification of the wording to keep consistency between Terms definition and descriptions.

-

Clarification of the basic principle of the RESEPCT as

Key features of t

he RESPECT protocol

.

-

Modification of individual keys name and definition.

-

Addition of clause for describing Response code

-

Addition of clause for describing

Originating ID and verification using signature verification and attestation

information

-

Add

ition of clause for describing

General

call flow and procedure

-

Addition of clause for describing SDP

-

Addition of Annex for message example

-

Addition of Annex for

JSON data format for RESPECT

 3GPP

1

3GPP TSG - SA WG4 Meeting #127 S4 - 240 192 Sophia - Antipolis, France, 29 January - 2 February 2024 Source: NTT Title: [FS_eiRTCW] Pseudo - CR on Solution # 3 C - Plane signalling protocol Spec: 3GPP T R 26.930 Agenda item: 10 . 9 Document for: Agreement 1. Introduction The draft solution for Key Issue #3 C - Plane signalling protocol is described in FS_eiRTCW Permanent Document v 8 00. This pseudo - CR proposes a solution for Key Issue #3 C - Plane signalling protocol which is incorporated in TR 26.930. 2. Reason for Change The solution for C - Plane signalling protocol needs to be incorporated in TR 26.9 3 0 based on the agreement in FS_eiRTCW PD with modification . 3 . Proposal - Addition of terminology in clause 3.1 (i.e., Terms) - Modification of the wording to keep consistency between Terms definition and descriptions. - Clarification of the basic principle of the RESEPCT as Key features of t he RESPECT protocol . - Modification of individual keys name and definition. - Addition of clause for describing Response code - Addition of clause for describing Originating ID and verification using signature verification and attestation information - Add ition of clause for describing General call flow and procedure - Addition of clause for describing SDP - Addition of Annex for message example - Addition of Annex for JSON data format for RESPECT

