14

[bookmark: _Toc124216550]3GPP TSG-SA WG4 Meeting #127	S4-240169
Sophia-Antipolis, France, 29 January - 2 February 2024

Source:	NTT
Title:	[FS_eiRTCW] Permanent Document version 9.0.0
Version:	9.0.0
Document for:	Agreement
Agenda item	10.9
[bookmark: _Hlk127296103]1	Scope
The present document extends immersive Real-time Communication for WebRTC (iRTCW) and introduces a new concept called native WebRTC signalling.
This study includes following aspects:
1. Analyze gaps and identify required enhancements of terminal device and network architectures including additional functional entities (e.g., WebRTC Signalling Server, ICE-STUN Server, IMS Interworking Gateway, NNI Gateway).
2. Identify impacts on and possible enhancements for the WebRTC-based U-plane components in terms of adaptation, media handling, and cross-layer optimizations over 5G systems.
3. Identify signalling protocol details (e.g., based on JSON) for the common WebRTC-based immersive RTC session management.
4. Identify information elements in the C/U-Plane signal (including NNI) to enhance connectivity of media sessions with carrier assistance for WebRTC-based applications (including OTT applications).
5. Identify the minimal functional capabilities needed to support the enhancements identified in Objectives 2, 3 and 4 (including transport, NAT-traversal, and XR conferencing), state transitions, and typical call flows.
6. Identify collaboration formation with other WGs in 3GPP and SDOs including IETF and W3C.
7. Identify enhancements for E2E QoS realizations over 5G systems for communications between MNOs and WebRTC clients operating over non-5G links (e.g., Wi-Fi) using WebRTC-based transport. This also includes communication between WebRTC clients operating on tethering/tethered devices.
8. Study security, QoE reporting, and rate adaptation in tethered use cases (including coordination of Uu and non-3GPP access).
The study should consider as a principle that the third party access to the operator network need to be controlled with SLAs and with secure access to protect the underlying network resources.

[bookmark: references][bookmark: _Toc124216551]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[bookmark: _Hlk124173245][TR21.905]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[TS23.228]	3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".
[TS23.501]	3GPP TS 23.501: "System architecture for the 5G System (5GS); Stage 2".
[bookmark: _Hlk133944398][TS26.506]	3GPP TS 26.506: "5G Real-time Media Communication Architecture (Stage 2)"
[TS33.501]	3GPP TS 33.501: "Security architecture and procedures for 5G system".
[TS24.371]	3GPP TS 24.371: "Web Real-Time Communications (WebRTC) access to the IP Multimedia (IM) Core Network (CN) subsystem (IMS); Stage 3; Protocol specification".
[W3C.WD-webrtc]	W3C Proposed Recommendation, "WebRTC 1.0: Real-time Communication Between Browsers", <https://www.w3.org/TR/webrtc/>.
[RFC791]	IETF RFC 791: "Internet Protocol".
[RFC793]	IETF RFC 793: "Transmission Control Protocol".
[RFC3261]	IETF RFC 3261: "SIP: Session Initiation Protocol".
[RFC3489]	IETF RFC 3489: "STUN – Simple Traversal of User Datagram Protocol (UDP) Through Network Address Translators (NATs)".
[RFC6120]	IETF RFC 6120: "Extensible Messaging and Presence Protocol (XMPP): Core".
[RFC6455]	IETF RFC 6455: "The WebSocket Protocol".
[RFC6598]	IETF RFC 6598: "IANA-Reserved IPv4 Prefix for Shared Address Space".
[RFC6749]	IETF RFC 6749: "The OAuth 2.0 Authorization Framework".
[RFC7230]	IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[RFC7231]	IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"
[RFC7232]	IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests"
[RFC7233]	IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests"
[RFC7234]	IETF RFC 7234: "Hypertext Transfer Protocol (HTTP/1.1): Caching"
[RFC7235]	IETF RFC 7235: "Hypertext Transfer Protocol (HTTP/1.1): Authentication"
[RFC7362]	IETF RFC 7362: "Latching: Hosted NAT Traversal (HNT) for Media in Real-Time Communication"
[RFC7540]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)"
[RFC7635]	IETF RFC 7635: "Session Traversal Utilities for NAT (STUN) Extension for Third-Party Authorization"
[RFC8200]	IETF RFC 8200: "Internet Protocol, Version 6 (IPv6) Specification"
[RFC8259]	IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format"
[RFC8441]	IETF RFC 8441: "Bootstrapping WebSockets with HTTP/2"
[RFC8446]	IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3"
[RFC8825]	IETF RFC 8825: "Overview: Real-Time Protocols for Browser-Based Applications"
[RFC8829]	IETF RFC 8829: "JavaScript Session Establishment Protocol (JSEP)"
[RFC8445]	IETF RFC 8445: “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal”
[RFC8656]	IETF RFC 8656: "Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)"
[RFC9114]	IETF RFC 9114: "HTTP/3"
[RFC9220]	IETF RFC 9220: "Bootstrapping WebSockets with HTTP/3"
[OpenAPI]	OpenAPI Initiative "OpenAPI Specification v3.0.0" https://spec.openapis.org/oas/v3.0.0
[AsyncAPI]	AsyncAPI Initiative "AsyncAPI Specification v2.4.0" https://asyncapi.com/docs/specifications/v2/4/0
[bookmark: definitions][bookmark: _Toc124216552]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc124216553]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
Content provider: An application provider who connects its media resource to an RTC AS of an operator network via UNI (i.e., RTC-4s and RTC-4m) as WebRTC endpoint. A content provider can interact with an RTC AS (ASWF) using RTC-2.
eiRTCW architecture:	The RTC architecture which supports collaboration scenario 3 and collaboration scenario 4 defined in 3GPP TS 26.506 [TS26.506].
[bookmark: _Hlk142989766]eiRTCW client: An WebRTC endpoint supporting the signalling protocol for eiRTCW.
eiRTCW entity: An eiRTCW entity is eiRTCW client or eiRTCW server.
eiRTCW server: An eiRTCW server is a WSF, an ASWF or an IWF.
eiRTCW media resource: An eiRTCW client which provides service content(s).
eiRTCW media server: An eiRTCW media server is an MF,or a TGF.
Media resource: A media resource to which the media session is connected. For example, media server is conference room (media server), service content, or WebRTC endpoint. In other words, a media session is set up between WebRTC endpoint and media resource.
Service provider: A service provider who connects its media resource to an RTC AS of an operator network via NNI (i.e., RTC-9s and RTC-9m).
For the purposes of the present document, the following terms and definitions given in RFC 8825 [RFC8825] apply:
WebRTC endpoint
WebRTC Browser
WebRTC non-browser
[bookmark: _Toc124216554]3.2	Symbols
For the purposes of the present document, the following symbols apply:
Symbol format (EW)
<symbol>	<Explanation>

[bookmark: _Toc124216555]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
[bookmark: _Hlk140666800]ASWF	Application Supporting Web Function
CP	Content Provider
IWF	Inter-Working Function
MF	Media Function
NNI	Network to Network Interface
SP	Service Provider
TGF	Transport Gateway Function
UNI	User-Network Interface
WSF	WebRTC signalling function
[bookmark: clause4][bookmark: _Toc124216556]3.4	Expressions
This document uses equivalent expression of verbal forms for the expression of provisions as described in Annex E of 3GPP TR 21.801, as follows.
- shall	is required to
- shall not		is not allowed
- should	is recommended
- should not	is not recommended
- may	is allowed
- may not	is not required
4	Motivations for Native WebRTC Signalling and assumptions
[bookmark: _Toc124216557]4.1	General
In 3GPP, the use of WebRTC technology has been investigated since Rel-12 (around 2014). They are a network-based architecture for WebRTC access to IMS specified in Annex U to TS 23.228 and its stage 3 protocols specified in TS 24.371. They define functional entities including WIC (WebRTC IMS Client) and eP-CSCF (P-CSCF enhanced for WebRTC). The eP-CSCF is assumed to be located in the Home IMS domain and communicates with other IMS entities using the existing interfaces. For the C-plane signalling between WIC and eP-CSCF, those specifications specify an option to use SIP over WebSocket, whose information model can be used for options other than SIP over WebSocket. Although SIP satisfies almost all conversational applications, it is somewhat over-engineered or too strict to extend. Another method which is flexible, extensible, and can be optimized for new XR conversational applications, therefore, should be investigated. These requirements remind us of the original design principle of WebRTC. WebRTC, by its inherent characteristics, does not regulate C-plane signalling and allow a wide range of C-plane signalling. This study looks over this design principle again and investigates a new SIP-decoupled C-plane signalling, called native WebRTC.
Regarding the level of signalling details, TS 24.371 specifies a signalling transport mechanism using SIP over WebSocket, but it is not a mandatory mechanism for eP-SCSF. Even though there are other options such as XMPP or other application protocols over WebSocket, a RESTful based interface, etc., TS 24.371 does not specify any details of C-plane signalling using other options. Each service provider (e.g., operator) develops its own application by following the guidelines in TS 24.371. Its subscriber downloads the application and connects to the service and other subscribers only within the same service. Detailed C-plane signalling is left open to each operator’s design. In contrast, this study tries to identify a new C-plane signalling in detail (as an interface specification) to the extent that client implementations based on it have enough interoperability. This realizes connectivity to any operators or roaming services for new XR real-time communications. Operators can provide the interface common to them according to well-defined C-plane signalling specifications. Clients can connect to any operators via the interface (see Figure 4.1-1).
[image:]
Figure 4.1-1:	Two approaches for defining specifications and their application connectivity
[bookmark: _Hlk135154676]4.2.	High-level network model and target interfaces
The eiRTCW signalling protocol studied in this study is intended for various media session control on the following interfaces:
-	UNI: The interface between operator network and UE (e.g., smart phone, content server of the Content Provider).
-	NNI: The interface between the two different operator networks, or that between operator network and service provider network.
A UE and a Content Provider can set up a media session by using eiRTCW signalling protocol for session control on the UNI. Figure 4.2-1 shows the high-level network model indicating above interfaces and media sessions established via eiRTCW functional entities (which described in clause 6.2) by using eiRTCW signalling protocol.
There are following benefits to using eiRTCW signalling protocol.
-	A UE (including the equipment of Content Provider) which is compliant with the eiRTCW signalling protocol can connect to any Operator Network which complies with the eiRTCW signalling protocol and set up a media session with the media resources (including UEs) in the Operator Network, based on the same signalling requirement.
-	A UE (including the equipment of Content Provider) which is compliant with the eiRTCW signalling protocol can connect to services provided by other Operator Network or service provider network via NNI, based on the same signalling requirement.
-	Content Providers can set up an operator assisted media session (e.g., media session with QoS) with UEs connected to the Operator Network via the NNI, by connecting to the operator network via the NNI.
-	Service Providers can set up an operator assisted media session (e.g., media session with QoS) with UEs connected to the Operator Network via the NNI, by connecting to the operator network via the NNI.

[image:]
Figure 4.2-1:	High-level network model and interfaces
<Terminology>
User Equipment (UE): It indicates the user equipment and servers acting as user equipment such as a content server of a content provider. User equipment includes an WebRTC endpoint supporting eiRTCW signalling protocol.
Operator: Mobile and Fixed network operator who provides telecommunication services.
Service Provider (SP): 3rd party service provider who connects its service to operator network via NNI. OTT service is one of the typical services provided by service provider. Network Operator is excluded from the definition of this terminology in this document.
Content Provider (CP): 3rd party service provider who connects its service to operator network via UNI. Network Operator is excluded from the definition of this terminology in this document.
UNI: User-to-Network Interface. The interface between UE and Network.
NNI: Network-to-Network Interface. The interface between two different Networks.
4.3	C-plane Signalling comparison
The C-plane signalling can be expressed as follows. Now, there are roughly four possible methods, classified in terms of their protocol stacks (see Figure 4.3-1).
[image:]
Figure 4.3-1:	Comparison of protocol stacks
The first method is MTSI-based, using SIP and SDP. General C-plane signalling requirements for conversational services can be covered by SIP. Interoperability is fine with the existing 5G core network. It is to be treated in IMS-based AR Conversational Services (IBACS).
The second is the method specified in TS 24.371. It enables the WebRTC clients to communicate over an IMS-based core network; only the interfaces for downloading dedicated applications and the signalling path using WebSocket are specified for C-plane signalling. Ordinary implementations adopt SIP-like protocols over WebSocket. In most cases, it is partially SIP-compliant or tightly coupled with SIP to adapt WebRTC clients in IMS domain.
The third method is an alternative to the second method that uses SIP-like protocol over WebSocket. The third method uses another signalling protocol over WebSocket, but SIP-decoupled approaches are investigated. It can be more lightweight, omitting features that is not used in XR conversational. Some constraints on SDP are necessary for interoperability. Non-browser based implementations are also in the scope. This method is the main subject of this study, FS_eiRTCW.
The other is a general WebRTC protocol stack that is not specified and left open to the users (i.e., service providers). C-plane may be SIP, XMPP, http, etc. A general WebRTC application uses SDP syntax compliant to RFC 4566 for its internal representation, when setting the local and remote descriptions. C-plane protocol may have its own on-the-wire format for SDP, which can be constructed from SDP and be serialized out to SDP.
Editor’s Note: The reason why WebRTC signalling is necessary
Editor’s Note: Comparison interworking between WebRTC signalling and existing SIP

[bookmark: _Toc124216558]5	Key Issue
[bookmark: _Toc124216559]5.1	General
This clause describes the key issues of eiRTCW.
5.2	Key Issue #1: Architecture for eiRTCW
[bookmark: _Hlk140666822]As described in 3GPP TS 26.506 [TS26.506], the detailed scenario and the architecture for collaboration scenario 4 is FFS in release-18. This Key Issue identifies the scenarios and the possible eiRTCW architecture for collaboration scenario 4 (the identified architecture is also applicable for collaboration scenario 3), based on the eiRTCW high-level network model described in clause 4.2. These are expected to be specified in 3GPP TS 26.506 [TS26.506].
This Key Issue includes:
1)	Functional Entities and Architecture for eiRTCW
-	Study the functional entity and architecture for collaboration scenario 4 (also covers collaboration scenario 3) based on general WebRTC implementation viewpoint.
2)	Possible interaction with 5GC
-	To realize the QoS control, study the interaction between functional entities of eiRTCW architecture and 5GC functional entities.
3)	Media connection model
-	Study the target use cases (connection model) of user plane (U-Plane) and considerations of QoS enabled End-to-End Path.
4)	IP addressing
-	Study the considerations on IP addressing related issues and identifies the possible additional enhancements of ICE functionality.
5)-	Alignment between the eiRTCW architecture and RTC architecture
-	Study the alignment between the eiRTCW architecture derived from 1) – 4) and RTC architecture. This also includes gap analysis of functionalities between the eiRTCW architecture and RTC architecture.
6)	Possible RTC architecture for collaboration scenario 4
-	Study the expected architecture variant for the collaboration scenario 4 and enhancements on the existing RTC generic architecture in RTC stage 2 specification (i.e., 3GPP TS 26.506 [TS26.506]). This also includes the clarifications of the focused functions and interfaces in this study.
5.3	Key Issue #2: Functional requirements for C-Plane
This Key Issue identifies the functional requirements for C-Plane based on the architecture proposed in Solution#1 of this study.
This Key Issue includes:
1.	Functional requirements for C-Plane and
2.	Protocol Stack for C-Plane interfaces
[bookmark: _Hlk124212813]5.4	Key Issue #3: Functional requirements for U-plane
This Key Issue identifies the functional requirements for U-Plane on the eiRTCW architecture. This Key Issue includes:
1)	Functional requirements over U-Plane interface and
2)	Protocol stack
[bookmark: _Hlk124212851]5.5	Key Issue #4: Interworking with IMS Network
This key issue studies the functional requirement for interworking between RTC network and IMS network.
This key issue includes:
1)	Applicable interface between RTC network to the IMS network,
2)	Supported interworking scenarios between RTC network and IMS network,
3)	Functional requirements for RTC-IMS interworking and
4)	RTC architecture for RTC-IMS interworking.
Editor’s note: This Key Issue needs feedback from SA2, before implementation of this Key Issue into TR 26.930.
[bookmark: _Hlk124213718]5.6	Key Issue #5: Tethered Cases
Editor’s note: Key issue need to be described. The title of this key issue is re-considered corresponding to concluded issues.
Editor’s Note: SmarTAR-related clause;
Identify enhancements for E2E QoS realizations over 5G systems for communications between MNOs and WebRTC clients operating over non-5G links (e.g., Wi-Fi) using WebRTC-based transport. This also includes communication between WebRTC clients operating on tethering/tethered devices.
For a device with limited computing capability and communication capability due to the size and weight constraints such an AR glasses, it may be beneficial to tether to a nearby device that has stronger computing capability and communication capability such as a smart phone. The tethering case was studied in the SA4 SmarTAR study item and the outcome is documented in TR 26.806 [1].

The possible scenarios can be enumerated in several aspects:
· The type of tethered devices: Among the types of AR glasses studied in TR 28.806, two types are relevant to eiRTCW: the AR glasses only as a display of the tethered device, and the AR glasses as both a display and a host carrying out XR Runtime core functions. If the AR glasses serves only as a display, it may not have an IP address, in which case the content for display can be sent over the tethering link via L2 forwarding, and it may have an IP address, which, however, is invisible to the other WebRTC Endpoint.
· How many of the end devices are tethered: Tethering may occur in only one of the end devices, or in both end devices. As an example, Fig. 5.6-1 shows only one tethered device, which is the AR glasses.
· Tethering link is a 5G link or a non-3GPP link: The tethering link could be a sidelink (defined by the PC5 interface), which is a 5G link. Alternatively, the tethering link can be a non-3GPP link such as a Wi-Fi link, as shown in Figure 5.6-1.

Figure 5.6-1: A tethering case with only one MNO involved.

The combination of the aspects considered above results in many scenarios, and only one of them is shown in Figure 5.6-1.
The key issue may be decomposed into several sub-issues:
· Key issue #5.1: Which scenarios are in the scope of eiRTCW?
· Key issue #5.2: Should the WebRTC Endpoint be on the tethered device or on the tethering device?
To elaborate, in Figure 5.6-1, one of the WebRTC Endpoint is on the Application Server (e.g, serving as a cloud gaming server), but it is not clear where the other WebRTC Endpoint should be.
· Key issue #5.3: How to authenticate the tethered device?
· Key issue #5.4: Are there any difference between WebRTC endpoint on the tethered device and the WebRTC endpoint on a UE?
· Key issue #5.5: How to provide E2E QoS when there are non-3GPP networks also involved?

The support for multiple MNO’s on the E2E path is within the scope of this key issue.
Editor's note: Key issues possibly need further clarification.
[bookmark: _Hlk124214395]5.7	Key Issue #6: Security Considerations
This key issue studies the security related considerations specific to real-time media communicaiton by WebRTC-based media session setup.
In IETF RFC 8825 [RFC8825] (which gives the WebRTC overview), the following items are described as security considerations.
a)	Security of the components,
b)	security of the communication channels, and
c)	security of the partner's identities.
NOTE 1:	IETF RFC 8826 [RFC8826] and IETF RFC 8827 [RFC8827] describes further security considerations on real-time communication on the Web.
Regarding a), RTC application is outside the scope of 3GPP TS 26.506 [TS26506] and RTC AF/RTC AS of this specification are defined as located in trusted DN - this means the RTCAF/RTC AS are protected by adequate network domain security. Then this study assumes that the security of components in RTC network is guaranteed.
Regarding b), secure transport protocol is applied for both C-plane and U-plane of RTC network in the Release-18 stage 3 work (i.e., WI: iRTCW). This study also applies the secure transport protocol (i.e., Secure WebSocket for C-plane, SRTP and SCTP for U-plane). Then, the security of the communication channels is regarded as guranteed.
Regarding c), as an operator provided/assisted RTC service, trustable subscriber identification and verification are required to prevent unauthorized use of service and spoofing since a user self-claimed RTC user identity is untrusted.
Then, this key issue studies the verification of the originating RTC user identity at the terminating network entity as a solution for the aspect of c).
NOTE 2:	This key issue focusses on the case WebRTC clients which connected to an RTC operator network are authenticated by the RTC network operator.
NOTE 3:	As a principle, the third-party access to the operator network needs to be controlled with SLAs and with secure access to protect the underlying network resources (e.g., rate limiting, abuse protection and security measures).
[bookmark: _Hlk124213765]5.8	Key Issue #7: Related Groups Considerations
This key issue studies the potential impacts on the specifications of other WGs in 3GPP and organizations including IETF and W3C.
Editor’s note: Key issue need to be described. The title of this key issue is re-considered corresponding to concluded issues.
Editor’s Note: Identify collaboration formation with other WGs in 3GPP and SDOs including IETF and W3C.
5.9	Key Issue #8: WSF discovery mechanism
In collaboration scenario 3 and collaboration scenario 4 of 5G Real-Time Communication (RTC) for WebRTC, RTC application using WebRTC connects to a WSF in order to setup Media Session, where the following steps are expected to be applied at the UE.
1)	Download an RTC application
2)	Launch the application and identify the WSF in the connected operator network
3)	Connect to the WSF and use the RTC services
For step 2), the application (WebRTC endpoint) is expected to connect to an MNO's WSF in the MNO's network where the UE attached to. Then the application needs to identify the WSF depends on the connected MNO's network, since the UE can attach to various MNO's networks. For example, when the UE attached to a visited MNO's network, the RTC application on the UE needs to connect to the WSF which provided by the visited MNO.
To enable WebRTC endpoint to identify the WSF without specific setting per connected MNO's network, it is desirable to standardize a common WSF discovery mechanism for zero configuration. This will make benefits for both user and operator as follows:
-	User perspective:
Users do not need to change the application and/or parameters depends on the connected operator network. Then the user can use the RTC application without having to worry about the connected operator network.
・Operator perspective:
Connection management between WebRTC endpoint and WSF becomes easier, since the user application behavior for WSF discovery is standardized and operators are able to control the connected WSF by modification of the operator network settings.
This Key Issue identifies the WSF discovery mechanism without user manual setting and applicable regardless of the connected operator network.
NOTE:	Step 1) (Downloading an RTC application) is outside the scope of this Key Issue. Step 3) (Connecting to the WSF and using the RTC services) is studied in Key Issue#4, then step 3) is also outside the scope of this key issue.
5.10	Key Issue #9: Protocol-level interworking between RTC network and IMS network
This key issue studies the protocol-level interworking between RTC network and IMS network at the Inter-working Function of the RTC AS, based on the requirments and architecture described in Solution#4.
This key issue includes:
1)	C-Plane signalling interworking and
2)	U-Plane media related interworking.
Editor’s note: This Key Issue needs feedback from SA2, before implementation of this Key Issue into TR 26.930.
5.11	Key Issue #10: Details of signalling protocol
This key issue studies the details of signalling protocol based on the Possible architecture (Solution#1), the functional requirements for C-Plane (Solution#2) and other related requirements in other solutions.
5.12	Key Issue #11: Requirements for service control API
5.12.1	General
This key issue identifies the functional requirements for service control API that is required for the content provider, a form of RTC application provider, to provide an RTC services.
5.12.2	RTC Application Provider
5.12.2.1	General
In RTC architecture defined in 3GPP TS 26.506 [TS26.506], third-party application provider that provides WebRTC-based immersive RTC services is referred to as an RTC application provider. Such RTC application providers have several resources and functions to achieve service delivery.
NOTE 1:	Depending on the service delivery form of the RTC application providers (e.g., content provider detailed in clause 5.12.2.3), several resources and functions need to be deployed in the operator network.
RTC application provider is thought to have following resources:
1)	Service specific content: content for RTC services (e.g., back-ground graphical image/video and sound effects in VR conference services)
2)	RTC ID resource: resources reserved in control plane and used for establishing connection to RTC exchange resources. When accessing RTC services, a UE indicates this resource as the destination during media session setup. This resource is identified by a URI.
3)	RTC exchange resource: resources reserved in user plane. For example, individual RTC exchange resource is associated with a conference room.
NOTE 2:	RTC ID resources and RTC exchange resources are collectively referred to as RTC resources.
Also, RTC application provider is thought to have following functions:
1)	Service logic function: a function to execute the logic to realize RTC services. Following functionalities are included:
a1)	RTC ID resource manager: a functionality responsible for controlling the creation, update, and deletion of RTC ID resources.
a2)	RTC ID resource handling enforcer: a functionality to perform actual creation, update, and deletion operations on RTC ID resources as directed by the RTC ID resource manager.
b1)	RTC exchange resource manager: a function responsible for controlling the creation, update, and deletion of RTC exchange resources.
b2)	RTC exchange resource handling enforcer: a functionality to perform actual creation, update, and deletion operations on RTC exchange resources as directed by the RTC exchange resource manager.
c1)	Connection control manager: a C-plane functionality responsible for determining the acceptance of UE's connection requests targeting a specific RTC ID resource.
c2)	Connection control enforcer: a functionality to perform connection control as directed by the connection control manager.
d1)	Media data forwarding control manager: a U-plane functionality responsible for configuring the rule of forwarding control for individual media or data exchanged in U- plane.
d2)	Media data forwarding control enforcer: a functionality to perform media data forwarding control as directed by the media data forwarding control manager.
e1)	UE authentication manager: a functionality responsible for determining the authenticity of the UE using service-specific IDs. When RTC application providers assign their service-specific IDs to UEs, the authentication of UEs using those IDs needs to be performed in the RTC application provider's network.
e2)	UE authentication enforcer: a functionality to proxy UE authentication request and handling the result of authentication as directed by the UE authentication manager.
NOTE 3:	Functionalities included in service logic function can be classified into the following two types. One is "service logic manager", including a1), a2), a3), a4) and a5). The other is "service logic enforcer", including b1), b2), b3), b4) and b5).
2)	WebRTC endpoint function: a function to terminate WebRTC communication. Following functionalities are included:
a)	C-plane signalling: a functionality to perform C-plane signalling using the eiRTCW signalling protocol in this document.
b)	U-plane transport: a functionality to perform U-plane media communication using WebRTC protocol stack. Service specific content is provided through this functionality.
The control achievable through these functionalities above is referred to as "service control" in this document.
An RTC application provider performs as either service provider or content provider.
5.12.2.2	Service provider
An RTC application provider who provides RTC services with its own network is referred to as service provider (SP) in this document. SP owns resources and functionalities described in clause 5.12.2.1 within its network, and SP's network is connected to operator network via NNI. (See Figure 5.12.2.2-1.)
[bookmark: _Hlk150908161]NOTE 1:	Details of NNI interfaces are available in clause 6.2.
When a connection is initiated from the UE toward the SP, the SP uses the ID assigned and verified by the operator in order to control the UE's connections and provides services considering status of subscription associated with that ID.
NOTE 2:	When accessing SP's services, the UE initially attempts to connect to the operator's network using the ID assigned by the operator. After successful completion of authentication, the UE can use this ID as a network-assigned ID for establishing media sessions. The operator also treats this ID as a network-asserted ID through its verification. When a media session establishment request is made from the UE toward the SP, the SP will receive this network-asserted UE's ID in the signalling message from the operator's network.
NOTE 3:	The functions related to user account ID management and authentication for the IDs assigned by the operator are omitted in the Figure 5.12.2.2-1.

Figure 5.12.2.2-1: Service provider-operator connection and functional deployment diagram
5.12.2.3	Content provider
Contrary to SP, an RTC application provider who provide RTC services partially using operator's functionalities is referred to as content provider (CP) in this document. CP connects to the operator network via UNI (RTC-4s/4m) as a WebRTC endpoint in order to use the operator's MF and WSF for the service specific content delivery. (See Figure 5.12.2.3-1.)
Since operator network accommodates CP via UNI, RTC ID/exchange resources are reserved within the operator's WSF and MF respectively. Therefore, in order to perform dedicated operations on these RTC resources, RTC ID / RTC exchange resource handling enforcer functionalities needs to be deployed in the operator's WSF and MF. Also, connection control enforcer and media data forwarding control enforcer needs to be deployed in the operator network, as CP depends on C-Plane signalling and U-Plane transport functionalities of the operator network. As a result, CP's service logic managers in service logic function requires APIs for controlling related service logic enforcers deployed in the operator network. Since this functionality is not provided over RTC-4s/4m, it is considered to be provided through a different reference point than RTC-4s/4m. Required functionalities are to be discussed in clause 5.12.3.
NOTE:	The architectural requirements and reference point name for the APIs between CP's service logic manager and operator's service logic enforcers is FFS and will be addressed in the future work.
Also, CP and SP differ in terms of UE authentication by the service logic function. In the interconnection scenario between operator and SP networks, a UE connected to an operator network always uses an ID provided by the operator. In contrast, when RTC application provider provides its RTC service as CP, there are two possible network-asserted IDs that are used for media session setup by UE:
Operator-provided ID: the ID allocated to UE by the operator and managed by the operator. After successful completion of authentication, UE can use this ID as the network-asserted ID when requesting media session setup. The operator network will treat this ID as network-asserted ID and CP will perform connection control and provide service considering status of subscription related to the ID.
CP-provided ID: the ID allocated to UE by CP and managed by CP. The operator queries the CP to verify the authenticity of ID. After successful completion of authentication by CP, UE can use this ID as the network-asserted ID when requesting media session setup. The operator network will treat this ID as network-asserted ID and CP will perform connection control and provide service considering status of subscription related to the ID.
In the case using CP-provided ID, the coordination of operator and CP for authentication is thought to be the necessary for verification of ID's authenticity. For example, the WSF, which accepts UE authentication requests, would have UE authentication enforcer functionality for authentication, enabling WSF to cooperate with CP's UE authentication manager.
While such functional deployment change is required, CP-provided ID offers benefits to the users. For example, if SSO functionality is supported for the CP-provided ID, users can access multiple services using that ID. In the viewpoint of functionality, CP can be regarded as a subset of SP that delegates several functions to operator's WSF and MF. The advantage of adopting the CP service delivery form is that it allows the RTC application provider to concentrate efforts on its service content without its own network.

Figure 5.12.2.3-1: Content provider-operator connection and functional deployment diagram
5.12.3	Functional requirements for service control
5.12.3.1	General
As mentioned in clause 5.12.2.3, CP requires APIs for controlling each service logic enforcer from each service logic manager. It is assumed that the service control instructed by CP and performed by the operator network requires the capability to describe instructions related to the following four functionalities:
· CRUD of RTC ID resource and RTC exchange resources configuration
· User authentication proxy
· User connection control using asserted identity
· Media data forwarding control
5.12.3.2	CRUD of RTC ID resource and RTC exchange resource configuration
As described in clause 5.12.2, CP provides its RTC service by registering RTC ID/exchange resources to operator's network. RTC ID resource that serves as the destination for UE and configurations related to RTC exchange resource are to be registered (e.g., notification settings for events related to the RTC ID/exchange resources, expiration timing of RTC ID/exchange resource, and handling of new connections for controlling graceful shutdown).
In the deployment of CP's functions, RTC ID/exchange resource handling enforcers belong to the operator. This means that CP initiates CRUD operation requests, but the actual handling of RTC ID/exchange resources is performed by the operator based on these requests.
As operations on the RTC ID/exchange resources, registering RTC ID resource and the configuration of RTC exchange resource, update to the configurations of registered RTC exchange resources, deletion of RTC ID/exchange resources, and acquisition of current RTC exchange resource status are essential functions instructed by CP and performed by operator network.
5.12.3.3	User authentication proxy
As described in clause 5.12.2.3, when using CP-provided ID, the coordination of operator and CP for authentication becomes the necessary feature for verification of ID's authenticity. Once the authenticity of CP-provided ID is verified, this ID can be used as the network asserted ID by operator.
Except sharing the result of ID authenticity verification, the content and methods of authentication are left application-specific for CP. However, when UE connects to the operator network using CP-provided ID, operator would request the CP to verify the authenticity of that ID. Therefore, the operator requires the ability to proxy authentication performed by UE authentication enforcer.
5.12.3.4	User connection control using asserted identity
CP needs to be able to instruct connection control as part of functionalities supported in service logic manager when UE indicates an RTC ID resource as its destination and attempts to connect to the corresponding RTC exchange resource. Connection control manager in CP's service logic function can determine the acceptance of connection from its own managed user subscription information and network-asserted ID. There are two possible methods for the WSF performing the functionality of connection control enforcer to process connection control:
· CP registers specific connectable CP-provided or operator-provided IDs in the CRUD operation described in clause 5.12.3.3.
· Operator network queries CP to determine whether to accept the connection from a UE having a CP-provided or operator-provided ID to an RTC ID resource.
5.12.3.5	Media data forwarding control
In general, RTC application providers determine how individual audio/video media and non-media data from UNI are transmitted or terminated, reflecting service requirements (e.g., user experience, security., etc). Such process is defined as media data forwarding control (MDFC) in this document. Individual audio/video media refers to a single track of audio or video. Also, individual non-media data refers to the data other than audio or video that is transmitted and received over a single data channel. These are collectively referred to as RTC media/data.
MDFC deals with connections of individual RTC media/data to the endpoints of specific UE or service specific content function through MF's input and output.
For example, when it comes to an audio media in a conference, the upstream audio media from a specific UE is duplicated by the MF and sent to all other participants' UEs. On the other hand, when providing services such as audio analysis or recording, it is expected that only the audio media of UE which has consented to information collection by CP will be sent to the audio analysis or recording module. In some cases, MF can simply duplicate and transfer the video media without any processing, while in other cases, it can terminate the video media, perform video processing such as motion detection, and then send the video media as avatar animations. When using the Data Channel for text messages, in an open chat where all participants can see, the chat text is sent to all UEs. However, for the private messages, the text is only sent to specific UEs and not to others.
It is a part of MDFC functionality that optimizing the allocation of internal resource of MF depending on the patterns of RTC media/data duplication and UE connectivity. Examples of use cases with different patterns of RTC media/data duplication and UE connectivity are:
· Conference where audio and video media are connected in a full-mesh manner between participants
· Webinar where only the presenters' audio and video media are delivered to all participants
· Large-scale broadcasting where one presenter's audio and video media are delivered to much larger audience
MDFC mentioned above cannot be described by SDP. Therefore, SP implements the MDFC as an internal logic within the service logic function. In the CP's service delivery, the transfer and termination of RTC media/data are processed by the MF including MDFC enforcer, and CP's MDFC manager is responsible for creating MDFC rules and instructing MDFC enforcer. An API is required for CP to instruct the MDFC enforcer in operator.
5.12.4	Summary
SP performs service control using its own network functions. On the other hand, in the case of CP performing service control, all four functions described in clause 5.12.3 should be provided through APIs to allow CP's service logic mangers to instruct and the operator's service logic enforcers to perform those functions. In this key issue, the API which enable CP to interact above functionalities are to be studied.
6	Solutions
6.1	General
This clause describes the solutions for key issues in clause 5.
Editor’s note: The title of following clauses in clause 6 are tentative for the current description. These can be re-considered corresponding to the modification of the solution.
Table 6.1-1: Mapping of Solutions to Key Issues
	Solutions
	Key Issues

	
	#1
	#2
	#3
	#4
	#5
	#6
	#7

	#1: Architecture for eiRTC
	X
	
	
	
	
	
	

	#2: Requirements for C-Plane Signalling
	
	X
	
	
	
	
	

	#3: Requirements for U-plane Signalling
	
	
	X
	
	
	
	

	[bookmark: _PERM_MCCTEMPBM_CRPT72080000___7]#4: Interworking with IMS Network
	
	
	
	X
	
	
	

	#5: Tethered Cases
	
	
	
	
	X
	
	

	#6: Security Considerations
	
	
	
	
	
	X
	

	#7: Related Groups Considerations
	
	
	
	
	
	
	X

6.2	Solution #1: Possible Architecture for eiRTCW
[bookmark: _Toc475064960][bookmark: _Toc478400631][bookmark: _Toc7485786][bookmark: _Toc101214394]6.2.1	Solution description
This solution addresses key issue #1.
This clause identifies a possible eiRTCW architecture considering what functional entities and reference points are needed for WebRTC-based immersibe RTC services in collaboraion scenario 4. This includes:
1)	eiRTCW architecture based on WebRTC view point;
2)	interaction between fuctional entities in eiRTCW architecture and 5GC;
3)	media connnection model;
4)	IP addressing;
5)	alignment between eiRTCW architecture and RTC architecture and
6)	5G Real-time Communication Architecture for collaboration scenario 4.
As a conclusion of 1) to 6), the eiRTCW architecuter is proponsed as a solution for key issue#1.
[bookmark: _Toc124216560]6.2.2	eiRTCW architecture based on WebRTC viewpoint
6.2.2.1	Overview
Figure 6.2.2.1-1 depicts a possible eiRTCW architecture based on the WebRTC viewpoint. It contains the functional entities described in clause 6.2.2.2 and reference points described in clause 6.2.2.3. The names of functional entities and reference points described here are only for discussion of this solution and will be aligned with 3GPP TS 26.506 [TS26.506] in the proposed solution (clause 6.2.8).

Figure 6.2.2.1-1:	Possible Architecture (from WebRTC’s viewpoint)
WSF and CSF may co-locate in a physical node. WNSGF and WNMGF are also optional when gateway functions are not needed at the network boundary
6.2.2.2	Functional entities for WebRTC
6.2.2.2.1	General
This clause enumerates functional entities in terms of 1) WebRTC specifications, 2) WebRTC implementations, and 3) providing inter-operator services.
1)	Functional entities that are essential for this study and already defined in IETF RFCs or 3GPP specifications concerning WebRTC (see clause 6.2.2.2.2).
2)	Functional entities that are not directly specified in WebRTC-related specifications in IETF RFCs or 3GPP specifications but considered to be widely implemented for realizing WebRTC services; they are essential for this study (see clause 6.2.2.2.3).
3)	Functional entities that may be specifically required for inter-operator or 3rd-party collaboration services if modification of signalling and termination of media on network boundaries are needed (see clause 6.2.2.2.4).
6.2.2.2.2	Functional Entities defined in WebRTC specifications
6.2.2.2.2.1	UE (User Equipment)
[bookmark: _Hlk140668321]6.2.2.2.2.1.1	General
User Equipment (UE) contains a user agent function which is equivalent to "WebRTC Endpoint" as described below.
For the purposes of the present document, the following terms and definitions given in IETF RFC 8825 [RFC8825] apply as follows:
WebRTC Endpoint: Either a WebRTC browser or a WebRTC non-browser. It conforms to the protocol specification.
WebRTC Browser (also called a "WebRTC User Agent" or "WebRTC UA"): Something that conforms to both the protocol specification and the JavaScript API specification (W3C WebRTC 1.0 [W3C.WD-webrtc]).
WebRTC Non-Browser: Something that conforms to the protocol specification but does not claim to implement the JavaScript API. This can also be called a "WebRTC device" or "WebRTC native application".
In this study, both "WebRTC Browser" type endpoint and "WebRTC Non-Browser" type endpoint are supported on the eiRTCW architecture, as same as the RTC architecture specified in 3GPP TS 26.506 [TS26.506]).
[bookmark: _Hlk140668462]6.2.2.2.2.1.2	Considerations specific to WebRTC endpoint types
There are two types of WebRTC Endpoint as described in clause 6.2.2.2.2.1.1; one is "WebRTC Browser" type, and the other is "WebRTC Non-Browser" type. This clause shows possible functional model for each type of endpoints on eiRTCW architecture for identifying the specific issues related to WebRTC endpoint type. If the Application Provider connects its server (e.g., media server, content server, etc.) to a WSF in an operator network without providing WSF functionality (i.e., connect to the operator’s WebRTC DN via UNI not NNI), the server is treated as UE (WebRTC endpoint) for connecting to WSF in the operator network.
Regarding the "WebRTC Browser" type WebRTC endpoint, a JavaScript application runs on a web browser that has capabilities of JavaScript APIs including WebRTC APIs defined by W3C (see Figure 6.2.2.2.2.1.2-1). According to the concept of WebRTC described in IETF RFC 8829 [RFC8829], the procedures and protocols stated in this study are expected to be fully writable only with JavaScript.

Figure 6.2.2.2.2.1.2-1:	"WebRTC Browser" type endpoint
However, in the current situation, most of the OSs (e.g., android, iOS) and the web browsers (e.g., chrome, firefox) do not support/provide the enablers (provided by RTC MSH) for immersive RTC as JavaScript API. Therefore, to provide functionalities for realizing immersive RTC to "WebRTC Browser" type WebRTC endpoint, the mechanisms other than RTC MSH need to be supported. In order to support "WebRTC Browser" type endpoint, the protocols and procedures shown in this study can be implemented without RTC MSH.
Regarding the "WebRTC Non-Browser" type WebRTC endpoint, an application written in a programming language specific to the UE platform runs on UE using libraries and/or system call handlers. (see Figure 6.2.2.2.2.1.2-2)

Figure 6.2.2.2.2.1.2-2:	"WebRTC Non-Browser" type endpoint
NOTE:	The programming language and programming APIs used to write applications depend on the UE platform. For example, Java and Android API (SDK) will be selected for Android platform UEs, Swift and its libraries will be selected for iOS platform UEs, and C++ and Win64 API will be selected for Windows platform UEs.
The application can be realized in a way other than JavaScript running on a web browser. The application can support the functions provided by RTC MSH since the application can be developed proprietary.
In this study, the solution which realizes the immersive RTC services without using RTC MSH is studied to support "WebRTC Browser" type endpoint and "WebRTC Non-Browser" type endpoint.
This study does not state details of the application’s implementation; this study mainly discusses the network interface, which is applicable for both "Browser" and "Non-Browser" type UEs.
6.2.2.2.2.2	WSF (WebRTC Signalling Function)
The WebRTC Signalling Function (WSF) is a functional entity that is responsible for WebRTC signalling mechanism including capability exchange and management of media sessions between UEs and the network. This functional entity is described as "Servers" or "Web Server" in IETF RFC 8825 [RFC8825] clause 3. Each operator or 3rd-party in this study is assumed to have their own WSF(s) in their network.
WSF also provide the following functionalities:
-	Interaction with WMCF for media session (real-time streaming and data channel) control
-	Interaction with CSF for collaboration with web applications/services.
-	Interaction with 5GC, using Network Support function AF's (NS-AF) functionality.
6.2.2.2.3	Functional Entities widely implemented for WebRTC
6.2.2.2.3.1	WMCF (WebRTC Media Centre Function)
The WebRTC Media Centre Function (WMCF) is a functional entity that performs media processing. WMCF terminates media path (including audio/video stream and data channel) and performs media processing (e.g., mixing, selective forwarding, transcoding) which are required for immersive RTC applications. It may also perform decryption and encryption of media packets if DTLS, SRTP, or TLS is used for a transport layer. It also has the function of storing contents (including text or other static material as well as audio and video) and providing them to the UE. For media transport control, the WMCF interacts with WSF.
In the case that the WMCF acts as a simple media relay function, the WMCF simply relays media data packets and supports IP packet connectivity. When UE behaves as ICE Agents defined in IETF RFC 8445 [RFC8445] or IETF RFC 8838 [RFC8838], WMCF may be either STUN servers defined in IETF RFC 8489 [RFC8489] for connectivity check or TURN servers defined in IETF RFC 8656 [RFC8656] for relaying media data packets. This functional entity facilitates NAT traversal of UE and the connectivity between UE and other network functions.
This functional entity is generally implemented in WebRTC Multipoint Control Unit (MCU) or Selective Forwarding Unit (SFU).
6.2.2.2.3.2	CSF (Conference Supporting Function)
The Conference Supporting Function (CSF) provides the following functionalities:
-	Conference session management, i.e., "CRUD" operation – create, read, update, delete of conference instances.
-	Providing supplementary files (e.g., icon images of participants, and shared documents) via best-effort transport different from the channels for real-time media.
-	Capability exposure to 3rd-party application server to provide configuration of eiRTCW services.
-	Storage of user subscription data specific to MNO's WebRTC services.
NOTE 1:	In this study, it is assumed that a single user (i.e., identity) and its subscription data (associated with the identity) are assigned, owned, and managed by both MNO and service provider independently. The two identities have a link with each other via some technique. User subscription data specific to Service Provider’s services are stored in their networks.
-	Authorization Endpoint and Token Endpoint of OAuth 2.0 described in IETF RFC 6749[RFC6749] for establishing authentication linkage between MNO’s ID and Service Provider’s ID.
NOTE 2:	: OAuth token will be used to C-Plane authentication at WSF and Service Providers. STUN/TURN authentication with OAuth token is defined in IETF RFC 7635[RFC7635]. Portal http(s) servers of WebRTC services provide this function in general implementations.
6.2.2.2.4	Functional Entities needed for inter-operator services
6.2.2.2.4.1	WNSGF (WebRTC NNI Signalling Gateway Function)
The WebRTC NNI Signalling Gateway Function (WNSGF) is located at the boundary of the networks where different operators or 3rd-party network connects.
Each operator or 3rd-party has its own WebRTC Signalling Functions (WSF) so that WSFs are connected to each other with border control functions such as security, policy management, charging, etc. WNSGF is inserted into "Signalling Path" in Figure 2 of IETF RFC 8825 [RFC8825] and responsible for border control functions and supports session establishment between disparate address realm's networks.
WNSGF is able to support the functionality for interworking between WebRTC based signalling message and SIP message of IMS as a border control function.
6.2.2.2.4.2	WNMGF (WebRTC NNI Media Gateway Function)
The WebRTC NNI Media Gateway Function (WNMGF) is a media relay located at the boundary of the networks where different operators or 3rd-party network connects. WNMGF is responsible for the border control and transport of media data packets between different networks. WNMGF may also transcode media data packets.
WNMGF is able to support the functionality for interworking between WebRTC media and IMS media (e.g., transcoding of codec) as a border control function.
6.2.2.3	Reference Points
The reference points shown in Figure 6.2.2.1-1 are enumerated as follows.
Reference points for signalling are called as "Control Plane" or "C-Plane" in this study. Reference points for Media are similarly called as "User Plane" or "U-Plane" in this study.
Reference Points for signalling:
Rs-u: Reference Point between a WSF and a UE.
Rs-i: Reference Point between a WSF and another WSF in the same network (DN) or between a WSF and a WNSGF.
Rs-a: Reference Point between a WSF and a CSF.
Rs-n: Reference Point between a WNSGF and another WNSGF in an external network.
Reference Points for media (audio/video and data):
Rm-u: Reference Point between a WMCF and a UE.
Rm-i: Reference Point between a WMCF and another WMCF in the same network (DN) or between a WMCF and a WNMGF.
Rm-n: Reference Point between a WNMGF and another WNMGF in an external network.
Reference Points for signalling nodes to control media nodes:
Mc-i: Reference Point between a WSF and a WMCF.
Mc-r: Reference Point between a WNSGF and a WNMGF.
Other Reference Points:
Rh-u: Reference Point between a CSF and UE. This reference point is used for providing CSF functionalities (e.g., application usage assistance such as downloading an application) to UE.
Rh-n: Reference Point between a CSF and Application service provider. This reference point is used for interaction between CSF and Application service provider for media session set up related interaction.
Detailed protocol for each reference point will be discussed in the dedicated key issue and solution.
[bookmark: _Hlk140674347]6.2.3	Interaction between functional entities in eiRTCW architecture and 5GC
6.2.3.1	Overview
A possible architecture in terms of WebRTC view is described in clause 6.2.2. This clause shows a solution for integrating the eiRTCW architecture on pure WebRTC architecture with 5GC (5G core). In other words, this clause studies the possible interaction between the functions of eiRTCW architecture (based on WebRTC viewpoint) and the function on 5GC.
NOTE:	"pure WebRTC" means the original WebRTC described in IETF work, which basically does not take into account domain specific functions or features (e.g., mobile networks).
6.2.3.2	Mapping of functional entities for interaction with 5GC
6.2.3.2.1	General
This clause identifies the mapping of functional entities shown in Figure 6.2.2.1-1 into 5GC functional entities defined in 3GPP TS 23.501 [TS23.501].
In this study, the mapping of WSF and AF, and the mapping of WNSGF and 5GC functional entities are considered. Other functional entities (i.e., CSF, WMCF, WNMGF) are not considered since these functional entities are not expected to interact with 5GC.
6.2.3.2.2	WSF and AF
WSF is connected with UE and is expected to process the following:
1)	authenticate a UE.
2)	setup a WebRTC media session required by a UE, which may be in another network.
3)	manage QoS for the media path of a WebRTC session.
Then it is expected that the WSF interacts with 5GC functions and UE to perform 1) and 3) as the following:
1)	WSF can retrieve the identity of a UE from 5GC, then authenticates and authorizes the UE.
3)	WSF can request PCF to enable QoS control for the media path through e.g., N5, N32 (specified in 3GPP TS 23.501 [TS23.501]) or CAPIF (specified in 3GPP TS 23.222 [TS23.222]) interface.
Additionally, these processes are close to the processes of IMS functions such as P-CSCF and S-CSCF defined in 3GPP TS 23.228 [TS23.228]. The process of 1) is performed by S-CSCF and UDM, and 3) is performed by P-CSCF and PCF.
WSF can be mapped into "AF (Application Function)" of 5GC according to the definition of AF in 3GPP TS 23.501 [TS23.501] clause 5.2.10 due to the following reasons:
-	WSF interacts with the 3GPP Core Network to provide services.
-	The interaction between WSF and PCF/UDM is close to IMS interactions with 5GC.
6.2.3.2.3	WNSGF
6.2.3.2.3.1	Overview
This clause identifies the mapping of WNSGF to a 5GC functional entity. There are a couple of possibilities currently identified. The following two 5GC functional entities can be mapped from WNSGF:
-	NEF (see clause 6.2.3.2.3.2)
-	SEPP (see clause 6.2.3.2.3.3)
As another possibility, it may be appropriate that WNSGF is mapped to a new functional entity (like Interconnection Border Control Function: IBCF in IMS). The exact mapping of WNSGF is described in proposed architecture clause (6.2.8).
6.2.3.2.3.2	WNSGF and NEF
When WSF is mapped into an AF and if WNSGF is deployed as 5GC function, WNSGF can be mapped into an NEF (Network Exposure Function) due to the following reasons:
-	When WSF processes 2) of clause 6.2.3.2.2 and the media session relates to other operator’s network, WSF (mapped to an AF) of operator-A is requested to interact with WNSGF on the boundary of operator-B to communicate with WSF (mapped into an AF) in operator-B due to operator-B's policy. In this model, the relationship between WSF (in operator-A) and WNSGF (in operator-B) is close to the relationship between AF and NEF described in 3GPP TS 23.501 [TS23.501] clause 6.2.10.
-	The major function of WNSGF is close to the former three functionalities described in 3GPP TS 23.501 [TS23.501] clause 6.2.5.0; WNSGF exposes WSF's WebRTC signalling capability and events. WNSGF interworks with WebRTC signalling between Rs-i and Rs-n reference points in terms of security and translation of internal-external information.
When WNSGF is mapped into an NEF, the definition of the NEF function may need to be modified as follows:
-	Descriptions for the exposure of WSF's WebRTC signalling capability and the events by WNSGF are added in 3GPP TS 23.501 [TS23.501] clause 7.2.8.
-	Descriptions for the event exposure details are added in 3GPP TS 23.502 [TS23.502] clause 4.15.3.
-	Descriptions for the capability exposure details are added in 3GPP TS 23.502 [TS23.502] clause 5.2.6.
6.2.3.2.3.3	WNSGF and SEPP
Security Edge Protection Proxy (SEPP) is defined in 3GPP TS 33.501 [TS33.501] and 3GPP TS 23.501 [TS23.501]. The SEPP is an entity sitting at the perimeter of the PLMN for protecting control plane messages, hiding network topology. The SEPP enforces inter-PLMN security on the N32 interface that is a reference point between a SEPP in one PLMN and a SEPP in another PLMN.
If WNSGF is deployed as 5GC function, WNSGF is also located at the perimeter of the PLMN and its function is protecting control plane messages and hiding network topology. The function of WNSGF is close to that of SEPP.
The difference is the type of PLMN. WNSGF is located at the edge of inter-HPLMN. On the other hand, SEPP is expected to be used for N32 that lies between HPLMN and VPLMN.
6.2.3.2.3.4	New functional entity
WNSGF is a border control function over C-Plane signalling path and located at the boundary of the networks where different operators or 3rd-party network connects, as described in clause 6.2.2.2.4.1. Then, WNSGF is not expected to interact with 5GC functions and act as the gateway function for SBI.
In this study, the C-Plane signalling messages are expected to be exchanged via a DN over N6 interfaces and WNSGF is located at the DN. Therefore, WNSGF needs to be specified as a new border control function for eiRTCW C-Plane signalling path in WebRTC domain.
6.2.3.3	Possible Architecture integrated with 5GC
The functional entities shown in Figure 6.2.2.1-1 can be connected to 5GC (5G Core) as described in Figure 6.2.3.3-1.

Figure 6.2.3.3-1:	Possible Architecture (integrated with 5GC)
WSF (with NS-AF functionality of RTC architecture) is mapped into an AF as the 5GC viewpoint.
WSF (with NS-AF functionality of RTC architecture) is interconnected with PCF via N5 interface. WSF manages QoS of real-time media packets and signalling packets via N5 interface. WSF may interact with UDM to authenticate and to authorize the UE.
Both signalling packets and media packets between UE and the network are transmitted via N6 interface. Signalling packets (C-Plane packets) from UE are transmitted to WSF, and real-time media packets (U-Plane packets) from UE are transmitted to WMCF. C-Plane signals may travel to WNSGF via Rs-i, and may travel further to other operator’s WNSGF via Rs-n. U-Plane signals may travel to WNMGF via Rm-i, and may travel further to other operator’s WNMGF. (see Figure 6.2.3.3-2)

Figure 6.2.3.3-2:	Possible Architecture (from 5GC view, with data flows of C/U-Planes)
6.2.3.4	Mapping to iRTCW Collaboration Scenarios
The following table shows the mapping of functional entities in this study into iRTCW collaboration scenarios described in 3GPP TS 26.506 [TS26.506]. Each box shows the condition (required or not) for MNO. The targets of this study are collaboration scenarios 3 and 4.
Table 6.2.3.4-1:	Mapping to iRTCW collaboration scenarios
	Functional Entity
	Collaboration Scenario 3
	Collaboration Scenario 4

	
	3A / Service Provider provides WebRTC services and MNO assists the services.
	3B / MNO provides WebRTC services only in the MNO’s network
	MNO’s WebRTC service interconnects with other MNO’s or Service Provider’s service

	WSF
	Required
	Required
	Required

	WMCF
	Required
	Required
	Required

	CSF
	Required
	Required
	Required

	WNSGF
	N/A (NOTE 1)
	N/A
	Required

	WNMGF
	N/A (NOTE 1)
	N/A
	Required

	NOTE 1:	Scenario 3A in this table assumes Service Provider’s WebRTC functions communicate with WSF and WMCF via UNI-like interface, i.e., WSF and WMCF work as a gateway by themselves. Further Operator-Assistance models may be introduced.

6.2.4	Media connection model
6.2.4.1	General
In the original WebRTC design, the communication between UEs is thought to be peer-to-peer (P2P). In most of the existing WebRTC implementations, however, the media connection is not P2P. An intermediate server (or servers) between UEs is used. In the multi-party call, the intermediate server which performs media processing is helpful for a UE because, for a UE, decoding all media from other UEs is a heavy load. Direct full-mesh connections among multiple UEs consumes a lot of network resources. Additionally, such an intermediate server is useful even for a one-to-one communication for offloading immersive media processing which needs more computation power than conventional media. This leads to the discussion about split rendering.
This study mainly focuses on the media connection model with intermediate servers.
P2P connection has some benefit for one-to-one communication (i.e., no need for an intermediate server and less server-relayed delay). For that reason, P2P connection is also considered for some special cases.
6.2.4.2	Target use cases from network view
Based on the high-level network model and target interfaces described in clause 4.2 and the eiRTCW architecture in clause 6.2.2, eiRTCW signalling supports the following use cases of media session set up from network view.
<Media session set up with media resource served in the operator network via UNI>
a.	UE - Media Resource (served by the same Operator)
b.	UE - Media Resource (served by the same Operator) - UE (CP)
<Media session set up with media resource via NNI>
c.	UE - Media Resource (served by other Operator)
d	UE - Media Resource (served by an SP)
e.	UE (served by other Operator) – Media Resource - UE (CP)
f.	UE - Transit entity (served by other Operator) - Media Resource (served by an SP)
<Media session set up between UEs>
g.	UE - UE (served by the same Operator) without media gateway
h.	UE - UE (served by other Operator) without media gateway
i.	UE - UE (CP) without media gateway
j.	UE (connected to other Operator) - UE (CP) without media gateway
The overviews of these use cases are described below based on the possible eiRTCW architecture described in clause 6.2.2.
NOTE: Media Resource of Content Provider is treated as UE.
NOTE: CSF is not shown in the Figure for simplicity.
a.	UE - Media Resource (served by Operator):
UE establishes a media session with a media resource (e.g., immersive conference room) served by the same operator. Figure 6.2.4.2-1 shows an example that UE_A and UE_B establish media sessions with the media resource to an immersive conference room to communicate with each other.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-1:	Media session: UE - Media Resource (served by the same Operator)
b.	UE - Media Resource (served by Operator) - UE (CP):
A UE establishes a media session with a media resource (e.g., 3D video content) served by a CP which connected to the same Operator, via a media gateway (such as WMCF).
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-2:	Media session: UE - UE (CP) - Media Resource (served by the same Operator)
c.	UE - Media Resource (served by other Operator):
A UE establishes a media session with a media resource (e.g., Immersive conference room) served by the operator that different from the network which the UE is connected to. In this scenario, the C-Plane signalling message and media session stream are sent over the NNI. Other UEs can connect to the media resource as same as pattern a.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-3:	Media session: UE - Media Resource (served by other Operator)
d.	UE - Media Resource (served by an SP):
A UE establishes a media session with a media resource (e.g., Immersive conference room) served by an SP. In this scenario, the C-Plane signalling message and media session stream are sent over the NNI.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-4:	Media session: UE - Media Resource (served by an SP)
e.	UE - Media Resource (served by other Operator) - UE (CP):
A UE in the other operator network and UE (CP) establishes a media session with a media resource (e.g., Immersive conference room) served by an operator network which the UE (CP) connected to. In this scenario, the C-Plane signalling message and media session stream are sent over the NNI.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-5:	Media session: UE – Media Resource (served by other Operator) - UE (CP)
f.	UE - Transit NW (other Operator) - Media Resource (served by an SP):
A UE establishes a media session with a media resource (e.g., Immersive conference room) served by an SP via transit NW (other operator). In this scenario, the C-Plane signalling message and media session stream are sent over the two different NNIs.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-6:	Media session: UE - Transit NW (other Operator) - Media Resource (served by an SP)
g.	UE - UE (served by the same Operator) without WMCF:
A UE establishes a media session (e.g., voice chat) with another UE served by the same operator, without using WMCF.
[image: ダイアグラム が含まれている画像

自動的に生成された説明]
Figure 6.2.4.2-7:	Media session: UE - UE (served by the same operator) without WMCF

h.	UE - UE (served by other Operator) without WMCF:
A UE establishes a media session (e.g., voice chat) with another UE served by the different operator, without using WMCF. In this scenario, the C-Plane signalling messages and media session stream are sent over the NNI.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-8:	Media session: UE - UE (served by other Operator) without WMCF
i.	UE - UE (CP) without WMCF:
A UE establishes a media session with a UE (e.g., 3D video content) served by a CP which connected to the same operator, without using WMCF.
[image: グラフィカル ユーザー インターフェイス が含まれている画像

自動的に生成された説明]
Figure 6.2.4.2-9:	Media session: UE - UE (CP) without WMCF
j.	UE (connected to other Operator) - UE (CP) without WMCF:
A UE establishes a media session with a UE (e.g., 3D video content) served by a CP which connected to the different operator, without using WMCF. In this scenario, the C-Plane signalling messages and media session stream are sent over the NNI.
[image: ダイアグラム

自動的に生成された説明]
Figure 6.2.4.2-10:	UE (connected to other Operator) - UE (CP) without media gateway

6.2.4.3	QoS Enabled End-to-End Path
This study covers two collaboration scenarios as is described in the previous clause. In the collaboration scenario where the WebRTC functions in an MNO assist an external service provider (OTT or another MNO), setting up a QoS-enabled media path across different networks needs to be studied.
The media path from a UE to the external service provider is roughly divided into four sections:
Section 1) Between a UE and the UPF (Operator’s CN section)
Section 2) Between the UPF and the operator’s network edge (Operator’s DN section)
Section 3) Between the operator’s network edge and the external service provider network edge
Section 4) A network in the external service provider
Section 4) is a matter of a service provider and out of scope of this study.
Regarding Section 1), this section includes the operator’s core network. In this section, QoS is controlled by the PCF. In the collaboration scenario with an external service provider, the main signalling server is placed in the service provider’s domain. While UE exchanges control plane signalling messages with the signalling server placed in the service provider’s domain, UE sends a QoS-related request separately to the WSF placed in the operator network. The WSF receives and interprets the UE’s request and requests the PCF to prioritize the UE’s specific session.
Regarding Section 2), operator’s DN may have sufficient bandwidth and other QoS mechanism may be adopted.
Regarding Section 3), this section’s QoS control needs a bandwidth guaranteed path (i.e., a dedicated line). On the eiRTCW architecture, when the media path is connected to a media resource in other operator network or service provider network, the media packets to be prioritized are transmitted to WMCF placed in the operator’s network and the WMCF relays the media to the main media server in the other operator network or service provider network via guaranteed path as shown in Figure 6.2.4.3-1 (red-line). If the media path is connected to a media resource (works as WebRTC endpoint) in a service provider network via WSF and WMCF (which work as a gateway) in the operator network, this section is treated as UNI, as shown in Figure 6.2.4.3-1 (blue-line).

Figure 6.2.4.3-1:	Sections of E2E media path
Editor’s Note: Analyze gaps and identify required enhancements of terminal device and network architectures including additional functional entities (e.g., WebRTC Signalling Server, ICE-STUN Server, IMS Interworking Gateway, NNI Gateway).
- Stage2 work requirements
- Necessary functional blocks
- Architectural comparison (details are in annex)
6.2.5	IP Addressing
6.2.5.1	Overview
IP addressing for UE has some options: assigning IPv4 address only, IPv6 address only, or both.
In the operator deployment, the number of available IPv4 addresses would be insufficient for its subscribers. Generally, operators use IPv4 private address (and ISP shared address defined in IETF RFC 6598[RFC6598]) with network address translation (NAT).
In clause 6.2.5, appropriate IP addressing is identified, discussing NAT-traversal in the WebRTC user plane and network verified ID retrieval.
6.2.5.2	NAT
6.2.5.2.1	Overview
NAT, including port translation as NAPT (Network Address and Port Translation), is a method of mapping an IP address space into another, which is mainly used to translate a private IP address into a global IP address, and vice versa, for communicating with external networks.
Generally, UE can be assigned with an IP address through a PDU session in operator networks. When an IPv4 address is allocated, as mentioned in clause 6.2.5.1, a private IP address or an ISP shared address is used. On the contrary, when an IPv6 address is allocated, a global unicast address is assigned.
NAT is essential for carrier-grade network deployment. Subscribers can be much more than usually available IPv4 global address space, and they are treated by using IPv4 private address and NAT. The same private address can be reused in each different domain behind NAT. Although NAT deployments have a wide variety, NAT is generally installed in a DN (data network) and often put in the middle between the UPF and other functional entities (see Figure 6.2.5.2-1).
On the other hand, IPv6 global unicast addresses basically do not require NAT, except for special security reasons or some transition method between IPv6 and IPv4 domains.

Figure 6.2.5.2-1:	Possible NAT location

6.2.5.2.2	NAT Variation
NAT is classified into some types by its address translation and packet filtering behavior.
The first version of STUN in IETF RFC 3489 [RFC3489] defines three types:
-	Full Cone NAT,
-	Restricted NAT (Restricted Cone NAT or Restricted Port Cone NAT), and
-	Symmetric NAT.
Full cone NAT does not limit access to an internal UE from external network entities, which have not communicated with the internal UE. Any external entities can re-use the external IP address and port number mapped to a specific internal UE and can access to it (Figure 6.2.5.2.2-1). Full cone NAT is less restrictive than other NATs. Restricted NAT only permits external entities to access the internal UE if the NAT have received any packets from the internal UE directed to the external UE (Figure 6.2.5.2.2-2). Symmetric NAT uses a different pair of an external IP address and port, which are specific to each external entity and only the external entity can access to the internal UE through the IP address and port pair.

Figure 6.2.5.2.2-1:	 Full Cone NAT behaviour

Figure 6.2.5.2.2-2:	Restricted or Symmetric NAT behaviour
6.2.5.2.3	Existing NAT-traversal
6.2.5.2.3.1	General
An effective NAT-traversal method is different depending on the NAT type described in clause 6.2.5.2.2.
In the original WebRTC design, STUN and TURN are listed, included as ICE, for major NAT-traversal methods. In addition, Hosted NAT Traversal (HNT, described in IETF RFC 7326 [RFC7326]) and its similar mechanism are frequently used in real implementations for conversational applications.
6.2.5.2.3.2	STUN
STUN is the method for UE behind the NAT to discover its external IP address observed by external networks. This method supports P2P communications and only works for full-cone NAT.
This study excludes STUN because the main communication model is not P2P but with intermediate servers (as described in clause 6.2.5), and general NATs deployed in operator networks are not limited to full-cone type.
6.2.5.2.3.3	TURN
TURN is the method for UE behind the NAT to communicate with external nodes via an intermediate server. TURN is a protocol for the session management and requires an intermediate server.
Generally, this method is regarded as the last resort for NAT-traversal for UDP-based conversational services. This method does not require the alignment with other control plane signalling, but is equipped as its own user plane connection management mechanism. This method needs additional message exchanges and has a protocol overhead.
The TURN server has its authentication mechanism for UEs and can be used for the purpose of traffic steering for an inter-operator communication scenario detailed in clause 6.9.
6.2.5.2.2.4	HNT
HNT (Hosted NAT Traversal) is the mechanism that a session border controller (SBC) placed at the edge of networks intermediates the communication between UEs behind NAT.
The problem tackled by HNT is that a UE behind a NAT tries to set up a session with its private address and port number for media, which have no clue to the SBC for the real media which comes later.
Regarding the control plane signalling, the signalling part of the SBC modifies media-related information represented by the private IP address and port number set in the SDP offered by an originating node into a global IP address and a new port number. This modification enables a terminating node to target the accessible IP address and port pair provided by the SBC. In the signalling return path, the SBC also modifies the terminating node’s IP address and port number set in the SDP answered by the terminating node into new ones, and forwards it to the originating node. This is to solicit the originating node to send media to the SBC. Once the SBC receives the first media packet from the originating node targeting at the solicitation, the SBC recognizes the real NAT-ed IP address and port pair of the originating node. The SBC captures that information and uses it for relaying packets from the terminating node to the originating node. This is called "latching".
This method is embedded in the control plane signalling and does not require extra message exchange. For that reason, it has no additional protocol overhead. It is a better feature than TURN in the same condition requiring an intermediate server.
Since this study focuses on the connection model with an intermediate server, the NAT issues can be argued differently. Let’s assume that all communication services are provided by the intermediate server as a conference. UEs can just join the open channel provided by the server and receives media from the server. UEs can also send their media to the intermediate server and the server mixes the media and distributes to other UEs. In this model, the first join packet from a UE to the NAT and the NAT to the server creates an address mapping at the NAT. The server simply sends packets to the source address of the join packet from the UE.
This mechanism does not need the dedicated protocol and there is no additional protocol overhead for NAT-traversal by sending media to the specific IP address and port pair exposed by WMCF. That points are analogous to HNT (Figure 6.2.5.2.3-1).

Figure 6.2.5.2.3-1:	HNT like NAT-traversal

6.2.5.2.4	Conclusion of NAT handling
NAT-traversal problems have been discussed and several solutions have been proposed as described above. However, if equipment for NAT-traversal is not required, certainly less server resources would be needed.
In short, it is preferable that only IPv6 global unicast address be assigned to UE and no dedicated NAT-traversal equipment be used. Intermediate servers are used mainly for media processing and for the media relay when there is no direct IP reachability (e.g., across inter-operator connection).
6.2.5.3	IP Address and Trustable Subscriber Identifier
The operator uses subscription identifiers (e.g., GPSI (Generic Public Subscription Identifier) in 5GC) for managing its customer’s service subscription and charging. In WebRTC support, the operator needs to check customer’s service requests by checking against operator’s subscriber database organized with the subscription identifier. An OTT-specific ID and password may be insufficient even in the collaboration scenario with external service providers because they cannot be securely linked with subscriber information in the viewpoint of the operator. The issue is how the MNO deduces (or retrieves) the trustable subscriber identifier from customer’s requests, which are carried by IP packets.
Trustable subscriber identifiers in the MNO network are required for certain validity check, since a UE’s self-claimed GPSI and source IP address are untrusted.
The EDGEAPP architecture specifies the method how the EAS function block retrieves the GPSI from terminal’s source IP address. The AF regarded as an EAS can retrieve the GPSI bound to the UE by Eees_UEIdentifier API in EDGEAPP. This mechanism and its flow contain authentications conducted at the related network functions (i.e., EES and NEF), which enable the EAS to acquire the valid GPSI in the operator network as a trustable subscriber identifier.
Validity of the terminal’s source IP address needs consideration. UE’s self-claimed IP address, especially presented in an application level, is not trustable. The source IP address presented in an IP header can be relatively trustable when the IP packet is transmitted through a connection with some handshake procedures.
The IP address linkage with a subscriber identifier also has an issue when NAT is deployed. In Release 18, the method with which the AF can identify the trustable subscriber identifier (e.g., GPSI) to invoke the 3GPP network service API for the UE (Application client) remains to be investigated in eEDGEAPP. In VoLTE, this linkage with NAT can be achieved with the help of additional operator-specific information (e.g., PDN session related value). In the AF for WebRTC, it depends on which additional information element can be acquired by the AF. There is no clear answer for the ID linkage between the NAT-ed IP address and the subscriber identifier.
Contrarily, the UE IP address without translated by NAT can be linked with GPSI by Eees_UEIdentifier API (though detailed specification is needed).
In terms of ID linkage, using IPv6 global unicast address for UE is reasonable.
Using IPv4 private address will be studied further when NAT-ed ID linkage issue is solved.
6.2.5.4	Conclusion of IP Addressing
In terms of the required server resources for NAT-traversal and unclear retrieval of the trustable subscriber identifier, using IPv6 global unicast address for UE is reasonable. NAT deployments have a wide variety of behaviors and cannot be treated straightforward (refer to clause 6.2.5.2). Using media relay servers that act as either TURN or HNT covers most cases with NAT-traversal. However, there are still issues using IPv4 private address with NAT, such as ID linkage (refer to clause 6.2.5.3). For the sake of simplicity and to concentrate on identifying signalling requirements, this study considers IPv6-only use. Then the use of ICE Function and the enhancements of ICE function are excluded from the scope of this study.
NOTE:	As specified in 3GPP TS 26.506 [TS26.506], the use of ICE Function is optional and is not restricted.
Also, IPv6-only use is acceptable for future services because IPv6 address allocation to UEs is now widely available among operators. Also, IPv6-only deployment (or not using limited IPv4 address resource) leads to efficient system development and equipment utilization.
6.2.6	Alignment between eiRTCW architecture and RTC architecture
6.2.6.1	General
This clause identifies the architectural and functional mapping between eiRTCW architecture in clause 6.2.2 of this document and RTC architecture specified in 3GPP TS 26.506 [TS26.506]. Figure 6.2.6.1-1 shows the RTC general architecture specified in 3GPP TS 26.506 [TS26.506].

[bookmark: _Hlk116507747]Figure 6.2.6.1-1:	RTC General Architecture
6.2.6.2	WebRTC endpoint and RTC endpoint on UE
WebRTC endpoint on the UE is expected to be mapped to RTC endpoint on the UE on the RTC architecture. The following aspects need to be reflected in normative TS in the succeeding normative work.
-	An WebRTC endpoint includes signalling related aspects of applications on the UE, however, an RTC endpoint does not include applications on the UE. To support the signalling protocol for media session setup, the signalling related functionality of application is included in the scope of the RTC endpoint. Application itself is not included in the scope.
[bookmark: _Hlk141119286]-	There is a possible case that an equipment of content provider connects to media resource via UNI, as described in clause 4.2 and clause 6.2.4.2. In this case, the equipment of the content provider is treated as same as WebRTC endpoint on the UE.
6.2.6.3	WSF and (RTC) WSF
WSF is expected to be mapped to WSF (integrated with NS-AF) on RTC architecture. The following aspects need to be reflected in normative TS in the succeeding normative work.
WSF provide the following functionalities in addition to the current functionality described in 3GPP TS 26.506 [TS26.506]:
-	Interaction with ASWF for collaboration with web applications/services.
-	Interaction with 5GC, using network Support function (NS-AF) functionality.
-	Retrieval of the identity of a UE from 5GC, and authentication of the UE.
6.2.6.4	WNSGF and Inter-working Function
Inter-working Function (IWF) is specified in 3GPP TS 26.506 [TS26.506] as an inter-working functionality to enable MNO-facilitated WebRTC sessions that involve endpoints across different MNOs (e.g., providing cross-network signalling functionality). This is the expected functionality for WNSGF, since WNSGF is a Gateway function for signalling messages between MNOs. Then, WNSGF is expected to be mapped to IWF on RTC architecture.
No gap is found between WNSGF and IWF
6.2.6.5	CSF and Application Supporting Web Function
CSF is expected to be mapped to ASWF on RTC architecture. The following aspects need to be reflected in normative TS in the succeeding normative work.
ASWF provide the following functionalities in addition to the current functionality described in 3GPP TS 26.506 [TS26.506]:
-	Conference session management, i.e., "CRUD" operation – create, read, update, delete of conference instances.
-	Providing supplementary files (e.g., icon images of participants, and shared documents) via best-effort transport different from the channels for real-time media.
-	Capability exposure to 3rd party application server to provide configuration of eiRTCW services.
-	Storage of user subscription data specific to MNO’s WebRTC services.
-	Authorization Endpoint and Token Endpoint of OAuth 2.0 described in IETF RFC 6749[RFC6749] for establishing authentication linkage between MNO’s ID and Service Provider’s ID.
6.2.6.6	WMCF and Media Function
WMCF is expected to be mapped to MF on RTC architecture. The following aspects need to be reflected in normative TS in the succeeding normative work.
The MF provide the following functionalities in addition to the current functionality described in 3GPP TS 26.506 [TS26.506]:
-	performing decryption and encryption of media packets if DTLS, SRTP, or TLS is used for a transport layer.
-	storing contents (including text or other static material as well as audio and video) and providing them to the UE.
6.2.6.7	WNMGF and Transport Gateway Function
WNMGF is expected to be mapped to TGF on RTC architecture.
No gap is found between WNMGF and TGF.
6.2.7	5G Real-time Communication Architecture for collaboration scenario 4
This clause identifies the possible architecture for collaboration scenario 4 of 5G Real-time Communication specified in 3GPP TS 26.506 [TS26.506] based on the consideration in above clauses. Figure 6.2.7-1 shows the derivative RTC architecture for collaboration scenario 4.

Figure 6.2.7-1:	Possible derivative RTC architecture for collaboration scenario 4
NOTE 1:	Other Network includes RTC ASs in a different MNO, RTC ASs in a service provider and functions of an IMS network.
NOTE 2:	If RTC AF and -RTC AS are controlled by a single operator and located in the same operator network, these functions are trusted. Inter-working Function and Transport Gateway Function act as a border controller function at the boundary of the network.
The following interfaces are expected to be introduced for collaboration scenario 4.
-	RTC-9: This reference point is for C-Plane signalling and U-Plane media transport between RTC AS (Inter-working Function) and other network(s). This interface is necessary for inter-connect RTC-AS with other-networks to realize collaboration scenario 4. RTC-9 may further be grouped into two sub-interfaces as follows.
i)	RTC-9s:	This interface is for C-Plane signalling between Inter-working Function and other network(s).
ii)	RTC-9m:	This interface is for U-Plane media transport between Transport Gateway Function and other network(s).
The following interfaces are expected to be introduced/extended for collaboration scenario 3 and collaboration scenario 4. These interfaces are to enable operator assistance for RTC application providers and UEs, then these interfaces are used not only for inter-MNO scenario (Collaboration scenario 4) but also single MNO assistance scenario (Collaboration scenario 3).
-	RTC-2: This interface is application interface between RTC AS and RTC Application Provider. The interface is used for providing RTC AS functionalities via ASWF. (e.g., subscription of media resource in RTC-AS.). This interface is necessary for real-time interaction between RTC-AS and RTC application provider for media session control.
-	RTC-4m: This interface needs to be extended for providing ASWF functionalities (e.g., application usage assistance such as downloading an application) to UE. This extension is necessary for providing RTC AS functionalities to UE as operator assistance.
The functions described in this study correspond to the functions in the architecture for collaboration scenario#4 of 5G Real-time Communication Architecture specified in 3GPP TS 26.506 [TS26.506] as follows.
-	WSF (WebRTC Signalling Function): WebRTC Signalling Function
-	WMCF (WebRTC Media Centre Function): Media Function
-	CSF (Conference Supporting Function): Application Supporting Web Function
-	WNSGF (WebRTC NNI Signalling Gateway Function): Inter-working Function
-	WNMGF (WebRTC NNI Media Gateway Function): Transport Gateway Function
NOTE 4:	As described in 3GPP TS 26.506 [TS26.506], the integration/collocation of RTC AF and WebRTC signalling server is possible. Co-located WebRTC signalling server is able to act as a RTC AF which is accessible to 5GC, and replace some of this RTC AF’s interfaces and APIs with WebRTC signalling. For example, interfaces and APIs between this RTC AF and UE will be replaced to avoid concurrent/redundant requests from UE.
The interfaces described in this study correspond to the interfaces in the architecture for collaboration scenario#4 of 5G Real-time Communication Architecture as follows.
-	Rs-u: RTC-4s
-	Rs-n: RTC-9s
-	Rm-u: RTC-4m
-	Rm-n: RTC-9m
[bookmark: _Hlk142915763]-	Rh-u:	RTC-4m
-	Rh-n:	RTC-2
For the study of C-Plane signalling aspects, this study focuses on RTC-4 based solutions as shown in Figure 6.2.7-2 to support the collaboration scenario 4 and the case for the application which is not able to use MSH (e.g., Web App).
-	RTC AF functionalities are integrated in WebRTC Signalling Function, since MSH is not used. Then, MSH related interfaces are omitted in Figure 6.2.7-2.
-	Functions of RTC AF are integrated within WebRTC Signalling Function, then RTC-3 is out of the scope.
-	The use and usage of ICE Function is optional functionality and is not used for non- NAT case. Then the extension of ICE functionality and its usage are out of the scope, since no further extension is not identified in this study.
-	The representation of RTC-4s and RTC-4m are simplified. Web App and Native WebRTC App are expected to use these interfaces as follows.
-	Web App utilizes the web browser’s JS API (including WebRTC API) to send/receive signalling message on RTC-4s and media / application data on RTC-4m.
-	Native WebRTC App utilizes the SDK provided by the OS of the UE to send/receive signalling message on RTC-4s and media / application data on RTC-4m.

Figure 6.2.7-2:	The focused interface of eiRTCW C-Plane signalling protocol
NOTE 5: RTC-4m is connected to ICE Function when TURN server needs to be used. Otherwise, RTC-4m is connected to Media Function or Application Supporting Web Function.
NOTE 6: The interfaces and the functionalities related to MSH, NS-AF, Configuration Function and Provisioning Function are not in the focus.
6.2.8	Proposed architecture
6.2.8.1	General
In this clause, enhancements on 3GPP TS 26.506 [TS 26.506] and the following are described
-	the proposed enhancements for RTC generic architecture
-	derivative derivative -architecture for collaboration scenario 3
-	the proposed derivative architecture for collaboration scenario 4 in 3GPP TS 26.506 [TS26.506] (see clause 6.2.8.2) and the proposed eiRTCW architecture supporting collaboration scenario 3 and 4 (see clause 6.2.8.3).
6.2.8.2	Enhancements on 3GPP TS 26.506
The following reference points are expected to be introduced RTC General Architecture defined in 3GPP TS 26.506 [TS26.506] as shown in Figure 6.2.8.2-1, Figure 6.2.8.2-2 and Figure 6.2.8.2-3.
-	RTC-9: This reference point is for C-Plane signalling and U-Plane media transport between RTC AS (Inter-working Function) and other network(s). RTC-9 may further be grouped into two sub-interfaces as follows.
i)	RTC-9s:	This interface is for C-Plane between Inter-working Function and other network(s).
ii)	RTC-9m:	This interface is for U-Plane between Transport Gateway Function and other network(s).
-	RTC-2: This reference point is application interface between RTC AS and RTC Application Provider. The interface is used for providing RTC AS functionalities via ASWF. (e.g., subscription of media resource in RTC-AS.)
-	RTC-4m: This reference point is extended for providing ASWF functionalities (e.g., application usage assistance such as downloading an application) to UE.
RTC-4 reference point is connected to UE rather than WebRTC Framework since the interface including signalling messages between application and RTC AS, and media (audio/video stream and data connection) between RTC endpoint and RTC AS. RTC-2 reference point and RTC-9 reference points are introduced.

Figure 6.2.8.2-1:	Expected enhancements on RTC General Architecture
Figure 6.2.8.2-2 shows the expected enhancements on derivative RTC architecture for collaboration scenario 3 specified in 3GPP TS 26.506 [TS26.506]. RTC-4m reference point is clarified that this interface is used for providing ASWF functionality to UE, and RTC-2 reference points is newly introduced to support the use of ASWF functionality for Application Provider.

Figure 6.2.8.2-2:	Expected enhancements on derivative architecture for collaboration scenario 3
Figure 6.2.8.2-3 shows the expected derivative RTC architecture for collaboration scenario 4. Collaboration scenario 4 supports inter-operable WebRTC services. Then collaboration scenario 3 is extended with functions and interfaces to support MNO to MNO inter-operability. RTC-9 (RTC-9s and RTC-9m) reference point is introduced to support the inter-connection between MNO’s RTC ASs.

Figure 6.2.8.2-3:	Expected derivative architecture for collaboration scenario 4
6.2.8.3	eiRTCW architecture
6.2.8.3.1	General
This clause describes the proposed eiRTCW architecture based on the derivative RTC architecture. Figure 6.2.8.3-1 and Figure 6.2.8.3-2 show the logical connection between RTC AS functions and other entities on the RTC architecture.

Figure 6.2.8.3-1:	eiRTCW architecture diagram
NOTE 1:	NAT functionality and ICE functionality can be applied, as described in clause 6.2.5. However, these are snipped on the Figure 6.2.8.3-1.
NOTE 2:	UNI: The interface between operator network and UE (e.g., smart phone, content server of the Content Provider).
NOTE 3:	NNI: The interface between the two different operator networks, or that between operator network and service provider network.
NOTE 4	When an RTC Application Provider provides a media resource as a content provider without the RTC Application provider’s RTC AS;
-	the RTC Application provider applies RTC-2 to interact with RTC AS in Operator Network.
-	the media resource is treated as WebRTC endpoint and RTC-4s/RTC-4m is applied for media session UNI (RTC-4s and RTC-4m) between RTC AS functions and RTC Application provider are snipped in this figure.
The eiRTCW architecture based on RTC architecture specified in 3GPP TS 26.506 [TS26.506] with 5GC interaction viewpoint is shown in Figure 6.2.8.3-2. NS-AF integrated WSF interacts with 5GC via N5 interface.

Figure 6.2.8.3-2:	eiRTCW architecture diagram with 5GC interaction viewpoint
6.2.8.3.2	Functional entities
6.2.8.3.2.1	General
This clause describes the functional entities of the eiRTCW architecture.
6.2.8.3.2.2	UE (User Equipment)
User Equipment (UE) contains a user agent function for WebRTC. The user agent function is equivalent to "WebRTC Endpoint" as described below. WebRTC endpoint is the RTC endpoint including signalling rerated functionality of the application. Application itself is not scope of the study.
When a content provider provides the content service via UNI, the implementation (e.g., media server) of the content provider is treated as UE (WebRTC endpoint).
For the purposes of the present document, the following terms and definitions given in IETF RFC 8825 [RFC8825] apply:
WebRTC Endpoint: Either a WebRTC browser or a WebRTC non-browser. It conforms to the protocol specification.
WebRTC Browser (also called a "WebRTC User Agent" or "WebRTC UA"): Something that conforms to both the protocol specification and the JavaScript API specification (W3C WebRTC 1.0 [W3C.WD-webrtc]).
WebRTC Non-Browser: Something that conforms to the protocol specification but does not claim to implement the JavaScript API. This can also be called a "WebRTC device" or "WebRTC native application".
6.2.8.3.2.3	WSF (WebRTC Signalling Function)
The WebRTC Signalling Function (WSF) is a function specified in 3GPP TS 26.506 [TS26.506]. WSF is responsible for WebRTC signalling mechanism including capability exchange and management of media sessions between UEs and the network. This functional entity is described as "Servers" or "Web Server" in IETF RFC 8825 [RFC8825] clause 3. Each operator or 3rd-party in this study is assumed to have their own WSF in their network.
WSF also provide the following functionalities:
-	Interaction with MF for media session (real-time streaming and data channel) control
-	Interaction with CSF for collaboration with web applications/services.
-	Interaction with 5GC, using network Support function (NS-AF) functionality.
-	Retrieval of the identity of a UE from 5GC, and authentication/Authorization of the UE.
6.2.8.3.2.4	MF (Media Function)
The Media Function (MF) is a functional entity specified in 3GPP TS 26.506 [TS26.506]. MF performs media processing. MF terminates media path (including data channel path) and performs media processing (e.g., mixing, selective forwarding, transcoding) which are required for immersive RTC applications. The MF is able to perform decryption and encryption of media packets if DTLS, SRTP, or TLS is used for a transport layer. The MF has the function of storing contents (including text or other static material as well as audio and video) and providing them to the UE. For Media transport control, the MF is able to interact with WSF.
In cases, MF performs as a simple media relay function. It simply relays media data packets and supports IP packet connectivity. When UE behave as ICE Agents defined in IETF RFC 8445 [RFC8445], MF may be either STUN servers defined in IETF RFC 8489 [RFC8489] for connectivity check or TURN servers defined in IETF RFC 8656 [RFC8656] for relaying media data packets. This functional entity facilitates NAT traversal of UE and the connectivity between UE and other network functions.
This functional entity is generally implemented in WebRTC Multipoint Control Unit (MCU) or Selective Forwarding Unit (SFU).
6.2.8.3.2.5	ASWF (Application Supporting Web Function)
The Application Supporting Web Function (ASWF) is a function specified in 3GPP TS 26.506 [TS26.506]. ASWF provides the following functionalities:
-	Conference session management, i.e., "CRUD" operation – create, read, update, delete of conference instances.
-	Providing supplementary files (e.g., icon images of participants, and shared documents) via best-effort transport different from the channels for real-time media.
-	Capability exposure to 3rd party application server to provide configuration of immersive RTC services.
-	Storage of user subscription data specific to MNO’s WebRTC services.
NOTE 1:	In this study, it is assumed that a single user (i.e., identity) and its subscription data (associated with the identity) are assigned, owned, and managed by both MNO and service provider independently. The two identities have a link with each other via some technique. User subscription data specific to Service Provider’s services are stored in their networks.
-	Authorization Endpoint and Token Endpoint of OAuth 2.0 described in IETF RFC 6749[RFC6749] for establishing authentication linkage between MNO’s ID and Service Provider’s ID.
NOTE 2:	OAuth token will be used to C-Plane authentication at WSF and Service Providers. STUN/TURN authentication with OAuth token is defined in IETF RFC 7635[RFC7635]. Portal http(s) servers of WebRTC services provide this function in general implementations.
6.2.8.3.2.6	IWF (Inter-working Function)
The Inter-working Function (IWF) is a function specified in 3GPP TS 26.506 [TS26.506]. IWF is located at the boundary of the networks where different operators or third-party network connects.
Each operator or 3rd-party has its own WebRTC Signalling Functions (WSF) so that WSFs are connected to each other with border control functions such as security, policy management, charging, etc. IWF is inserted into "Signalling Path" in Figure 2 of IETF RFC 8825[RFC8825] and responsible for border control functions and supports session establishment between disparate address realms' networks.
IWF is able to support the functionality for interworking between WebRTC based signalling message and SIP message of IMS as a border control function.
Editor’s note:	Details of interworking with IMS is studied in Key Issue#4 (Interworking with IMS Network) and corresponding Solutions.
6.2.8.3.2.7	TGF (Transport Gateway Function)
The Transport Gateway Function (TGF) is a function specified in 3GPP TS 26.506 [TS26.506]. TGF is a media relay located at the boundary of the networks where different operators or 3rd party network connects. TGF is the function responsible for the border control and transport of media data packets between different networks. TGF is able to transcode audio/video media data packets.
TGF is able to support the functionality for interworking between WebRTC media and IMS media (e.g., transcoding of codec) as a border control function.
Editor’s note:	Details of interworking with IMS is studied in Key Issue#4 (Interworking with IMS Network) and corresponding Solutions.

6.2.8.3.3	Reference points
The reference points shown in Figure 6.2.8.3-1 are described as follows.
Reference points for C-Plane signalling:
-	RTC-4s:	Reference Point between a WSF and a UE. This reference point is specified in 3GPP TS 26.506 [TS23.506].
-	RTC-9s:	Reference Point between a IWF and another IWF in an external network.
NOTE:	Other reference points for C-Plane internal IFs are outside the scope of this study.
Reference points for U-Plane:
-	RTC-4m:	Reference Point between a MF and a UE. This reference point is specified in 3GPP TS 23.506 [TS26.506]. This interface is extended to support application specific data exchange between ASWF and UE.
-	RTC-9m:	Reference Point between a TGF and another TGF in an external network.
NOTE:	Other reference points for U-Plane internal interfaces are outside the scope of this study.
Reference Points between WSF (integrated with NS-AF) and MF, and between IWF and TGF are internal interface, then outside the scope of this study.
Other Reference Points:
-	RTC-2:	Reference Point between a ASWF and Application service provider.
-	N5:		Reference Point between a WSF and PCF. This reference point is specified in 3GPP TS 23.501 [TS23.501].
6.2.9	Solution evaluation
[bookmark: _Hlk140677870]The proposed architecture in clause 6.2.8 supports the functionalities and capabilities to support immersive RTC services for collaboration scenario 4 (also applicable for collaboration scenario 3) and these architectures are consistent with RTC architecture in 3GPP TS 26.506 [TS26.506]. Then it is proposed to;
-	reflect the architecture studied in clause 6.2.8 into the stage 2 specification of RTC (i.e., 3GPP TS 26.506 [TS26.506]) as RTC General Architecture and the architecture for collaboration scenario 4; and
-	study other eiRTCW Key Issues based on these architectures.
6.3	Solution #2: Functional requirements for C-Plane
6.3.1	Solution description
This solution addresses Key Issue #2.
This clause identifies requirements for control plane (C-Plane) signalling for for WebRTC-based RTC session management supporting inter-operator connection (i.e., collaboration scenario 3 and 4 in 3GPP TS 26.506 [TS26506]) based on the architecture described in clause 6.2.
[bookmark: _Toc124216606]
Figure 6.3.2-1 shows the C-Plane reference points on the eiRTCW architecture. RTC-4s an RTC-9s are focussed reference points of this study as described in clause 6.2.7.

Figure 6.3.1-1:	Reference points for C-Plane
To support collaboration scenario 3 and collaboration scenario 4 specified in 3GPP TS 26.506 [TS26.506], the functional requirements for RTC-4s on the eiRTCW architecture is required to conform to the functional requirements of RTC-4s specified in 3GPP TS 26.506 [TS26.506] clause 4.3.3.
· RTC-4s reference point supports the exchange of signalling information related to the WebRTC session between two or more WebRTC endpoints using trusted application servers.
RTC-9s is a new C-Plane interface for signalling information exchange between different operator's networks or between an operator and service provider networks. Then RTC-9s reference point also supports the exchange of signalling information related to the WebRTC session.
6.3.2	Functional requirements for C-Plane interface
6.3.2.1	General
This clause describes the functional requirements for C-Plane to enable WebRTC-based RTC media session management supporting inter-operator connection. The requirements are considered based on following aspects:
1.	Support of WebRTC based RTC services (General aspect),
2.	Transport of signalling message, and
3.	Media session control and management
6.3.2.2	Functional requirements for support of WebRTC based RTC services
This clause identifies the functional requirements on C-Plane signalling protocol to support WebRTC based RTC services.
1.	It is required to support any WebRTC application, (i.e., it should not overfit for a specific use case.)
a.	It is required to support any kind of WebRTC endpoints (browser, etc.).
b.	It is required to allow application specific methods and information elements.
2.	It is required to be web-friendly to support easy deployment in web environments:
a.	by using web technologies such as JSON, etc…
b.	complying with WebRTC standards (e.g., SDP for session description and supporting the exchange of ICE candidates, etc…) defined in IETF and W3C, with an exception for codecs
3.	It is required to be able to be simple to implement and deploy (e.g., simpler in complexity compared to SIP)
4.	It is required to be able to authenticate/authorise users of RTC services.
5.	It is required to protect user privacy and mitigate the linkability and tracking attack caused by unnecessary user information disclosure.
NOTE:	Item 1, 2, 3, 5 are common with requirements agreed in S4-221194.
6.3.2.3	Functional requirements for transport of signalling message
This clause identifies the functional requirements on transport of signalling message.
1.	It is required to be web-friendly to support easy deployment in web environments by using web technologies such as WebSocket, etc…
2.	It is required to support the secure exchange of messages supporting integrity-protection and/or encryption.
3.	It is required to be support connection management mechanisms (e.g., keep alive) for reliable exchange of signalling messages.
NOTE:	Item 1 and 2 are common with requirements agreed in S4-221194.
6.3.2.4	Functional requirements for media session control and management
This clause identifies the functional requirements on media session control and management aspects of signalling message. Item 6 and Item 13 is common with a requirement agreed in S4-221194.
1.	It is required to support following methods for media session control.
i.	media session set up
ii.	media session update
iii.	media session disconnection
2.	It is required to support a method for querying information from a connected network. The information includes the service configuration information such as server address.
3.	It is required to be able to set up a media session with any kind of media resources (e.g., WebRTC endpoint on the UE, conference, metaverse, etc.).
4.	It is required that an WebRTC endpoint is able to set up multiple media sessions simultaneously.
5.	It is required to support incoming call set up (i.e be able to receive a media session set up request).
6.	It is required to be able to set up a media session with media resources in different operator network or service provider network. This requirement includes the following cases.
i.	The connected network support RTC AS functionalities. (i.e., connected via NNI)
ii.	The connected network does not support RTC AS functionalities. (i.e., connected via UNI)
7.	It is required to be familiar with existing web-services to exchange media capabilities. It is also required that WebRTC endpoints can notify own media capabilities to a network, and network can handle the notified media capability appropriately.
8.	It is required to support a mechanism to exchange media session related meta data.
9.	It is required to support QoS control of a media session based on the information included in the signalling message related to the media session.
10.	It is required to be ablet to negotiate the use of optional features.
11.	It is required to support the mechanisms for reliable media session management. (e.g., error handling, etc.).
12.	It is required to be able to identify the RTC service user uniquely. The identity of the user is able to be associated with multiple devices (WebRTC endpoints) belongs to the user.
13.	It is required to be able to enable communicating parties to verify each other’s identity, if required by application.
NOTE:	Item 6 and 13 is common with a requirement agreed in S4-221194.
6.3.3	Protocol stack for C-Plane interface
6.3.3.1	General
This clause studies the appropriate protocol stack for C-plane interfaces, considering the requirements in clause 6.3.2. Especially, the following requirements are considered:
-	It shall support the secure exchange of messages supporting integrity-protection and/or encryption.
-	It shall protect user privacy and mitigate the linkability and tracking attack caused by unnecessary user information disclosure.
-	It should be web-friendly to support easy deployment in web environments
-	by using web technologies such as JSON, WebSockets, etc…
-	complying with WebRTC standards (e.g., SDP for session description and supporting the exchange of ICE candidates, etc…) defined in IETF and W3C, with an exception for codecs
-	It shall be simple to implement and deploy (e.g., simpler in complexity compared to SIP).
6.3.3.2	Base Protocol
HTTP [RFC7230-7235][RFC7540]/HTTPS and WebSocket [RFC6455] are available options for signalling between UE and WSF so that connection setup procedure could be invoked by JavaScript API as described in IETF RFC 8825 [RFC8825] clause 3. Nevertheless, HTTP/HTTPS is less appropriate for two reasons described in IETF RFC 6455 [RFC6455] clause 1.1:
-	Server load caused by http transactions (based on request-response)
-	A connection has two sessions each for sending and receiving signalling packets
In addition, when a notification from the network to the UE is required, for such as an incoming call, an HTTP(S) connection is originated from the network side, but this case has some problem. Generally, NAT box is placed between UE and network entities, therefore NAT-traversal problem should be resolved. Besides, in terms of security configuration, UEs often deny incoming TCP [RFC793] connections.
WebSocket fulfils the requirement for secure exchange of signalling messages since WebRTC supports the secure transport over TLS.
For those reasons mentioned above, only WebSocket over TLS is utilized as the base protocol for transport of signalling messages in this study. WebSocket can solve the three problems, server load, number of sessions and the NAT-traversal.
6.3.4.3	Upper Layer Protocol over WebSocket
In IETF RFC 8825 [RFC8825], upper layer protocols over WebSocket are not specified and are thought to be application specific. In the IETF RFCs, SIP [RFC3261] and XMPP [RFC6120] are listed as candidate protocols for control plane.
6.3.4.3.1	SIP
Utilizing SIP for control plane signalling for WebRTC is already described in 3GPP TS 24.371 [TS24.371] clause 5. One of the main advantages of using SIP is the ease of interworking between WebRTC-aware network and IMS network. On the other hand, disadvantages of using SIP are as follows:
-	UE and network must be able to understand both WebRTC and SIP. SIP is not widely used outside of telephony. If SIP must be used in conjunction with WebRTC, the advantage of WebRTC, friendliness to web-based development environments and developers, is to be spoiled.
-	SIP has a strictly managed communication model as SIP dialogue. In principle, the originated signalling is transparently relayed through the network and the terminals manage the dialogue with each other. These characteristics are not compatible with the UE-network relation model, which is the scope of this study.
-	SIP specifies methods divided by each signalling characteristic (i.e., INVITE, ACK, BYE, CANCEL, PRACK, UPDATE, SUBSCRIBE, NOTIFY, REFER, PUBLISH, INFO). Adding control for a new characteristic may need to start from the method definition.
-	Less affinity with cloud environment where HTTP is mainly used. For example, raw values of the IP addresses related to the SIP dialog (consisting a communication path of SIP trapezoid) are in the protocol header or message body, therefore changing communication elements is difficult once the call session is established.
For those reasons above, SIP is not appropriate except for the applications where the interwork to IMS is expected.
6.3.4.3.2	XMPP
There is no specification using XMPP for the upper layer protocol of the control plane signalling in 3GPP and no major commercial implementations of WebRTC either. The reason seems that XMPP can be used on its own and does not need to be combined with other protocols. WebSocket encapsulation of XMPP has little benefit except the case that an application using XMPP is implemented using JavaScript.
Therefore, this study will not utilize SIP nor XMPP as the upper layer protocol. More optimal (or WebRTC native) signalling protocols for the upper layer of control plane is to be identified in this study.
6.3.4.3.3	Other Existing Implementations
Among the existing implementations of WebRTC communication, JSON[RFC8259] format is mainly used for the upper layer of control plane. This is because JSON format is easy to handle in JavaScript. In this study, the potential of JSON for the upper layer protocol of control plane signalling is investigated.
In 3GPP specifications, RESTful APIs (such as service-based interface and Northbound APIs) are often defined using OpenAPI 3 [OpenAPI] and the message-body of the APIs are based on JSON. However, OpenAPI is mainly suitable for RESTful APIs and not suitable for message-driven APIs such as control plane signalling over WebSocket. There is another possible API specification for JSON based API. AsyncAPI [AsyncAPI] (managed by Linux Foundation) is a message/event-driven architecture concept and familiar with message-driven API. For this reason, AsyncAPI [AsyncAPI] is used for identifying API schemas in this study.
6.3.4.4	Proposed Protocol Stack
The protocol stack for C-Plane interface is shown in Figure 6.3.4.4-1. As described above, JSON based protocol over WebSocket over TLS is an expected solution for C-plane signalling protocol.
WebSocket can be deployed over several versions of HTTP.
-	WebSocket with HTTP/1.1 is specified in IETF RFC 6455 [RFC6455] and used in this study. HTTP/1.1 is not, however, shown in the protocol stack because HTTP/1.1 does not remain after upgrading into WebSocket.
-	WebSocket with HTTP/2 is specified in IETF RFC 8441 [RFC8441] and used in this study. HTTP/2 is shown in the protocol stack because HTTP/2 framing remains after a stream in HTTP/2 connection is upgraded into WebSocket.
-	WebSocket with HTTP/3[RFC9114] is specified in IETF RFC 9220 [RFC9220] but not used in the current version of this study. The transport protocol used over HTTP/3 needs to be selected in alignment with IETF/W3C discussions.
The sub layers of each protocol are according to the existing specifications.
-	TLS under HTTP/1.1 and HTTP/2 is specified in IETF RFC 8446 [RFC8466].
-	TCP under TLS is specified in IETF RFC 793 [RFC793].
-	IPv4 and v6 under TCP are specified in IETF RFC 791 [RFC791](IPv4) and IETF RFC 8200 [RFC8200](IPv6).

Figure 6.3.4.4-1:	Protocol Stack of C-Plane interface
6.3.5	Solution evaluation
There is no misalignment between the functional requirements proposed in clause 6.3.2/6.3.3 and those specified in 3GPP SA4 RTC specifications (i.e., 3GPP TS 26.506 [TS26.506] and 3GPP TS 26.113 [TS26.113]), therefore it is proposed to develop the signalling protocol based on the proposed functional requirements and protocol stack.
6.4	Solution #3: Functional requirements for U-Plane
6.4.1	Solution description
This solution addresses Key Issue #3.
This clause identifies requirements for user plane for WebRTC-based immersive RTC session management supporting inter-operator connection (i.e., collaboration scenario 4 in TS 26.506 [TS26506]) based on the architecture described in clause 6.2.Figure 6.4.2-1 shows the U-Plane reference points on eiRTCW architecture. RTC-4m an RTC-9m are focussed reference points of this study as described in clause 6.2.7.

Figure 6.4.2-1:	Reference points for U-Plane
6.4.2	Functional requirements for U-Plane interface
This clause identifies the functional requirements of RTC-4m and RTC-9m reference point as U-Plane interface.
The eiRTCW architecture supports collaboration scenario 3 and 4 defined in 3GPP TS 26.506 [TS26506]. The requirements of RTC-4m on the eiRTCW architecture are compliant with the requirements of RTC-4m specified in 3GPP TS 26.506 [TS26506]. RTC-9m is a new U-plane interface for WebRTC media transport between different operator’s network or between an operator and service provider network. On the viewpoint of service interoperability, the requirements of RTC-9m are required to be same as RTC4m.
Functional requirements applied to both the RTC-4m and RTC-9m are to transport:
-	Media data transmitted over RTP;
-	Application data transmitted using Data channel and
-	Media related meta-data transmitted using Data channel
NOTE 1 :	As RTC-9m is the interface between the networks operating by two different operators (or an operator and a service provider) where the different policy/application can be adopted/provided; therefore, a bilateral agreement may be required.
NOTE 2:	In addition to the above functional requirements, RTC-4m is also required to support the functionality to exchange of application data for accessing services provided by ASWF. Detailed specification of this usage is out of scope of this study.
6.4.3	Protocol stack
RTC-4m and RTC-9m on the eiRTCW architecture are U-Plane interfaces for WebRTC media transport. Then the protocol stack of RTC-4m and RTC-9m conforms to the protocols specified in RFC 8835 [RFC8835]. This protocol stack is also applied for U-Plane interface in 3GPP TS 26.113 [TS26113] which specified "enabler for Immersive Real-time Communication".
Detailed protocol stack for eiRTCW U-Plane interface is defined by selecting the protocol from the protocol stack specified in clause 5.5 of 3GPP TS 26.113 [TS26.113] in the corresponding normative work for stage3 specification.
NOTE:	The specification other than protocols (e.g., codec) is not referred.

6.4.4	Solution evaluation
The U-Plane functional requirements proposed in clause 6.4.2 and the U-Plane protocol stack proposed in clause 6.4.3 are appropriate for WebRTC media transport and aligned with 3GPP SA4 RTC specifications (i.e., 3GPP TS 26.506 [TS26506] and 3GPP TS 26.113 [TS26113]). Therefore, these proposals are appropriate for eiRTCW U-Plane requirements.
6.5	Solution #4: Interworking with IMS Network
6.5.1	Solution description
This solution addresses key issue #4.
This solution identifies the followings to support interworking between RTC network and IMS network.
1)	Applicable interface between RTC network to the IMS network,
2)	Supported interworking scenarios between RTC network and IMS network,
3)	Functional requirements for RTC-IMS interworking; and
4)	RTC architecture enhancements for RTC-IMS interworking.
As a prerequisite, this solution is required to have no impact on existing IMS technical specifications and implementations.
6.5.2	Interface between RTC network and IMS network
6.5.2.1	General
This clause studies the definition of the interface between RTC and IMS.
A solution for WebRTC-based service has been specified in Annex U of 3GPP TS 23.228 [TS23.228], where the WebRTC endpoint can access to IMS network via user-network interface (UNI) by introducing eP-CSCF and eIMS-AGW in the IMS network.

Figure 6.5.2.1: WebRTC IMS architecture and reference model in 3GPP TS 23.228
However, there is a possible demand that RTC network inter-connect to IMS network as another external IP multimedia network (so-called non-IMS), with the following motivation:
-	For many operators, the existing IMS network is operated as a network for telephony services. Then, the functionalities of IMS network need to comply with regulations for telephony service in the country (e.g., high-availability, support of emergency services, support of lawful interception, high speech quality and high security-level.).
-	On the other hand, most of WebRTC based services are provided on the internet currently, then these services may not need to comply with all aspects of regulation for telephony services. In such case, operators may not choose to enhance the existing IMS network, but to deploy a new RTC network for RTC service and connect the RTC network to IMS network for basic & legacy audio call, with the following aspects:
*	Total cost for realizing RTC service and basic & legacy audio call between RTC and IMS clients.
*	Separation of network operations - avoid that services with different regulatory/reliability requirements need to be handled in the same facility/equipment.
Then, this solution studies RTC-IMS inter-connection using the network-to-network interface (NNI) between RTC network and IMS network.
Based on the prerequisite that this solution is required to have no impact on existing IMS technical specifications and implementations, this solution assumes following conditions.
-	RTC user (RTC endpoint) and IMS user (IMS UE) has its own telephone number.
-	In media session setup from RTC to IMS network, RTC endpoint (WebRTC endpoint) initiates media session by sending a media session setup request conforms to RTC signalling protocol (RESPECT) studied in this document, and both WSF and IWF forward the request towards IMS network based on the telephone number of terminating IMS UE (tel URI) available in the request.
-	In media session setup from IMS to RTC network, IMS UE initiates media session by sending media session setup request conforms to IMS SIP specified in TS 24.229 [TS24.229], and IMS functional entities (e.g., S-CSCF) forward the request towards RTC network based on telephone number of terminating RTC endpoint available in the request – this is an existing functionality of IMS network.
Table 6.5.2.1-1 shows the identifier of terminating endpoint for each scenario.
Table 6.5.2.1-1: Identifier of terminating endpoint for each scenario
	Originating endpoint
	Terminating endpoint

	
	RTC endpoint
	IMS UE

	RTC endpoint
	RTC user identity
	Telephone number

	IMS UE
	Telephone number
	Public user identity

NOTE 2:	The usage of identifier other than telephone number for RTC-IMS interworking scenario is FFS.
6.5.2.2	Applicable interface between RTC network and IMS network
This clause studies the interface between RTC network and IMS network, to fulfil the prerequisite that this solution is required to have no impact on existing IMS technical specifications and implementations.
3GPP TS 29.162 [TS29.162] already defines the interface between IMS network and external IP multimedia network. This interface is appropriate for RTC-IMS interworking scenario, since RTC network is considered as an external IP multimedia network. Therefore, in this solution this interface is applied for the interworking between RTC network and IMS network.

Figure 6.5.2.2-1: Interworking model between IMS network and external IP Multimedia Network specified in 3GPP TS 29.162 [TS29.162]
6.5.3	Supported interworking scenarios
6.5.3.1	General
This clause studies the supported interworking scenarios between RTC network and IMS network.
6.5.3.2	Supported connection patterns
This clause studies the supported connection patterns between RTC network and IMS network.
It is considered that there are following connection patterns.
1)	Basic call between RTC endpoint and IMS UE
a)	RTC endpoint initiates the media session setup to IMS UE
b)	IMS UE initiates the media session setup to RTC endpoint
2)	Conference call owned by media server
a)	IMS UE connects to a conference room provided by RTC network
b)	RTC endpoint connects to a conference room provided by IMS network
Since there is no different signalling requirement over the IMS NNI between the connection pattern 1-a) and 2-b), this solution addresses 1-a), 1-b) and 2-a).
6.5.3.3	Supported media session
This clause studies the supported media session for interworking between RTC network and IMS network.
Media session provided by RTC network and/or IMS network are categorized into two types.
-	Basic & legacy audio call/conference
-	Immersive media call/conference
As for basic audio call/conference, the interworking functionality needs to consider the several differences (e.g., signalling protocols, media capability, media transport protocols) between RTC media session and IMS media session.
As for immersive media call/conference, the interworking functionality does not need to consider the difference of media capability between RTC media session and IMS media session, compared to basic audio call/conference. This is because the two endpoints of the immersive media session are considered to have same media capabilities. That is, it is expected that immersive media call can be interconnected by using interworking specification for basic call.
Therefore, this solution focuses on the interworking of basic & legacy audio call/conference, which will cover the requirements for immersive media call/conference.
6.5.4	Functional requirements for RTC-IMS interworking
6.5.4.1	General
This clause studies the functional requirements for RTC-IMS interworking between RTC network and IMS network, based on the interface, connection patterns and interworking scenarios studied in clause 6.5.2, 6.5.3 and 6.5.4.
As described in clause 6.5.1, this solution is required to have no impact on existing IMS technical specifications and implementations as a basic requirement.
6.5.4.2	Functional requirements for RTC network
This clause describes the functional requirements for RTC network.
1.	RTC network is required to interwork the signalling message between RTC signalling protocol (RESPECT) studies in this document and SIP based IMS signalling protocol.
a)	The RTC signalling protocol message initiated by RTC endpoint is required to be interworked to SIP based IMS signalling message and forwarded to IMS network at the entry/exit point of RTC network.
b)	The SIP based IMS signalling massage received from IMS network is required to be interworked to RTC signalling protocol message and forwarded to RTC endpoint at the entry/exit point of the RTC network.
c)	The difference between RTC signalling protocol and SIP based IMS signalling protocol is required to be terminated at the entry/exit point of RTC network.
2.	RTC network is required to interwork the media session between RTC and IMS networks.
a)	Media transport protocol is required to be interworked between RTC media session and IMS media session at the entry/exit point of RTC network. (e.g., DTLS/SRTP is terminated and interworked with RTP, RTP and RTCP multiplexing is terminated if not supported by connected IMS network.)
b)	When an SFU is applied for the media session on the RTC side, multiple media stream is required to be composed to a single media stream for IMS media session at the entry/exit point of RTC network.
c)	The differences of supported RTP header extension between RTC media session and IMS media session are required to be terminated at the entry/exit point of RTC network.
3.	RTC network is required to be possible to identify the call destined for IMS network or RTC endpoint by telephone number available in signalling message and forward the call based on telephone number.
6.5.4.3	Functional requirements for IMS network
There are no functional requirements for IMS network.
6.5.5	RTC architecture enhancement for RTC-IMS interworking
This clause studies and proposes the enhancement on the enhanced RTC architecture described in clause 6.2.8.3 of this document, considering the requirements descried in clause 6.5.4 of this document.
The function supporting RTC-IMS interworking functionalities is already defined in this document. As described in Solution #1 of this document, IWF and TGF are defined as the functions supporting RTC-IMS interworking functionalities.
The reference point between RTC network and IMS network is not defined in clause 6.2.8.3 of this document, although RTC-9 reference point is already defined as two different RTC networks for collaboration scenario 4. Therefore, a new reference point RTC-10 is proposed to be introduced on the RTC General Architecture for eiRTCW as shown in Figure 6.5.5-1
Note that RTC-10 corresponds to the interface between IMS network and external IP multimedia network specified in 3GPP TS 29.162 [TS29.162], then this study does not introduce a new interface between RTC network and IMS network.
[image:]
Figure 6.5.5-1:	RTC General Architecture enhanced for IMS interworking
Figure 6.5.5-2 shows the logical connection architecture for interconnection between RTC network and IMS network.
[image:]
Figure 6.5.5-2:	Logical connection architecture for interconnection between RTC network and IMS network
NOTE:	RTC-10s and RTC-10m are interfaces between IMS network and external IP multimedia network specified in 3GPP TS 29.162 [TS29.162].
6.5.6	Solution evaluation
This solution proposes the enhancement on existing RTC generic architecture to support RTC-IMS interwork. The proposed architcture fulfills the requriements described in clause 6.5.4, does not have any impacts on IMS specifications and implementations. Therefore, it is proposed to implement the proposed architecture enhancement stage 2 specification of RTC (i.e., 3GPP TS 26.506 [TS26.506]) to support interworking with IMS network.
Protocol-level interworking between RTC network and IMS network based on the functional requirements and architecture enhancements proposed in this solution is addressed in Key Issue #9 and Solution #9.
Editor's note: This solution needs feedback from SA2, before implementation of this solution into TR 26.930.
6.6	Solution #5: Tethered Cases
6.6.1	Solution description
This solution addresses key issue #5.
Editor’s Note: SmarTAR-related clause;
Identify enhancements for E2E QoS realizations over 5G systems for communications between MNOs and WebRTC clients operating over non-5G links (e.g., Wi-Fi) using WebRTC-based transport. This also includes communication between WebRTC clients operating on tethering/tethered devices.
For key issue #5.2, there are two design options:
· Solution #5.2.1: the WebRTC Endpoint resides on the tethering device (e.g., on the phone). In this case, the tethered device (e.g., AR glasses) serves as a display (for video and audio).
· Solution #5.2.2: the WebRTC Endpoint resides on the tethered device (e.g., on the AR glasses). In this case, the tethering device (e.g., the phone) serves as a relay.
· Solution #5.2.3: the WebRTC Endpoint is split into two parts: one is the application (which is called WebRTC Endpoint App) residing on the tethered device, and the other one (which is called WebRTC Endpoint Support Function) is the signalling functions that communicate with the support functions in the eiRTCW architecture, residing on the tethering device.
The WebRTC Endpoint App maps to the Native WebRTC App or the Web App in the RTC general architecture, and WebRTC Endpoint Support Function maps to RTC endpoint in the general architecture shown in Figure 6.2.6.1-1.

A new interface Rt-u is created that allows the communication between the two parts. The Rt-u interface performs functions similar to those performed by the RTC-6, the RTC-7 and the WebRTC API interfaces in the iRTCW architecture. However, since the Rt-u interface is not within the same device (i.e., the UE), it involves the setup of a communication channel that may be defined by a protocol number and two port numbers.

Solution #5.2.3 is preferred because it allows the 5G system to have more control over the session (compared to Solution #5.2.2) while providing better QoS (compared to Solution #5.2.1).

Figure 6.6.1-1: Solution #5.2.1: WebRTC Endpoint resides on the tethering device

Figure 6.6.1-2: Solution #5.2.2: WebRTC Endpoint resides on the tethered device

[image:]
Figure 6.6.1-3: Solution #5.2.3: WebRTC Endpoint is split, and the first part WebRTC Endpoint App resides on the tethered device and the second part WebRTC Endpoint Support Function resides on the tethering device.
NOTE 1:	When the WebRTC Endpoint App corresponds to the Web App, the Rt-u interface maps to the WebRTC API interface in the general RTC architecture. When the WebRTC Endpoint App corresponds to the Native WebRTC App, the Rt-u interface maps to the RTC-6 and the RTC-7 interfaces in the general RTC architecture. Rs-u and Rm-u will go through the UE and Rt-u to the WebRTC Endpoint App for collaboration scenario 3 and collaboration scenario 4.
NOTE 2:	The Rh-u, Rs-u and the Rm-u interfaces are the same as in the eiRTCW architecture.
Editor's note: Solution description needs to be completed.
6.6.x	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution.
6.7	Solution #6: Security Considerations
6.7.1	Solution description
This solution addresses key issue #6.
Editor’s Note: Considerations that the third-party access to the operator network need to be controlled with SLAs and with secure access to protect the underlying network resources.
- Rate limiting
- Abuse protection
- Security measures
6.7.x	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution.
6.8	Solution #7: Related Groups Considerations
6.8.1	Solution description
This solution addresses key issue #7.
As for the stage 2 specification:
-	Any necessary considerations for other 3GPP WG's stage 2 specifications are not identified since SA4 is responsible for the network architecture for RTC media services, thus the other 3GPP WG groups do not specify that network architecture.
-	Also, any necessary considerations for other organizations are not identified since the stage 2 descriptions of this document are 3GPP-specific and have no impact on any specifications developed in the other organizations (i.e., IETF and W3C).
As for the stage 3 (e.g., C-Plane signalling protocol, API):
-	The proposals in this document do not conflict with the IETF RFCs (i.e., referred IETF specifications in this document such as IETF RFC 8825 [RFC8825]) and W3C WebRTC 1.0 [W3C.WD-webrtc], therefore any considerations for other organizations are not needed.
Editor’s Note: Identify collaboration formation with other WGs in 3GPP and SDOs including IETF and W3C.
[bookmark: _Toc124216618]6.8.2x	Solution evaluation
There is no impact on the specifications of other WGs in 3GPP and organizations including IETF and W3C.
Editor's note:	This clause provides an evaluation of the solution.

[bookmark: _Toc124216617]6.9	Solution #8: WSF discovery mechanism
6.9.1	Solution description
6.9.1.1	General
This Solution addresses Key Issue #8.
This clause identifies the mechanism which discovers a WSF in the connected operator network without user manual setting, regardless of the connected operator network.
There are following possible mechanisms to find a WSF without user settings.
a)	Media Session Handler (via RTC-5 API) [TS26.506]
b)	Edge application enabler (EAS discovery) [TS23.558]
c)	PCO in NAS signalling during PDU session set up [TS23.501] [TS23.548]
d)	DNS resolution
6.9.1.2	Analysis on possible mechanisms
As described in 3GPP TS 26.506 [TS26.506] and the clause 6.2 of this document, RTC services need to support both Native WebRTC application (WebRTC Non-browser type endpoint) and web application (WebRTC browser type endpoint).
a) and b) are the mechanisms using application enabler specified in 3GPP. However, in the current situation, most of the Oss (e.g., android, iOS) and the web browsers (e.g., chrome, firefox) do not support these enablers for JavaScript Application as JavaScript API. Then, a) and b) are not suitable for the time being.
c) is the mechanism to get a server information from PCO (Protocol Configuration Option) during PDU session establishment, however, there are same issue as a) and b) to apply this mechanism. Then, c) is also not suitable for the time being.
d) intends to use the local DNS server in the connected operator network to resolve the single specific FQDN into the actual IP address of the server in the connected operator network. This mechanism does not have the limitation mentioned above, then d) is the possible candidate of the WSF discovery mechanism.
Therefore, this Solution studies a mechanism which apply d) using a specific URL (which is common among operators) to discovers a WSF in the connected operator network without user manual setting, regardless of the connected operator network.
6.9.2	Common URL based WSF discovery mechanism
6.9.2.1	General
This Solution studies the mechanism which discovers the WSF in the connected operator network using a specific URL which is common among operators (names the URL as "Common URL" in this document) and local DNS server in the connected operator network.
As the prerequisites of the study on WSF discovery mechanism, the following requirements specified in 3GPP TS 26.113 [TS26.113] need to be considered.
1)	The mechanism can identify the signalling protocol used for the RTC session set up, since there are multiple signalling protocols for RTC services (i.e., SWAP, RESPECT).
2)	Secure WebSocket (WSS) connection is applicable between the WebRTC endpoint and the WSF.
Above requirements are not fulfilled, if the Common URL indicates only the WSF URL (e.g., the public TLS certificate cannot be prepared.). Then, the URLs for the WSF discovery mechanism are specified as follows.
Common URL:
A specific URL which is common among RTC operator networks and is used to get the WSF URL(s) from the WSF discovery function in the connected operator network. This URI indicates the signalling protocol in addition to WSF URI, which is derived from the above requirement 1).
WSF URL：
Secure WebSocket URI of WSF which is specified in 3GPP TS 26.113 [TS26.113]. The hostname of the WSF URL is specific hostname for RTC service and assigned by the operator.
Considering the above, this Solution studies the followings.
1)	Common URL format
2)	Common URL based WSF discovery procedure
6.9.2.2	Common URL format
This clause studies the format of Common URL.
Common URL needs to indicate the signalling protocol which expected to be used by application, since multiple signalling protocols (i.e., SWAP and RESPECT) are applicable for RTC session set up as described in clause 6.9.2.1. Then, the common URL need to include "protocolName" which specified in 3GPP TS 26.113 [TS26.113]. Therefore, the following format is proposed as Common URL.
CommonURL: {commonHostname}/<protocolName>
NOTE 1:	WebSocket URI includes "protocol version". However, "protocol version" is not included in Common URL, since the compatibility between versions and its version management depend on the signalling protocol.
For "commonHostname", it seems appropriate that RTC applies the domain name ".3gppservices.org" as 3gpp service, which is defined in 3GPP 5GMS (3GPP TS 26.512 [TS26.512]) as default AF's hostname. Then, "commonHostname" in Common URL is proposed as following:
{commonHostname}: "rtc.3gppservices.org"
NOTE 2:	As an alternative domain name for (commonHostname), there are IETF RFC 6762 based domain name (e.g., .internal). However, the IETF based solution is not studied since the 3GPP based approach is appropriate for RTC service.
In case of RESPECT protocol studied in this document, the Common URL will be following URL.
-	rtc.3gppservices.org/3gpp-respect
6.9.2.3	Common URL based WSF discovery procedure
6.9.2.3.1	General
This clause studies the procedure at the WebRTC endpoint to discover the WSF in the connected operator network by using Common URL.
As described in clause 6.9.2.1, Common URL is used to get the WSF URL(s) from WSF discovery function. Then, the UE procedure for discovering and connecting to the WSF is as follows.
i)	Get WSF URL(s) from a WSF discovery function by using Common URL
ii)	Connect to a selected WSF from the obtained WSF URL(s) by WSS (secure WebSocket)
NOTE 1:	The operator who provide this WSF discovery mechanism needs to provide DNS server to resolve the commonHostname (i.e., rtc.3gppservices.org) of Common URL into the IP address of the WSF discovery function.
NOTE 2:	The method to decide the connecting WSF from the obtained WSF list depends on the application. Step ii) are addressed in clause 5.4 of this document and this solution addresses the procedure for step 1).
6.9.2.3.2	Protocol
There are two possible protocols for getting WSF URL(s) using Common URL.
a)	HTTP
b)	WebSocket
For the following reasons, WebSocket connection is too much for getting WSF URL. Then this solution studies HTTP-based procedure for getting the WSF URL.
-	Push notification from discovery function is not required.
-	WSF discovery procedure is expected to be triggered when the RTC application is activated or in case of WSF connection error, then the frequency of execution is low.
NOTE:	CORS (Cross-Origin Resource Sharing) needs to be considered for WSF discovery since the domain of Common URL and WSF URL are different, as described in the prerequisites in clause 6.9.2.1.
6.9.2.3.3	Procedure
The following procedure is proposed as HTTP based WSF discovery procedure
i)	The RTC application sends a HTTP GET request to the Common URL (the request is sent to WSF discovery function)
ii)	The WSF discovery function sends back an HTTP response as follows, depending on whether the indicated signalling protocol is supported or not in the connected operator network.
a)	200 (OK)
When the connected operator network supports the indicated signalling protocol, the WSF discovery function sends back an HTTP 200 (OK) response. The response body (Content-Type: application/json) includes WSF URLs (WebSocket URI specified in 3GPP TS 26.113 [TS26.113]) for all protocol versions which the operator network supports. The response body format is protocol-independent. Example of the response body for RESPECT is shown below:
<Response body for RESPECT>
[bookmark: _Hlk146783694]{
 "v1": {
 "wsfUrl": ["wss://wsf-1.example.com/3gpp-respect/v1", "wss://wsf-2.example.com/3gpp-respect/v1"]
 }
}
b)	404 (Not Found):
When the connected operator network does not support the indicated singalling protocol, the WSF discovery function sends an HTTP 404 (Not Found) response.
6.9.2.3.4	Definition of the HTTP response body for RESPECT
The definition of the HTTP response body for WSF discovery procedure using Common URL for RESPECT.
Table 6.9.2.3.4-1: Information Element in the response body for RESPECT
	IE name
	Data type
	Cardinality
	Description

	v1
	v1Info
	1
	This information element is for WSF information for RESPET version 1.

Table 6.9.2.3.4-2: Data type definition of v1Info
	IE name
	Data type
	Cardinality
	Description

	wsfUrl
	array(string)
	1
	This information element indicates the WSF URL(s). The format of the WSF URL is required to be the WebSocket URI specified in 3GPP TS 26.113 [TS26.113].
e.g., wss://wsf.example.com/3gpp-respect/v1

6.9.2.3.5	Common URL based WSF discovery flow example
Following message flow is an example of WSF discovery procedure using Common URL for RESPECT.
1)	HTTP GET Request (RTC application -> WSF discovery function)
GET /3gpp-respect HTTP/1.1
Host: rtc.3gppservices.org
-- other HTTP headers are snipped --

2)	HTTP 200 OK response (WSF discovery function -> RTC application)
HTTP/1.1 200 OK
Content-Type: application/json
-- other HTTP headers are snipped --
{
 "v1": {
 "wsfUrl": ["wss://wsf.example.com/3gpp-respect/v1"]
 }
}

6.9.3	Functional entity supporting WSF discovery function
This clause studies the functional deployment of WSF discovery function in generic RTC architecture specified in 3GPP TS 26.506 [TS26.506].
As described in the above clauses, WSF discovery function is the function which provides the WSF URL(s) in the connected operator network to RTC applications. The WSF discovery function is required to provide WSF URL(s) to RTC applications even if MSH (RTC-5) is not applicable. Then, it seems better to implement the function in RTC AS. In RTC AS functionalities, ASWF (Application Supporting Web Function) is appropriate function to implement WSF discovery function, since ASWF is the function to support RTC applications as a web server.
6.9.4	Solution evaluation
The proposed WSF discovery mechanism using Common URL described in clause 6.9.2 fulfils the purpose of the mechanism (i.e., the WSF discovery mechanism without user manual setting and applicable regardless of the connected operator network) described in the corresponding key issue and consistent with existing 3GPP specification. Then, it is proposed to implement the proposed WSF discovery mechanism as the functionality supported at the ASWF into the stage 2 specification of RTC (i.e., 3GPP TS 26.506 [TS26.506]) as an optional mechanism.
6.10	Solution #9: Protocol-level interworking between RTC network and IMS network
6.10.1	Solution description
This solution addresses Key Issue #9.
This solution identifies the protocol-level interworking between RTC network and IMS network, based on the functional requirements and architecture described in Solution #4.
1)	C-Plane signalling interworking
2)	U-Plane media related interworking
Editor's note: This solution will be modified according to RESPECT protocol.
6.10.2	Basic concept of protocol-level interworking
6.10.2.1	General
This clause describes the prerequisites for the protocol-level interworking between RTC media session and IMS media session.
<Prerequisites>
-	This solution addresses the interworking between RESPECT and SIP based IMS singalling protocol, since RESPECT is designed to enable RTC collaboration scenario 4, in addition to RTC collaboration scenario 3.
-	This solution is required to have no impact on existing IMS technical specifications and implementations.
-	The interface between RTC netework and IMS network is required to conform to the interface between the IM CN subsystem and IP networks specified in 3GPP TS 29.162 [TS26.192].
-	IWF provides C-plane protocol interworking functionality between RTC and IMS.
-	TGF provides U-Plane protocol interworking functionality between RTC and IMS.
NOTE:	Interworking of immersive media is FFS in this solution, as described in Solution #4. It is expected that the immersive media session can be set up between RTC endpoint and IMS UE, if they have same media capability.
-	RTC network and IMS network have a trust relationship and communicate in a trusted and secure way.
-	RTC user (RTC endpoint) and IMS user (IMS UE) has its own telephone number. RTC network and IMS network can identify the destination network by telephone number.
-	The RTC specific capabilities/features are terminated by IWF and are not interworked to IMS. This is same for vise-versa.
-	Signalling message for session keep-alive are not interworked.
-	When an SFU is applied for the media session on the RTC side, IWF and TGF are able to compose multiple media streams to a single media stream for IMS media session.
-	IWF assigns a Media Session ID for management of media session in RTC network, when IWF receives initial INVITE request from IMS network based on the principle of RESPECT.
NOTE:	RESPECT protocol specifies the information element which indicates media session ID ("mediaSessionId"). Media session ID is used for indicating the target media session in the signalling message and the media session state is managed per Media session ID in RTC network. Then Media Session ID is desired to be assigned at the first functional entity of RTC network receiving media session request from RTC endpoint or other networks, to enable to manage/control the media session as early as possible.
<Premises>
-	The interworking specification is developed based on the following assumptions.
a)	Optional capabilities are not supported in IMS network. This aims to interwork with any IMS network.
b)	For C-Plane signalling specification for the interface between RTC network and IMS network, TS 29.165 [TS 29.165] is adopted, as referred in TS 29.162 [TS 29.162]
c)	3GPP TS 26.114 [TS26.114] is applied as U-Plane media specification for the interface between RTC network and IMS network, as specified in TS 29.165 [TS 29.165].
6.10.3	C-Plane signalling interworking
6.10.3.1	General
This clause studies the followings as the RESPECT-IMS SIP interworking specification.
1)	Protocol stack
2)	Interworking between RESPECT signalling message and IMS SIP signalling message
3)	Call flow example
6.10.3.2	Protocol stack
This clause studies the protocol stack of RESPECT-IMS SIP interworking. Figure 6.10.3.2-1 shows the protocol stack for interworking between RESPECT and IMS SIP
[image:]
Figure 6.10.3.2-1:	Protocol interworking between RESPECT and IMS SIP
IWF performs the interworking between RTC and IMS networks.
-	Signalling protocol interworking: RESPECT - IMS SIP
-	Underlying protocol interworking: Secure WebSocket - UDP/TCP
6.10.3.3	Interworking between RESPECT signalling message and IMS SIP signalling message
6.10.3.3.1	General
This clause studies the interworking specification between RESPECT signalling message and IMS SIP signaling message.
The following messages are considered as the essential message for media session setup, update and release. Then this solution studies the interworking specification for following messages.
-	RESPECT
1.	msetup request/response
2.	mupdate request/response
3.	mdisc request/response
-	IMS SIP
1.	Initial INVITE request/response
2.	re-INVITE and UPDATE request/response
3.	CANCEL and BYE request/response
NOTE:	RESPECT does not specify a request/response corresponding to ACK/PRACK methods. Then, ACK/PRACK methods are not interworked to RESPECT request/response.
6.10.3.3.2	Basic principle of media session state and state transition
This clause describes the basic principle of media session state and state transition.
There are two kinds of media session state. One is a RESPECT based media session state and the other is IMS SIP based media session state. IWF manages the media session state based on the following RESPECT media session state, as an RTC network function.
-	accepted:
*	The network (IWF) accepts the media session setup request, however, the request is not confirmed to reach the called endpoint (called party). This state is equivalent to IMS state that the network receives initial INVITE request and responded SIP 100 (Trying) response.
*	If it is confirmed that the request is reached to called endpoint during this media session state, the media session state transitions to "connecting". There is a case that the media session state transitions to "connected", if it is confirmed that the media path is established between calling endpoint and called endpoint.
-	connecting:
*	The network (IWF) confirmed that the media session setup request has been reached to called endpoint (i.e., RTC endpoint or IMS UE), however, the media path has not been established between calling endpoint and called endpoint. This state is equivalent to "early" state of SIP.
*	If the media path is established between calling endpoint and called endpoint during "connecting" state, the media session state transitions to "connected" state.
-	connected:
*	The network (IWF) confirmed that the media path has been established between calling endpoint and called endpoint. This state is equivalent to "confirmed" state of SIP.
-	updating:
*	The network (IWF) is proceeding the media session update due to media session update request, after the media session state transitions to "connected". This state is equivalent to the state that IMS entity is in media session update process due to receiving re-INVITE request / UPDATE request (or waiting the response to these requests).
*	If it is confirmed that the update of the media session is completed and that the media path has been established between calling endpoint and called endpoint during "updating" state, the media session state transitions to "connected" state.
-	disconnected:
*	The network (IWF) confirmed that the media session is released/disconnected. This state is equivalent to one of the following IMS state:
-	the IMS media session is released by completion of BYE transaction
-	the IMS media session establishment is failed, in this case the initial INVITE request will be responded by final error response.
6.10.3.3.3	Media session setup from RTC to IMS
6.10.3.3.3.1	General
This clause describes the signalling message interworking when an RTC endpoint initiates media session setup and the media session is terminated by IMS network (i.e., IMS UE).
6.10.3.3.3.2	Sending initial INVITE request
When the IWF receives an msetup request from the WSF and accepts the request, the IWF sends initial INVITE request to the IMS network identified by the tel URI of the "resourceId" entry in the received msetup request.
The SIP 100 (Trying) response to the initial INVITE request is not interworked to RTC side.
Media session state transitions to "accepted" state, after the reception of the SIP 100 (Trying) response.
[image:]
Figure 6.10.3.3.3.2-1: Sending of initial INVITE request
The information elements in the received msetup request are mapped to the SIP components in the initial INVITE request as shown in Table 6.10.3.3.3.2-1. Information elements terminated by IWF are not shown in Table 6.10.3.3.3.2-1. SIP components locally generated by IWF are not shown in Table 6.10.3.3.3.2-1.
Table 6.10.3.3.3.2-1: Mapping of RESPECT msetup request into SIP initial INVITE request
	msetup
	INVITE

	resourceId
	Request-URI

	
	To header field

	preferredOid
	From header field

	assertedOid
	P-Asserted-Identity header field

	(NOTE 1)
	Privacy header field

	preOfferDesc
	Message body (SDP offer) (NOTE 2)

	NOTE 1:	The interworked information element is FFS.
NOTE 2:	Detailed interworking of SDP will be studied in this document.

6.10.3.3.3.3	Sending mupdate request corresponding to SIP 18x response
When the IWF receives a SIP 18x response (e.g., 180, 181, 183 response) during "accepted" media session state, the IWF sends mupdate request to the WSF which sent the corresponding mupdate request. The mupdate response corresponding to the mupdate request is not interworked to IMS side.
Media session state transitions to "connecting" state, after the reception of a SIP 18x response.
[image:]
Figure 6.10.3.3.3.3-1: Sending of mupdate request corresponding to SIP 18x response
The information elements in the mupdate request are created by IWF, based on the information element in corresponding msetup request and the media session related information configured in the IWF.
IWF is recommended to include answer description ("answerDesc" entry) in the mupdate request, even if the corresponding 18x response does not include SDP answer. The answer description can be locally generated based on the corresponding received "preOfferDesc" entry and the information provided by TGF, and the SDP answer will not be used to generate the answer description.
6.10.3.3.3.4	Sending mupdate request corresponding to SIP 200 response to initial INVITE request
When the IWF receives a SIP 200 (OK) response to the corresponding INVITE request during "accepted" or "connecting" media session state, the IWF sends mupdate request to the WSF which sent the corresponding mupdate request. The mupdate response corresponding to the mupdate request is not interworked to IMS side.
Media session state transitions to "connected" state, after sending ACK request to IMS network.
[image:]
Figure 6.10.3.3.3.4-1: Sending of mupdate request corresponding to SIP 200 response to initial INVITE request
The information elements in the mupdate request are created by IWF based on the information element in the corresponding msetup request and the media session related information managed in the IWF.
The SIP components of the ACK request are created by IWF, based on the dialog information related to the received initial INVITE request.
NOTE:	SDP answer is not included in the SIP 200 (OK) response if SDP answer is already received in other SIP message.
6.10.3.3.4	Media session setup from IMS to RTC
6.10.3.3.4.1	General
This clause describes the signalling message interworking when an IMS UE initiates media session setup and the media session is terminated by RTC network (e.g., RTC endpoint).
6.10.3.3.4.2	Sending msetup request
When the IWF receives an initial INVITE request from the IMS network (i.e., IBCF) and accepts the request, the IWF sends msetup request to the WSF in the RTC network. The IWF identifies the WSF by telephone number available in the Request-URI of the received initial INVITE request. After sending out the msetup request, IWF sends a SIP 100 (Trying) response corresponding to the initial INVITE request to IMS network.
Media session state transitions to "connecting" state, after the reception of the initial INVITE request.
NOTE:	ASWF stores the binding information of an RTC endpoint and a WSF in its data base. IWF is able to access the database to identify the WSF where the "msetup" request is sent to. The method to access the ASWF data base is outside the scope of this solution.
[image:]
Figure 6.10.3.3.4.2-1: Sending of msetup request
The SIP components in the initial INVITE request are mapped to information elements in the msetup request as shown in Table 6.10.3.3.4.2-1. The SIP components terminated by IWF are not shown in Table 6.10.3.3.4.2-1. The information elements locally generated by IWF are not shown in Table 6.10.3.3.4.2-1.
Table 6.10.3.3.4.2-1: Mapping of SIP INVITE request into RESPECT msetup request
	msetup
	INVITE

	resourceId (NOTE 1)
	Request-URI

	preferredOid
	From header field

	assertedOid
	P-Asserted-Identity header field

	(NOTE 2)
	Privacy header field

	OfferDesc
	Message body (SDP) (NOTE 3)

	NOTE 1:	IWF retrieves the RTC user identity corresponding to telephone number in the Request URI from ASWF database, and set the obtained RTC user identity in this information element.
NOTE 2 	The information element is FFS.
NOTE 3:	Detailed interworking of SDP will be studied in this document.

6.10.3.3.4.3	Sending SIP 18x response (receiving msetup response with no offer/answer)
When the IWF receives an msetup response (with no offer/answer) corresponding to the msetup request from the WSF, the IWF sends SIP 18x response (e.g., 180, 181, 183 response) corresponding to the received initial INVITE request to the IMS network (i.e., IBCF).
Media session state is not changed, after the completion of this procedure (i.e., keep "connecting" state).
[image:]
Figure 6.10.3.3.4.3-1: Sending of SIP 18x response corresponding to msetup response
The SIP components in the SIP 18x response are created by IWF, based on the dialog information of the received initial INVITE request.
The IWF is able to include SDP answer in the SIP 18x response, based on the SDP offer included in the received initial INVITE request and SDP related information pre-configured in the TGF.
6.10.3.3.4.4	Sending SIP 18x and 200 response (receiving msetup response with offer)
When the IWF receives an msetup response (with offer) corresponding to the msetup request from the WSF, the IWF sends a SIP 18x response (e.g., 180, 181, 183 response) corresponding to the received initial INVITE request to the IMS network (i.e., IBCF). Then the IWF complete offer/answer negotiation for the RTC media session by sending mupdate request to the WSF and receiving mupdate response to the mupdate request. When the offer/answer negotiation for the RTC media session is completed, the IWF sends 200 response corresponding to initial INVITE request to IMS network.
Media session state is not changed, after the completion of this procedure (i.e., keep "connecting" state).
[image:]
Figure 6.10.3.3.4.4-1: Sending of 18x response corresponding to msetup response
The SIP components in the SIP 18x and 200 response are created by IWF, based on the dialog information related to the received initial INVITE request.
The IWF is able to include SDP answer in the SIP 18x or 200 response, based on the SDP offer included in the received initial INVITE request and SDP related information pre-configured in the TGF.
The information elements in the mupdate request are created by the IWF based on the information element in the corresponding msetup request and the media session related information pre-configured in the IWF.
6.10.3.3.4.5	Sending 18x and 200 response (receiving msetup response with answer)
When the IWF receives an msetup response (with answer) to the msetup request from the WSF, the IWF sends a SIP 18x response (e.g., 180, 181, 183 response) to the received initial INVITE request towads the IMS network (i.e., IBCF). Then the IWF sends a SIP 200 (OK) response to initial INVITE request towards IMS network.
Media session state is not changed, after the completion of this procedure (i.e., keep "connecting" state).
[image:]
Figure 6.10.3.3.4.5-1: Sending of 18x response corresponding to msetup response
The SIP components in the SIP 18x 200 response are created by IWF, based on the dialog information related to the received initial INVITE request.
The IWF is able to include SDP answer in the SIP 18x or 200 response, based on the SDP offer included in the received initial INVITE request and SDP related information pre-configured in the TGF.
6.10.3.3.4.6	Sending SIP 200 OK (INVITE) response
When the IWF receives an mupdate request (with answer) corresponding to the media session which is in "connecting" state and has not received offer or answer in msetup response from the WSF (i.e., the IWF sends SIP 18x response (e.g., 180, 181, 183 response) as described in clause 6.10.3.3.4.3), the IWF sends a SIP 200 (OK) response corresponding to initial INVITE request to IMS network. The WSF also sends mupdate response to the WSF.
Media session state is not changed, after the completion of this procedure (i.e., keep "connecting" state).
[image:]
Figure 6.10.3.3.4.6-1: Sending of mupdate request corresponding to 200 response (INVITE)
The SIP components in the SIP 200 response are created by IWF, based on the dialog information related to the received initial INVITE request.
Only when the IWF has not sent SDP answer before sending the SIP 200 (OK) response, the IWF is required to include SDP answer in the SIP 200 response, based on the SDP offer included in the received initial INVITE request and SDP related information pre-configured in the TGF.
6.10.3.3.4.7	Sending mupdate request (corresponding to ACK)
When the IWF receives an ACK request corresponding to the INVITE request after sending a SIP 200 (OK) response to the INVITE request, the IWF sends mupdate request to the WSF for indicating media session state transition to "connected". The mupdate response to the mupdate request is not interworked to IMS side.
Media session state transitions to "connected" state, after the reception of ACK request.
[image:]
Figure 6.10.3.3.4.7-1: Sending of mupdate request corresponding to ACK request
The information elements in the mupdate request are created by IWF based on the information element in the corresponding msetup request and the media session related information managed by the IWF.
6.10.3.3.4	Media session update from RTC to IMS
6.10.3.3.4.1	General
This clause describes the signalling message interworking for media session update after the media session state transitions to "connected".
Editor's note: Interwork for media session update will be provided.
6.10.3.3.5	Media session release
6.10.3.3.5.1	General
This clause describes the signalling message interworking for media session disconnection after the media session states transitions to "connected".
6.10.3.3.5.2	Sending BYE request
When the IWF receives an mdisc request during "connected" media session state, the IWF sends mdisc response to the WSF which sent the corresponding mdisc request. Then the IWF sends the BYE request to the IMS network for the corresponding SIP dialog. The SIP 200 (OK) response to the BYE request is not interworked.
Media session state transitions to "disconnected" state, after the completion of this procedure.
[image:]
Figure 6.10.3.3.5.2-1: Sending of BYE request corresponding to mdisc request
The SIP components of the BYE request are created by IWF, based on the dialog information related to the IMS media session which is terminated.
6.10.3.3.5.3	Sending mdisc request for established media session
When the IWF receives a BYE request during "connected" media session state, the IWF sends the SIP 200 (OK) response to the IMS network which sent BYE request. Then the IWF sends mdisc request to the WSF corresponding to the RTC media session which is disconnected. The mdisc response corresponding to the mdisc request is not interworked.
Media session state transitions to "disconnected" state, after the sending of SIP 200 (OK) response to BYE request.
[image:]
Figure 6.10.3.3.5.3-1: Sending of mdisc request corresponding to BYE request
The information elements in the mdisc request are created by IWF based on the information element in the corresponding the RTC media session which is disconnected.
6.10.3.3.6	Cancel of media session set up
6.10.3.3.6.1	General
This clause describes the signalling message interworking for media session set up cancellation during "accepted" or "connecting" media session states.
6.10.3.3.6.2	Sending CANCEL request
When the IWF received mdisc request to the media session which is in "accepted" or "connecting" media session states, the IWF cancels the media session set up procedure and sends mdisc respponse to the WSF. Then the IWF sends a CANCEL reqeust to the IMS network for cancellation of IMS media session set up coresponding to the RTC media session which is canceled. The SIP 200 (OK) response to the CANCEL requestt is not interworked.
Media session state transitions to "disconnected" state, after the sending of mdisc respponse.
[image:]
Figure 6.10.3.3.3.6-1: Sending of CANCEL request corresponding to mdisc request
The SIP components of the CANCEL request are created by the IWF, based on the dialog information related to the IMS media session which is canceled.
6.10.3.3.6.3	Sending mdisc request during media session establishment
When the IWF receives a CANCEL request to the media session which is in "accepted" or "connecting" media session state, the IWF sends a SIP 200 (OK) response to the IMS network which sent CANCEL request. Then the IWF sends mdisc requestt to the WSF corresponding to the RTC media session which is canceled. The mdisc response corresponding to the mdisc request is not interworked.
Media session state transitions to "disconnected" state, after the sending of SIP 200 (OK) response to CANCEL request.
[image:]
Figure 6.10.3.3.6.3-1: Sending of mdisc request corresponding to CANCEL request
The information elements in the mdisc request are created by the IWF based on the information element in the corresponding the RTC media session which is canceled.
6.10.3.4	Call flow example for RTC-IMS interworking
6.10.3.4.1	General
This clause describes call flow example forinterworking between RTC signalling message and IMS signalling messae,based on the interworking specification described in clause 6.10.3.3.
Table 6.10.3.4-1: Parameters applied for the call flow examples
	RTC
	IMS

	Domain
	rtc.example.com
	Domain
	ims.3gpp.org

	Telephone number of WebRTC endpoint
	05033334444
	Telephone number of IMS UE
	08011112222

	RTC user identity
	3gpp-respect://user1@rtc.example.com
	Public User Identity
	Not used in call flow example

	Supported audio codec
	g.711μ-law, OPUS
	Supported audio codec
	EVS, AMR-WB, AMR

	IWF IP address
	192.0.2.123
	IWF IP address
	192.0.2.234

	TGF IP address
	192.0.2.111
	TGF IP address
	192.0.2.222

6.10.3.4.2	Call flow (End-to-end session, RTC originated, IMS terminated, released by originating side)
Figure 6.10.3.4.2-1 shows the call flow example for the case that RTC enndpoint originates a media session set up and IMS UE terminates the media session.
[image:]
Figure 6.10.3.4.2-1: Call flow for RTC-IMS interwork (RTC-originated, IMS terminated)

F1: msetup req (WebRTC endpoint to WSF)
{
 "msgType": "request",
 "method”: "msetup",
 "transactionId": 4,
 "resourceId": "tel:08011112222",
 "preferredOid": "tel:05033334444",
 "PreOfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 2e:03:90:eb:02:4a:52:96:3d:b7:b9:5e:84:a9:c2:b1:2c:00:40:54:a7:ba:d9:a9:7e:c0:c7:c8:9d:46:81:d2
 a=ice-ufrag:eg1coK3j
 a=ice-pwd:ta6Oophe
 a=setup:actpass
 m=video 9 UDP/TLS/RTP/SAVPF 96
 c=IN IP4 0.0.0.0
 a=mid:0
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=rtpmap:96 H264/90000
 a=recvonly
 m=audio 9 UDP/TLS/RTP/SAVPF 97 0
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=sendrecv
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 a=mid:2
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
"
 }
}

NOTE:	The object format of "preferredOid" key is FFS.

F2: msetup res (WSF to WebRTC endpoint)
{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "accepted"
}

F3: msetup req (WSF to IWF)
{
 "msgType": "request",
 "method”: "msetup",
 "transactionId": 100,
 "resourceId": "tel:08011112222",
 "assertedOid”: "tel:05033334444",
 "PreOfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 2e:03:90:eb:02:4a:52:96:3d:b7:b9:5e:84:a9:c2:b1:2c:00:40:54:a7:ba:d9:a9:7e:c0:c7:c8:9d:46:81:d2
 a=ice-ufrag:eg1coK3j
 a=ice-pwd:ta6Oophe
 a=setup:actpass
 m=video 9 UDP/TLS/RTP/SAVPF 96
 c=IN IP4 0.0.0.0
 a=mid:0
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=rtpmap:96 H264/90000
 a=recvonly
 m=audio 9 UDP/TLS/RTP/SAVPF 97 0
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=sendrecv
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 a=mid:2
 a=bundle-only
[bookmark: _Hlk148611150] a=sctp-port:5000
 a=max-message-size:65536
"
 }
}

NOTE:	The object format of "assertedOid" key is FFS.

F4: msetup res (IWF to WSF)

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 100,
 "success": true,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "accepted"
}

F5: INVITE req (IWF to IBCF)

INVITE sip:+818011112222@ims.3gpp.org;user=phone SIP/2.0
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK12345678abcdefgh
Max-Forwards: 70
To: <sip:+818011112222@ims.3gpp.org;user=phone>
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 1 INVITE
Contact: <sip:192.0.2.123>
Privacy: none
P-Asserted-Identity: <tel:+815033334444>
P-Asserted-Identity: <sip:+815033334444@rtc.example.com;user=phone>
P-Charging-Vector: icid-value=1234bc9876e;orig-ioi=rtc.example.com
Allow: INVITE,ACK,BYE,CANCEL,PRACK,UPDATE
Supported: 100rel,timer
Session-Expires: 300;refresher=uac
Min-SE: 300
Content-Type: application/sdp
Content-Length: 207

v=0
o=- 82664419472 82664419472 IN IP4 192.0.2.111
s=-
c=IN IP4 192.0.2.111
t=0 0
m=audio 10000 RTP/AVP 96 97 98
a=rtpmap:96 EVS/16000/1
a=fmtp:96 br=64; bw=swb; max-red=220
a=rtpmap:97 AMR-WB/16000/1
a=fmtp:97 mode-change-capability=2; max-red=220
a=rtpmap:98 AMR/8000/1
a=fmtp:98 mode-change-capability=2; max-red=220

F6: 100 Trying res (IBCF to IWF)

SIP/2.0 100 Trying
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK23456789bcdefghi
To: <sip:+818011112222@ims.3gpp.org;user=phone>
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 1 INVITE
Content-Length: 0

F7: 180 Ringing res (IBCF to IWF)

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK12345678abcdefgh
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 1 INVITE
Contact: <sip:192.0.2.234>
P-Charging-Vector: icid-value=1234bc9876e;orig-ioi=rtc.example.com;term-ioi=ims.3gpp.org
Allow: INVITE,ACK,BYE,CANCEL,PRACK,UPDATE
Require: 100rel
RSeq: 1
Content-Length: 0

F8: mupdate req (IWF to WSF)

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 101,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState: connecting",
 "answerDesc": {
 "sdp": "v=0
 o=- 8223372036854775808 3885262147 IN IP4 129.60.18.1
 s=-
 c=IN IP4 129.60.18.2
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-lite
 a=fingerprint sha-256 5f:a0:fa:55:a3:e8:59:a6:d2:cd:3a:34:2e:87:b3:83:96:c4:95:1b:18:9c:94:eb:c7:ae:94:02:c9:95:ca:5f
 a=ice-ufrag:Anoo6wiu
 a=ice-pwd:Wienu1Io
 a=setup:actpass
 m=video 0 UDP/TLS/RTP/SAVPF 96
 a=mid:0
 m=audio 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=sendrecv
 m=application 0 UDP/DTLS/SCTP webrtc-datachannel
 a=mid:2
"
 }
}

F9: mupdate res (WSF to IWF)

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 100,
 "success": true,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "accepted"
}

F10: mupdate req (WSF to WebRTC endpoint)

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState: connecting",
 "answerDesc": {
 "sdp": "v=0
 o=- 8223372036854775808 3885262147 IN IP4 129.60.18.1
 s=-
 c=IN IP4 129.60.18.2
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-lite
 a=fingerprint sha-256 5f:a0:fa:55:a3:e8:59:a6:d2:cd:3a:34:2e:87:b3:83:96:c4:95:1b:18:9c:94:eb:c7:ae:94:02:c9:95:ca:5f
 a=ice-ufrag:Anoo6wiu
 a=ice-pwd:Wienu1Io
 a=setup:actpass
 m=video 0 UDP/TLS/RTP/SAVPF 96
 a=mid:0
 m=audio 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=sendrecv
 m=application 0 UDP/DTLS/SCTP webrtc-datachannel
 a=mid:2
"
 }
}

F11: mupdate res (WebRTC endpoint to WSF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "accepted"
}

F12: PRACK req (IWF to IBCF)

PRACK sip:192.0.2.234 SIP/2.0
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK23456789bcdefghi
Max-Forwards: 70
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 2 PRACK
RAck: 1 1 INVITE
Content-Length: 0

F13: 200 OK res to PRACK (IBCF to IWF)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK23456789bcdefghi
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 2 PRACK
Content-Length: 0

F14: 200 OK res to INVITE (IBCF to IWF)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK12345678abcdefgh
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 1 INVITE
Contact: <sip:192.0.2.234>
P-Charging-Vector: icid-value=1234bc9876e;orig-ioi=rtc.example.com;term-ioi=ims.3gpp.org
Allow: INVITE,ACK,BYE,CANCEL,PRACK,UPDATE
Require: timer
Session-Expires: 300;refresher=uac
Content-Type: application/sdp
Content-Length: 207
v=0
o=- 82917391739 82917391739 IN IP4 192.0.2.222
s=-
c=IN IP4 192.0.2.222
t=0 0
m=audio 10000 RTP/AVP 96
a=rtpmap:96 EVS/16000/1
a=fmtp:96 br=64; bw=swb; max-red=220

F15: ACK req (IWF to IBCF)

ACK sip:192.0.2.234 SIP/2.0
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK34567890cdefghij
Max-Forwards: 70
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 1 ACK
Content-Length: 0

F16: mupdate req (IWF to WSF)

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 103,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "connected"
}

F17: mupdate res (WSF to IWF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 103,
 "success": true,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "updatedKeys": ["mediaSessionState"]
}

F18: mupdate req (WSF to WebRTC endpoint)

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "connected"
}

F19: mupdate res (WebRTC endpoint to WSF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "updatedKeys": ["mediaSessionState"]
}

F20: mdisc req (WebRTC endpoint to WSF)

{
{
 "msgType": "request",
 "method”: "mdisc",
 "transactionId": 6,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX"
}

F21: mdisc res (WSF to WebRTC endpoint)

{
 "msgType": "response",
 "method": "mdisc",
 "transactionId": 6,
 "success": true,
 "mediaSessionId": "EPWSFpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "disconnected"
}

F22: mupdate req (WSF to IWF)

{
 "msgType": "request",
 "method”: "mdisc",
 "transactionId": 102,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX"
}

F23: mupdate res (IWF to WSF)

{
 "msgType": "response",
 "method": "mdisc",
 "transactionId": 102,
 "success": true,
 "mediaSessionId": "WSFIWFjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "disconnected"
}

F24: BYE req (IWF to IBCF)

BYE sip:192.0.2.234 SIP/2.0
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK56789012efghijkl
Max-Forwards: 70
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 3 BYE
Content-Length: 0

F25: 200 OK res to BYE (IBCF to IWF)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.123:5060;branch=z9hG4bK56789012efghijkl
To: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=9876zyxw
From: <sip:+815033334444@rtc.example.com;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 3 BYE
Content-Length: 0

6.10.3.4.3	Call flow (End-to-end session, IMS originated, RTC terminated, released by originating side)
Figure 6.10.3.4.3-1 shows the call flow example for the case that IMS UE originates a media session set up and RTC enndpoint terminates the media session.
[image:]
Figure 6.10.3.4.3-1: Call flow for RTC-IMS interwork (RTC-originated, IMS terminated)

F1: INVITE req (IBCF to IWF)

INVITE sip:+815033334444@rtc.example.com;user=phone SIP/2.0
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgh
Max-Forwards: 70
To: <sip:+815033334444@rtc.example.com;user=phone>
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 1 INVITE
Contact: <sip:192.0.2.234>
Privacy: none
P-Asserted-Identity: <tel:+818011112222>
P-Asserted-Identity: <sip:+818011112222@ims.3gpp.org;user=phone>
P-Charging-Vector: icid-value=1234bc9876e;orig-ioi=ims.3gpp.org
Allow: INVITE,ACK,BYE,CANCEL,PRACK,UPDATE
Supported: 100rel,timer
Session-Expires: 300;refresher=uac
Min-SE: 300
Content-Type: application/sdp
Content-Length: 207
v=0
o=- 82917391739 82917391739 IN IP4 192.0.2.222
s=-
c=IN IP4 192.0.2.222
t=0 0
m=audio 20000 RTP/AVP 96 97 98
a=rtpmap:96 EVS/16000/1
a=fmtp:96 br=64; bw=swb; max-red=220
a=rtpmap:97 AMR-WB/16000/1
a=fmtp:97 mode-change-capability=2; max-red=220
a=rtpmap:98 AMR/8000/1
a=fmtp:98 mode-change-capability=2; max-red=220

F2: msetup req. (IWF to WSF)

{
 "msgType": "request",
 "method”: "msetup",
 "transactionId": 201,
 "resourceId": "3gpp-respet://user1@rtc.example.com",
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "connecting",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 8223372036854775808 3885262147 IN IP4 129.60.18.1
 s=-
 c=IN IP4 129.60.18.2
 t=0 0
 a=group:BUNDLE 0
 a=ice-lite
 a=fingerprint sha-256 5f:a0:fa:55:a3:e8:59:a6:d2:cd:3a:34:2e:87:b3:83:96:c4:95:1b:18:9c:94:eb:c7:ae:94:02:c9:95:ca:5f
 a=ice-ufrag:Anoo6wiu
 a=ice-pwd:Wienu1Io
 a=setup:actpass
 m=audio 9 UDP/TLS/RTP/SAVPF 97 0
 a=mid:0
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=sendrecv
"
 }
}

F3: 100 Trying res (IWF to IBCF)

SIP/2.0 100 Trying
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgh
To: <sip:+815033334444@rtc.example.com;user=phone>
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 1 INVITE
Content-Length: 0

F4: msetup res (WSF to IWF)

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 201,
 "success": true,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
}

F5: msetup req. (WSF to WebRTC endpoint)

{
 "msgType": "request",
 "method”: "msetup",
 "transactionId": 11,
 "resourceId": "3gpp-respet://user1@rtc.example.com",
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "connecting"
 "OfferDesc": {
 "sdp": "v=0
 o=- 8223372036854775808 3885262147 IN IP4 129.60.18.1
 s=-
 c=IN IP4 129.60.18.2
 t=0 0
 a=group:BUNDLE 0
 a=ice-lite
a=fingerprint sha-256 5f:a0:fa:55:a3:e8:59:a6:d2:cd:3a:34:2e:87:b3:83:96:c4:95:1b:18:9c:94:eb:c7:ae:94:02:c9:95:ca:5f
 a=ice-ufrag:Anoo6wiu
 a=ice-pwd:Wienu1Io
 a=setup:actpass
 m=audio 9 UDP/TLS/RTP/SAVPF 97 0
 a=mid:0
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=sendrecv
"
 }
}

F6: msetup res (WebRTC endpoint to WSF)

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 11,
 "success": true,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
}

F7: 180 Ringing res (IWF to IBCF)

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgh
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 1 INVITE
Contact: <sip:192.0.2.123>
P-Charging-Vector: icid-value=1234bc9876e;orig-ioi=ims.3gpp.org;term-ioi=rtc.example.com
Allow: INVITE,ACK,BYE,CANCEL,PRACK,UPDATE
Require: 100rel
RSeq: 1
Content-Length: 0

F8: PRACK req. (IBCF to IWF)

PRACK sip:192.0.2.234 SIP/2.0
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgi
Max-Forwards: 70
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 2 PRACK
RAck: 1 1 INVITE
Content-Length: 0

F9: 200 OK res. to PRACK (IWF to IBCF)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgi
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.123
CSeq: 2 PRACK
Content-Length: 0

F10: mupdate req (WebRTC endpoint to WSF)

{
 "msgType": "request",
 "method”: "mupdate",
 "transactionId": 10,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "answerDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0
 a=ice-options:trickle
 a=fingerprint sha-256 2e:03:90:eb:02:4a:52:96:3d:b7:b9:5e:84:a9:c2:b1:2c:00:40:54:a7:ba:d9:a9:7e:c0:c7:c8:9d:46:81:d2
 a=ice-ufrag:eg1coK3j
 a=ice-pwd:ta6Oophe
 a=setup:actpass
 m=audio 9 UDP/TLS/RTP/SAVPF 97
 a=mid:0
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=sendrecv
"
 }
}

F11: mupdate res (WSF to IWF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 10,
 "success": true,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
}

F12: mupdate req (WSF to IWF)

{
 "msgType": "request",
 "method”: "mupdate",
 "transactionId": 200,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "answerDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0
 a=ice-options:trickle
 a=fingerprint sha-256 2e:03:90:eb:02:4a:52:96:3d:b7:b9:5e:84:a9:c2:b1:2c:00:40:54:a7:ba:d9:a9:7e:c0:c7:c8:9d:46:81:d2
 a=ice-ufrag:eg1coK3j
 a=ice-pwd:ta6Oophe
 a=setup:actpass
 m=audio 9 UDP/TLS/RTP/SAVPF 97
 a=mid:0
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 opus/48000/2
 a=sendrecv"
 }
}

F13: mupdate res (IWF to WSF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 200,
 "success": true,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
}

F14: 200 OK res to INVITE (IWF to IBCF)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgh
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 1 INVITE
Contact: <sip:192.0.2.123>
P-Charging-Vector: icid-value=1234bc9876e;orig-ioi=ims.3gpp.org;term-ioi=rtc.example.com
Allow: INVITE,ACK,BYE,CANCEL,PRACK,UPDATE
Require: timer
Session-Expires: 300;refresher=uac
Content-Type: application/sdp
Content-Length: 207

v=0
o=- 82917391739 82917391739 IN IP4 192.0.2. 111
s=-
c=IN IP4 192.0.2.111
t=0 0
m=audio 20000 RTP/AVP 96
a=rtpmap:96 EVS/16000/1
a=fmtp:96 br=64; bw=swb; max-red=220

F15: ACK req (IBCF to IWF)

ACK sip:192.0.2.123 SIP/2.0
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK12345678abcdefgh
Max-Forwards: 70
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 1 ACK
Content-Length: 0

F16: mupdate req (IWF to WSF)

{
 "msgType": "request",
 "method”: "mupdate",
 "transactionId": 203,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "connected"
}

F17: mupdate res (WSF to IWF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 203,
 "success": true,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "updatedKeys": ["mediaSessionState"]
}

F18: mupdate req (WSF to WebRTC endpoint)

{
 "msgType": "request",
 "method”: "mupdate",
 "transactionId": 13,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "connected"
}

F19: mupdate res (WebRTC endpoint to IWF)

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 13,
 "success": true,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "updatedKeys": ["mediaSessionState"]
}

F20: BYE req (IBCF to IWF)

BYE sip:192.0.2.123 SIP/2.0
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK56789012efghijkl
Max-Forwards: 70
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 3 BYE
Content-Length: 0

F21: 200 OK res to BYE (IWF to IBCF)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.234:5060;branch=z9hG4bK56789012efghijkl
To: <sip:+815033334444@rtc.example.com;user=phone>;tag=9876zyxw
From: <sip:+818011112222@ims.3gpp.org;user=phone>;tag=1234abcd
Call-ID: qwertyuiop123456@192.0.2.234
CSeq: 3 BYE
Content-Length: 0

F22: mdisc req (IWF to WSF)

{
 "msgType": "request",
 "method”: "mdisc",
 "transactionId": 205,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
 "mediaSessionState": "disconnected"
}

F23: mdisc e res (WSF to IWF)

{
{
 "msgType": "response",
 "method": "mdisc",
 "transactionId": 205,
 "success": true,
 "mediaSessionId": "IWFWSFyiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
}

F24: mdisc req (WSF to WebRTC endpoint)

{
 "msgType": "request",
 "method”: "mdisc",
 "transactionId": 15,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "disconnected"
}

F25: mdisc res (WebRTC endpoint to IWF)

{
 "msgType": "response",
 "method": "mdisc",
 "transactionId": 15,
 "success": true,
 "mediaSessionId": "WSFEP2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3"
}

6.10.4	U-Plane media related interworking
6.10.4.1	General
This clause studies the U-Plane media related interworking specification between RTC media session and IMS media session.
6.10.4.2	Protocol stack
This clause studies the protocol stack for U-Plane media related interworking between RTC media session and IMS media session. Figure 6.10.4.2-1 shows the protocol stack for interworking between RTC media session and IMS media session.
[image:]
Figure 6.10.4.2-1:	Protocol interwork between RTC media session and IMS media session
TGF performs the interworking between RTC media stream and IMS media stream.
-	Protocol interworking
-	Coded transcoding
-	Termination of capabilities which is not supported by the other side. (e.g., multiplexing RTP data and control packets on a single port as specified in IETF RFC 5761 [RFC5761] and IETF RFC 8035 [RFC8035] may not be supported in the IMS side.)
[image:]
Figure 6.10.4.2-2:	Protocol interwork between RTC data channel and IMS data channel
TGF is not expected to transcode WebRTC data channel related protocols, since DCMTSI client in IMS network supports IMS data channel which complies to WebRTC data channel as described in 3GPP TS 26.114 [TS26.114]. If the called MTSI client is not DCMTSI client, then the data channel related SDP offer is ignored at the MTSI client.
NOTE:	Data channel related SDP offer might be removed or transcoded at the IWF or IBCF, based on the operator policy and the inter-operator agreements.
6.10.5	RTC media mixising for IMS
6.10.5.1	General
When SFU is used for the conference media session in RTC network, media stream will be generated from each participant. Therefore, the RTC endpoint needs to receive the media stream from all the participants and perform SDP offer/answer every time a new participant joins the conference. However, an IMS or IMS UE not expecting frequent media changes or huge media streams may not be handle the above SDP offer/answer correctly.
This clause studies the solution for enabling IMS UE to join a conference provided in RTC network using SFU with a single media stream.
Editor's note: A solution of RTC media mixising for IMS will be provided.
6.10.6	Solution evaluation
This solution proposes the protocol-level interworking between RTC network and IMS network, based on the proposed functional requirements and architecture in Solution #4. The proposed solution realizes the interconnecttion of media session between RTC network and IMS network using existing IMS specification. Therefore, it is proposed to implement the proposed protocol-level interworking specificaiton into stage 3 specification of RTC as a part of RESPECT specification.
Editor's note: This solution needs feedback from SA2, before implementation of this solution into TR 26.930.
6.11	Solution #10: Details of signalling protocol
6.11.1	Solution description
This solution addresses key issue #8.
This clause describes a control plane signalling protocol for WebRTC-based immersive RTC session management supporting inter-operator connection (i.e., collaboration scenario 4 in TS 26.506 [TS26506]) based on the architecture described in clause 6.2 and functional requirements for eiRTCW C-Plane in clause 6.3. This protocol is also applicable to collaboration scenario 3 since collaboration scenario 4 includes the scenarios of collaboration scenario 3.
The signalling protocol for eiRTCW is named as RESPECT (REaltime&REality media Setup Protocol, Extensible and CompacT).
6.11.2	Overview
6.11.2.1	General
The eiRTCW signalling protocol is intended for various media session control on the following interfaces, as described in the motivation (clause 4.2) of this study:
-	UNI: The interface between operator network and UE (e.g., smart phone, content server of the Content Provider).
-	NNI: The interface between the two different operator networks, or that between operator network and service provider network.
The eiRTCW signalling protocol supports following connection pattern.
-	UE (user and content provider) - operator network (User to Network interface)
-	operator network - operator network (Network to Network interface)
-	operator network – service provider network (Network to Network interface)
[image:]
Figure 6.11.2.1-1:	High-level network model and interfaces of eiRTCW
A UE and a Content Provider can set up a media session by using eiRTCW signalling protocol for session control on the UNI. Figure 4.2-1 shows the high-level network model indicating above interfaces and media sessions established via eiRTCW functional entities (which described in clause 6.2) by using eiRTCW signalling protocol.
There are following benefits to using eiRTCW signalling protocol.
-	A UE (including the equipment of Content Provider) which is compliant with the eiRTCW signalling protocol can connect to any Operator Network which complies with the eiRTCW signalling protocol and set up a media session with the media resources (including UEs) in the Operator Network, based on the same signalling requirement.
-	A UE (including the equipment of Content Provider) which is compliant with the eiRTCW signalling protocol can connect to services provided by other Operator Network or service provider network via NNI, based on the same signalling requirement.
-	Content Providers can set up an operator assisted media session (e.g., media session with QoS) with UEs connected to the Operator Network via the NNI, by connecting to the operator network via the NNI.
-	Service Providers can set up an operator assisted media session (e.g., media session with QoS) with UEs connected to the Operator Network via the NNI, by connecting to the operator network via the NNI.
6.11.2.2	Basic connection model
6.11.2.2.1	General
This clause describes basic connection model for eiRTCW signalling protocol design.
6.11.2.2.2	Trapezoid model
eiRTCW signalling protocol is designed as trapezoid model as shown in Figure 6.11.2.2.2-1.

Figure 6.11.2.2.2-1:	Basic trapezoid model of eiRTCW
WebRTC Signalling Function (WSF) and Media Function (MF) in the network are responsible for providing reliable high-quality RTC services.
WSF terminates all signalling messages from WebRTC endpoints and other WSFs. This behaviour is equivalent to the behaviours of a back-to-back user agent (B2BUA) in SIP specified in IETF RFC3261 [RFC3261]. By manipulating all signalling messages, the WSF fully manages the connection and provides QoS interacting with 5GC and MF.
[bookmark: _Hlk131117844][bookmark: _Hlk131117816]MF involves all media/data paths of endpoints excluding when a direct media session is established between the WebRTC endpoints. The MF can control and monitor all media/data sessions.
6.11.2.2.3	Client-Server model
The eiRTCW signalling protocol adopts client-server model between two entities (i.e., between an eiRTCW client and a eiRTCW server, between eiRTCW servers). Figure 6.11.2.2.3-1 shows an example between an eiRTCW entities and an eiRTCW server. The eiRTCW client only sees a single entity (i.e., an eiRTCW server in the network). The eiRTCW server takes care of everything behind the server toward the final eiRTCW entity which the media session is connected to. It is same for the case between eiRTCW servers.

Figure 6.11.2.2.3-1:	Example of Client – server model for eiRTCW protocol design
The benefits brought by the model is simplification of the protocol between two entities (e.g., client and server) rather than among three and more (e.g., two endpoints and servers). For example;
-	All request/response messages are defined between two entities (i.e., between the endpoint and the network server or between network servers). The UE does not need to care the transaction behind the connected server.
-	Signalling message routing is completed by the network without terminal involvement (i.e., routing information (which is included in SIP messages) does not appear in the message between the endpoint and the server).
-	The endpoint/application specific characteristics (e.g., capabilities and services) can be converted/terminated by the network server.
These benefits are suitable for the basic requirements described in clause 6.3.3. Therefore, client – server model is adopted for the basic model for the signalling protocol design in this study.
6.11.2.2.4	Supported media session connection pattern
For U-Plane, the following media session connection patterns described in clause 6.2.4 need to be supported.
<Media session set up with media resource which connected to the same Operator>
a.	UE - Media Resource (served by the same Operator)
b.	UE - Media Resource (served by the same Operator) - UE (CP)
<Media session set up with media resource via NNI>
c.	UE - Media Resource (served by other Operator)
d	UE - Media Resource (served by an SP)
e.	UE (served by other Operator) – Media Resource - UE (CP)
f.	UE - Transit entity (served by other Operator) - Media Resource (served by an SP)
<Media session set up between UEs>
g.	UE - UE (served by the same Operator) without media gateway
h.	UE - UE (served by other Operator) without media gateway
i.	UE - UE (CP) without media gateway
j.	UE (connected to other Operator) - UE (CP) without media gateway
6.11.3	High level features
6.11.3.1	General
This clause describes the high level functionality and features which are required to be considered for realizing eiRTCW services.
1)	C-Plane transport management
Signalling messages are exchanged over the WebSocket connection as described in clause 6.3.4. Then, the principle for WebSocket connection management need to be considered for WebRTC session management.
2)	Supported method
Following methods are required to be supported to enable the RTC media session control and flexible use by RTC applications.
i)	Authentication
This method is used by the WebRTC endpoint to get authenticated by the WSF. To enable the WebRTC endpoint to send / receive signalling messages other than the signalling messages for authentication, the WebRTC endpoint needs be authenticated by the WSF.
ii)	Media session control (set up / update / disconnect)
The following methods are used by the WebRTC endpoint to control media session(s).
-	Media session set up
-	Media session update (modification)
-	Media session disconnection
iii)	Information query
This method provides the alternative to the information queries instead of using RTC MSH and RTC AF via RTC-5 interface. The WebRTC endpoint is allowed to send an information query request to the WSF for getting information (e.g., STUN/TURN server address) from the network.
iv)	application specific method
Application specific method(s) is required to be supported by signalling protocol. The application specific method is required to be distinguished from the 3gpp specified method and guaranteed the uniqueness between any applications.
3)	QoS control
The WSF is responsible for the QoS control of media sessions (i.e., U-Plane traffic). The WSF is required to interact with the 5GC (i.e., PCF or NEF) to reserve resources for a media session according to 3GPP TS 23.501 [TS23.501], 3GPP TS 23.502 [TS23.502], 3GPP TS 23.503 [TS23.503]. The WSF is required to support the functionality to interact with MF to enforce IP packet flow control (e.g., Gate control, traffic policing, QoS packet marking).
NOTE:	The WSF determines the QoS policy for the media session, based on the media session related information (e.g., User subscription, media type, SDP information) and operator policy.
4)	Identity
The identities for eiRTCW signalling protocol are required to be introduced for media session set up with appropriate media resource.
5)	Error handling
The signalling protocol for eiRTCW is request-response message base protocol. Then, following aspects on the error handling are required to be considered (not exhaustive).
i)	Error on the request processing
i)	The mechanism to indicate the details of the error.
ii)	The behaviour of the entity when receives the error indication.
ii)	Timeout of the process
6)	Feature negotiation
To support the use of application specific features, a feature negotiation mechanism is required to be supported in the signalling message.
7)	Other features
The following features are requested to be considered for realizing signalling protocol.
i)	Session management
RESPECT has following concepts for session management.
Control session:
Control session is a path for RESPECT message on the secure WebSocket between directory connected eiRTCW entities (e.g., between eiRTCW client on the UE and eiRTCW server in the network, between eiRTCW servers). Each control session is managed independently.
Media session:
Media session is the concept for management of media transported on U-Plane transport (including real-time media stream such as audio/video and data channel). Media session is identified by media session ID.
ii)	Transaction management
The signalling protocol for eiRTCW is message transaction base protocol. Then, the principle and mechanism for transaction management is required to be specified.
NOTE:	A transaction consists of a single request and a response corresponding to the request over the direct WeSocket connection between WebRTC endpoints (including WSF and IWF).
iii)	Endpoint discovery
To establish the media session is the RTC resource which the user indicated to, WSF is required to support an endpoint discovery mechanism.
iv)	WSF discovery
An eiRTCW entity is required to be capable to find a WSF where RESPECT messages are sent to.
v)	Timers
RESPECT uses timers to detect failures on media session control.
Editor’s Note: Details of supported timer is FFS.
Editor’s Note: The WSF discovery mechanisms for eiRTCW are studied in other Key Issue.
Editor’s Note: The above feature list is not exhaustive.
6.11.3.2	Signalling principle
eiRTCW signalling protocol is message-exchange-based protocol. The method of eiRTCW signalling protocol consists of a request message and a response message to the request message. When the eiRTCW entity receives a request, the eiRTCW entity is required to send a response to the received request. The request message and a response message are required to be terminated between directly connected eiRTCW entities (e.g., eiRTCW client and WSF). When the request needs to be sent to the eiRTCW entity(s) behind the WSF for further interaction, the WSF is required to:
-	generate a request corresponding to the received request based on the received information, and
-	send the generated request to the appropriate eiRTCW entity.
When a request message needs further interaction with an eiRTCW entity behind a WSF, the WSF identifies the eiRTCW entity based on the registered information.
NOTE: The information needs to be registered is described in clause 6.11.8.1.2.
6.11.3.3	Transaction management
[bookmark: _Hlk131340198]eiRTCW signalling protocol is message transaction base protocol. eiRTCW signalling protocol transaction consists of a single request and a response corresponding to the request over the direct WeSocket connection between eiRTCW entities.
The pair of a request and a response corresponding to the request is identified as transaction by transaction identifier (ID). Therefore, all eiRTCW signalling protocol message is required to include Transaction ID which is unique on the WebSocket connection between the eiRTCW entities. Transaction ID is generated when the eiRTCW entity creates a new request message and required to be set into the request. The response corresponding to the request is required to include the same transaction ID of the corresponding request.
If the eiRTCW entity received two or more request which has same transaction ID of the first received request, these requests are processed as the re-transmission of the first received request.
Editor’s Note: How to detects the failure is FFS.
6.11.3.4	Media session management
Editor’s Note: The description of this feature is FFS.
6.11.3.4	SDP offer/answer principle
Media session(s) between eiRTCW entities is established/modified by SDP offer/answer negotiation. There are several SDP offer/answer negotiation patterns for eiRTCW media session set up:
-	An eiRTCW entity establishes a media session with a media resource which provides a service content (e.g., Metaverse)
-	An eiRTCW entity establishes a media session with other eiRTCW entity for 1-to-1 by-directional communication like telephony service.
Regarding the first pattern, there is a possible requirement that an eiRTCW entity in an operator/service provider network needs to send SDP offer of an active content to the eiRTCW entity which initiates the session set up procedure. On the other hand, regarding the second pattern, the eiRTCW entity which initiates the session set up procedure is recommended to include its media capability information in the session set up request. Therefore, an eiRTCW client:
-	is not allowed to include an SDP offer in the session set up request so that the eiRTCW entity in the network can send an SDP offer in the subsequent eiRTCW signalling message.
-	is recommended to include a media description equal to an SDP offer in the media session set up request. In this protocol, the media description is defined as [pre-SDP-offer]. [pre-SDP-offer] is not allowed to be set as the SDP offer in local (i.e., the eiRTCW client is not allowed to use the media description for setLocalDescription) till the eiRTCW client receives an SDP answer corresponding to the [pre-SDP-offer]. When the eiRTCW client receives an SDP offer from the WSF in the media session set up procedure, the eiRTCW client is required to discard the [pre-SDP-offer] information, create an SDP answer to the received SDP offer and send it to the WSF.
A metadata for supplementary information of the SDP is available for SDP offer (including [pre-SDP-offer]). This metadata is allowed to include following information as SDP metadata:
-	media description
-	stream identifier:		indicates the corresponding media stream id in the SDP offer.
-	connection target of the media stream:		indicates the handling of the media stream.
-	preferred style of the content:		indicates the preferred style for displaying the content.
-	media source information
-	display text:		indicates a text as a display name related to the media source.
-	display image:		indicates the an image for display (URL of the content).
-	media resource identity:		indicates the media resource identity of the media stream.

6.11.3.5	Identities
The signalling protocol introduces following identities.
i)	RTC user identity:
This identity is application specific identity and used for identifying the RTC service user in the C-Plane signalling message. This identity is required to be able to identify the user and the network where the user connected to. An identity of a user who subscribes to the eiRTCW service. This identity is used for C-plane signalling to identify the WebRTC client which is connected to.
ii)	RTC resource identity:
This identity is RTC media resource specific identity and used for identifying the RTC media resource in the C-Plane signalling message. RTC resource identity includes following Identities.
-	RTC user identity (e.g., when the connected entity is a UE.)
-	URI of the media resource (e.g., when the connected entity is content server.)
6.11.3.6	Feature Negotiation
eiRTCW signalling protocol provides feature negotiation mechanism in a request-response exchange.
An eiRTCW entity is allowed to indicate the supported feature(s) information to other eiRTCW entity in a request or a response.
An eiRTCW entity is allowed to require the use of the feature(s) for the service by including the required feature(s) information in the request. The eiRTCW entity which receives the request requiring the use of the feature is allowed to accept or reject the required feature(s). If the eiRTCW entity rejects the required feature(s) due to non-support of the feature, the eiRTCW entity is required to indicate the feature(s) which is not supported by the eiRTCW entity in the response corresponding to the received request.
An eiRTCW entity is allowed to require the use of a feature(s) for the service by including the required feature(s) information in the response. An eiRTCW entity is not allowed to require the feature(s) which is not indicated in the supported feature information of the corresponding request.
6.11.4	Transport
6.11.4.1	General
The signalling massage is required to be sent over secure WebSocket connection which specified as one of the transport protocol for C-Plane in 3GPP TS 26.113 [TS26113]. The WebSocket URI is required to be consistent with the URI structure specified in clause 5.5 of 3GPP TS 26.113 [TS26113] and clause 6.11.5.2 in this document.
6.11.4.1.1	WebSocket connection establishment
Only one WebSocket connection is established between eiRTCW client and eiRTCW server (i.e., UNI). The number of WebSocket connection between WSFs and between WSF and IWF is determined by the eiRTCW network operator. The number of WebSocket connection between IWFs (i.e., NNI) is determined by the inter-operator agreement. There are three patterns to establish WebSocket connection between eiRTCW entities.
-	Between an eiRTCW client and a WSF:
An eiRTCW client is required to establish a WebSocket connection with a WSF according to IETF RFC 6455 [RFC6455].
-	Between eiRTCW servers in the operator network:

WebSocket connection is required to be applied between eiRTCW servers in the operator network (i.e., between WSFs, between a WSF and an IWF) according to IETF RFC 6455 [RFC6455]. If there is no WebSocket connection between eiRTCW servers in operator network, the eiRTCW server which sends first RESPECT message initiates WebSocket connection establishment.
-	Between IWFs:
WebSocket connection is required to be applied between IWFs according to IETF RFC 6455 [RFC455]. How to establish and keep the WebSocket connection is determined based on inter-operator agreement.
An eiRTCW entity is allowed to send an eiRTCW request on a WebSocket connection, regardless of whether the eiRTCW entity initiated the WebScoket connection or not.
An eiRTCW entity is allowed to send multiple requests for different purpose (e.g., establish/modify different media session, use different service) in parallel on the single WebSocket connection.
If the eiRTCW entity re-establishes the WebSocket connection with the WSF after the unexpected closure of WebSocket connection, the eiRTCW entity is required to process the WebSocket connection establishment procedure according to the closure reason, the information received from WSF.
Editor’s Note: Details of handling of unexpected closure is FFS.
6.11.4.1.2	WebSocket connection keep alive
The Ping frame and Pong frame specified in IETF RFC 6455 [RFC6455] are used for WebSocket connection keep alive. An WebSocket server is required to send a Ping frame to an WebSocket client on an WebSocket connection. Upon receipt of a Ping frame, WebSocket client is required to send pong frame to the WebSocket server as soon as possible. An WebSocket client is allowed to send a Ping frame to an WebSocket server on an WebSocket connection. Upon receipt of a Ping frame, WebSocket server is required to send pong frame to the WebSocket client as soon as possible.
Editor’s Note: Whether an application level keep alive method is necessary or not is FFS.
6.11.4.1.3	WebSocket connection closure
When the eiRTCW client detects the failure of sending/receiving signalling message to/from the WSF (e.g., due to loss of IP connectivity), the eiRTCW client needs to close the WebSocket connection according to IETF RFC 6455 [RFC6455].
[bookmark: _Hlk142984222]Editor’s Note: How to detects the failure is FFS.
When the WSF detects the following events, the WSF needs to close the WebSocket connection according to IETF RFC 6455 [RFC6455].
-	Expiration of registration period
-	Failure of application level keep alive
-	Server internal error
6.11.5	RESPECT (eiRTCW signalling protocol)
6.11.5.1	General
This clause describes the details of RESPECT specification.
AsyncAPI [AsyncAPI] is required to be used as Interface Definition Language (IDL) for the eiRTCW signalling interfaces.
6.11.5.2	Protocol and version identification
The protocol name and the protocol version is required to be included in the WebSocket URI path as specified in 3GPP TS 26.113 [TS26113] as follows.
{protocolRoot}/<protocolName>/<protocolVersion>
The WebSocket URI of the present version of RESPECT is required be set as follows:
-	<protocolName> is set to "3gpp-respect"
-	<protocolVersion> is set to "v1"
NOTE:	{protocolRoot} is set as specified in 3GPP TS 26.113 [TS26113] (i.e., wss schema is used)
The present version of eiRTCW signalling protocol, the Sec-WebSocket-Protocol header field with "3gpp-respect.v1" subprotocol identifier is required to be included in the HTTP upgrade request.
NOTE: IANA registration is required for new subprotocol identifier in normative phase.
6.11.5.3	RESPECT messages
6.11.5.3.1	General
RESPECT is defined as a text-based protocol and use the UTF-8 charset (IETF RFC 3629 [RFC3629]). Each line in a RESPECT message is required to be terminated by carriage-return line-feed sequence (CRLF). The JavaScript Object Notation (JSON) format as described in IETF RFC 8259 [RFC8259] is required to be used for encoding/decoding a payload of eiRTCW signalling message. Then default content type is required to be "application/json".
6.11.5.3.2	Signalling message definition
The RESPECT message is either a request or a response to the request.
Editor’s Note: The definition of "request" and "response" need to be described.
All RESPECT message is required to include following information elements as the first level key of the message.
-	Message type ("msgType")
-	Method type ("method")
-	Transaction ID ("transactionId")
An eiRTCW signalling message is allowed to include information elements described in clause 6.11.5.3.4.3.
An eiRTCW signalling message is allowed to include information elements which are not specified in RESPECT specification. The information element which is not described in RESPECT specification is required to be used as described in clause 6.11.5.3.4.4.
An eiRTCW entity is allowed to ignore any information elements which are not required to be processed in this document unless the eiRTCW entity uses the information element for the requested service.
6.11.5.3.3	Supported methods
6.11.5.3.3.1	General
eiRTCW signalling protocol supports the methods as shown in Table 6.11.5.3.3-1. Each method consists of a single request and a response to the request.
Table 6.11.5.3.3.1-1: Supported methods description
	Method
	Message
	Message type
	Description

	Authentication
	auth
	Request
	A request message used for authentication and registration.

	
	
	Response
	A response message used for authentication and registration.

	Media session set up
	msetup
	Request
	A request message used for media session set up.

	
	
	Response
	A response message used for media session set up.

	Media session update
	mupdate
	Request
	A request message used for media session update/modification.

	
	
	Response
	A response message used for media session update/modification.

	Media session disconnection
	mdisc
	Request
	A request message used for media session disconnection.

	
	
	Response
	A response message used for media session disconnection..

	Information query
	getinfo
	Request
	A request message used for querying information.

	
	
	Response
	A response message used for providing the imformation queried.

	Application specific method
	<application specific> (NOTE)
	Request
	A request message specified by the application.

	
	
	Response
	A response message specified by the application.

	NOTE:	An application specific method and Message ID are specified by the application service according to the rule described in clause x.x.x of this document.

6.11.5.3.3.2	Authentication method
Editor’s Note: The definition of Authentication method needs to be described.
6.11.5.3.3.3	Media session set up method
RESPECT supports media session set up method. The eiRTCW entity is allowed to request to set up a media session for iRTC services by sending media session set up request to the WSF.
Editor’s Note: The definition of Media session set up method needs to be described.
6.11.5.3.3.4	Media session update method
RESPECT supports media session update method. An eiRTCW entity which is allowed to send a media session update request to update a media session(s), regardless of whether the session is originated by the endpoint or not. The media session update request is required to indicate the media session ID corresponding the media session which is updated by the request.
If the eiRTCW entity receives an error response to the update request, the media session update is failed and the existing media session is not modified.
Editor’s Note: The definition of Media session update method needs to be described.
6.11.5.3.3.5	Media session disconnect method
RESPECT supports media session disconnection method. The eiRTCW entity is allowed to send a media session disconnect request to terminate the media session(s) and release the media resource. The media session disconnect request is required to indicate the media session which is disconnected by the request.
Editor’s Note: The definition of Media session disconnect method needs to be described.
6.11.5.3.3.6	Information query method
RESPECT supports information query method. The eiRTCW entity is allowed to send a information query request to get information (e.g., STUN/TURN server address) from the network. This method provides the alternative to the information queries on RTC-5 interface.
Editor’s Note: The definition of Information query method needs to be described.
6.11.5.3.3.7	Application specific method
RESPECT allows to send application specific method for immersive RTC applications.
The application specific method is required to be distinguished from the 3gpp specified method and guaranteed the uniqueness between any applications.
Editor’s Note: The definition of Media session disconnect method needs to be described.
6.11.5.3.4	Information elements included in messages
6.11.5.3.4.1	General
This clause defines the information elements included in a signalling message as a JSON key. Information Elements are categorised as following key types.
-	Common key
An information element which is required to be set into all RESPECT messages.
-	Individual key
An information element which is required to be set into a RESPECT message based on the individual requirement (e.g., type of message, type of method, selected capability, etc.).
-	Application specific key
An information element which is specific to an application. RESPECT allows to use application specific method and application specific keys for flexibility.
[bookmark: _Hlk488929525]NOTE:	As a convention, data types in the present specification are written with an upper-case letter in the beginning. Parameters are written with a lower-case letter in the beginning. As an exception, data types that are also defined in AsyncAPI [AsyncAPI] can use a lower-case case letter in the beginning for consistency.
6.11.5.3.4.2	Common key
6.11.5.3.4.2.1	General
Common key is an information element which is required to be set into all RESPECT messages. This clause describes common keys.
6.11.5.3.4.2.2	Message type ("msgType")
This key indicates the message type of RESPECT massage. If the message is request, then "msgType" key is set to "request". Otherwise (i.e., the message is response), "msgType" key is set to "response".
The data type of "msgType" key is "enum". The applicable values are "request" or "response". If the eiRTCW entity receives a RESPECT message includes other value, the eiRTCW entity is required to discord the received message.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.2.3	Method type ("method")
This key indicates the method type ofRESPECT message. The method supported by RESPECT is defined in Table 6.11.5.3.3.1-1 of this document.
The data type of "method" key is "string". The value is required to be set to the value of "Message" column of Table 6.11.5.3.3.1-1.
The supported methods are possibly extended in future releases. However the method of RESPECT message is not allowed to include "." in method name.
RESPECT allows to send application specific methods for immersive RTC applications. The application specific method name is required to include reverse order of the internet domain which owned by the operator or the SP who provide the RTC service, before the application specific method (e.g., com.example.specificMethod). This rule enables to avoid confliction of method name.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.2.4	Transaction ID ("transactionId")
This key indicates the transaction ID of theRESPECT message. The pair of a request and a response corresponding to the request is identified as transaction by transaction identifier (ID).
The eiRTCW entity which sends request is required to generate a transaction ID and set the transaction ID to the "transactionId" key of the request.
The data type of "transactionId" key is required to be 64-bit unsigned integer and unique for all transactions on the WebSocket connection. Transaction ID is not allowed to be reused for another transaction on the WebSocket connection. To avoid collision of Transaction ID among different transactions, eiRTCW entity is required to generate a Transaction ID as follows:
-	at the UNI
the eiRTCW client (UE) is required to generate even-numbered transaction ID. Transaction ID for an initial request on the control session is required to be set to "0".
-	the eiRTCW server (in the network) is required to generate odd-numbered transaction ID. Transaction ID for an initial request on a control session is required to be set to "1".
-	Transaction ID is incremented by "2", when the transaction ID is issued for a new transaction on the WebSocket connection.
-	If the bit-field of transaction ID crosses 64-bit boundary, the value is wraparound to initial value (i.e., "0" or "1")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3	Individual key
6.11.5.3.4.3.1	General
Individual key is an information element which is required to be set into a RESPECT message based on the individual requirement (e.g., type of message, type of method, selected capability, etc.). This clause describes individual keys.
6.11.5.3.4.3.2	Result of the request processing ("success")
This key indicates the result of the request processing. The data type of "success" key is Boolean. When the request is successfully processed, the "success" key is set to "true", otherwise, set to "false". When "success" key is set to "true", the response is called successful response. When "success" key is set to "false", the response is called error response.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.3	Detailed error ("problemDetails")
This key indicates the detailed information of the failure reason.
Error responses are required to include "problemDetails" key which indicates the factor of the error. "mdisc" request is allowed to include "problemDetails" key to indicate the reason for disconnection of the session.
The data type of "problemDetails" key is "object" according to Problem Details JSON Object (IETF RFC 7807 [RTC7807]). "status" sub-key is required to be set. Other sub-keys are allowed to be set.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.4	Required extensional capability ("requiredExtension")
This key indicates the extended feature(s) which is required to process the RESPECT message at the received eiRTCW entity.
When this key is included in the request, the indicated feature is required to be applied for processing the request. When this key is included in the response, the indicated feature is required to be applied for processing the response. When the request includes the "requiredExtension" key, the response other than the error response which includes the "problemDetails" key set to 420 (Bad Extension) is implicitly treated as the indicated feature in the corresponding request is required, even if the response does not include the "requiredExtension" key.
The data type of "requiredExtension" key is "array". Only "string" data type values indicating extended feature are allowed to be set into "requirdExtension" key. If the array of "requiredExtension" key does not has the element, "requiredExtension" key is not allowed to be set in the RESPECT message.Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.5	Unsupported extensional capability ("unsupportedExtension")
This key indicates the extended feature(s) which is not supported by the eiRTCW entity.
When the eiRTCW entity receives the "requiredExtension" key including extended feature(s) which the eiRTCW entity does not support, the eiRTCW entity includes the "unsupportedExtension" key including unsupported extended feature(s) in the response corresponding to the request.
The data type of "unsupportedExtension" key is "array". Only "string" data type values indicating extended feature are allowed to be set into "unsupportedExtension" key. If the array of "unsupportedExtension" key does not has the element, "unsupportedExtension" key is not allowed to be set in the RESPECT message.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.6	Supported extensional capability ("supportedExtension")
This key indicates the extended feature(s) which is supported by the eiRTCW entity.
The data type of "supportedExtension" key is "array". Only "string" data type values indicating extended feature are allowed to be set into "supportedExtension" key. If the array of "supportedExtension" key does not has the element, "supportedExtension" key is not allowed to be set in the RESPECT message.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.7	Retry restriction timer ("retryAfter")
eiRTCW servers (in the operator network at the UNI, in the operator network or SP network at the NNI) are allowed to include the "Retry-After" key in the top of the error response which includes the "problemDetails" key set to 502 (Bad Gateway), 503 (Service Unavailable) or 504 (Server Time-out). The value of the "Retry-After" indicates how long the eiRTCW client is required to wait before sending a RESPECT message. The eiRTCW client which receive the response which include "Retry-After" is not allowed to send any new RESPECT message on the control session (excluding a pending response to a received request.).
eiRTCW client (on UEs) is not allowed to send the "Retry-After" key in the response. eiRTCW client (owned by operators or service providers) is allowed to send the "Retry-After" key in the response, as same as eiRTCW servers.
The data type of "Retry-After" key is 32-bit "number". The value means seconds.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.8	Target of redirection ("location")
This key indicates the preferred target resource for redirecting the request.
When eiRTCW servers (in the operator network) send error response which includes the "problemDetails" key set to 307 (Temporary Redirect) or 308 (Permanent Redirect) to eiRTCW client (on UE), the response is required to include "location" key.
The data type of "location" key is "string". The value target RTC resource ID for redirecting the request.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.9	RTC user ID ("webrtcid")
RTC user ID is set to this key.
The data type of "location" key is "string". The format of the value is URI format defined in IETF RFC 3986 [RFC3986].
The URI scheme is "3gpp-respect-v1" for RESPECT version 1. The host part is set to the internet domain which owned by the operator or the SP who provide the RTC service to the user.
If this key is set to "auth" request, the eiRTCW client set the RTC user ID which is used to authentication of the eiRTCW client.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.10	Authentication type ("authtype")
This key indicates the type of authentication in the "auth" request.
The data type of "authType" key is "string". The value is required to be set to one of "Basic", "Digest" and "Bearer", according to HTTP "auth-scheme" (IETF RFC 9110 [RFC9110]). The value is case-insensitive.
NOTE: The values are possibly extended in future releases.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.11	Authentication information ("authorization")
This key indicates the authentication information in the "auth" request.
The data type of "authorization" key is "string". The value is required to be set according to HTTP "credential" (IETF RFC 9110 [RFC9110]). The value is case-insensitive.
Therefore, "auth-scheme" is set to the same value of "authType" key in the request and the following "token68" or "auth-params" is set to the value according the type of authentication of "authType" key (e.g., JWT).
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.12	Authentication and media session retention timer ("disconnectTtl")
This key indicates the duration which the network keeps the authentication status and media session state related to the eiRTCW entity, if the WebSocket connection is disconnected.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.13	Credential for restoration ("webrtcRequthCredential")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.14	Authentication challenge ("wwwAuthenticate")
This key is used for indicating the information related to authentication from the eiRTCW server to the eiRTCW client.
In the case of Digest authentication (i.e., "Digest" is set to "authType" key of the "auth" reqeust), eiRTCW server is required to request the eiRTCW client to send the "auth" request again, based on the authentication information provided by eiRTCW server. This key is included in the 401 error response for indicating authentication information from eiRTCW server to eiRTCW client.
The data type of "wwwAuthenticate" key is "object". The value is encoded according to HTTP WWW-Authenticate header field (IETF RFC 9110 [RFC9110]). The "authScheme" sub-key of "wwwAuthenticate" key is corresponding to "scheme" of WWW-Authenticate header field.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.15	Duration of the authentication ("expires")
This key indicates the expiration time duration that the eiRTCW client is authenticated. When the timer is expired, the eiRTCW client is de-authenticated and transitions to unauthenticated status. To keep being authenticated, the eiRTCW client is required to send "auth" request and be re-authenticated during the indicated expiration time duration in the "expires" key.
This key is set into the "auth" response when the authentication is successfully processed.
The data type of "expires" key is "number" and the value is unsigned 64-bit integer. The value means seconds.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.16	RTC resource ID ("resourceId")
"msetup" request is required to include this key. "mupdate" request is allowed to include this key.
The data type of "resourceId" key is "string" and the value is URI format defined in IETF RFC 3986 [RFC3986].
The applicable URI scheme for RESPECT version 1 is "3gpp-respect-v1" for native RTC resources or "tel" for IMS interwork. The host part is set to the internet domain which owned by the operator or the SP who provide the RTC service to the user. The userinfo part is assigned by the operator or the SP who provide the RTC service to the user.
If the target of the media session is a media resource in the network, the URI of the media resource is set into the "resourceId" key. If the target of the media session is an eiRTCW client the RTC user ID of the eiRTCW client is set into the "resourceId" key.
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.17	Media session ID ("mediaSessionId")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.18	Media session state ("mediaSessionState")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.19	offer/answer for media session ("preOfferDesc” / "offerDesc" / "answerDesc")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.20	Originating ID ("preferredOid” / "AssertedOid") / Terminating ID ("preferredTid" / "assertedTid")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.21	Requested information list ("resourcesReq") / Information list ("resourcesRes")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.22	Updated key list ("updatedKeys")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.3.23	User data ("userData")
Editor’s Note: The detailed definition of this key needs to be described.
6.11.5.3.4.4	Application specific key
6.11.5.3.4.4.1	General
Individual key is an information element which is specific to an application. RESPECT allows to use application specific method and application specific keys for flexibility. This clause describes the rule for use of application specific key.
Editor’s Note: The detailed definition of this key needs to be described.

6.11.5.4	Signalling procedures
This clause describes the procedures for the methods described in clause 6.11.5.3.3 of this document.
-	Registration and authentication
-	Media session set up
-	Media session update
-	Media session disconnection
-	Information query
-	application specific method
6.11.5.4.1	Authentication and registration procedure
[bookmark: _Hlk131376459]6.11.5.4.1.1	General
To enable the use of eiRTCW services, eiRTCW clients are required to be authenticated and registered with the WSF in the operator network.
To set up a media session between entities registered to different WSFs, both WSFs are required to share the registered user data each other, based on operator policy and the inter-operator agreement. Necessity of authentication is determined by the operator policy and the agreement between operators or between the operator and the service provider.
The purpose of authentication/registration are;
-	authentication of the eiRTCW user identity,
-	binding the eiRTCW user identity with the WebSocket connection/IP address of the endpoint
It needs to be possible to register a user identity that is simultaneously shared across multiple endpoints via the registration procedures.
eiRTCW signalling protocol supports following authentication mechanism:
-	Basic Authentication
-	Bearer Authentication
Editor’s Note: Other authentication mechanism is FFS.
6.11.5.4.1.2	Authentication and registration procedure on RTC-4s reference point
This clause describes the authentication and registration procedures on RTC-4s reference point between an eiRTCW client and an eiRTCW server.
6.11.5.4.1.2.1	Authentication and registration procedure for eiRTCW client using Basic Authentication
This clause describes the authentication and registration procedure using Basic Authentication between an eiRTCW client and a WSF.
The eiRTCW client is required to send auth request message to the WSF. The auth request message is:
i)	required to include following information elements as follows:
-	"msgType"	:	"request";
-	"method"			:	"auth";
-	"transactionId"	:	the value generated as described in Table 6.11.7.4-1 of this document;
-	"authType"		:	"basic";
-	"webrtcId"		:	the eiRTCW user identity which is requested to be authenticated and registered, and
ii)	allowed to include following information elements:
-	"supportedFeature";
-	"requireFeature"; and
-	"disconnectTtl".
Upon receiving the auth request message from the eiRTCW client, the WSF is required to:
1.	process the received request message information;
2.	verify if the received information elements are valid or not.
3.	if the verification is successful and authType information element is set to "basic", the WSF is required to send auth response message to the eiRTCW client. The auth response message is :
i)	required to include following information elements as follows:
-	"msgType"		:	"response";
-	"method"			:	"auth";
-	"transactionId"	:	the value included in the request corresponding to the response;
-	"success"			:	"false";
-	"wwwAuthenticate":	the value is set to the value described in Table 6.11.7.4-2, and;
-	"problemDetails":	set the appropriate value according to Table 6.11.7.4.5-5 and "status" is set to "401", and
ii)	allowed to include following information elements:
-	"supportedFeature", and
-	"requireFeature".
4.	if the verification is failed, the WSF is required to send auth response message to the eiRTCW client. The auth response message is :
i)	required to include following information elements as follows:
-	"msgType"		:	"response";
-	"method"			:	"auth";
-	"transactionId"	:	the value included in the request corresponding to the response;
-	"success"			:	"false";
-	"problemDetails":	set the appropriate value according to Table 6.11.7.4.5-5, and
ii)	allowed to include following information elements:
-	"supportedFeature", and
-	"requireFeature".
Upon receiving the auth response message indicating "false" in success information element from the WSF, the eiRTCW client is required to:
1.	process the received response message information;
2.	if the received auth response message including "wwwAuthenticate" information element, the eiRTCW client is required to send auth request message with authorization information. The auth request message is:
i)	required to include following information elements as follows:
-	"msgType"		:	"request";
-	"method"			:	"auth";
-	"transactionId"	:	the value is generated as described in Table 6.11.7.4-1 of this document;
-	"authType"		:	"basic";
-	"webrtcId"		:	the eiRTCW user identity which is requested to be authenticated and registered;
	"authorization"	:	the credential of the eiRTCW client as described in Table 6.11.7.4-3, and
ii)	allowed to include following information elements:
-	"supportedFeature";
-	"requireFeature"; and
-	"disconnectTtl".
Upon receiving the auth request message including authorization information element from the eiRTCW client, the WSF is required to:
1.	process the received request message information;
2.	verify the received information elements (including validity of the credential in the authorization information element);
3.	if the verification is successful, register the received eiRTCW user identity in the webrtcId and send auth response message to the eiRTCW client. The auth response message is:
i)	required to include following information elements as follows:
-	"msgType"		:	"response";
-	"method"			:	"auth";
-	"transactionId"	:	the value included in the request corresponding to the response;
-	"success"			:	"true";
-	"expires"			:	the value is set to the duration time that the authentication is valid, and
ii)	allowed to include following information elements:
-	"supportedFeature", and
-	"requireFeature".
-	"disconnectTtl".
-	"webrtcRequthCredential".
4.	if the verification is failed, the WSF is required to send auth response message to the eiRTCW client. The auth response message is :
i)	required to include following information elements as follows:
-	"msgType"		:	"response";
-	"method"			:	"auth";
-	"transactionId"	:	the value included in the request corresponding to the response;
-	"success"			:	"false";
-	"problemDetails":	set the appropriate value according to Table 6.11.7.4.5-5, and
ii)	allowed to include following information elements:
-	"supportedFeature", and
-	"requireFeature".
Upon receiving the auth response message indicating "true" in success information element from the WSF, the eiRTCW client is required to:
1.	process the received response message information;
2.	store the received value of the following information elements, if received:
-	"expires";
-	"disconnectTtl", and
-	"webrtcRequthCredential".
6.11.5.4.1.2.2	Authentication and registration procedure for eiRTCW client using Bearer Authentication
This clause describes the authentication and registration procedure using Bearer Authentication between an eiRTCW client and a WSF.
The eiRTCW client is required to send auth request message to the WSF. The auth request message is:
i)	required to include following information elements as follows:
-	"msgType"	:	"request";
-	"method"			:	"auth";
-	"transactionId"	:	the value generated as described in Table 6.11.7.4-1 of this document;
-	"authType"		:	"bearer";
-	"authentication"	:	the credential of the eiRTCW client as described in Table 6.11.7.4-1;
-	"webrtcId"		:	the eiRTCW user identity which is requested to be authenticated and registered, and
ii)	allowed to include following information elements:
-	"supportedFeature";
-	"requireFeature"; and
-	"disconnectTtl".
Upon receiving the auth request message including authorization information element from the eiRTCW client, the WSF is required to:
1.	process the received request message information;
2.	verify the received information elements;
3.	if the verification is successful and authType information element is set to "bearer", verify the authentication information element;
4.	if the verification of authentication information element is successful, register the received eiRTCW user identity in the webrtcId and send auth response message to the eiRTCW client. The auth response message is :
i)	required to include following information elements as follows:
-	"msgType"		:	"response";
-	"method"			:	"auth";
-	"transactionId"	:	the value included in the request corresponding to the response;
-	"success"			:	"true";
-	"expires"			:	the value is set to the duration time that the authentication is valid, and
ii)	allowed to include following information elements:
-	"supportedFeature", and
-	"requireFeature".
-	"disconnectTtl".
-	"webrtcRequthCredential".
5.	if the verification is failed at step 3 or step 4, the WSF is required to send auth response message to the eiRTCW client. The auth response message is :
i)	required to include following information elements as follows:
-	"msgType"		:	"response";
-	"method"			:	"auth";
-	"transactionId"	:	the value included in the request corresponding to the response;
-	"success"			:	"false";
-	"problemDetails":	set the appropriate value according to Table 6.11.7.4.5-5, and
ii)	allowed to include following information elements:
-	"supportedFeature", and
-	"requireFeature".
Upon receiving the auth response message indicating "true" in success information element from the WSF, the eiRTCW client is required to:
1.	process the received response message information;
2.	store the received value of the following information elements, if received:
-	"expires";
-	"disconnectTtl", and
-	"webrtcRequthCredential".

6.11.5.4.1.2.3	re-Authentication procedure for eiRTCW client
This clause describes the re-authentication and -reregistration procedure between an eiRTCW client and a WSF.
Editor’s Note: Detailed procedure will be added.
6.11.5.4.1.2.4	Restoration procedure for eiRTCW client authentication and registration
This clause describes the restring authentication and registration procedure between an eiRTCW client and a WSF.
Editor’s Note: Detailed procedure will be added.
6.11.5.4.2	Media session set up procedure
6.11.5.4.2.1	General
An eiRTCW entity is allowed to establish a media session with other eiRTCW entity. An eiRTCW entity is allowed to set up multiple media session in parallel based on the service policy. A media session is identified by media session identifier (ID) between directory connected eiRTCW entities. A media session ID is required to be generated by a WSF in an operator network, during a new media session set up procedure, as follows:
-	When a WSF receives a media session set up request from an eiRTCW client (including eiRTCW media resource), the WSF is required to generate a media session ID and include it into a response to the received request.
-	When a WSF sends a media session set up request to an eiRTCW entity, the WSF is required to generate a media session ID and include it into the request.

6.11.5.4.2.2	Media session set up procedure on RTC-4 reference point
This clause describes the media session set up procedures on RTC-4 reference point between an eiRTCW client and an eiRTCW server.
6.11.5.4.2.2.1	Media session set up procedure for eiRTCW client originating case
This clause describes the procedure that the eiRTCW client originates a media session set up procedure.
The eiRTCW client is required to send msetup request message to the WSF. The msetup request message is required to include information elements as described in Table 6.11.7.4.5.3-2.
Upon receiving the msetup request message from the eiRTCW client, the WSF is required to:
1.	process the received request message information.
2.	verify the eiRTCW client has valid authentication with the WebSocket connection on which the request is received, and if the received information elements are valid.
3.	if the verification is successful, the WSF is required to sends msetup response message to the eiRTCW client. The msetup response message is required to include information elements as described in Table 6.11.7.4.5.4-2.
4.	if the verification is failed, the WSF is required to sends msetup response message to the eiRTCW client, and the rest of the steps are skipped. The msetup response message is required to include information elements as described in Table 6.11.7.4.5.4-2.
5.	After sending msetup response message, the WSF is required to:
i)	if the resourceUri information element included in the received msetup request message includes eiRTCW user identity which registered to the WSF, performs the procedure described in clause 6.11.8.2.2.2, or
ii)	if the "resourceUri" included in the received msetup request message includes any URI of the Media resource of a content which is registered to the WSF, performs step 6 using the content information.
iii)	if the "resourceUri" included in the received msetup request message includes any URI of the eiRTCW client/Media resource which is not registered to the WSF, performs the procedure described in clause 6.11.8.2.3.1.
6.	If step 5 is successfully processed, based on the information obtained at step 5, the WSF is required to send mupdate request message to the eiRTCW client. The mupdate request message is required to include information elements as described in Table 6.11.7.4.5.5-2.
7.	If step 5 is failed or receives error response, the WSF is required to send mdisc request message to the eiRTCW client. The mdisc request message is required to include information elements as described in Table 6.11.7.4.5.7-2.
Upon receiving the mupdate request message from the WSF, the eiRTCW client is required to:
1.	process the received request message information.
2.	set SDP description as follows:
i)	if an offerDesc is included in the received mupdate request message,
-	set the received offerDesc as remote SDP description
-	create an SDP answer based on the received offerDesc and set the SDP answer as local SDP description
ii) 	if an answerDesc is included in the received mupdate request message,
-	set the preofferDesc at step 1 as local SDP description
-	set the received answerDesc as remote SDP description
3.	send the mupdate response message to the WSF. The mupdate response message is required to include information elements as described in Table 6.11.7.4.5.6-2. If an offerDesc is included in the received mupdate request message, the mupdate response message is required to include answerDesc information element.
Upon receiving the mdisc request message from the WSF, the eiRTCW client is required to:
1.	process the received request message information;
2.	send the mdisc response message to the WSF. The mdisc response message is required to include information elements as described in Table 6.11.7.4.5.8-2.

6.11.5.4.2.2.2	Media session set up procedure for eiRTCW client terminating case
Editor’s Note: Details need to be described.

6.11.5.4.2.3	Media session set up procedure on RTC-9 reference point
Editor’s Note: Details need to be described.

6.11.5.4.2.3.1	Media session set up procedure for eiRTCW client originating case
Editor’s Note: Details need to be described.

6.11.5.4.3	Media session update procedure
6.11.5.4.3.1	General
Editor’s Note: Details need to be described.

6.11.5.4.4	Media session disconnection procedure
6.11.5.4.4.1	General
Editor’s Note: Details need to be described.

6.11.5.4.5	Information query procedure
6.11.5.4.5.1	General
Editor’s Note: Details need to be described.

6.11.5.4.6	Application specific procedure
6.11.5.4.6.1	General
Editor’s Note: Details need to be described.

7	Overall evaluation
Editor's note:	This clause provides overall evaluation of the solutions in clause 6.
8	Conclusions and Recommendations

[bookmark: _Toc124216629]
Annex A: Use Cases
[bookmark: _Hlk124192838]Editor’s Note: Use cases and communication methods (P2P, SFU, MCU)

[bookmark: _Toc124216630]
Annex B: Examples

[bookmark: _Toc124216631]B.1	Architectural WebRTC Entity Examples
Editor’s Note: Architectural example of integration of WebRTC with 5G network
[bookmark: _Toc124216632]B.2	Protocol Stack Examples
Editor’s Note: Definite example of C-plane protocol stack. Reference of U-plane (other TS/TRs) and supplemental explanation.
[bookmark: _Toc124216633]B.3	WebRTC Signalling Protocol Examples
Editor’s Note: Expected signalling regulation examples (Async API)
[bookmark: _Toc124216634]B.4	WebRTC Signalling Flow Examples
[bookmark: _Toc124216635]B.4.1	General
This clause shows example flows. This flow can be applied to the collaboration scenario 3A described in FS_eiRTCW where a service provider (i.e., OTT) provides WebRTC services and an MNO assists the services. The WebRTC Signalling Server provided by the external service provider acts as the main signalling server, and the WSF deployed in MNO is complementary, only used for ID authentication and QoS control.
Note: “Web Service Entry Point” (in the figures) is a general entry point for the service, which acts as a portal website or an API endpoint of the service.
[bookmark: _Toc124216636]B.4.2	Part.1 UE connects to OTT’s server

The UE connects to the OTT’s server (i.e., Service Provider’s server). This procedure and its protocols are proprietary to the OTT.
[bookmark: _Toc124216637]B.4.3	Part.2 UE discovers CSF with EDGEAPP API

The UE discovers the CSF in the MNO with EDGEAPP APIs.
[bookmark: _Toc124216638]B.4.4	Part.3 UE discovers OAuth Endpoints in CSF

The UE discovers OAuth Endpoints in the CSF with RFC8414 procedures.
[bookmark: _Toc124216639]B.4.5	Part.4 OAuth

The UE starts OAuth 2.0 authorization procedures and gets an Access Token from the CSF (acting as an Authorization Endpoint and Token Endpoint of OAuth 2.0). Now the UE can use MNO’s QoS assistance with the access token. This authorization process does not have to be done each time until the token expires. Additionally, the process can be independently done in advance.
[bookmark: _Toc124216640]B.4.6	Part.5 UE discovers WSF and WMCF with EDGEAPP API

The UE discovers the WSF and the WMCF with EDGEAPP API.
The CSF, WSF and WMCF are registered with each subtype of an EAS (Edge Application Server).
[bookmark: _Toc124216641]B.4.7	Part.6 UE establishes QoS media flows

The UE requests TURN allocation and channel binding from the WMCF with OAuth access token (from 6-1 to 6-6), and builds a local SDP with the relaying address and port (6-7). Web browser’s WebRTC API will build an SDP, but “SDP munging” may be needed later because some browser does not include b= lines in SDP that is essential to controlling QoS.
With the local SDP, the UE requests MNO’s WSF (6-8) to control QoS, and the WSF requests the PCF to control QoS via N5 interface (6-9 and 6-10). The interworking procedure on the SDP at N5 interface will be the same as IMS P-CSCF’s procedure described in 3GPP TS 29.513.
The UE also sends the local SDP to OTT’s signalling server and receives the remote SDP (from 6-12 to 6-14). The UE tries hole punching and updates the local and remote SDPs (6-15 and 6-16).
With the updated local and remote SDPs, the UE requests MNO’s WSF to update QoS control (6-17). The WSF requests PCF to update QoS with N5 interface (6-18 and 6-19) and responds to the UE with success (6-20).
Finally, the UE can communicate with QoS (6-21).
Editor’s Note: Sequence and message examples using clause B.3
[bookmark: _Toc124216642]B.5	eiRTCW call flow examples
B.5.1	General
This clause provides call flow examples for session-controlled communication using the C-plane signalling protocol for eiRTCW.
The call flow examples described in this annex are intended as references for implementation, and actual behaviour may differ from those examples depending on the service content, UE capabilities, and real communication conditions. Additionally, the content of those examples does not guarantee the connectivity or quality of communication. They do not support abnormal scenarios such as error handling, quasi-normal situations, or fault occurrences.
B.5.2		eiRTCW call flow examples
B.5.2.1	General
In the following sections, call flow examples including sequence and message contents for VR conference use cases are provided.
B.5.2.2 shows the user clients’ authentication and registration process. It is commonly performed before the call flows of B.5.2.3 and onwards.
In B.5.2.3 and subsequent clauses, four examples for media session setup summarized in Table B.5.2.1-1 are described.
Table B.5.2.1-1: Illustrated media session setup flows
	No.
	Description
	Detail

	1
	Media session setup for operator self-contained service
· UE – Media Resource, via UNI
· CS #3
· Media session set up
· Served by: Operator
· Rendering: Media Function
	B.5.2.3

	2
	Media session setup for content provider service
· UE - Media Resource - UE (CP), via UNI
· CS #3
· Served by: Content provider
· Media session set up
· Rendering: UE (CP)
	B.5.2.4

	3
	Media session setup for content provider service using Split Rendering
· UE - Media Resource - UE (CP), via UNI
· CS #3
· Served by: Content provider
· Media session set up
· Rendering: Media Function and UE (Split Rendering)
	B.5.2.5

	4
	Media session setup for peer-to-peer communication
· UE - UE, via UNI
· CS #3
· Served by: None (P2P)
· Media session set up
· Rendering: UE
	B.5.2.6

In those examples, "Operator NW" means a set of functional entities provided by the network operator (i.e., WSF, MF). Content Providers co-located in the operator network and other entities outside the network are not included in "Operator NW".
The boxes appealing in following call flow examples mean network internal processes outside the C-plane signalling as follows:
•	Resource ID Validation: Determines whether the destination included in the msetup request is valid.
•	Media Resource Allocation: Selects the Media Function node to be used and reserves its resources.
•	Media Resource Preparation: Reflects the media session setup information (i.e., mimeType, payloadType, number of channels, “mid” header extension, and codec-specific information such as h.264 profiles) based on the acquired SDP and sets the Media Function's interface.
•	User Response Action: The user action on UI of the receiving terminal responding to the call.
For the signal example description of the SDP sections, CRLF (Carriage Return Line Feed) is omitted for readability, and simple line breaks are used in the document.
B.5.2.2	Authentication and registration
Before authentication and registration process, a new WebSocket connection is established first. If the authentication process is successful for the received request from UE, the operator network sends the success response back to UE. The JSON Web Signature (JWS) used in this flow is obtained beforehand through preceding authentication with the operator network or an external identity provider (IdP). In the authentication process which occurs between F1 and F2 below, the operator network either performs verification using its own mechanisms or cooperates with an external IdP to conduct verification. The sequence involving the external IdP is out of the scope of eiRTCW signalling protocol.

Figure B.5.2.2-1: authentication
F1: auth req (UE1 to NW)
-	Using the established WebSocket connection, UE sends authentication request to the operator network. The example below uses bearer authentication including corresponding JWS.
{
 "msgType": "request",
 "method": "auth",
 "transactionId": 0,
 "webrtcId": "3gpp-respect://ue1@domain1.example",
 "authType": "Bearer",
 "authorization": "Bearer eyAiYWxnIjogIkhTMjU2IiwgInR5cCI6ICJKV1QiIH0K.eyAiaXNzIjogInRlc3QucmQubnR0IiwgInN1YiI6ICJtZXNzYWdlIGV4YW1wbGUiLCAiZXhwIjogImRteSIsICJlbWFpbCI6ICJkbXkiLCAiZ3JvdXBzIjogImRteS5kbXkiIH0K.OTEyMWEzM2RkN2MxOGZjZjI2NjcxNjQ2MTFiZmFjYjE4YTNhZTY5MmY2YWJkYmZiZGU1ZDQ4YTU5ZjljZGEyZQo="
}

F2: auth res (NW to UE1)
-	After authentication process, the operator network sends success response back to the UE. The example below shows that the expiration time is 3600 seconds.
{
 "msgType": "response",
 "method": "auth",
 "transactionId": 0,
 "success": true,
 "expires": 3600
}

After the successful authentication request, UE re-sends the authentication request before the previous authentication expired.

Figure B.5.2.2-2: re-authentication
F1: auth req (UE1 to NW)
{
 "msgType": "request",
 "method": "auth",
 "transactionId": 1000,
 "webrtcId": "3gpp-respect://ue1@domain1.example",
 "authType": "Bearer",
 "authorization": "Bearer eyAiYWxnIjogIkhTMjU2IiwgInR5cCI6ICJKV1QiIH0K.eyAiaXNzIjogInRlc3QucmQubnR0IiwgInN1YiI6ICJtZXNzYWdlIGV4YW1wbGUiLCAiZXhwIjogImRteSIsICJlbWFpbCI6ICJkbXkiLCAiZ3JvdXBzIjogImRteS5kbXkiIH0K.OTEyMWEzM2RkN2MxOGZjZjI2NjcxNjQ2MTFiZmFjYjE4YTNhZTY5MmY2YWJkYmZiZGU1ZDQ4YTU5ZjljZGEyZQo="
}

F2: auth res (NW to UE1)
{
 "msgType": "response",
 "method": "auth",
 "transactionId": 1000,
 "success": true,
 "expires": 3600
}

While the UE is authenticated, the WebSocket connection is required to be kept alive. For that reason, WSF uses WebSocket ping/pong mechanism.
B.5.2.3	Media session setup for operator self-contained service
The following is an example call flow and signalling message examples of media session setup messages in a VR conference use case provided by the operator network. In this call flow, first UE1 connects to the VR conference, and subsequently UE2 joins that VR conference. After the successful media set up through signalling procedures with the WSF, the UE can receive media through video, audio, and data channels connected to the Media Function. Additionally, the UE can send input media, such as camera and microphone, to the network.

Figure B.5.2.3-1: VR conference - UE1 joins a conf.
F1: msetup req/UE1 to NW
-	UE1 sends an msetup request to the network, requesting a connection to the RTC resource ID "resource1@domain1.example". The UE generates a preOffer SDP and sets it in preOfferDesc (however, in this scenario, the preOffer sent from UE will be ignored by operator NW). As UE1 is a normal web browser, trickle-ice is assumed to be used as ICE procedure. "resource1" for the VR conference is provided by the operator’s Media Function.

{
 “msgType”: “request”,
 “method”: “msetup”,
 “transactionId”: 4,
 “resourceId”: “3gpp-respect://resource1@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3885262146 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 f6:d5:3f:3c:ec:91:eb:d8:78:d7:96:03:49:09:e4:05:20:96:0d:a5:d5:90:a7:be:54:1e:82:e0:37:ad:ff:0e
 a=ice-ufrag:ief0uBai
 a=ice-pwd:ohFee4ne
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F2: msetup res (NW to UE1)
-	After verifying that the RTC resource ID is valid, the operator network sends a successful msetup response to UE1 with the mediaSessionState set to "accepted." The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "accepted"
}

F3: mupdate req (NW to UE1)
-	After allocating the resources in the Media Function, the network sends an SDP offer to UE1. The mediaSessionState is changed to "connecting". A metadata for supplementary information is added which provides information how to handle each media associated with "mid".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "connecting",
 "offerDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3885262150 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-lite
 a=fingerprint sha-256 5f:a0:fa:55:a3:e8:59:a6:d2:cd:3a:34:2e:87:b3:83:96:c4:95:1b:18:9c:94:eb:c7:ae:94:02:c9:95:ca:5f
 a=ice-ufrag:Ahk3Zah8
 a=ice-pwd:phiegh0M
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=rtpmap:97 H264/90000
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "3",
 "connectToDevice": "videoOut",
 "participantId": "LSbMgaci"
 },
 {
 "mid": "4",
 "connectToDevice": "audioOut",
 "participantId": "LSbMgaci"
 }
],
 "participantDesc": [
 {
 "participantId": "LSbMgaci"
 }
]
 }
 }
}

F4: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response containing an SDP answer back to the operator network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "answerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3885262151 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 f6:d5:3f:3c:ec:91:eb:d8:78:d7:96:03:49:09:e4:05:20:96:0d:a5:d5:90:a7:be:54:1e:82:e0:37:ad:ff:0e
 a=ice-ufrag:ief0uBai
 a=ice-pwd:ohFee4ne
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 192.168.100.1 23456 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 192.168.100.1 23456 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F5: mupdate req (NW to UE1)
-	After the network prepares the media resource in the Media Function based on the received SDP answer information. the network sends a successful mupdate request to UE1 containing the mediaSessionState set to "connected" to notify that the path control with MF has been completed.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "connected"
}

F6: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response back to the network, as acknowledgement to the request.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "updatedKeys": ["mediaSessionState"]
}

Then, UE2 joins the VR conference. In addition to the media channels between UE and Media Function established in the call flow above, an audio stream is set as the user-to-user call channel.

Figure B.5.2.3-2: VR conference – UE2 joins a conf.
F7: msetup req (UE2 to NW)
-	UE2 sends an msetup request to the network, requesting a connection to the RTC resource ID "resource1@domain1.example." UE2 generates a preOffer SDP as with UE1.

{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 4,
 "resourceId": "3gpp-respect://resource1@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 368025142621306116 3896184802 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 81:27:7d:82:36:4c:2f:be:fe:db:77:e7:37:7e:f1:f7:06:2f:51:53:e9:4c:1f:23:03:71:98:de:14:e2:f1:a7
 a=ice-ufrag:XJ2F0u83
 a=ice-pwd:PhR6gVhO
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.2 34567 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F8: msetup res (NW to UE2)
-	After verifying that the RTC resource ID is valid, the network sends a successful msetup response to UE2 with the mediaSessionState set to "accepted." The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "sskamScHT0WmLaChmBdUv2vETmkE+RupvGMkwVMjlRjp7LDbYiGxxlq6cQoow1ce",
 "mediaSessionState": "accepted"
}

F9: mupdate req (NW to UE2)
-	After allocating the resources in the Media Function, the network sends an mupdate request containing an SDP offer to UE2. The mediaSessionState is changed to "connecting." The SDP includes the added existing media from the conference resources. The data channel sources are identified by the labels in the a=dcmap lines.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "sskamScHT0WmLaChmBdUv2vETmkE+RupvGMkwVMjlRjp7LDbYiGxxlq6cQoow1ce",
 "mediaSessionState": "connecting",
 "offerDesc": {
 "sdp": "v=0
 o=- 111744063457804600 3896185137 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4 5
 a=ice-lite
 a=fingerprint sha-256 91:a1:ff:53:f0:97:03:44:23:90:18:64:28:16:f4:0f:12:a6:56:a8:1d:a2:70:5e:42:0a:12:c7:9f:2e:e0:1e
 a=ice-ufrag:CqDQ1i4D
 a=ice-pwd:PPvf3gPB
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 a=dcmap:1 label=\"aG9nZXRh\"
 m=video 34567 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 34567 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 34567 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 34567 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=audio 34567 UDP/TLS/RTP/SAVPF 96
 a=mid:5
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "3",
 "connectToDevice": "videoOut",
 "participantId": "LSbMgaci"
 },
 {
 "mid": "4",
 "connectToDevice": "audioOut",
 "participantId": "LSbMgaci"
 }
 {
 "mid": "5",
 "connectToDevice": "audioOut",
 "participantId": "aG9nZXRh"
 }
],
 "participantDesc": [
 {
 "participantId": "LSbMgaci"
 },
 {
 "participantId": "aG9nZXRh"
 }
]
 }
 }
}

F10: mupdate res (UE2 to NW)
-	UE2 sends a successful mupdate response containing an SDP answer back to the operator network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "sskamScHT0WmLaChmBdUv2vETmkE+RupvGMkwVMjlRjp7LDbYiGxxlq6cQoow1ce",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "answerDesc": {
 "sdp": "v=0
 o=- 681642578222322134 3896185400 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4 5
 a=ice-options:trickle
 a=fingerprint sha-256 81:27:7d:82:36:4c:2f:be:fe:db:77:e7:37:7e:f1:f7:06:2f:51:53:e9:4c:1f:23:03:71:98:de:14:e2:f1:a7
 a=ice-ufrag:XJ2F0u83
 a=ice-pwd:PhR6gVhO
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 a=dcmap:1 label=\"aG9nZXRh\"
 m=video 34567 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 192.168.100.2 34567 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 34567 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 34567 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 34567 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=audio 34567 UDP/TLS/RTP/SAVPF 96
 a=mid:5
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F11: mupdate req (NW to UE1)
-	After the network prepares the media resource in the Media Function based on the received SDP answer information, an SDP re-offer is sent to UE1 due to UE2's participation.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 5,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "mediaSessionState": "connected",
 "offerDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3896192240 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4 5
 a=ice-lite
 a=fingerprint sha-256 5f:a0:fa:55:a3:e8:59:a6:d2:cd:3a:34:2e:87:b3:83:96:c4:95:1b:18:9c:94:eb:c7:ae:94:02:c9:95:ca:5f
 a=ice-ufrag:Ahk3Zah8
 a=ice-pwd:phiegh0M
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 a=dcmap:1 label=\"gGWhshA1\"
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:5
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "3",
 "connectToDevice": "videoOut",
 "participantId": "LSbMgaci"
 },
 {
 "mid": "4",
 "connectToDevice": "audioOut",
 "participantId": "LSbMgaci"
 },
 {
 "mid": "5",
 "connectToDevice": "audioOut",
 "participantId": "gGWhshA1"
 }
],
 "participantDesc": [
 {
 "participantId": "LSbMgaci"
 },
 {
 "participantId": "gGWhshA1"
 }
]
 }
 }
}

F12: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response containing as SDP answer back to the operator network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 5,
 "success": true,
 "mediaSessionId": "WPwBNpjaI20drdgKvIlwr27fn7RIsJEPqeqs60ANMQDsvlKmk864LPiEDInVyIWX",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "answerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3896192791 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4 5
 a=ice-options:trickle
 a=fingerprint sha-256 f6:d5:3f:3c:ec:91:eb:d8:78:d7:96:03:49:09:e4:05:20:96:0d:a5:d5:90:a7:be:54:1e:82:e0:37:ad:ff:0e
 a=ice-ufrag:ief0uBai
 a=ice-pwd:ohFee4ne
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 a=dcmap:1 label=\"gGWhshA1\"
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 192.168.100.1 23456 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:5
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F13: mupdate req (NW to UE2)
-	The network notifies UE2 that the path control with MF and existing participants have been completed through an mupdate request.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "sskamScHT0WmLaChmBdUv2vETmkE+RupvGMkwVMjlRjp7LDbYiGxxlq6cQoow1ce",
 "mediaSessionState": "connected"
}

F14: mupdate res (UE2 to NW)
-	UE2 sends a successful mupdate response back to the operator network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "sskamScHT0WmLaChmBdUv2vETmkE+RupvGMkwVMjlRjp7LDbYiGxxlq6cQoow1ce",
 "updatedKeys": ["mediaSessionState"]
}

B.5.2.4	Media session setup for content provider service
The example below shows VR conference use case provided by a content provider (CP).

Figure B.5.2.4-1: VR conference provided by CP.
F1: msetup req (CP to NW)
-	CP sends an msetup request to the network, requesting a connection to the RTC resource ID "resource2@domain1.example." CP generates a preOffer SDP and sets it in preOfferDesc. Trickle-ice is assumed to be used as ICE procedure.

{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 4,
 "resourceId": "3gpp-respect://resource2@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3899463550 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 bd:6e:c5:77:2f:77:2a:18:5b:87:0d:b1:f0:c3:0a:d3:31:a6:ba:fc:cc:0b:fd:8b:05:2a:66:32:14:60:7a:ed
 a=ice-ufrag:Rqxl6okx
 a=ice-pwd:0MPlm3Qi
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 203.0.113.2 12345 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F2: msetup res (NW to CP)
-	After verifying the resource ID, the network sends a successful msetup response to CP with the mediaSessionState set to "accepted". The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "mediaSessionState": "accepted"
}

F3: mupdate req (NW to CP)
-	After allocating the resources in the Media Function, the network sends a successful mupdate response containing an SDP answer to CP. The mediaSessionState is changed to "connecting".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "mediaSessionState": "connecting",
 "answerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3899465572 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-lite
 a=fingerprint sha-256 af:ff:5a:bb:57:fc:05:1b:36:73:8a:2a:14:24:ed:e7:2a:02:14:b8:ec:2e:14:88:07:a6:41:37:d1:51:4c:c0
 a=ice-ufrag:Po1xS110
 a=ice-pwd:Os2TDPws
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 }
],
 "participantDesc": []
 }
 }
}

F4: mupdate res (CP to NW)
-	CP sends a successful mupdate response back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "updatedKeys": ["answerDesc", "mediaSessionState"]
}

F5: msetup req (UE1 to NW)
-	UE1 sends an msetup request to the network, requesting a connection to the RTC resource ID "resource2@domain1.example." UE1 generates a provisional preOffer SDP and sets it in preOfferDesc (however, in this scenario, sending the preOffer will not be adopted). As UE1 is a normal web browser, trickle-ice is assumed to be used as ICE procedure.

{
"msgType": "request",
 "method": "msetup",
 "transactionId": 4,
 "resourceId": "3gpp-respect://resource2@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3899471791 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 c8:73:0f:ff:f7:ae:dc:cd:3f:3d:00:bc:43:56:da:f0:38:7e:2d:fc:24:3e:be:1a:25:04:de:c7:2b:e8:04:7d
 a=ice-ufrag:AN07A1R3
 a=ice-pwd:QgIYT3oC
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F6: msetup res (NW to UE1)
-	After verifying that the resource ID is valid, the network sends an msetup response to UE1 with the mediaSessionState set to "accepted". The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "mediaSessionState": "accepted"
}

F7: mupdate req (NW to UE1)
-	After allocating the resources in the Media Function, the network sends an SDP offer to UE1. The mediaSessionState is changed to "connecting".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "mediaSessionState": "connecting",
 "offerDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3899471805 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-lite
 a=fingerprint sha-256 08:3e:00:af:26:7e:e4:67:fa:16:1f:e0:b1:e0:c7:68:ad:c5:e3:43:52:68:18:2d:57:de:ca:6d:4d:f2:cd:ae
 a=ice-ufrag:Ly5rRouT
 a=ice-pwd:dmYYrGCb
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "3",
 "connectToDevice": "videoOut",
 "participantId": "gcWbE1JD"
 },
 {
 "mid": "4",
 "connectToDevice": "audioOut",
 "participantId": "gcWbE1JD"
 }
],
 "participantDesc": [
 {
 "participantId": "gcWbE1JD"
 }
]
 }
 }
}

F8: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response containing an SDP answer back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "answerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3899471823 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 c8:73:0f:ff:f7:ae:dc:cd:3f:3d:00:bc:43:56:da:f0:38:7e:2d:fc:24:3e:be:1a:25:04:de:c7:2b:e8:04:7d
 a=ice-ufrag:AN07A1R3
 a=ice-pwd:QgIYT3oC
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 192.168.100.1 23456 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F9: mupdate req (NW to CP)
-	After configuring the Media Function based on the received SDP answer from UE1, the network sends a mupdate request containing updated SDP offer to CP.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "mediaSessionState": "connected",
 "offerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3899472299 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-lite
 a=fingerprint sha-256 af:ff:5a:bb:57:fc:05:1b:36:73:8a:2a:14:24:ed:e7:2a:02:14:b8:ec:2e:14:88:07:a6:41:37:d1:51:4c:c0
 a=ice-ufrag:Po1xS110
 a=ice-pwd:Os2TDPws
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 198.51.100.2 23456 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "3",
 "connectToDevice": "videoOut",
 "participantId": "3gpp-respect://ue1@domain1.example"
 },
 {
 "mid": "4",
 "connectToDevice": "audioOut",
 "participantId": "3gpp-respect://ue1@domain1.example"
 }
],
 "participantDesc": [
 {
 "participantId": "3gpp-respect://ue1@domain1.example"
 }
]
 }
 }
}

F10: mupdate res (CP to NW)
-	CP sends a successful mupdate response containing an SDP answer back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "offerDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3899472766 IN IP4 203.0.113.1
 s=-
 c=IN IP4 203.0.113.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 bd:6e:c5:77:2f:77:2a:18:5b:87:0d:b1:f0:c3:0a:d3:31:a6:ba:fc:cc:0b:fd:8b:05:2a:66:32:14:60:7a:ed
 a=ice-ufrag:Rqxl6okx
 a=ice-pwd:0MPlm3Qi
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 203.0.113.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 ",
 }
}

F11: mupdate req (NW to UE1)
-	To notify UE1 that the path control with CP has been completed, the network sends an mupdate request to UE1 with the mediaSessionState set to "connected".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "mediaSessionState": "connected"
}

F12: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "updatedKeys": ["mediaSessionState"]
}

B.5.2.5	Media session setup for content provider service using Split Rendering
The example below shows VR conference use case provided by a content provider co-located in the operator network. The flow is similar to previous example, but the video presented to the users from the content provider (CP) is rendered within Media Function. The flow diagram is the same as Figure 4.3-1.
F1: msetup req (CP to NW)
-	CP sends an msetup request to the network, requesting a connection to the RTC resource ID "resource2@domain1.example." CP generates a preOffer SDP and sets it in preOfferDesc. Trickle-ice is assumed to be used as ICE procedure.

{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 4,
 "resourceId": "3gpp-respect://resource2@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3899463550 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1
 a=ice-options:trickle
 a=fingerprint sha-256 bd:6e:c5:77:2f:77:2a:18:5b:87:0d:b1:f0:c3:0a:d3:31:a6:ba:fc:cc:0b:fd:8b:05:2a:66:32:14:60:7a:ed
 a=ice-ufrag:Rqxl6okx
 a=ice-pwd:0MPlm3Qi
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 203.0.113.2 12345 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F2: msetup res (NW to CP)
-	After verifying the resource ID, the network sends a successful msetup response to CP with the mediaSessionState set to "accepted". The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "mediaSessionState": "accepted"
}

F3: mupdate req (NW to CP)
-	After allocating the resources in the Media Function, the network sends a successful mupdate response containing an SDP answer to CP. The mediaSessionState is changed to "connecting".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "mediaSessionState": "connecting",
 "answerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3899465572 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1
 a=ice-lite
 a=fingerprint sha-256 af:ff:5a:bb:57:fc:05:1b:36:73:8a:2a:14:24:ed:e7:2a:02:14:b8:ec:2e:14:88:07:a6:41:37:d1:51:4c:c0
 a=ice-ufrag:Po1xS110
 a=ice-pwd:Os2TDPws
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "audioIn"
 }
],
 "participantDesc": []
 }
 }
}

F4: mupdate res (CP to NW)
-	CP sends a successful mupdate response back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "updatedKeys": ["answerDesc", "mediaSessionState"]
}

F5: msetup req (UE1 to NW)
-	UE1 sends an msetup request to the network, requesting a connection to the RTC resource ID "resource2@domain1.example." UE1 generates a provisional preOffer SDP and sets it in preOfferDesc (however, in this scenario, sending the preOffer will not be adopted). As UE1 is a normal web browser, trickle-ice is assumed to be used as ICE procedure.

{
"msgType": "request",
 "method": "msetup",
 "transactionId": 4,
 "resourceId": "3gpp-respect://resource2@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3899471791 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2
 a=ice-options:trickle
 a=fingerprint sha-256 c8:73:0f:ff:f7:ae:dc:cd:3f:3d:00:bc:43:56:da:f0:38:7e:2d:fc:24:3e:be:1a:25:04:de:c7:2b:e8:04:7d
 a=ice-ufrag:AN07A1R3
 a=ice-pwd:QgIYT3oC
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F6: msetup res (NW to UE1)
-	After verifying that the resource ID is valid, the network sends an msetup response to UE1 with the mediaSessionState set to "accepted". The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "mediaSessionState": "accepted"
}

F7: mupdate req (NW to UE1)
-	After allocating the resources in the Media Function, the network sends an SDP offer to UE1. The mediaSessionState is changed to "connecting".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "mediaSessionState": "connecting",
 "offerDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3899471805 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-lite
 a=fingerprint sha-256 08:3e:00:af:26:7e:e4:67:fa:16:1f:e0:b1:e0:c7:68:ad:c5:e3:43:52:68:18:2d:57:de:ca:6d:4d:f2:cd:ae
 a=ice-ufrag:Ly5rRouT
 a=ice-pwd:dmYYrGCb
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "videoIn"
 },
 {
 "mid": "2",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "3",
 "connectToDevice": "videoOut",
 "participantId": "gcWbE1JD"
 },
 {
 "mid": "4",
 "connectToDevice": "audioOut",
 "participantId": "gcWbE1JD"
 }
],
 "participantDesc": [
 {
 "participantId": "gcWbE1JD"
 }
]
 }
 }
}

F8: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response containing an SDP answer back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "answerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3899471823 IN IP4 0.0.0.0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 c8:73:0f:ff:f7:ae:dc:cd:3f:3d:00:bc:43:56:da:f0:38:7e:2d:fc:24:3e:be:1a:25:04:de:c7:2b:e8:04:7d
 a=ice-ufrag:AN07A1R3
 a=ice-pwd:QgIYT3oC
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 192.168.100.1 23456 typ host
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 23456 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 23456 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F9: mupdate req (NW to CP)
-	After configuring the Media Function based on the received SDP answer from UE1, the network sends a mupdate request containing updated SDP offer to CP.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "mediaSessionState": "connected",
 "offerDesc": {
 "sdp": "v=0
 o=- 3611686018427387905 3899472299 IN IP4 198.51.100.1
 s=-
 c=IN IP4 198.51.100.2
 t=0 0
 a=group:BUNDLE 0 1 2 3
 a=ice-lite
 a=fingerprint sha-256 af:ff:5a:bb:57:fc:05:1b:36:73:8a:2a:14:24:ed:e7:2a:02:14:b8:ec:2e:14:88:07:a6:41:37:d1:51:4c:c0
 a=ice-ufrag:Po1xS110
 a=ice-pwd:Os2TDPws
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 198.51.100.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 a=dcmap:1 label=\"3gpp-respect://ue1@domain1.example\"
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate 1 1 UDP 2130706687 198.51.100.2 23456 typ host
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 ",
 "sdpMetadata": {
 "sdpHandlingPref": [
 {
 "mid": "1",
 "connectToDevice": "audioIn"
 },
 {
 "mid": "2",
 "connectToDevice": "videoOut",
 "participantId": "3gpp-respect://ue1@domain1.example"
 },
 {
 "mid": "3",
 "connectToDevice": "audioOut",
 "participantId": "3gpp-respect://ue1@domain1.example"
 }
],
 "participantDesc": [
 {
 "participantId": "3gpp-respect://ue1@domain1.example"
 }
]
 }
 }
}

F10: mupdate res (CP to NW)
-	CP sends a successful mupdate response containing an SDP answer back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "nL0dBNwYdcfto2QvRyD8KMlTSSvJd6UPgtsk4hRJQgW4sWpYaMDhKlxDaDTuygB5",
 "updatedKeys": ["offerDesc", "mediaSessionState"],
 "offerDesc": {
 "sdp": "v=0
 o=- 5223372036854775808 3899472766 IN IP4 203.0.113.1
 s=-
 c=IN IP4 203.0.113.2
 t=0 0
 a=group:BUNDLE 0 1 2 3
 a=ice-options:trickle
 a=fingerprint sha-256 bd:6e:c5:77:2f:77:2a:18:5b:87:0d:b1:f0:c3:0a:d3:31:a6:ba:fc:cc:0b:fd:8b:05:2a:66:32:14:60:7a:ed
 a=ice-ufrag:Rqxl6okx
 a=ice-pwd:0MPlm3Qi
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 203.0.113.2
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 a=dcmap:0
 a=dcmap:1 label=\"3gpp-respect://ue1@domain1.example\"
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 12345 UDP/TLS/RTP/SAVPF 97
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 12345 UDP/TLS/RTP/SAVPF 96
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F11: mupdate req (NW to UE1)
-	To notify UE1 that the path control with CP has been completed, the network sends an mupdate request to UE1 with the mediaSessionState set to "connected".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "mediaSessionState": "connected"
}

F12: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "dbp7TMyIa4MkT4plhvGahsdv4YFE54YIokyk0im3jQYdTsnig2C6WUWeDDnmCQEE",
 "updatedKeys": ["mediaSessionState"]
}

B.5.2.6	Media session setup for peer-to-peer communication
The example below shows direct connections between UE accommodated within the same network.

Figure B.5.2.6-1: P2P connection
F1: msetup req (UE1 to NW)
-	UE1 sends an msetup request to the network, requesting a direct connection to the RTC resource ID "ue2@domain1.example." UE1 generates a provisional preOffer SDP and sets it in preOfferDesc. As UE1 is a normal web browser, trickle-ice is assumed to be used as ICE procedure.
{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 4,
 "resourceId": "3gpp-respect://ue2@domain1.example",
 "preOfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3898225964 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 87:ce:63:bc:56:0e:1e:8a:3c:66:5d:88:f4:e3:53:70:1c:d4:a7:20:4b:67:fe:ac:02:11:c5:14:66:a4:21:60
 a=ice-ufrag:QSMYPdBn
 a=ice-pwd:78AQyedA
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=recvonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F2: msetup res (NW to UE1)
-	After verifying that the resource ID is valid, the network sends a successful msetup response to UE1 with the mediaSessionState set to "accepted". The network allocates a new mediaSessionId.

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "aD6rq2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "accepted"
}

F3: msetup req (NW to UE2)
-	The network sends an msetup request to UE2. The media description of the SDP offer will reflect the contents of the preOffer sent by UE1. At this point, the network assigns a mediaSessionId and sets the mediaSessionState to "connecting".

{
 "msgType": "request",
 "method": "msetup",
 "transactionId": 1,
 "resourceId": "3gpp-respect://ue2@domain1.example",
 "mediaSessionId": "BeRCXEICnxrPLbRrLdIV6TIASVBQJo4Y6sLkK3E8hr7JHDqWh0bv8gbM2nMrsq2N",
 "mediaSessionState": "connecting",
 "OfferDesc": {
 "sdp": "v=0
 o=- 4611686018427387905 3898225964 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 87:ce:63:bc:56:0e:1e:8a:3c:66:5d:88:f4:e3:53:70:1c:d4:a7:20:4b:67:fe:ac:02:11:c5:14:66:a4:21:60
 a=ice-ufrag:QSMYPdBn
 a=ice-pwd:78AQyedA
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.1 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=recvonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 "
 }
}

F4: msetup res (UE2 to NW)
-	UE2 sends a successful msetup response to the network with the mediaSessionState set to "accepted".

{
 "msgType": "response",
 "method": "msetup",
 "transactionId": 1,
 "success": true,
 "mediaSessionState": "accepted"
}

F5: mupdate req (NW to UE1)
-	The network sends an mupdate request to UE1 with the mediaSessionState set to "connecting". This informs UE1 that the media session is in the process of being connected.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 1,
 "mediaSessionId": "aD6rq2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "connecting"
}

F6: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response back to the network. UE1 may notify the user of the ongoing call through UI or ring back tone (RBT) playback.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 1,
 "success": true,
 "mediaSessionId": "aD6rq2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "updatedKeys": ["mediaSessionState"]
}

F7: mupdate req (UE2 to NW)
-	UE2 sends an mupdate request containing the SDP answer to the network, in response to the user's response action.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 4,
 "mediaSessionId": "BeRCXEICnxrPLbRrLdIV6TIASVBQJo4Y6sLkK3E8hr7JHDqWh0bv8gbM2nMrsq2N",
 "answerDesc": {
 "sdp": "v=0
 o=- 321352425160002075 3898229176 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 bd:6e:c5:77:2f:77:2a:18:5b:87:0d:b1:f0:c3:0a:d3:31:a6:ba:fc:cc:0b:fd:8b:05:2a:66:32:14:60:7a:ed
 a=ice-ufrag:Rqxl6okx
 a=ice-pwd:0MPlm3Qi
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.2 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F8: mupdate res (NW to UE2)
-	The network sends a successful mupdate response back to UE2.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 4,
 "success": true,
 "mediaSessionId": "BeRCXEICnxrPLbRrLdIV6TIASVBQJo4Y6sLkK3E8hr7JHDqWh0bv8gbM2nMrsq2N",
 "updatedKeys": ["answerDesc"]
}

F9: mupdate req (NW to UE1)
-	The network sends an mupdate request containing the SDP answer to UE1. The mediaSessionState is changed to "connected".

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "aD6rq2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "mediaSessionState": "connected"
 "answerDesc": {
 "sdp": "v=0
 o=- 321352425160002075 3898229176 IN IP4 0 0 0 0
 s=-
 c=IN IP4 0.0.0.0
 t=0 0
 a=group:BUNDLE 0 1 2 3 4
 a=ice-options:trickle
 a=fingerprint sha-256 bd:6e:c5:77:2f:77:2a:18:5b:87:0d:b1:f0:c3:0a:d3:31:a6:ba:fc:cc:0b:fd:8b:05:2a:66:32:14:60:7a:ed
 a=ice-ufrag:Rqxl6okx
 a=ice-pwd:0MPlm3Qi
 a=setup:actpass
 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=candidate 1 1 UDP 2130706543 192.168.100.2 23456 typ host generation 0
 a=mid:0
 a=bundle-only
 a=sctp-port:5000
 a=max-message-size:65536
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:1
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=recvonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:2
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=recvonly
 m=video 9 UDP/TLS/RTP/SAVPF 97
 a=mid:3
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:97 H264/90000
 a=fmtp:97 profile-level-id=...;sprop-parameter-sets=...
 a=sendonly
 m=audio 9 UDP/TLS/RTP/SAVPF 96
 a=mid:4
 a=rtcp-mux-only
 a=rtcp-mux
 a=bundle-only
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtpmap:96 opus/48000/2
 a=sendonly
 "
 }
}

F10: mupdate res (UE1 to NW)
-	UE1 sends a successful mupdate response back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "aD6rq2yiO2AVY2INWdgt4hrOqxxJHbd5NhQqlX5Wd0YbCMHaNgi0L77m3M0SmMG3",
 "updatedKeys": ["mediaSessionState", "answerDesc"]
}

F11: mupdate req (NW to UE2)
-	The network sends an mupdate request to UE2 with the mediaSessionState set to "connected." This informs UE2 that path control with UE1 has been completed.

{
 "msgType": "request",
 "method": "mupdate",
 "transactionId": 3,
 "mediaSessionId": "BeRCXEICnxrPLbRrLdIV6TIASVBQJo4Y6sLkK3E8hr7JHDqWh0bv8gbM2nMrsq2N",
 "mediaSessionState": "connected"
}

F12: mupdate res (UE2 to NW)
-	UE2 sends a successful mupdate response back to the network.

{
 "msgType": "response",
 "method": "mupdate",
 "transactionId": 3,
 "success": true,
 "mediaSessionId": "BeRCXEICnxrPLbRrLdIV6TIASVBQJo4Y6sLkK3E8hr7JHDqWh0bv8gbM2nMrsq2N",
 "updatedKeys": ["mediaSessionState"]
}

B.6	Conference Management Protocol Examples
Editor’s Note: Examples of conference session management (OpenAPI)
[bookmark: _Toc124216643]B.7	Conference Management Flow Examples
Editor’s Note: Sequence and message examples using Annex E

Annex C: Open Issues
Editor’s note: This annex describes possible future work.
C.1	Materials for Further Study
a) The C-plane signalling protocol should support basic WebRTC service operations such as client registration, authentication and authorization; call control; and data channel management that are relevant to the new architecture.
c) Security considerations for interoperable WebRTC services such as authentication, authorization, and key management
d) Deployment options of traditional WebRTC functions in 5G network, and mapping of those functions to 5G media architecture
NOTE: Mapping of WebRTC functions to 5GMS functions to be confirmed in 5GAREA study
e) Feasibility to use existing 5GMS architecture enablers for betterment of WebRTC services.
C.2	Candidate Use Case
Editor’s note: Media handling remains unidentified, but the use case of one-to-one communication is to be included in clause 3 by some form. The following description is suggested by CMCC.
3D Telepresence is a real-time bidirectional video communication system that enables two people to communicate at distance as if they were physically together. Using the benefits of WebRTC, we can combine 3D Telepresence with a regular video call service. It offers users a more natural and intuitive way for remote connection.
3D Video Call establishes a one-on-one communication between users to guarantee low latency and high security holographic communication experience. The 3D video stream and the audio stream are being compressed and real-time transmitted over WebRTC protocol. Both ends support incoming and outgoing calls.
[image: 标准图1]
For example, Alice sits in a conference room in Midtown Manhattan, there are cameras, microphones, and sensors to capture her image, voice and movements from multiple vantage points. The captured imagery and voice get transmitted in real-time to the remote peer Bob, who is working in his studio in Boston. Both of them can see each other’s imagery in three dimensions and also hear the voice. They can talk naturally with the full range of communication cues, such as eye contact, hand gestures, and body languages. The whole experience makes them feel like they’re actually sitting in the same room.
C.3	Solution Design Concepts
It is proposed to construct solutions in this study along the concepts described as follows:
1) Complying with the WebRTC standards and following the practical implementations in real deployments.
2) Using IETF and 3GPP protocols where the WebRTC standards do not specify.
3) Using general-purpose 5G functions (e.g., EDGEAPP and Network Slice) and the associated protocols if available rather than newly creating RTC specific ones.
4) Using the same protocols as much as possible for the collaboration scenarios: MNO’s Operator-Assistance for OTT’s WebRTC services and MNO’s WebRTC services as an operator service.
C.4	Major features concerned with WebRTC
[bookmark: _Toc124216620]C.4.1	Overview
These are the major features in each step of the communications with Operator-Assistance for OTT’s WebRTC services:
-	Discovery - procedures to discover the relevant functional entities
-	NAT traversal - ICE functions for communication through NAT/NAPT
-	Identifiers - Linkage between OTT ID and MNO ID
-	QoS enablement - information notified from the UE to the MNO for QoS control
C.4.2	Feature: Discovery of Functional Entities
A solution with the existing 5G functions is using EDGEAPP (Architecture for enabling Edge Applications) specified in SA6.
WebRTC applications on a UE can discover WebRTC functional entities (e.g., CSF, WSF, and WMCF) in an MNO network with the EDGEAPP enabler. CSF, WSF and WMCF are registered on EES (Edge Enabler Server) beforehand as EASs (Edge Application Server) with different service specific features (easFeats).
Editor’s note: Server discovery procedure is essential. Various methods including static and/or dynamic way should be studied further. As a possible solution for dynamic server discovery, the example call flow using EDGEAPP API is provided.
C.4.3	Feature: NAT traversal and ICE Functions
For NAT traversal, ICE is integrated in the WebRTC framework and JavaScript API so that ICE must be considered. However, ICE requires the network to support additional features. In this study, it is proposed to consider not using ICE functions if possible.
Editor’s note: A possible solution is described in clause 5.7.2 of FS_eiRTCW permanent document.
C.4.4	Feature: Linkage of OTT ID and MNO ID
It is essential to make a linkage between OTT’s ID and MNO’s ID (e.g., GPSI or IMSI) for providing operator-assistance for OTT. The linkage must be verified by the MNO for charging and service conditions/restrictions management of MNO.
The CSF or WSF can obtain verified MNO’s ID of UEs from the EES with EDGEAPP APIs as an EAS. (API specifications of the function is under discussion in SA6 and CT3.)
Editor’s note: A solution for retrieving verified MNO’s ID is described in clause 5.7.3 of FS_eiRTCW permanent document.
A solution for making the linkage between OTT’s ID and MNO’s ID (obtained via EDGEAPP APIs) is OAuth that is widely used in OTT applications.
C.4.5	Feature: QoS enablement - Information notified from the UE to the MNO for QoS control
In the WebRTC framework, the UE generates and accepts SDPs to exchange IP addresses/port numbers and QoS related information (e.g., bandwidth) for transmitting media. The SDPs are sent to or received from the signalling server of OTTs with their proprietary protocols.
A potential solution can implement an extra mechanism for QoS control. The UE notifies the SDPs to the MNO’s WSF in addition to the OTT’s signalling server. The MNO’s WSF can control the PCF based on the information in the SDP. In this mechanism, the role of MNO’s WSF is similar to the role of P-CSCF in IMS.
NOTE 1:	Application’s QoS requirements may not be met if the application runs on the default PDU session. The use of Network Slice may be needed and for further study.
NOTE 2:	Prior to the SDP generation, suggestions about available bandwidth from the MNO to the UE is an open issue.
C.5		Multiple Video Sources and zone allocations
Figure C.5-1 illustrates a common use case when a UE has multiple video sources (e.g. 2D/3D-capable). Each camera may have a fixed Field-of-View (FoV) or varied FoV. Each camera may support the same set of video capabilities such as codec support.
A camera ID or zone ID is assigned for each camera. By assigning a zone number, the UE has the flexibility to signal each source by its source ID (e.g. SSRC in case of RTP) or zone/camera ID.
The zone ID may be assigned with a priority based on the areas it covers and may consist of one or more cameras. For example, the area covered by cameras in zone-1 may be more important than the ones located in zone-2 and zone-3 since it covers the front FoV of the UE. This is important information since it enables UE to signal the essential zone areas or high-priority zones. In some cases, all of the zones have to be treated equally, then all the zone will have the same priority assignment.

Figure C.5-1 Multiple Video Sources With different zone allocations in UE
NOTE:	the number of cameras and the size of UE, i.e., the entire coverage of all cameras, can vary.
In this use case, there are a couple of possible scenarios.
For example, UE-A has multiple media sources under its control. UE-A is communicating with UE-B:
1) Each media source belonging to UE-A is able to produce an individual media stream. To set up the media stream with UE-B, UE-A identifies the source of the media (e.g., by camera ID) and exchanges information about the media.
2) In each zone, media produced by the sources in the zone may be processed and combined into a new media. UE-A identifies (the source of) the combined media (e.g., by zone ID) and exchanges information about the media.
3) Media produced by the sources in all zones may be combined into a new media stream. UE-A identifies (the source of) the combined media and exchanges information about the media.
4) The zone IDs or camera IDs may be associated to particular pose information of UE-B when the UE-A is creating or sending immersive content. Streams from individual camera or cameras in certain zones can be paused/resumed depending on the viewing orientation of the receiver UE-B (i.e., for viewport-dependent media). In this case the streams do not have to be combined.
[bookmark: _Toc124216644]
Annex D: JSON data format of RESPECT
Editor’s note: Structure of following clauses needs to be modified.
Editor’s note: Current description of this Annex is tentative draft and need to be updated.
D.1	Common data type of information elements
Table D.1-1 lists common information elements and data type of these information elements which applicable in several messages.
Table D.1-1: Common data types of information element
	Data type
	Section defined
	Description
	Applicability (NOTE)

	TransactionId
	D.3.1
	Transaction ID for the transaction.
	

	SupportedFeature
	FFS
	
	

	UnsupporedFeature
	FFS
	
	

	RequireFeature
	FFS
	The feature(s) requested to the eiRTCW entity which sent the corresponding request. required feature is not allowed to include the feature(s) is not included in the Supported feature information element in the corresponding request.
	

	RetryAfter
	D.3.1
	This information element the wait time to send next request to the entity which indicates this information element.
	

	WebrtcId
	D.3.1
	
	

	AuthType
	D.3.2
	
	

	Authentication
	D.3.1
	
	

	Success
	D.3.1
	
	

	Expires
	D.3.1
	
	

	WebrtcReauthCredential
	D.3.1
	
	

	WwwAuthenticate
	D.2.1
	
	

	Authorization
	D.2.2
	
	

	DisconnectTtl
	D.3.1
	
	

	ProblemDetails
	D.2.3
	
	

	ResourceId
	D.3.1
	
	

	MediaSessionId
	D.3.1
	
	

	MediaSessionState
	D.3.3
	
	

	PreferredOid
	FFS
	This information element indicates the originating eiRTCW client identity which the eiRTCW client wants to indicate to the eiRTCW client with which media session is set up.
	

	AssertedOid
	FFS
	This information element indicates the network asserted originating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	PreferredTid
	FFS
	This information element indicates the terminating eiRTCW client identity which the eiRTCW client wants to indicate to the eiRTCW client with which media session is set up.
	

	AssertedTid
	FFS
	This information element indicates the network asserted terminating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	PreferredAssertedId
	D.2.4
	
	

	UserData
	FFS
	
	

	PreOfferDesc
	
	
	

	PreferredAsseredIdLocale
	D.2.5
	
	

	OfferDescription
	D.2.6
	
	

	Sdp
	FFS
	
	

	OfferAnswerDesc
	
	
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.2	Structured data types
D.2.1	Type: WwwAuthenticate
This type is required to comply with the provisions defined in Table D.2.1-1.
[bookmark: _Hlk131966742]Table A.2.1-1: Definition of WwwAuthenticate data type
	IE name
	Data type
	Cardinality
	Description

	authScheme
	string
	1
	See IETF RFC 9110 [rfc9110].

	realm
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	domain
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	nonce
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	uri
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	qop
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	nc
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	cnonce
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	response
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	opaque
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	stale
	string
	0..1
	See IETF RFC 9110 [rfc9110].

	algorithm
	string
	0..1
	See IETF RFC 9110 [rfc9110].

D.2.2	Type: Authorization
This type is required to comply with the provisions defined in Table D.2.2-1.
Table D.2.2-1: Definition of Authorization data type
	IE name
	Data type
	Cardinality
	Description

	authScheme
	string
	1
	

	authParam
	string
	0..1
	

D.2.3	Type: ProblemDetails
This type is required to comply with the provisions defined in Table D.2.3-1.
Table D.2.3-1: Definition of ProblemDetails data type
	IE name
	Data type
	Cardinality
	Description

	type
	string
	0..1
	This IE includes a URI reference as specified in IETF RFC 7807 [RFC7807]

	title
	string
	0..1
	This IE includes a short, human-readable summary of the problem type as specified in IETF RFC 7807 [RFC7807]

	status
	number
	1
	This IE includes the HTTP status code as specified in IETF RFC 7807 [RFC7807]
For [eiRTCW signalling protocol], the following status codes are used:
- 401 :
- 403 :
- 404 :
- 405 :
- 420 :
- 481 :
- 503 :

	detail
	string
	0..1
	This IE includes a human-readable explanation specific to this occurrence of the problem as specified in IETF RFC 7807 [RFC7807]

	instance
	string
	0..1
	This IE includes a URI reference that identifies the specific occurrence of the problem as specified in IETF RFC 7807 [RFC7807]

D.2.4	Type: PreferredAsseredId
This type is required to comply with the provisions defined in Table D.2.4-1.
Table D.2.4-1: Definition of PreferredAsseredId data type
	IE name
	Data type
	Cardinality
	Description

	anonymized
	boolean
	0..1
	

	user
	PreferredAssertedIdLocale
	0..1
	

	network
	PreferredAssertedIdLocale
	0..1
	

D.2.5	Type: PreferredAsseredIdLocale
This type is required to comply with the provisions defined in Table D.2.5-1.
Table D.2.5-1: Definition of PreferredAsseredIdLocale data type
	IE name
	Data type
	Cardinality
	Description

	default
	string
	0..1
	Set to "default" or {ISO 639-1}_{ISO 3166-1 alpha-2}. (e.g., "en_US”, "ja_JP")

D.2.6	Type: OfferDescription
This type is required to comply with the provisions defined in table D.2.6-1.
Table D.2.6-1: Definition of OfferDescription data type
	IE name
	Data type
	Cardinality
	Description

	sdp
	Sdp
	1
	

	sdpMetadata
	SdpMetadata
	0..1
	

D.2.7	Type: SdpMetadata
This type is required to comply with the provisions defined in table D.2.7-1.
Table D.2.7-1: Definition of SdpMetadata data type
	IE name
	Data type
	Cardinality
	Description

	mediaDespription
	Array(MediaDescription)
	1..N
	

	mediaSource
	Array(MediaSource
	0..N
	Supplementary information of the media stream. This is allowed to include a name of the media source, an image of the media source, an user/media resource ID of the media resource

D.2.8	Type: MediaDescription
This type is required to comply with the provisions defined in table D.2.8-1.
Table D.2.8-1: Definition of MediaDescription data type
	IE name
	Data type
	Cardinality
	Description

	mid
	number
	1
	

	connectTo
	ConnectTo
	0..1
	- "audioin”
- "audioout”
- "videoin”
- "display”

	mediaSourceId
	string
	0..1
	This information element is set to the mediaSourceId of the corresponding media resource.

	preferredStype
	PreferredStyle
	0..1
	

D.2.9	Type: MediaSource
This type is required to comply with the provisions defined in table D.2.9-1.
Table D.2.9-1: Definition of MediaSource data type
	IE name
	Data type
	Cardinality
	Description

	mediaSourceId
	string
	1
	

	displayText
	string
	0..1
	

	displayImage
	url
	0..1
	

	contactId
	resourceId
	0..1
	

D.3	Simple data types and Enumerations
D.3.1	Simple data types
Table D.3.1-1: Simple data types applicable to several APIs
	Type name
	Description

	TransactionId
	TransactionId is required to be 64-bit unsigned integer and unique for all transactions on the WebSocket connection. Transaction ID is not allowed to be reused for another transaction on the WebSocket connection. To avoid collision of Transaction ID among different transactions, eiRTCW entity is required to generate a Transaction ID as follows:
-	the eiRTCW entity acting as WebSocket client on the WebSocket connection is required to generate even-numbered transaction ID. Transaction ID for an initial request on a WebSocket connection is required to be set to "0".
-	the eiRTCW entity acting as WebSocket server on the WebSocket connection is required to generate odd-numbered transaction ID. Transaction ID for an initial request on a WebSocket connection is required to be set to "1".
-	Transaction ID is incremented by "2", when the transaction ID is issued for a new transaction on the WebSocket connection.

	RetryAfter
	Unsigned 32-bit integers.

	WebrtcId
	String containing a user identifier followed by "@" and a domain identifier. Both the user identifier and the domain identifier is required to be encoded as strings that do not contain any "@" characters.

	Authentication
	

	Success
	boolean

	Expires
	Unsigned 64-bit integer identifying the valid duration of the authentication.

	WebrtcReauthCredential
	

	DisconnectTtl
	Unsigned 64-bit integer.

	ResourceId
	

	MediaSessionId
	

D.3.2	Enumeration: AuthType
Table D.3.2-1: Enumeration AuthType
	Enumeration value
	Description
	Applicability (NOTE)

	bearer
	The authentication request intends to use bearer authentication.
	

	basic
	The authentication request intends to use basic authentication.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.3.3	Enumeration: MediaSessionState
Table D.3.3-1: Enumeration MediaSessionState
	Enumeration value
	Description
	Applicability (NOTE)

	accepted
	
	

	connecting
	
	

	connected
	
	

	updating
	The media session is under re-offer/answer negotiation.
	

	disconnected
	
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.3.4	Enumeration: ConnectTo
Table D.3.4-1: Enumeration ConnectTo
	Enumeration value
	Description
	Applicability (NOTE)

	audioin
	The media stream is connected to an audio input device (e.g., Microphone) on the eiRTCW entity receiving the SDP offer.
	

	audioout
	The media stream is connected to an audio output device (e.g., Microphone) on the eiRTCW entity receiving the SDP offer.
	

	videoin
	The media stream is connected to a video input device (e.g., Microphone) on the eiRTCW entity receiving the SDP offer.
	

	display
	The media stream is connected to a video output device (e.g., Microphone) on the eiRTCW entity receiving the SDP offer.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.3.5	Enumeration: PreferredStyle
Table D.3.4-5: Enumeration PreferredStyle
	Enumeration value
	Description
	Applicability (NOTE)

	mainview
	
	

	thumbnail
	
	

	screenshare
	
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4	Information elements for each message
This clause defines the information elements included in the signalling message payload.
NOTE:	The information element for an application specific message is outside the scope of this document, except mandatory information elements for all request/response messages

D.4.1	Authentication request
Table D.4.1-1 describes the payload of an auth request message.
Table D.4.1-1: Payload for auth request message
	Paload name
	Data type
	P
	Cardinality
	Description

	reqAuth
	object
	M
	1
	Payload format of an auth request message.

Table D.4.1-2 describes the information element structure of reqAuth payload.
Table D.4.1-2: Definition of reqAuth payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	This information element indicates the message type of the message.
The value is required to be set to "request".
	

	method
	string
	M
	1
	This information element indicates the method type of the message.
The value is required to be set to "auth".
	

	transactionId
	TransactionId
	M
	1
	This information element indicates the transaction ID of the message.
The value is required to be generated as described in Table 6.11.7.4-1.
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) required to process the request. If even one of the features is not applicable at the eiRTCW entity which receives the request, the request is required to be rejected.
	

	webrtcId
	WebrtcId
	M
	1
	This information element indicates the identity of the eiRTCW entity which is requested to be authenticated and registered.
The value is required to be set to the eiRTCW user identity or eiRTCW resource identity.
	

	authType
	AuthType
	M
	1
	This information element indicates the authentication type is whether "basic” or "bearer".
If basic authentication is used, the value is required to be set to "basic".
If bearer authentication is used, the value is required to be set to "bearer”.
	

	authentication
	Authentication
	O
	0..1
	This information element includes the credential token of the eiRTCW entity for bearer authentication.
	

	authorization
	Authorization
	O
	0..1
	This information element includes the credential of the eiRTCW entity.
If the eiRTCW entity receives the auth response message including wwwAuthenticate information element, then the eiRTCW element is required to include this information element as same as Authorization header field specified in IETF RFC 9110 [RFC9110].
	

	disconnectTtl
	DisconnectTtl
	O
	0..1
	This information element indicates the duration which the network keeps the authentication status and media session state related to the eiRTCW entity, if the WebSocket connection is disconnected.
In the request, the value indicates the time which the eiRTCW client wants to use.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.2	Authentication response
Table D.4.2-1 describes the payload of an auth response message.
Table D.4.2-1: Payload for auth response message
	Payload name
	Data type
	P
	Cardinality
	Description

	resAuth
	object
	M
	1
	Payload format of an auth response message.

Table D.4.2-2 describes the information element structure of resAuth payload.
Table D.4.2-2: Definition of resAuth payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	The type of the message. It is required to be set to "response"
	

	method
	string
	M
	1
	The method of the request corresponding to the response.
	

	transactionId
	TransactionId
	M
	1
	Transaction identity which is assigned for the pair of request message and response message.
	

	success
	Success
	M
	1
	The result of the request processing. If the request is accepted, this IE is set to "true". If the request is not accepted, this IE is set to "false".
	

	expires
	Expires
	O
	0..1
	The expiration time duration of the authentication.
This information element is required to be set into an auth response message including success information element set to "true"
	

	webrtcRequthCredential
	WebrtcReauthCredential
	O
	0..1
	The credential (token) for the re-authentication when the WebSocket connection is disconnected during the authentication is valid.
This information element is required to be provided with disconnectTtl information element.
	

	disconnectTtl
	DisconnectTtl
	O
	0..1
	This information element indicates the duration which the network keeps the authentication status and media session state related to the eiRTCW entity, if the WebSocket connection is disconnected. In the response, the value indicates the time duration which the WSF decided to use for the authentication.
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) requested to the eiRTCW entity which sent the corresponding request. This IE is not allowed to include the feature(s) which is not included in the supportedFeature information element in the corresponding request.
	

	unsupportedFeature
	UnsupportedFeature
	O
	0..1
	The feature(s) which is included in the requireFeature information element of the received request, however, which is not supported by the eiRTCW entity sending the response,
	

	wwwAuthenticate
	WwwAuthenticate
	O
	0..1
	This information element is required to be set when the WSF requires the challenge to the eiRTCW entity for basic authentication.
	

	retryAfter
	RetryAfter
	O
	0..1
	This information element indicates the wait time to send next request to the entity which indicates this information element.
	

	problemDetails
	ProblemDetails
	O
	0..1
	This information element indicates the detailed information of the failure reason.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.3	Media session set up request
Table D.4.3-1 describes the payload of a msetup request message.
Table D.4.3-1: Payload for msetup request message
	Payload name
	Data type
	P
	Cardinality
	Description

	reqMSetup
	object
	M
	1
	Payload format of an msetup request message.

Table D.4.3-2 describes the information element structure of reqMSetup payload.
Table D.4.3-2: Definition of reqMSetup payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	This information element indicates the message type of the message.
It is required to be set to "request”.
	

	method
	string
	M
	1
	This information element indicates the method type of the message.
It is required to be set to "msetup”.
	

	transactionId
	TransactionId
	M
	1
	This information element indicates the transaction ID of the message.
The value is required to be generated as described in Table 6.11.7.4-1.
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) required to process the request. If even one of the features is not applicable at the eiRTCW entity which receives the request, the request is required to be rejected.
	

	resourceId
	ResourceId
	M
	1
	The eiRTCW user identity or eiRTCW media resource identity of the eiRTCW entity with which the eiRTCW client wants to connect the media session.
	

	mediaSessionId
	MediaSessionId
	O
	0..1
	
This information element is required to be generated and set by the WSF in the operator network. An eiRTCW client is not allowed to include this information element in the msetup request message.
	

	preOfferDesc
	PreOfferDesc
	O
	0..1
	
This information element is recommended to be when:
- the eiRTCW client originates msetup request message, and
- the WSF sends a msetup request message to another WSF, based on the msetup request message received from eiRTCW client.
	

	offerDesc
	OfferDesc
	O
	0..1
	Offer description indicates the SDP offer for the media session.
An eiRTCW client is not allowed to include in the msetup request message.
	

	preferredOid
	PreferredOid
	O
	0..1
	The originating eiRTCW client identity which the eiRTCW client wants to indicate to the eiRTCW client with which media session is set up.
	

	assertedOid
	AssertedOid
	O
	0..1
	The network asserted originating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	userData
	UserData
	O
	0..1
	Any user data which the user of the eiRTCW entity wants to send in the request. Based on the operator policy, this information element possibly does not reach to the eiRTCW entity behind the eiRTCW server.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.4	Media session set up response
Table D.4.4-1 describes the payload of an msetup response message.
Table D.4.4-1: Payload for msetup response message
	Payload name
	Data type
	P
	Cardinality
	Description

	resMSetup
	object
	M
	1
	Payload format of an msetup response message.

Table D.4.4-2 describes the information element structure of resMSetup payload.
Table D.4.4-2: Definition of resMSetup payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	The type of the message. It is required to be set to "response"
	

	method
	string
	M
	1
	The method of the request corresponding to the response.
	

	transactionId
	TransactionId
	M
	1
	Transaction identity which is assigned for the pair of request message and response message.
	

	success
	Success
	M
	1
	The result of the request processing. If the request is accepted, this IE is set to "true". If the request is not accepted, this IE is set to "false".
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) requested to the eiRTCW entity which sent the corresponding request. This IE is not allowed to include the feature(s) which is not included in the supportedFeature information element in the corresponding request.
	

	unsupportedFeature
	UnsupportedFeature
	O
	0..1
	The feature(s) which is included in the requireFeature information element of the received request, however, which is not supported by the eiRTCW entity sending the response,
	

	mediaSessionId
	MediaSessionId
	M
	1
	Media session ID indicates the media session between the eiRTCW entities directly connected.
The media session ID is required to be set the value included in the corresponding request.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	
	

	offerDesc
	OfferDesc
	O
	0..1
	Offer description indicates the SDP offer for the media session.
	

	answerDesc
	AnswerDesc
	O
	0..1
	Answer description indicates the SDP answer for the media session.
	

	preferredTid
	PreferredTid
	O
	0..1
	The terminating eiRTCW client identity which the eiRTCW client wants to indicate to the eiRTCW client with which media session is set up.
	

	assertedTid
	AssertedTid
	O
	0..1
	The network asserted terminating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	retryAfter
	RetryAfter
	O
	0..1
	This information element indicates the wait time to send next request to the entity which indicates this information element.
	

	problemDetails
	ProblemDetails
	O
	0..1
	This information element indicates the detailed information of the failure reason.
	

	userData
	UserData
	O
	0..1
	Any user data which the user of the eiRTCW entity wants to send in the response. Based on the operator policy, this information element possibly does not reach to the eiRTCW entity behind the eiRTCW server.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.5	Media session update request
Table D.2.5-1 describes the payload of a mupdate request message.
Table D.4.5-1: Payload for MUpdate request message
	Payload name
	Data type
	P
	Cardinality
	Description

	reqMUpdate
	object
	M
	1
	Payload format of an mupdate request message.

Table D.4.5-2 describes the information element structure of reqMUpdate payload.
Table D.4.5-2: Definition of reqMUpdate payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	This information element indicates the message type of the message.
It is required to be set to "request”.
	

	method
	string
	M
	1
	This information element indicates the method type of the message.
It is required to be set to "mupdate”.
	

	transactionId
	TransactionId
	M
	1
	This information element indicates the transaction ID of the message.
The value is required to be generated as described in Table 6.11.7.4-1.
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) required to process the request. If even one of the features is not applicable at the eiRTCW entity which receives the request, the request is required to be rejected.
	

	resourceId
	ResourceId
	O
	0..1
	The eiRTCW user identity or eiRTCW media resource identity of the eiRTCW entity with which the eiRTCW client wants to connect the media session.
	

	mediaSessionId
	MediaSessionId
	M
	1
	This information element is required to be set to the media session ID which indicates the target media session.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	
	

	offerDesc
	OfferDesc
	O
	0..1
	Offer description indicates the SDP offer for the media session update.
This information element is not allowed to be included in the mupdate request message when resourceId information element is included.
	

	answerDesc
	AnswerDesc
	O
	0..1
	Answer description indicates the SDP answer for the media session.
	

	preferredOid
	PreferredOid
	O
	0..1
	The originating eiRTCW client identity which the eiRTCW client wants to indicate to the eiRTCW client with which media session is set up.
	

	assertedOid
	AssertedOid
	O
	0..1
	The network asserted originating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	preferredTid
	PreferredTid
	O
	0..1
	The terminating eiRTCW client identity which the eiRTCW client wants to indicate to the eiRTCW client with which media session is set up.
	

	assertedTid
	AssertedTid
	O
	0..1
	The network asserted terminating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	userData
	UserData
	O
	0..1
	Any user data which the user of the eiRTCW entity wants to send in the request. Based on the operator policy, this information element possibly does not reach to the eiRTCW entity behind the eiRTCW server.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.6	Media session update response
Table D.4.6-1 describes the payload of an mupdate response message.
Table D.4.6-1: Payload for mupdate response message
	Payload name
	Data type
	P
	Cardinality
	Description

	resMUpdate
	object
	M
	1
	Payload format of an mupdate response message.

Table D.4.6-2 describes the information element structure of resMUpdae payload.
Table D.4.6-2: Definition of resMUpdate payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	The type of the message. It is required to be set to "response"
	

	method
	string
	M
	1
	The method of the request corresponding to the response.
	

	transactionId
	TransactionId
	M
	1
	Transaction identity which is assigned for the pair of request message and response message.
	

	success
	Success
	M
	1
	The result of the request processing. If the request is accepted, this IE is set to "true". If the request is not accepted, this IE is set to "false".
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) requested to the eiRTCW entity which sent the corresponding request. This IE is not allowed to include the feature(s) which is not included in the supportedFeature information element in the corresponding request.
	

	unsupportedFeature
	UnsupportedFeature
	O
	0..1
	The feature(s) which is included in the requireFeature information element of the received request, however, which is not supported by the eiRTCW entity sending the response,
	

	mediaSessionId
	MediaSessionId
	M
	1
	This information element is required to be set to the media session ID which indicates the target media session.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	
	

	offerDesc
	OfferDesc
	O
	0..1
	Offer description indicates the SDP offer for the media session update.
	

	answerDesc
	AnswerDesc
	O
	0..1
	Answer description indicates the SDP answer for the media session.
	

	preferredOid
	PreferredOid
	O
	0..1
	The originating eiRTCW client identity
	

	assertedOid
	AssertedOid
	O
	0..1
	The network asserted originating eiRTCW client identity.
	

	preferredTid
	PreferredTid
	O
	0..1
	The identity of the eiRTCW entity which terminates the media session at the end of media path.
	

	assertedTid
	AssertedTid
	O
	0..1
	The network asserted terminating eiRTCW client identity which is indicated to the eiRTCW client with which media session is set up.
	

	retryAfter
	RetryAfter
	O
	0..1
	This information element indicates the wait time to send next request to the entity which indicates this information element.
	

	problemDetails
	ProblemDetails
	O
	0..1
	This information element indicates the detailed information of the failure reason.
	

	userData
	UserData
	O
	0..1
	Any user data which the user of the eiRTCW entity wants to send in the response. Based on the operator policy, this information element possibly does not reach to the eiRTCW entity behind the eiRTCW server.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.7	Media session disconnection request
Table D.4.7-1 describes the payload of a mdisc request message.
Table D.4.7-1: Payload for mdisc request message
	Payload name
	Data type
	P
	Cardinality
	Description

	reqMDisc
	object
	M
	1
	Payload format of an mdisc request message.

Table D.4.7-2 describes the information element structure of reqMDisc payload.
Table D.4.7-2: Definition of reqMDisc payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	This information element indicates the message type of the message.
It is required to be set to "request”.
	

	method
	string
	M
	1
	This information element indicates the method type of the message.
It is required to be set to "mdisc”.
	

	transactionId
	TransactionId
	M
	1
	This information element indicates the transaction ID of the message.
The value is required to be generated as described in Table 6.11.7.4-1.
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) required to process the request. If even one of the features is not applicable at the eiRTCW entity which receives the request, the request is required to be rejected.
	

	mediaSessionId
	MediaSessionId
	M
	1
	
This information element is required to be generated and set by the WSF in the operator network. An eiRTCW client is not allowed to include this information element in the msetup request message.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	
	

	userData
	UserData
	O
	0..1
	Any user data which the user of the eiRTCW entity wants to send in the request. Based on the operator policy, this information element possibly does not reach to the eiRTCW entity behind the eiRTCW server.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.8	Media session disconnection response
Table D.4.8-1 describes the payload of an mdisc response message.
Table D.4.8-1: Payload for mdisc response message
	Payload name
	Data type
	P
	Cardinality
	Description

	resMDisc
	object
	M
	1
	Payload format of an mdisc response message.

Table D.4.8-2 describes the information element structure of resMDisc payload.
Table D.4.8-2: Definition of resMDisc payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	The type of the message. It is required to be set to "response"
	

	method
	string
	M
	1
	The method of the request corresponding to the response.
	

	transactionId
	TransactionId
	M
	1
	Transaction identity which is assigned for the pair of request message and response message.
	

	success
	Success
	M
	1
	The result of the request processing. If the request is accepted, this IE is set to "true". If the request is not accepted, this IE is set to "false".
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) requested to the eiRTCW entity which sent the corresponding request. This IE is not allowed to include the feature(s) which is not included in the supportedFeature information element in the corresponding request.
	

	unsupportedFeature
	UnsupportedFeature
	O
	0..1
	The feature(s) which is included in the requireFeature information element of the received request, however, which is not supported by the eiRTCW entity sending the response,
	

	mediaSessionId
	MediaSessionId
	M
	1
	This information element is required to be set to the media session ID which indicates the target media session.
	

	mediaSessionState
	MediaSessionState
	O
	0..1
	
	

	retryAfter
	RetryAfter
	O
	0..1
	This information element indicates the wait time to send next request to the entity which indicates this information element.
	

	problemDetails
	ProblemDetails
	O
	0..1
	This information element indicates the detailed information of the failure reason.
	

	userData
	UserData
	O
	0..1
	Any user data which the user of the eiRTCW entity wants to send in the response. Based on the operator policy, this information element possibly does not reach to the eiRTCW entity behind the eiRTCW server.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.9	Get information request
Table D.4.9-1 describes the payload of a GetInfo request message.
Table D.4.9-1: Payload for GetInfo request message
	Payload name
	Data type
	P
	Cardinality
	Description

	reqGetInfo
	object
	M
	1
	Payload format of a GetInfo request message.

Table D.4.9-2 describes the information element structure of reqGetInfo payload.
Table D.4.9-2: Definition of reqGetInfo payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	This information element indicates the message type of the message.
It is required to be set to "request".
	

	method
	string
	M
	1
	This information element indicates the method type of the message.
It is required to be set to "getinfo".
	

	transactionId
	TransactionId
	M
	1
	This information element indicates the transaction ID of the message.
The value is required to be generated as described in Table 6.11.7.4-1.
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) required to process the request. If even one of the features is not applicable at the eiRTCW entity which receives the request, the request is required to be rejected.
	

	resources
	object
	O
	0..1
	
	

	NOTE:	This field is to describe if the use of the information element depends on the feature.

D.4.10	Get information response
Table D.4.10-1 describes the payload of an GetInfo response message.
Table D.4.10-1: Payload for GetInfo response message
	Payload name
	Data type
	P
	Cardinality
	Description

	resGetInfo
	object
	M
	1
	Payload format of an GetInfo request message.

Table D.4.10-2 describes the information element structure of resGetInfo payload.
Table D.4.10-2: Definition of resGetInfo payload
	IE name
	Data type
	P
	Cardinality
	Description
	Applicability (NOTE)

	msgType
	string
	M
	1
	The type of the message. It is required to be set to "response"
	

	method
	string
	M
	1
	The method of the request corresponding to the response.
	

	transactionId
	TransactionId
	M
	1
	Transaction identity which is assigned for the pair of request message and response message.
	

	success
	Success
	M
	1
	The result of the request processing. If the request is accepted, this IE is set to "true". If the request is not accepted, this IE is set to "false".
	

	supportedFeature
	SupportedFeature
	O
	0..1
	The feature(s) supported by the eiRTCW entity.
	

	requireFeature
	RequireFeature
	O
	0..1
	The feature(s) requested to the eiRTCW entity which sent the corresponding request. This IE is not allowed to include the feature(s) which is not included in the supportedFeature information element in the corresponding request.
	

	unsupportedFeature
	UnsupportedFeature
	O
	0..1
	The feature(s) which is included in the requireFeature information element of the received request, however, which is not supported by the eiRTCW entity sending the response,
	

	resources
	object
	O
	0..1
	
	

	retryAfter
	RetryAfter
	O
	0..1
	This information element indicates the wait time to send next request to the entity which indicates this information element.
	

	problemDetails
	ProblemDetails
	O
	0..1
	This information element indicates the detailed information of the failure reason.
	

	NOTE:	This field is to describe if the use of the information element depends on the feature described.

Annex <X> (informative):
Change history
	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2022-04
	SA4#118
	
	
	
	Initial version
	
	1.0.0

	2022-05
	SA4#119
	S4-220516
	
	
	This version contains the changes of agreed SA4#118
	
	2.0.0

	2022-06-01
	SA4#119
	S4-220777
	
	
	This version contains the changes of agreed SA4#119
(S4-2207585, S4-220778)
Concepts included or merged
(S4-220780, S4-220781)
	
	2.0.1

	2022-06-01
	SA4#119 post
	
	
	
	Editorial change in reference clause
	
	2.0.2

	2022-08-03
	SA4#120
	S4-220925
	
	
	This version contains the changes of agreed during SA4#119
(S4a-220006, S4a-220007, S4a-220019)
Updated references to RFC 9114 and 9220
	
	2.1.0

	2022-08-25
	SA4#120
	S4-221211
	
	
	This version contains the changes of agreed during SA4#120
(S4-221210)
	
	3.0.0

	2023-02-24
	SA4#122
	S4-230340
	
	
	This version contains the changes of agreed during SA4#122
(S4-230182, S4-230334)
	
	4.0.0

	2023-05-26
	SA4#124
	S4-231009
	
	
	This version contains the changes of agreed during SA4#124
(S4-230850, S4-231000)
	
	5.0.0

	2023-08-24
	SA4#125
	S4-231456
	
	
	This version contains the changes of agreed during SA4#125
(S4-231281, S4-231282, S4-231283, S4-231455)
	
	6.0.0

	2023-11-14
	SA4#126
	S4-231720
	
	
	This version contains the changes of agreed during RTC SWG Telco#14 and #15
(S4aR230097, S4aR230112, S4aR230114)
	
	7.0.0

	2023-11-17
	SA4#126
	S4-231979
	
	
	This version contains the changes of agreed during SA4#126
(S4-231721, S4-231722, S4-231723, S4-231724, S4-231726, S4-231938 and S4-231952)
	
	8.0.0

	2024-01-23
	SA4#127
	S4-240xxx
	
	
	This version contains the changes of agreed during RTC SWG Telco#16 and #17 (S4aR230127)
	
	9.0.0

3GPP
image2.png

Microsoft_Visio_Drawing26.vsdx

WebRTC
Signalling
Function
(WSF)

UE
WebRTC
Endpoint
: Signalling path (C-Plane)
: Media/Data path (U-Plane)
Media Function
(MF)

Servers
in the network
WebRTC
Signalling
Function
(WSF)
Media Function
(MF)

Servers
in the network

UE
WebRTC
Endpoint

image64.emf
WebRTCSignallingFunction(WSF)UE: Signalling path (C-Plane): Media/Data path (U-Plane)Media Function(MF)Serversin the networkWebRTCendpoint: Signalling message: Media/Data stream

Microsoft_Visio_Drawing27.vsdx

WebRTC
Signalling
Function
(WSF)
UE
: Signalling path (C-Plane)
: Media/Data path (U-Plane)
Media Function
(MF)

Servers
in the network

WebRTC
endpoint
: Signalling message
: Media/Data stream

image65.emf
WebRTC Signaling ServerPCFService ProviderMNOCSF(EAS)WebServiceEntry PointMCU orSFU orPeer UEUE(AC &EEC)WSF(EAS)WMRF(EAS)ECSEES1-1. Immersive RTC Application Starts-Up1-2. Establish Signalling Connection with Service Provider <Proprietary>

Microsoft_Visio_Drawing28.vsdx

WebRTC Signaling Server
PCF
Service Provider

MNO
CSF
(EAS)
Web
Service
Entry Point
MCU or
SFU or
Peer UE
UE
(AC &
EEC)
WSF
(EAS)
WMRF
(EAS)
ECS
EES
1-1. Immersive RTC Application Starts-Up
1-2. Establish Signalling Connection with Service Provider <Proprietary>

image66.emf
WebRTC Signaling ServerPCFService ProviderMNOCSF(EAS)WebServiceEntry PointMCU orSFU orPeer UEUE(AC &EEC)WSF(EAS)WMRF(EAS)ECSEES2-1. UE discovers or already knows ECS2-2. Eecs_ServiceProvisioning_Request <EDGE-4>2-3. Process Request2-4. Response to 2-2 <EDGE-4>2-5. Eees_EASDiscovery_Request (CSF) <EDGE-1>2-6. Process Request2-7. Response to 2-5 (CSF) <EDGE-1>

Microsoft_Visio_Drawing29.vsdx

WebRTC Signaling Server
PCF
Service Provider

MNO
CSF
(EAS)
Web
Service
Entry Point
MCU or
SFU or
Peer UE
UE
(AC &
EEC)
WSF
(EAS)
WMRF
(EAS)
ECS
EES
2-1. UE discovers or already knows ECS
2-2. Eecs_ServiceProvisioning_Request <EDGE-4>
2-3. Process Request
2-4. Response to 2-2 <EDGE-4>
2-5. Eees_EASDiscovery_Request (CSF) <EDGE-1>
2-6. Process Request
2-7. Response to 2-5 (CSF) <EDGE-1>

image67.emf
WebRTC Signaling ServerPCFService ProviderMNOCSF(EAS)WebServiceEntry PointMCU orSFU orPeer UEUE(AC &EEC)WSF(EAS)WMCF(EAS)ECSEES3-1. Authorization Server Metadata Request <HTTPS>3-2. Authorization Server Metadata Response <HTTPS>Get OAuth Endpoint with RFC8414 procedure

Microsoft_Visio_Drawing30.vsdx

WebRTC Signaling Server
PCF
Service Provider

MNO
CSF
(EAS)
Web
Service
Entry Point
MCU or
SFU or
Peer UE
UE
(AC &
EEC)
WSF
(EAS)
WMCF
(EAS)
ECS
EES
3-1. Authorization Server Metadata Request <HTTPS>
3-2. Authorization Server Metadata Response <HTTPS>

Get OAuth Endpoint with RFC8414 procedure

image68.emf
WebRTC Signaling ServerPCFService ProviderMNOCSF(EAS)WebServiceEntry PointMCU orSFU orPeer UEUE(AC &EEC)WSF(EAS)WMCF(EAS)ECSEES4-1. User confirmation for using Operator-Assistance [App]4-2. Authorization Request [App] <HTTPS>4-7. Authorization Response (redirection) [App] <HTTPS>4-8. Authorization screen Request [Web browser] <HTTPS>4-9. Authorization screen Response [Web browser] <HTTPS>4-3. Eees_UEIdentifier_Get <EDGE-3>4-4. Process Request4-5. Response to 4-3 <EDGE-3>4-6. Check User subscription with network-verified UE-IDOAuth2.0 Authorization Procedures (RFC6749 and RFC7636)4-14. Access Token Notification Request [Web browser] <HTTPS>4-15. Access Token Notification Response [Web browser] <HTTPS>4-10. User confirmation for using Operator-Assistance [Web browser]4-16. Access Token Notification [App] <HTTPS>4-11. Access Token Request [Web browser] <HTTPS>4-13. Access Token Response (redirection) [Web browser] <HTTPS>4-12. Issue Access Token

image3.png

Microsoft_Visio_Drawing31.vsdx

WebRTC Signaling Server
PCF
Service Provider

MNO
CSF
(EAS)
Web
Service
Entry Point
MCU or
SFU or
Peer UE
UE
(AC &
EEC)
WSF
(EAS)
WMCF
(EAS)
ECS
EES
4-1. User confirmation for using Operator-Assistance [App]
4-2. Authorization Request [App] <HTTPS>
4-7. Authorization Response (redirection) [App] <HTTPS>
4-8. Authorization screen Request [Web browser] <HTTPS>
4-9. Authorization screen Response [Web browser] <HTTPS>
4-3. Eees_UEIdentifier_Get <EDGE-3>
4-4. Process Request
4-5. Response to 4-3 <EDGE-3>
4-6. Check User subscription with network-verified UE-ID

OAuth2.0 Authorization Procedures (RFC6749 and RFC7636)
4-14. Access Token Notification Request [Web browser] <HTTPS>
4-15. Access Token Notification Response [Web browser] <HTTPS>
4-10. User confirmation for using Operator-Assistance [Web browser]
4-16. Access Token Notification [App] <HTTPS>
4-11. Access Token Request [Web browser] <HTTPS>
4-13. Access Token Response (redirection) [Web browser] <HTTPS>
4-12. Issue Access Token

image69.emf
WebRTC Signaling ServerPCFService ProviderMNOCSF(EAS)WebServiceEntry PointMCU orSFU orPeer UEUE(AC &EEC)WSF(EAS)WMCF(EAS)ECSEES5-1. Eees_EASDiscovery_Request (WMCF) <EDGE-1>5-2. Process Request5-3. Response to 5-1 (WMCF) <EDGE-1>5-4. Eees_EASDiscovery_Request (WSF) <EDGE-1>5-5. Process Request5-6. Response to 5-4 (WSF) <EDGE-1>

Microsoft_Visio_Drawing32.vsdx

WebRTC Signaling Server
PCF
Service Provider

MNO
CSF
(EAS)
Web
Service
Entry Point
MCU or
SFU or
Peer UE
UE
(AC &
EEC)
WSF
(EAS)
WMCF
(EAS)
ECS
EES
5-1. Eees_EASDiscovery_Request (WMCF) <EDGE-1>
5-2. Process Request
5-3. Response to 5-1 (WMCF) <EDGE-1>
5-4. Eees_EASDiscovery_Request (WSF) <EDGE-1>
5-5. Process Request
5-6. Response to 5-4 (WSF) <EDGE-1>

image70.emf
WebRTC Signaling ServerPCFService ProviderMNOCSF(EAS)WebServiceEntry PointMCU orSFU orPeer UEUE(AC &EEC)WSF(EAS)WMCF(EAS)ECSEES6-1. TURN Allocate Request with Access Token <TURN>6-2. Check token and TURN allocation created6-3. TURN Allocate Success Response <TURN>6-4. TURN ChannelBind Request with Access Token <TURN>6-5. Check token and TURN channel created6-6. TURN ChannelBind Success Response <TURN>TURN (RFC8656) andOAuth Token Extension (RFC7635)6-7. UE generates Local SDP using TURN6-8. QoS Control Request with Access Token and Local SDP <This Study>6-11. QoS Control Response <This Study>6-9. Npcf_PolicyAuthorization_Create Request <N5>6-10. Npcf_PolicyAuthorization_Create Response <N5>6-12. Offer with Local SDP <Proprietary>6-13. Process SDP Offer/Answer6-14. Answer with Remote SDP <Proprietary>6-17. QoS Control Request with Access Token and Local/Remote SDP <This Study>6-20. QoS Control Response <This Study>6-18. Npcf_PolicyAuthorization_Create Request <N5>6-19. Npcf_PolicyAuthorization_Create Response <N5>6-16. UE fixes Local and Remote SDP using TURN6-15. ICE Hole Punching6-21. Communication with QoS

Microsoft_Visio_Drawing33.vsdx

WebRTC Signaling Server
PCF
Service Provider

MNO
CSF
(EAS)
Web
Service
Entry Point
MCU or
SFU or
Peer UE
UE
(AC &
EEC)
WSF
(EAS)
WMCF
(EAS)
ECS
EES
6-1. TURN Allocate Request with Access Token <TURN>
6-2. Check token and TURN allocation created
6-3. TURN Allocate Success Response <TURN>
6-4. TURN ChannelBind Request with Access Token <TURN>
6-5. Check token and TURN channel created
6-6. TURN ChannelBind Success Response <TURN>

TURN (RFC8656) and
OAuth Token Extension (RFC7635)
6-7. UE generates Local SDP using TURN
6-8. QoS Control Request with Access Token and Local SDP <This Study>
6-11. QoS Control Response <This Study>
6-9. Npcf_PolicyAuthorization_Create Request <N5>
6-10. Npcf_PolicyAuthorization_Create Response <N5>
6-12. Offer with Local SDP <Proprietary>
6-13. Process SDP Offer/Answer
6-14. Answer with Remote SDP <Proprietary>
6-17. QoS Control Request with Access Token and Local/Remote SDP <This Study>
6-20. QoS Control Response <This Study>
6-18. Npcf_PolicyAuthorization_Create Request <N5>
6-19. Npcf_PolicyAuthorization_Create Response <N5>
6-16. UE fixes Local and Remote SDP using TURN
6-15. ICE Hole Punching
6-21. Communication with QoS

image71.emf
UE1Operator NWAuth ProcessF1. auth reqRTC User ID: ue1@domain1.exampleAuthorization: Bearer (JWS)F2. auth ressucess: trueEstablish WebSocket Connection

Microsoft_Visio_Drawing34.vsdx
UE1
Operator NW
Auth Process
F1. auth req
RTC User ID: ue1@domain1.example
Authorization: Bearer (JWS)
F2. auth res
sucess: true
Establish WebSocket Connection

image72.emf
UE1Operator NWAuth ProcessF1. auth reqRTC User ID: ue1@domain1.exampleAuthorization: Bearer (JWS)F2. auth ressucess: trueAuth Successstart re-auth procedure before previous auth expires

Microsoft_Visio_Drawing35.vsdx
UE1
Operator NW
Auth Process
F1. auth req
RTC User ID: ue1@domain1.example
Authorization: Bearer (JWS)
F2. auth res
sucess: true
Auth Success
start re-auth procedure
before previous auth expires

image73.emf
UE1Operator NWResource IDValidationF1. msetup reqRTC ResourceID: resource1@domain1.examplepreOfferF2. msetup resmediaSessionState: acceptedMedia Resource AllocationF3. mupdate reqmediaSessionState: connectingofferF4. mupdate resanswerMedia Resource PreparationF5. mupdate reqmediaSessionState: connectedF6. mupdate resMedia Connected

image4.emf
5GCUPFApplication Server(WebRTC End Point)gNBAR GlassesPhoneWi-FiCellularMNO͛s Network

Microsoft_Visio_Drawing36.vsdx
UE1
Operator NW
Resource ID
Validation
F1. msetup req
RTC ResourceID: resource1@domain1.example
preOffer
F2. msetup res
mediaSessionState: accepted
Media Resource Allocation
F3. mupdate req
mediaSessionState: connecting
offer
F4. mupdate res
answer
Media Resource Preparation
F5. mupdate req
mediaSessionState: connected
F6. mupdate res
Media Connected

image74.emf
UE2Operator NWResource IDValidationF7. msetup reqRTC ResourceID: resource1@domain1.examplepreOfferF8. msetup resmediaSessionState: acceptedMedia Resource AllocationF9. mupdate reqmediaSessionState: connectingofferF10. mupdate resanswerMedia Resource PreparationF11. mupdate reqmediaSessionState: connectedofferF12. mupdate resanswerMedia ConnectedUE1F13. mupdate reqmediaSessionState: connectedF13. mupdate resMedia Connected

Microsoft_Visio_Drawing37.vsdx
UE2
Operator NW
Resource ID
Validation
F7. msetup req
RTC ResourceID: resource1@domain1.example
preOffer
F8. msetup res
mediaSessionState: accepted
Media Resource Allocation
F9. mupdate req
mediaSessionState: connecting
offer
F10. mupdate res
answer
Media Resource Preparation
F11. mupdate req
mediaSessionState: connected
offer
F12. mupdate res
answer
Media Connected
UE1
F13. mupdate req
mediaSessionState: connected
F13. mupdate res
Media Connected

image75.emf
UE1Operator NWF1. msetup reqRTC ResourceID: resource2@domain1.examplepreOfferF6. msetup resmediaSessionState: acceptedF4. mupdate resF3. mupdate reqmediaSessionState: connectedanswerF10. mupdate resanswerMedia ConnectedContent ProviderF7. mupdate reqmediaSessionState: connectingofferF8. mupdate resanswerF2. msetup resmediaSessionState: acceptedMedia Resource Allocation/PreparationMedia Resource Allocation F11. mupdate reqmediaSessionState: connectedF12. mupdate resMedia ConnectedResource ID ValidationF5. msetup reqRTC ResourceID: resource2@domain1.examplepreOfferResource ID ValidationMedia Resource PreparationF9. mupdate reqmediaSessionState: connectedofferMedia Connected

Microsoft_Visio_Drawing38.vsdx
UE1
Operator NW
F1. msetup req
RTC ResourceID: resource2@domain1.example
preOffer
F6. msetup res
mediaSessionState: accepted
F4. mupdate res
F3. mupdate req
mediaSessionState: connected
answer
F10. mupdate res
answer
Media Connected
Content Provider
F7. mupdate req
mediaSessionState: connecting
offer
F8. mupdate res
answer
F2. msetup res
mediaSessionState: accepted
Media Resource Allocation/Preparation
Media Resource Allocation
F11. mupdate req
mediaSessionState: connected
F12. mupdate res
Media Connected
Resource ID Validation
F5. msetup req
RTC ResourceID: resource2@domain1.example
preOffer
Resource ID Validation
Media Resource Preparation
F9. mupdate req
mediaSessionState: connected
offer
Media Connected

image76.emf
UE1UE2F1. msetup reqRTC ResourceID: ue2@domain1.examplepreOfferF2. msetup resmediaSessionState: acceptedResource IDValidationF3. msetup reqRTC ResourceID: ue2@domain1.examplemediaSessionState: connectingofferF5. mupdate reqmediaSessionState: connectingF6. mupdate resMedia ConnectedOperator NWF7. mupdate reqanswerF8. mupdate resF4. msetup resUser ResponseActionF9. mupdate reqmediaSessionState: connectedanswerF10. mupdate resF11. mupdate reqmediaSessionState: connectedF12. mupdate res

Microsoft_Visio_Drawing39.vsdx
UE1
UE2
F1. msetup req
RTC ResourceID: ue2@domain1.example
preOffer
F2. msetup res
mediaSessionState: accepted
Resource ID
Validation
F3. msetup req
RTC ResourceID: ue2@domain1.example
mediaSessionState: connecting
offer
F5. mupdate req
mediaSessionState: connecting
F6. mupdate res
Media Connected
Operator NW
F7. mupdate req
answer
F8. mupdate res
F4. msetup res
User Response
Action
F9. mupdate req
mediaSessionState: connected
answer
F10. mupdate res
F11. mupdate req
mediaSessionState: connected
F12. mupdate res

image77.png

image78.emf
FOV-6zone-1zone-2zone-3

Microsoft_Visio_Drawing40.vsdx
UE
Camera-1
Camera-2
Camera-3
Camera-3
Camera-6
Camera-5
Camera-7
Camera-8
FOV-6
zone-1
zone-2
zone-3

Microsoft_Visio_Drawing.vsdx
5GC
UPF

Application Server
(WebRTC End Point)
gNB
AR Glasses
Phone
Wi-Fi
Cellular
MNO’s Network

image5.emf
Service ProviderApplication Supporting Web Function(ASWF)WebRTCSignallingFunction(WSF)Media Function(MF)Operator NetworkRTC-4sRTC-4mNNIUNIRTC-ASService Logic FunctionC-plane signallingInter-workingFunction(IWF)TransportGatewayFunction(TGF)(Control plane)(User plane)RTC ID ResourceRTC Exchange ResourceUEWebRTCEndpointServiceSpecific ContentWebRTC Endpoint FunctionU-plane transportRTC ID resourcehandling enforcerRTC ID resourcehandling managerRTC exchange resourcehandling enforcerRTC exchange resourcehandling managerConnection control enforcerConnection control managerMDFC enforcerMDFC managerUE authentication managerService logic managerService logic enforcerUE authentication enforcer

Microsoft_Visio_Drawing1.vsdx
Service Provider
Application Supporting
Web Function
(ASWF)
WebRTC
Signalling
Function
(WSF)
Media Function
(MF)

Operator Network
RTC-4s
RTC-4m
NNI
UNI

RTC-AS
Service Logic Function
C-plane signalling
Inter-working
Function
(IWF)
Transport
Gateway
Function
(TGF)
(Control plane)
(User plane)
RTC ID Resource
RTC Exchange Resource
UE
WebRTC Endpoint
Service
Specific
Content
WebRTC Endpoint Function
U-plane transport
RTC ID resource
handling enforcer
RTC ID resource
handling manager
RTC exchange resource
handling enforcer
RTC exchange resource
handling manager
Connection control enforcer
Connection control manager
MDFC enforcer
MDFC manager
UE authentication manager
Service logic manager
Service logic enforcer
UE authentication enforcer

image6.emf
Content ProviderApplication Supporting Web Function(ASWF)WebRTC SignallingFunction (WSF)Media Function(MF)Operator NetworkRTC-4sRTC-4sRTC-4mRTC-4mUNIUNIRTC-AS???RTC ID ResourceRTCExchange ResourceUEWebRTCEndpointRTC ID resourcehandling enforcerConnection control enforcerRTC exchange resourcehandling enforcerMDFC enforcerC-plane signallingU-plane transportServiceSpecific ContentWebRTC Endpoint FunctionService Logic FunctionRTC ID resourcehandling managerRTC exchange resourcehandling managerConnection control managerMDFC managerUE authenticationmanagerUE authenticationenforcerService logic manager

Microsoft_Visio_Drawing2.vsdx
Content Provider
Application Supporting
Web Function
(ASWF)
WebRTC Signalling
Function (WSF)
Media Function
(MF)

Operator Network
RTC-4s
RTC-4s
RTC-4m
RTC-4m
UNI
UNI

RTC-AS
???
RTC ID Resource
RTC
Exchange Resource
UE
WebRTC Endpoint
RTC ID resource
handling enforcer
Connection control enforcer
RTC exchange resource
handling enforcer
MDFC enforcer
C-plane signalling
U-plane transport
Service
Specific
Content
WebRTC Endpoint Function
Service Logic Function
RTC ID resource
handling manager
RTC exchange resource
handling manager
Connection control manager
MDFC manager
UE authentication
manager
UE authentication
enforcer
Service logic manager

image7.emf
Operator NetworkConference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aUEWebRTCEndpointRm-uRs-u???Rh-u??????: FFSRh-nWebRTC Domain (Trusted DN)???(Auth)

Microsoft_Visio_Drawing3.vsdx

Operator Network
Conference Supporting Function
(CSF)
WebRTC
Signalling
Function
(WSF)
WebRTC NNI Signalling Gateway Function
(WNSGF)
WebRTC NNI
Media Gateway Function
(WNMGF)
WebRTC
Media Centre Function
(WMCF)
Rs-n
Rm-n
Mc-n
Mc-i
Rs-i

Rs-i
Rm-i

Rm-i
Rs-a

UE
WebRTC
Endpoint
Rm-u

Rs-u
???

Rh-u
???

???
: FFS

Rh-n
WebRTC Domain (Trusted DN)

???
(Auth)

image8.emf
WebRTC Endpoint (Browser)WebRTCMediaCentreFunction(WMCF)eiRTCWApplication(JavaScript Program)Web Browser(JavaScript Engine)Input Devices(e.g., Camera, Michrophone)OSJavaScript API(including WebRTC API)ConferenceSupportingFunction(CSF)WebRTCSignallingFunction(WSF)Trusted DNOther Operator orExternal DNPCFUERh-uRs-uN5Rm-uWebRTCNNI Signalling GatewayFunction(WNSGF)WebRTCNNI MediaGatewayFunction(WNMGF)WebRTCMediaCentreFunction(WMCF)WebRTCSignallingFunction(WSF)AFRTCApplicationProviderRh-nWebRTCNNI Signalling GatewayFunction(WNSGF)WebRTCNNI MediaGatewayFunction(WNMGF)AFOutput Devices(e.g., Speaker, Display)

Microsoft_Visio_Drawing4.vsdx

WebRTC Endpoint (Browser)
WebRTC
Media
Centre
Function
(WMCF)
eiRTCW
Application
(JavaScript Program)
Web Browser
(JavaScript Engine)

Input Devices
(e.g., Camera, Michrophone)
OS
JavaScript API
(including WebRTC API)

Conference
Supporting
Function
(CSF)
WebRTC
Signalling
Function
(WSF)
Trusted DN
Other Operator or
External DN

PCF

UE
Rh-u
Rs-u
N5
Rm-u
WebRTC
NNI Signalling Gateway
Function
(WNSGF)
WebRTC
NNI Media
Gateway
Function
(WNMGF)
WebRTC
Media
Centre
Function
(WMCF)

WebRTC
Signalling
Function
(WSF)

AF

RTC
Application
Provider
Rh-n

WebRTC
NNI Signalling Gateway
Function
(WNSGF)
WebRTC
NNI Media
Gateway
Function
(WNMGF)
AF
Output Devices
(e.g., Speaker, Display)

image9.emf
WebRTC Endpoint (Non-Browser)WebRTCMediaCentreFunction(WMCF)eiRTCWApplication(Native code orwritten with High-level language)Input Devices(e.g., Camera, Michrophone)OSConferenceSupportingFunction(CSF)WebRTCSignallingFunction(WSF)Trusted DNOther Operator orExternal DNPCFUERh-uRs-uN5Rm-uWebRTCNNI Signalling GatewayFunction(WNSGF)WebRTCNNI MediaGatewayFunction(WNMGF)WebRTCMediaCentreFunction(WMCF)WebRTCSignallingFunction(WSF)AFRTCApplicationProviderRh-nWebRTCNNI Signalling GatewayFunction(WNSGF)WebRTCNNI MediaGatewayFunction(WNMGF)AFOutput Devices(e.g., Speaker, Display)

Microsoft_Visio_Drawing5.vsdx

WebRTC Endpoint (Non-Browser)
WebRTC
Media
Centre
Function
(WMCF)
eiRTCW
Application
(Native code or
written with High-level language)

Input Devices
(e.g., Camera, Michrophone)
OS

Conference
Supporting
Function
(CSF)
WebRTC
Signalling
Function
(WSF)
Trusted DN
Other Operator or
External DN

PCF

UE
Rh-u
Rs-u
N5
Rm-u
WebRTC
NNI Signalling Gateway
Function
(WNSGF)
WebRTC
NNI Media
Gateway
Function
(WNMGF)
WebRTC
Media
Centre
Function
(WMCF)

WebRTC
Signalling
Function
(WSF)

AF

RTC
Application
Provider
Rh-n

WebRTC
NNI Signalling Gateway
Function
(WNSGF)
WebRTC
NNI Media
Gateway
Function
(WNMGF)
AF
Output Devices
(e.g., Speaker, Display)

image10.emf
Operator Network (HPLMN)WebRTC Domain (Trusted DN)Conference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aUEWebRTCEndpoint???(Auth)??????UDMPCFAMFN5SMFN10N8N7N11N6N3N1UPF(R)AN???: FFSAFRs-uRm-uRh-n

Microsoft_Visio_Drawing6.vsdx

Operator Network (HPLMN)

WebRTC Domain (Trusted DN)
Conference Supporting Function
(CSF)
WebRTC
Signalling
Function
(WSF)
WebRTC NNI Signalling Gateway Function
(WNSGF)
WebRTC NNI
Media Gateway Function
(WNMGF)
WebRTC
Media Centre Function
(WMCF)
Rs-n
Rm-n
Mc-n
Mc-i
Rs-i

Rs-i
Rm-i

Rm-i
Rs-a

UE
WebRTC
Endpoint
???
(Auth)

???
???
UDM
PCF
AMF
N5
SMF

N10
N8
N7
N11

N6
N3
N1
UPF
(R)AN

???
: FFS
AF

Rs-u
Rm-u
Rh-n

image11.emf
Operator Network (HPLMN)WebRTC Domain (Trusted DN)Conference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aUEWebRTCEndpointUDMPCFAMFN5SMFN10N8N7N11N6N3N1UPF(R)AN???: FFSAF: C-Plane: U-PlaneRs-uRm-uRh-n???(Auth)??????

Microsoft_Visio_Drawing7.vsdx

Operator Network (HPLMN)

WebRTC Domain (Trusted DN)
Conference Supporting Function
(CSF)
WebRTC
Signalling
Function
(WSF)
WebRTC NNI Signalling Gateway Function
(WNSGF)
WebRTC NNI
Media Gateway Function
(WNMGF)
WebRTC
Media Centre Function
(WMCF)
Rs-n
Rm-n
Mc-n
Mc-i
Rs-i

Rs-i
Rm-i

Rm-i
Rs-a

UE
WebRTC
Endpoint
UDM
PCF
AMF
N5
SMF

N10
N8
N7
N11

N6
N3
N1
UPF
(R)AN

???
: FFS
AF

: C-Plane
: U-Plane

Rs-u
Rm-u
Rh-n
???
(Auth)

???
???

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.emf
Content ProviderWSFMedia Resource(e.g., VR camera)UNINNIWMCFWNMGFUE_AUE_BMedia Resource(e.g., immersive Conference Room)Operator NetworkOther Operator NetworkorService Provider NetworkWNSGFWMCFWSFWNMGFWNSGFUNIMediaResourceUE_CC-PlaneU-Plane(R)ANUPFSection 1Section 2Section 3Section 4UNISection 2Section 3Section 1

Microsoft_Visio_Drawing8.vsdx

Content Provider
WSF

Media Resource
(e.g., VR camera)
UNI

NNI
WMCF
WNMGF
UE_A
UE_B

Media Resource
(e.g., immersive Conference Room)
Operator Network
Other Operator Network
or
Service Provider Network
WNSGF
WMCF
WSF
WNMGF
WNSGF

UNI
Media
Resource
UE_C
C-Plane
U-Plane
(R)AN
UPF
Section 1
Section 2
Section 3
Section 4
UNI
Section 2
Section 3
Section 1

image23.emf
Operator Network (HPLMN)WebRTC Domain (Trusted DN)Conference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aUEWebRTCEndpointUDMPCFAMFN5SMFN10N8N7N11N6N3N1UPF(R)ANAFRs-uRm-uNAT

Microsoft_Visio_Drawing9.vsdx

Operator Network (HPLMN)

WebRTC Domain (Trusted DN)
Conference Supporting Function
(CSF)
WebRTC
Signalling
Function
(WSF)
WebRTC NNI Signalling Gateway Function
(WNSGF)
WebRTC NNI
Media Gateway Function
(WNMGF)
WebRTC
Media Centre Function
(WMCF)
Rs-n
Rm-n
Mc-n
Mc-i
Rs-i

Rs-i
Rm-i

Rm-i
Rs-a

UE
WebRTC
Endpoint
UDM
PCF
AMF
N5
SMF

N10
N8
N7
N11

N6
N3
N1
UPF
(R)AN
AF

Rs-u
Rm-u
NAT

image24.emf
UENATFunctionalEntity AFunctionalEntity B1. Once UE sends a packet to Functional Entity A2. Returning packet can pass the NAT3. Packets from other nodes can pass the same external endpoint(IP address and port)

Microsoft_Visio_Drawing10.vsdx
UE
NAT
Functional
Entity A
Functional
Entity B
1. Once UE sends a packet to Functional Entity A
2. Returning packet can pass the NAT
3. Packets from other nodes can pass the same external endpoint
(IP address and port)

image25.emf
UENATFunctionalEntity AFunctionalEntity B1. Once UE sends a packet to Functional Entity A2. Returning packet can pass the NAT3. Packets from other nodes cannot pass the same external endpoint(IP address and port)

Microsoft_Visio_Drawing11.vsdx
UE
NAT
Functional
Entity A
Functional
Entity B
1. Once UE sends a packet to Functional Entity A
2. Returning packet can pass the NAT
3. Packets from other nodes cannot pass the same external endpoint
(IP address and port)

image26.emf
UEWebRTCEndpointUEWebRTCEndpointUEWebRTCEndpointNetwork (internet or LAN)Intermediate server of media(SFU or MCU)NATNATNATService Provider

Microsoft_Visio_Drawing12.vsdx
UE
WebRTC
Endpoint
UE
WebRTC
Endpoint
UE
WebRTC
Endpoint

Network (internet or LAN)

Intermediate server of media
(SFU or MCU)
NAT

NAT

NAT

Service Provider

image27.emf
RTC endpointRTC-1UENativeWebRTCAppWebAppRTC Media Session Handler (RTC MSH)WebRTCFrameworkRTCApplicationProviderPCFNEFSMFRTC AFNetworkSupportFunction(NS-AF)ConfigurationFunctionProvisioningFunctionRTC ASICEFunctionMediaFunctionRTC-3RTC-5RTC-4RTC-8WebRTCAPIRTC-7RTC-6TransportGatewayFunctionWebRTCSignallingFunctionApplicationSupportingWeb FunctionInter-workingFunctionRTC scope5GS scopeOut of scopeExposed APIRTC5GSExternal

Microsoft_Visio_Drawing13.vsdx

RTC endpoint
RTC-1

UE
Native
WebRTC
App
Web
App
RTC Media Session Handler
(RTC MSH)
WebRTC
Framework
RTC
Application
Provider
PCF
NEF
SMF

RTC AF

Network
Support
Function
(NS-AF)
Configuration
Function
Provisioning
Function

RTC AS
ICE
Function
Media
Function
RTC-3

RTC-5

RTC-4

RTC-8

WebRTC
API
RTC-7
RTC-6
Transport
Gateway
Function
WebRTC
Signalling
Function
Application
Supporting
Web Function

Inter-working
Function
RTC scope
5GS scope
Out of scope

Exposed API
RTC
5GS
External

image28.emf
RTC endpointRTC-1UENativeWebRTCAppWebAppRTC Media SessionHandler (RTC MSH)WebRTCFrameworkRTCApplicationProviderPCFNEFSMFRTC AFNetworkSupportFunction(NS-AF)ConfigurationFunctionProvisioningFunctionRTC ASICEFunctionMediaFunctionRTC-3RTC-5RTC-4s/4mRTC-8WebRTCAPIRTC-7RTC-6WebRTCSignallingFunctionApplicationSupportingWeb FunctionRTC-4s/4mRTC scope5GS scopeOut of scopeExposed APIRTC5GSExternalRTC-2TransportGatewayFunctionInter-workingFunctionOther NetworksRTC-9mRTC-9s

Microsoft_Visio_Drawing14.vsdx

RTC endpoint
RTC-1

UE
Native
WebRTC
App
Web
App
RTC Media Session
Handler
(RTC MSH)
WebRTC
Framework
RTC
Application
Provider
PCF
NEF
SMF

RTC AF

Network
Support
Function
(NS-AF)
Configuration
Function
Provisioning
Function

RTC AS
ICE
Function
Media
Function
RTC-3

RTC-5

RTC-4s/4m

RTC-8

WebRTC
API
RTC-7
RTC-6
WebRTC
Signalling
Function
Application
Supporting
Web Function

RTC-4s/4m
RTC scope
5GS scope
Out of scope

Exposed API
RTC
5GS
External

RTC-2
Transport
Gateway
Function
Inter-working
Function

Other Networks

RTC-9m
RTC-9s

image29.emf
RTC endpointUENativeWebRTCAppWebAppRTC Media SessionHandler (RTC MSH)WebRTCFrameworkRTCApplicationProviderPCFNEFSMFRTC AFNetworkSupportFunction(NS-AF)ConfigurationFunctionProvisioningFunctionRTC ASICEFunctionMediaFunctionWebRTCAPIWebRTCSignallingFunctionApplicationSupportingWeb FunctionRTC scope5GS scopeOut of scopeExposed APIRTC5GSExternalRTC-2TransportGatewayFunctionInter-workingFunctionDifferent Operator NetworkOrService Provider NetwrokRTC-9mRTC-9sRTC-4sRTC-4mOut of FocusOut of Focus

Microsoft_Visio_Drawing15.vsdx

RTC endpoint

UE
Native
WebRTC
App
Web
App
RTC Media Session
Handler
(RTC MSH)
WebRTC
Framework
RTC
Application
Provider
PCF
NEF
SMF

RTC AF

Network
Support
Function
(NS-AF)
Configuration
Function
Provisioning
Function

RTC AS
ICE
Function
Media
Function

WebRTC
API
WebRTC
Signalling
Function
Application
Supporting
Web Function

RTC scope
5GS scope
Out of scope

Exposed API
RTC
5GS
External

RTC-2
Transport
Gateway
Function
Inter-working
Function

Different Operator Network
Or
Service Provider Netwrok

RTC-9m
RTC-9s

RTC-4s
RTC-4m
Out of
Focus
Out of Focus

image30.emf
RTC endpointRTC-1UENativeWebRTCAppWebAppRTC Media Session Handler (RTC MSH)WebRTCFrameworkRTCApplicationProviderPCFNEFSMFRTC AFNetworkSupportFunction(NS-AF)ConfigurationFunctionProvisioningFunctionRTC ASICEFunctionMediaFunctionRTC-3RTC-5RTC-4RTC-8WebRTCAPIRTC-7RTC-6TransportGatewayFunctionWebRTCSignallingFunctionApplicationSupportingWeb FunctionInter-workingFunctionRTC scope5GS scopeOut of scopeExposed APIRTC5GSExternalOther NetworksRTC-2RTC-9

Microsoft_Visio_Drawing16.vsdx

RTC endpoint
RTC-1

UE
Native
WebRTC
App
Web
App
RTC Media Session Handler
(RTC MSH)
WebRTC
Framework
RTC
Application
Provider
PCF
NEF
SMF

RTC AF

Network
Support
Function
(NS-AF)
Configuration
Function
Provisioning
Function

RTC AS
ICE
Function
Media
Function
RTC-3

RTC-5

RTC-4

RTC-8

WebRTC
API
RTC-7
RTC-6
Transport
Gateway
Function
WebRTC
Signalling
Function
Application
Supporting
Web Function

Inter-working
Function
RTC scope
5GS scope
Out of scope

Exposed API
RTC
5GS
External
Other Networks

RTC-2

RTC-9

image31.emf
RTC endpointRTC-1UENativeWebRTCAppWebAppRTC Media SessionHandler (RTC MSH)WebRTCFrameworkRTCApplicationProviderPCFNEFSMFRTC AFNetworkSupportFunction(NS-AF)ConfigurationFunctionProvisioningFunctionRTC ASICEFunctionMediaFunctionRTC-3RTC-5RTC-4s/4mRTC-8WebRTCAPIRTC-7RTC-6WebRTCSignallingFunctionApplicationSupportingWeb FunctionRTC-4s/4mRTC scope5GS scopeOut of scopeExposed APIRTC5GSExternalRTC-2

Microsoft_Visio_Drawing17.vsdx

RTC endpoint
RTC-1

UE
Native
WebRTC
App
Web
App
RTC Media Session
Handler
(RTC MSH)
WebRTC
Framework
RTC
Application
Provider
PCF
NEF
SMF

RTC AF

Network
Support
Function
(NS-AF)
Configuration
Function
Provisioning
Function

RTC AS
ICE
Function
Media
Function
RTC-3

RTC-5

RTC-4s/4m

RTC-8

WebRTC
API
RTC-7
RTC-6
WebRTC
Signalling
Function
Application
Supporting
Web Function

RTC-4s/4m
RTC scope
5GS scope
Out of scope

Exposed API
RTC
5GS
External

RTC-2

image32.emf
RTC endpointRTC-1UENativeWebRTCAppWebAppRTC Media SessionHandler (RTC MSH)WebRTCFrameworkRTCApplicationProviderPCFNEFSMFRTC AFNetworkSupportFunction(NS-AF)ConfigurationFunctionProvisioningFunctionRTC ASICEFunctionMediaFunctionRTC-3RTC-5RTC-4s/4mRTC-8WebRTCAPIRTC-7RTC-6WebRTCSignallingFunctionApplicationSupportingWeb FunctionRTC-4s/4mRTC scope5GS scopeOut of scopeExposed APIRTC5GSExternalRTC-2TransportGatewayFunctionInter-workingFunctionOther NetworksRTC-9mRTC-9s

Microsoft_Visio_Drawing18.vsdx

RTC endpoint
RTC-1

UE
Native
WebRTC
App
Web
App
RTC Media Session
Handler
(RTC MSH)
WebRTC
Framework
RTC
Application
Provider
PCF
NEF
SMF

RTC AF

Network
Support
Function
(NS-AF)
Configuration
Function
Provisioning
Function

RTC AS
ICE
Function
Media
Function
RTC-3

RTC-5

RTC-4s/4m

RTC-8

WebRTC
API
RTC-7
RTC-6
WebRTC
Signalling
Function
Application
Supporting
Web Function

RTC-4s/4m
RTC scope
5GS scope
Out of scope

Exposed API
RTC
5GS
External

RTC-2
Transport
Gateway
Function
Inter-working
Function

Other Networks

RTC-9m
RTC-9s

image33.emf
Operator NetworkApplication Supporting Web Function(ASWF)WebRTCSignallingFunction(WSF)Inter-working Function(IWF)TransportGateway Function(TGF)Media Function(MF)RTC-9sRTC-9mUEWebRTCEndpointRTC-4mRTC-4sRTC-4mRTC ASRTC-2RTCApplicationProviderOther Networks(e.g., Operator, Service Provider)UNINNI: Signalling interface (C-Plane): Media/Data transport interface (U-Plane): Service access interfaceAN

Microsoft_Visio_Drawing19.vsdx

Operator Network
Application Supporting
Web Function
(ASWF)
WebRTC
Signalling
Function
(WSF)
Inter-working Function
(IWF)
Transport
Gateway
Function
(TGF)
Media Function
(MF)
RTC-9s
RTC-9m

UE
WebRTC
Endpoint
RTC-4m
RTC-4s
RTC-4m
RTC AS
RTC-2
RTC
Application
Provider
Other Networks
(e.g., Operator,
Service Provider)

UNI

NNI
: Signalling interface (C-Plane)
: Media/Data transport interface (U-Plane)
: Service access interface
AN

image34.emf
Operator NetworkApplication Supporting Web Function(ASWF)WebRTCSignallingFunction(WSF)Inter-working Function(IWF)TransportGateway Function(TGF)Media Function(MF)RTC-9sRTC-9mRTC-4mRTC-4mRTC ASRTC-2UDMPCFAMFN5SMFN10N8N7N11N6N3UPF(R)ANWebRTC Domain (Trusted DN)RTC-4sUNINNIUEWebRTCEndpoint: : Signalling interface (C-Plane): Media/Data transport interface (U-Plane): Service access interface

Microsoft_Visio_Drawing20.vsdx

Operator Network
Application Supporting
Web Function
(ASWF)
WebRTC
Signalling
Function
(WSF)
Inter-working Function
(IWF)
Transport
Gateway
Function
(TGF)
Media Function
(MF)
RTC-9s
RTC-9m

RTC-4m
RTC-4m
RTC AS
RTC-2
UDM
PCF
AMF
N5
SMF

N10
N8
N7
N11

N6
N3
UPF
(R)AN

WebRTC Domain (Trusted DN)

RTC-4s

UNI

NNI

UE
WebRTC
Endpoint
:
: Signalling interface (C-Plane)
: Media/Data transport interface (U-Plane)
: Service access interface

image35.emf
Operator NetworkApplication Supporting Web Function(ASWF)WebRTCSignallingFunction(WSF)Inter-working Function(IWF)TransportGateway Function(TGF)Media Function(MF)RTC-9sRTC-9mUEWebRTCEndpointRTC-4mRTC-4sRTC-4mRTC ASRTC-2RTCApplicationProviderOther Networks(e.g., Operator, Service Provider)UNINNI: Signalling interface (C-Plane): Media/Data transport interface (U-Plane): Service access interfaceAN

Microsoft_Visio_Drawing21.vsdx

Operator Network
Application Supporting
Web Function
(ASWF)
WebRTC
Signalling
Function
(WSF)
Inter-working Function
(IWF)
Transport
Gateway
Function
(TGF)
Media Function
(MF)
RTC-9s
RTC-9m

UE
WebRTC
Endpoint
RTC-4m
RTC-4s
RTC-4m
RTC AS
RTC-2
RTC
Application
Provider
Other Networks
(e.g., Operator,
Service Provider)

UNI

NNI
: Signalling interface (C-Plane)
: Media/Data transport interface (U-Plane)
: Service access interface
AN

image36.emf
TCPIPHTTP/2TLSWebSocket *C-Plane signalling protocol* WebSocket is bootstrapped with HTTP/1.1 or HTTP/2. Transport protocol over HTTP/3 for WebRTC is an open issue.

Microsoft_Visio_Drawing22.vsdx
TCP
IP
HTTP/2
TLS
WebSocket *
C-Plane signalling protocol
* WebSocket is bootstrapped with HTTP/1.1 or HTTP/2.
 Transport protocol over HTTP/3 for WebRTC is an open issue.

image37.emf
Operator NetworkApplication Supporting Web Function(ASWF)WebRTCSignallingFunction(WSF)Inter-working Function(IWF)TransportGateway Function(TGF)Media Function(MF)RTC-9sRTC-9mUEWebRTCEndpointRTC-4mRTC-4sRTC-4mRTC ASRTC-2RTCApplicationProviderOther Networks(e.g., Operator, Service Provider)UNINNI: Signalling interface (C-Plane): Media/Data transport interface (U-Plane): Service access interface(R)AN

Microsoft_Visio_Drawing23.vsdx

Operator Network
Application Supporting
Web Function
(ASWF)
WebRTC
Signalling
Function
(WSF)
Inter-working Function
(IWF)
Transport
Gateway
Function
(TGF)
Media Function
(MF)
RTC-9s
RTC-9m

UE
WebRTC
Endpoint
RTC-4m
RTC-4s
RTC-4m
RTC AS
RTC-2
RTC
Application
Provider
Other Networks
(e.g., Operator,
Service Provider)

UNI

NNI
: Signalling interface (C-Plane)
: Media/Data transport interface (U-Plane)
: Service access interface
(R)AN

image38.emf

P

C

E

F

N

A

T

I

P

-

C

A

N

WWSF

W1

W2

UE

WIC

I / S - CSCF

eIMS - AGW

Iq

Mw

eP - CSCF

H / V - PCRF

Gx

Rx

W3

IMS - ALG

WAF

W4

W5

oleObject1.bin

W5

W4

WAF

ALG

-

IMS

W3

Rx

Gx

PCRF

-

V

/

H

CSCF

-

eP

Mw

Iq

AGW

-

eIMS

CSCF

-

S

/

I

WIC

UE

W2

W1

WWSF

N

A

C

-

P

I

T

A

N

F

E

C

P

image39.wmf

IM CN subsystem network

IP multimedia network

Signalling

Bearer

Ix

Mx

Mx

TrGW

IBCF

P/I/

S

/E

-

CSCF

S

IP UA

IPv4 or IPv6

SIP Proxy

BGCF

MSC Server

enhanced

for ICS

,

for

SRVCC

or

for DRVCC

Mx

Transit

function

TRF

Mx

Mx

oleObject2.bin

Transit function

MSC Server enhanced for ICS, for SRVCC or for DRVCC

Mx

Mx

TRF

Mx

BGCF

P/I/S/E-CSCF

Signalling

Bearer

Mx

IM CN subsystem network

IP multimedia network

SIP Proxy

IPv4 or IPv6

SIP UA

TrGW

IBCF

Mx

Ix

image40.png

image41.png

image42.emf
Operator NetworkConference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aTethering Device (UE)WebRTCEndpointRm-uRs-uRh-uRh-nWebRTC Domain (Trusted DN)Tethered Device(AR glasses) Display (video, audio)

Microsoft_Visio_Drawing24.vsdx

Operator Network
Conference Supporting Function
(CSF)
WebRTC
Signalling
Function
(WSF)
WebRTC NNI Signalling Gateway Function
(WNSGF)
WebRTC NNI
Media Gateway Function
(WNMGF)
WebRTC
Media Centre Function
(WMCF)
Rs-n
Rm-n
Mc-n
Mc-i
Rs-i

Rs-i
Rm-i

Rm-i
Rs-a

Tethering Device (UE)
WebRTC
Endpoint
Rm-u

Rs-u

Rh-u

Rh-n
WebRTC Domain (Trusted DN)

Tethered Device
(AR glasses)

Display (video, audio)

image43.emf
Operator NetworkConference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aTethered Device WebRTCEndpointRm-uRs-uRh-uRh-nWebRTC Domain (Trusted DN)Relay UE

Microsoft_Visio_Drawing25.vsdx

Operator Network
Conference Supporting Function
(CSF)
WebRTC
Signalling
Function
(WSF)
WebRTC NNI Signalling Gateway Function
(WNSGF)
WebRTC NNI
Media Gateway Function
(WNMGF)
WebRTC
Media Centre Function
(WMCF)
Rs-n
Rm-n
Mc-n
Mc-i
Rs-i

Rs-i
Rm-i

Rm-i
Rs-a

Tethered Device
WebRTC
Endpoint
Rm-u

Rs-u

Rh-u

Rh-n
WebRTC Domain (Trusted DN)

Relay UE

image44.emf
Operator NetworkConference Supporting Function(CSF)WebRTCSignallingFunction(WSF)WebRTC NNI Signalling Gateway Function(WNSGF)WebRTC NNIMedia Gateway Function(WNMGF)WebRTCMedia Centre Function(WMCF)Rs-nRm-nMc-nMc-iRs-iRs-iRm-iRm-iRs-aTethered DeviceWebRTCEndpointAppRm-uRs-uRh-uRh-nWebRTC Domain (Trusted DN)UEWebRTCEndpointSupport FunctionRt-u

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image1.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.emf
WebRTCSignallingFunction(WSF)UEWebRTCEndpoint: Signalling path (C-Plane): Media/Data path (U-Plane)Media Function(MF)Serversin the networkWebRTCSignallingFunction(WSF)Media Function(MF)Serversin the networkUEWebRTCEndpoint

3GPP

1

3GPP TSG

-

SA WG4 Meeting #127

S4

-

240

169

Sophia

-

Antipolis, France, 29 January

-

2 February 2024

Source:

NTT

Title:

[FS_eiRTCW]

Permanent Document

version

9

.0.0

V

ersion:

9

.0.0

Document for:

Ag

r

eement

A

genda item

1

0

.

9

1

Scope

The

present document extends immersive Real

-

time Communication for WebRTC (iRTCW) and introduces a new

concept called native WebRTC signalling.

T

his study includes following aspects:

1.

Analyze gaps and identify required enhancements of terminal device and

network architectures including

additional functional entities (e.g., WebRTC Signalling Server, ICE

-

STUN Server, IMS Interworking

Gateway, NNI Gateway).

2.

Identify impacts on and possible enhancements for the WebRTC

-

based U

-

plane components in terms of

adapt

ation, media handling, and cross

-

layer optimizations over 5G systems.

3.

Identify signalling protocol details (e.g., based on JSON) for the common WebRTC

-

based immersive RTC

session management.

4.

Identify information elements in the C/U

-

Plane signal (including

NNI) to enhance connectivity of media

sessions with carrier assistance for WebRTC

-

based applications (including OTT applications).

5.

Identify the minimal functional capabilities needed to support the enhancements identified in Objectives 2, 3

and 4 (includin

g transport, NAT

-

traversal, and XR conferencing), state transitions, and typical call flows.

6.

I

dentify collaboration formation with other WGs in 3GPP and SDOs including IETF and W3C.

7.

Identify enhancements for E2E QoS realizations over 5G systems for communi

cations between MNOs and

WebRTC clients operating over non

-

5G links (e.g., Wi

-

Fi) using WebRTC

-

based transport. This also includes

communication between WebRTC clients operating on tethering/tethered devices.

8.

Study security, QoE reporting, and rate adapta

tion in tethered use cases (including coordination of Uu and non

-

3GPP access).

The

study

should consider as a principle that the third party access to the operator network need to be controlled with

SLAs and with secure access to protect the underlying net

work resources.

2

References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

-

References are either specific (identified by date of publication, edition number,

version number, etc.) or

non

-

specific.

-

For a specific reference, subsequent revisions do not apply.

3GPP

1

3GPP TSG-SA WG4 Meeting #127 S4-240169

Sophia-Antipolis, France, 29 January - 2 February 2024

Source: NTT

Title: [FS_eiRTCW] Permanent Document version 9.0.0

Version: 9.0.0

Document for: Agreement

Agenda item 10.9

1 Scope

The present document extends immersive Real-time Communication for WebRTC (iRTCW) and introduces a new

concept called native WebRTC signalling.

This study includes following aspects:

1. Analyze gaps and identify required enhancements of terminal device and network architectures including

additional functional entities (e.g., WebRTC Signalling Server, ICE-STUN Server, IMS Interworking

Gateway, NNI Gateway).

2. Identify impacts on and possible enhancements for the WebRTC-based U-plane components in terms of

adaptation, media handling, and cross-layer optimizations over 5G systems.

3. Identify signalling protocol details (e.g., based on JSON) for the common WebRTC-based immersive RTC

session management.

4. Identify information elements in the C/U-Plane signal (including NNI) to enhance connectivity of media

sessions with carrier assistance for WebRTC-based applications (including OTT applications).

5. Identify the minimal functional capabilities needed to support the enhancements identified in Objectives 2, 3

and 4 (including transport, NAT-traversal, and XR conferencing), state transitions, and typical call flows.

6. Identify collaboration formation with other WGs in 3GPP and SDOs including IETF and W3C.

7. Identify enhancements for E2E QoS realizations over 5G systems for communications between MNOs and

WebRTC clients operating over non-5G links (e.g., Wi-Fi) using WebRTC-based transport. This also includes

communication between WebRTC clients operating on tethering/tethered devices.

8. Study security, QoE reporting, and rate adaptation in tethered use cases (including coordination of Uu and non-

3GPP access).

The study should consider as a principle that the third party access to the operator network need to be controlled with

SLAs and with secure access to protect the underlying network resources.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or

non-specific.

- For a specific reference, subsequent revisions do not apply.

