3GPP TSG-SA4 Meeting # 127	S4-240053
Sophia Antipolis, France, 29th Jan - 2nd Feb, 2024

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia Corporation1
Title:			[5G_RTP] On the definition of XR Timestamp in the Pose RTP HE
Agenda Item:		10.7
Document for:		Discussion and Agreement
1	Introduction
At the SA4#126 meeting, an RTP header extension for pose was agreed, which may either be used to indicate the pose used for rendering the media (rendered pose) or the XR pose sent to another UE or to a server. One of the agreed changes was to rename the header extension field “timestamp” to “XR timestamp” to avoid confusion with the RTP timestamp provided by the RTP stack and to emphasize that this is the timestamp provided by the XR runtime.
However, there are still some remaining concerns about how the application should use the XR timestamp in conjunction with the RTP timestamp. In particular, necessity of using the RTP timestamp to determine the media presentation time as well as for media synchronization was discussed.
This contribution provides some information on the frame submission and the timing in OpenXR and discusses the role of the RTP timestamp in XR applications that use remote rendering. It also discusses how the two timestamps might be used together by the application. Based on the discussion, an updated definition for the XR timestamp field is proposed.
Updates after the RTC SWG telco on January 10th are described in section 5 of this document.
2	Timing in OpenXR
In OpenXR, time is represented by a 64-bit signed integer representing nanoseconds (XrTime). The passage of time must be monotonic and not real-time (i.e. wall clock time). Thus, the time is always increasing at a constant rate and is unaffected by clock changes, time zones, daylight savings, etc. Time must not be assumed to correspond to a system clock time.
XrTime represents the count of nanoseconds elapsed since a runtime-chosen constant epoch. Durations are represented by XrDuration, which is the difference between two XrTime values.
A single runtime must use the same epoch for all simultaneous applications. Time must be represented the same regardless of multiple processors or threads present in the system.
The period precision of time reported by the runtime is runtime-dependent and may change. One nanosecond is the finest possible period precision. A runtime may, for example, report time progression with only microsecond-level granularity.
More information on XrTime can be found in the OpenXR specification: https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XrTime
3	Frame submission in OpenXR
OpenXR frame timing and frame submission is implemented through three functions: xrWaitFrame, xrBeginFrame and xrEndFrame.
xrWaitFrame does two operations in a call:
1. The function blocks the application until the XR runtime determines the best time to continue to produce the next frame.
2. The function returns some information about the next frame to be submitted. The most important one is the predictedDisplayTime, which is the next time that the runtime predicts a composited frame will be displayed. Sometimes this is called photon time or mid-photon time as it should be the middle of the period during which the display is illuminating the frame. Another information returned by xrWaitFrame is the predictedDisplayPeriod. This is the predicted amount of time until the next frame will be presented (the frame with the next predictedDisplayTime).
xrBeginFrame marks the start of the GPU rendering process. The application starts by locating the views in space and and by calling the xrLocateViews function, provided with the predictedDisplayTime and the XR space. It then acquires the swapchain image associated with every view of the composition layer. It waits for the swapchain image to be made available so that it can write into it. The application then performs the rendering work by iterating over the scene graph nodes and rendering each object according to the correspondning view.
xrEndFrame submits the rendered composition layers to the runtime once all views are rendered. All composition layers to be drawn must be submitted with every xrEndFrame call. When the application calls the xrEndFrame function, it also provides the time at which this frame should be displayed and the mode for blending the user’s environment with the submitted frame.
The figure below illustrates the rendering process in OpenXR.
[image: A diagram of a work flow

Description automatically generated]
More information on frame submission and the related OpenXR function can be found in [1], [2].
[bookmark: _Hlk150231671]4	RTP timing model
The RTP timestamp represents the sampling instant of the first octet of data in the frame. It starts from a random initial value and increments at a media-dependent rate. For video, timestamps are assigned per frame. If a frame is fragmented into multiple RTP packets, each of the packets making up the frame will have the same timestamp.
The timestamps in RTP data packets and in RTCP sender reports represent the timing of the media at the sender: the timing of the sampling process, and the relation between the sampling process and a reference clock. A receiver is expected to reconstruct the timing of the media from this information. RTP timing model itself does not say anything about when the media is to be played out. RTP timestamps give the relative timing, and RTCP sender reports provide a reference for interstream synchronization, but the amount of buffering at the receiver or the decoding time of the packets is not specified by RTP. In other words, RTP specification does not define the algorithms used to reconstruct the timing at a receiver since the design of playout algorithms depends on the needs of the application.
In the receiver, data packets are inserted into a playout buffer sorted by their RTP timestamps. Frames are held in the playout buffer for a period of time to smooth timing variations caused by the network. This also allows the pieces of fragmented frames to be received and grouped, and it allows any error correction data to arrive. The frames are then decoded, and the media is rendered. RTP does not specify at what time point the decoder needs to be invoked.
RTP packets arriving late and corresponding to the frames that have missed their playout time should be discarded. There is a trade-off between fideliy and delay in playout buffer operation. An application must decide the maximum playout delay it can accept which determines the fraction of packets that arrive in time that can be played out. It is not easy to design an optimal RTP playout buffer due to the difficulty of determining how long the packets should remain in the buffer being scheduled for playout. The factors which affect this decision include the relative importance of latency and reception quality/fidelity, the delay between the first and last packets of a frame and the delay before any error correction packets are received, if used.
4	Relation to the XR timestamp
The playout algorithm in an RTP receiver is designed with several factors in mind such as the sender behavior, network jitter and application needs (in terms of latency vs quality). However, an RTP receiver has no knowledge of how the rendering pipeline of the XR application operates. Therefore, determining the playout time solely using the RTP timestamp neglects the needs of the XR application and may lead to motion judder which degrades the user experience. Therefore, a smart remote rendering receiver application needs to take into account both the playout time determined by the RTP receiver and the display time predicted by the XR runtime. This allows to find a compromise between the RTP related factors (e.g., media sync accuracy, mitigation of network jitter) and the needs of the XR application (e.g., reduce motion judder).
It is a matter of receiver design how the two aspects mentioned above are addressed in the implementation. One approach would be to design a custom RTP receiver that factors in the XR timestamp to the calculation of the playout time. Another approach would be to design another layer on top of the RTP receiver that may adjust the RTP calculated playout time based on the XR timestamp.
5	Updates after the RTC SWG Telco
For reference, the related minutes from the RTC telco on January 10th are copied below:
· Stefan: Which timestamp be used for the media sync part? Is RTP or XR timestamp will override it?
· Serhan: For media synchronization RTP timestamp can still be used, but the application needs to consider the XR timestamp for presentation
· Stefan: So would then the XR time be a master clock?
· Serhan: Yes, in a way - XR timestamp is not related to the RTP timestamp.
· Stefan: Does it make sense then to separate the XR timestamp from the pose?
· Imed: We should not recommend one timestamp over the other. Most applications may optimize towards XR timestamp in order to maintain a good user experience without motion sickness. Media sync may be secondary. Also if XR timestamp is used the media will be synced to a good extent. On the second part of the rendered pose definition - not sure what it means, suggest to remove.
· Rufael: Good to simplify the semantics of the rendered pose. For rendered pose, the SRS is not specified

Following updates were made to the proposal to address the above comments:

· It was clarified that the XR timestamp must not be used for media synchronization.
· It was clarified that TS 26.522 does not recommend the use of XR timestamp over the RTP timestamp and does not specify how XR timestamp can be used by a receiver in conjunction with RTP timestamp to determine the playout time. This is left entirely to the discretion of the receiver application.
· In the definition of rendered pose, the second sentence was removed to simplify the definition.
Regarding the carriage of XR pose together with the XR timestamp: We think that XR timestamp cannot be separated from XR pose since XR timestamp contains the predicted display time for the associated XR pose. In case of a rendered pose, this is the predicted display time for the image rendered using that XR pose. Therefore, they should be signaled in the same RTP header extension to preserve the association.
6	Proposal
Based on the above discussion, it is proposed to agree on the following changes to TS 26.522.

===================================== Change 1 =====================================
[bookmark: _Toc151103162]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc151103163]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
Data Burst: A data burst is a set of multiple PDUs generated and sent by the application such that there is an idle period between two data bursts. A Data Burst can be composed of one or multiple PDU Sets.
PDU Set: One or more PDUs carrying the payload of one unit of information generated at the application level (e.g. frame(s), video slice(s), metadata, etc.).
XR Pose: A position and orientation in space relative to an XR Space.
XR Space: A frame of reference in which an application chooses to track the real world. An XR Space provides a relation of the user’s physical environment with other tracked entities.
Rendered pose: An XR pose sent from a server to a client that was used for rendering at the server.
[bookmark: _Toc151103183]===================================== Change 2 =====================================
4.4.3	RTP Header Extension for Pose
….
[
XR timestamp (64 bits): Timestamp for the XR pose. If the header extension is used for rendered pose, this timestamp indicates the display time predicted by the XR runtime for the rendered image display time. Otherwise, this timestamp indicates the associated XR runtime display time for the predicted XR pose. XR timestamp uses the XR system clock and is represented in nanoseconds. The timestamp is passed to the XR runtime together with the rendered swapchain images (e.g. as part of the xrEndFrame call in OpenXR). A receiver may use the XR timestamp together with the RTP timestamp to determine the playout time of the media. XR timestamp shall not be used for media synchronization.
]
NOTE 1: 	It is left to the discretion of the receiver application how to use the XR timestamp. It is not specified how the receiver application determines the playout time using the XR timestamp together with the RTP timestamp. It is expected that the receiver application takes into account both the media transport aspects and XR application aspects (e.g., reducing motion judder) while determining the playout time.
[Editor’s Note: Rendered pose is sent from the SR server to the SR client. If the pose is not rendered pose, it is sent from a UE to a server or to another UE.]

================================== End of Change 2 ==================================

References
[1] https://github.com/KhronosGroup/OpenXR-Guide/blob/main/chapters/frame_submission.md
[2] S4-231965, MeCAR PD v10.0.0, Clause 3.8.1.

 Contact: Serhan Gül, Saba Ahsan, Igor Curcio, Nokia Technologies, Finland. Emails: ífirstname.lastnameý@nokia.com

image1.png
XR_SESSION_STATE
SYNCHRONIZED | VISIBLE | FOCUSED

xrWaitFrame
xrBeginFrame

xrAcquireSwapchainImage
xrWaitSwapchainImage
xrLocateViews
xrLocateSpace

Execute Graphics
Work

xrReleaseSwapchainImage

