

	
3GPP SA- WG3 Meeting # 126	S3-2600805
 Goa, India, 9 – 13 February 2026											(revision of S3-260148)
	CR-Form-v12.4

	CHANGE REQUEST

	

	
	35.246
	CR
	0002
	rev
	1-
	Current version:
	19.0.0
	

	

	[bookmark: _Hlt497126619]For HELP on using this form: comprehensive instructions can be found at
https://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Update on ZUC 256-bit Specification

	
	

	Source to WG:
	Nokia

	Source to TSG:
	S3

	
	

	Work item code:
	TEI20, 256_Algo
	
	Date:
	2026-01-26

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-20

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	The French Gvmt. has reviewed and accepted the publicaton of the 256-bit specifications.

	
	

	Summary of change:
	Provide the specification details.

	
	

	Consequences if not approved:
	Specification details are not available for implementation.

	
	

	Clauses affected:
	2, 3.1, 3.2, 3.3, 4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	Revision1:
· Includes S3-260160
· AEAD1 architecture figure update
· Removing hanging paragraphs 7.2.0 and 7.3.0
· Correcting algorithm labels
· Set Parameter AI = 0

Page 1

==============First change==============

[bookmark: _Toc148681738]Introduction
[bookmark: _Hlk148352494]The present document is one of three, which between them form the entire specification set of the ZUC based 256-bit encryption and integrity protection algorithms, entitled:
-	3GPP TS 35.246: "Specification of the ZUC based 256-bits algorithm set: Specification of the 256-NEA6 encryption, the 256-NIA6 integrity, and the 256-NCA6 authenticated encryption algorithm for 5G;
Document 1: Algorithm Specification ".
-	3GPP TS 35.247: "Specification of the ZUC based 256-bits algorithm set: Specification of the 256-NEA6 encryption, the 256-NIA6 integrity, and the 256-NCA6 authenticated encryption algorithm for 5G;
Document 2: Implementation Test Data".
-	3GPP TS 35.248: "Specification of the ZUC based 256-bits algorithm set: Specification of the 256-NEA6 encryption, the 256-NIA6 integrity, and the 256-NCA6 authenticated encryption algorithm for 5G;
Document 3: Design Conformance Test Data".

==============Next change==============
[bookmark: _Toc148681739][bookmark: _Toc510696653][bookmark: _Toc35971453][bookmark: _Toc67903570][bookmark: _Toc73173353][bookmark: _Toc96959947][bookmark: _Toc129247653][bookmark: _Toc164863407][bookmark: _Toc209529804]1	Scope
[bookmark: references][bookmark: _Hlk148947793]The present document contains the algorithm specification which could be used as the encryption and integrity protection function 256-NEA6, 256-NIA6 and the combined authenticated encryption 256-NCA6 protection function for 3GPP systems.

==============Next change==============

2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	void
[3]	3GPP TS 35.247: "3G Security; Specification of the ZUC based 256-bits Algorithm Set: Specification of the 256-NEA6 encryption, the 256-NIA6 integrity algorithm, and the authenticated encryption 256-NCA6 for 5G; Document 2: implementation test data".
[4]	3GPP TS 35.248: "3G Security; Specification of the ZUC based 256-bits Algorithm Set: Specification of the 256-NEA6 encryption, the 256-NIA6 integrity algorithm, and the authenticated encryption 256-NCA6 for 5G; Document 3: design conformance test data".
[5]	3GPP TS 35.243: "3G Security; Specification of the AES based 256-bits Algorithm Set: Specification of the 256-NEA5 encryption, the 256-NIA5 integrity algorithm, and the authenticated encryption 256-NCA5 for 5G; Document 1: algorithm specification".
[6]	3GPP TS 35.240: "3G Security; Specification of the Snow 5G based 256-bits Algorithm Set: Specification of the 256-NEA4 encryption, the 256-NIA4 integrity algorithm, and the authenticated encryption 256-NCA4 for 5G; Document 1: algorithm specification".
[7]	3GPP TS 38.323: "NR; Packet Data Conversion Protocol (PDCP)".
[8]	"Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC", Editor: M. Dworkin, NIST Special Publication 800-38D
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
(Accessed 2022-05-03)
[9]	"AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption", S. Gueron, A. Langley, and Y. Lindell, RFC 8452, https://www.rfc-editor.org/info/rfc8452 (Accessed 2022-05-03).
[10]	void
[11]	"A new SNOW stream cipher called SNOW-V", Ekdahl, P., Johansson, T., Maximov, A., & Yang, J. (2019). A new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric Cryptology, 2019(3), 1–42, https://doi.org/10.13154/tosc.v2019.i3.1-42 (Accessed April 22, 2022).
[12]	"SNOW-Vi: an extreme performance variant of SNOW-V for lower grade CPUs", P.Ekdahl, A. Maximov, T. Johansson, J. Yang. WiSec '21: Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, June 2021 Pages 261–272, https://doi.org/10.1145/3448300.3467829 (Accessed April 22, 2022).
[13]	"Advanced Encryption Standard (AES)", Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards and Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.FIPS.197 (Accessed April 22, 2022).
[14]	"A Correlation Attack on Full SNOW-V and SNOW-Vi", Shi, Z., Jin, C., Zhang, J., Cui, T., Ding, L., Jin, Y. (2022). In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_2.
[15]	"Authentication Weaknesses in GCM", N. Ferguson, 2005, https://csrc.nist.gov/csrc/media/projects/block-ciphertechniques/documents/bcm/comments/cwc-gcm/ferguson2.pdf. (Accessed 2022-05-03).
[16]	"New hash functions and their use in authentication and set equality", M. Wegman and L. Carter. Journal of Computer and System Sciences, 22:265279, 1981.
[17]	"Galois MAC with forgery probability close to ideal", K Nyberg, H. Gilbert, and M Robshaw, https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/generalcomments/papers/Nyberg_Gilbert_and_Robshaw.pdf. (Accessed 2022-06-16).
[18]	3GPP TS 35.221: "Specification of the 3GPP Confidentiality and Integrity Algorithms EEA3 & EIA3; Document 1: EEA3 and EIA3 specifications".
[19]	"Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3". Document 2: ZUC Specification, ETSI SAGE. (version 1.6).
[20]	"The ZUC-256 Stream Cipher", The ZUC design team, 2018, http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf (accessed 2022-06-08).
[21]	"An Addendum to the ZUC-256 Stream Cipher", The ZUC design team, 2021, https://eprint.iacr.org/2021/1439.pdf (accessed 2022-06-08).
[22]	"New Cryptanalysis of ZUC-256 Initialization Using Modular Differences", F. Liu, W. Meier, S. Sarkar, G. Wang, and R. Ito, T. Isobe, 2021, https://eprint.iacr.org/2021/1104.
[23]	"Differential analysis of the ZUC-256 Initialisation", S. Babbage and A. Maximov, 2020, https://eprint.iacr.org/2020/1215 (accessed 2022-06-08).
[2]	The non-redacted specification is available via http://www.etsi.org/WebSite/OurServices/Algorithms/3gppalgorithms.aspx and is subject to licensing conditions described at this site.
Editor’s Note: The given reference [2] leads to the valid portal, but the desired specifications are not stored there because they are still under construction.

==============Next change==============

[bookmark: _Toc148681741][bookmark: _Toc22544388][bookmark: _Toc22544819][bookmark: _Toc26877459][bookmark: _Toc145421626]3	Definitions of terms, symbols and abbreviations

[bookmark: _Toc148681742]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 ([1]) and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 ([1]).
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1], in the non-redacted version of the specification [2] and the following apply. A term defined in the present document and its corresponding non-redacted version [2] takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
[bookmark: _Toc148681743]3.2	Symbols
=	The assignment operator.
==	The equality operator returns True or False.
:=	The definition operator.
	The bitwise exclusive-OR operation.
⊞n		Integer addition modulo 2n of two vectors 𝑎, 𝑏 ∈ ℕk∗n. This is a parallel application of 𝑘 addition 	modulo 2n over corresponding n-bit sub-words of 𝑎 and 𝑏. As an example, take (𝑎 ⊞16 𝑏) with 𝑎, 	𝑏 ∈ ℕ128. For this case 𝑘 = 8. The 16-bit parts of the 128-bit words are added with carry, 	but the carry does not propagate from a lower 16-bit word to a higher. 𝑐 = 𝑎⊞16 𝑏 where
		𝑐i = 𝑎i + 𝑏i for 𝑖 ∈ 0…7 and 𝑎i, 𝑏i, 𝑐i ∈ ℕ16.
°	Composition of operations. A ° B means A after B, or A(B(*)).
||	The concatenation of the two operands.
&	Bitwise AND
|	Bitwise OR
<<n t	The t-bit left shift of an n-bit value. The t most significant bits are dropped.
>>n t	The t-bit right shift of an n-bit value. The t least significant bits are dropped.
<<<n t	The t-bit left cyclic shift of an n-bit value. The most significant bits become the least significant bits.
ℕn	The set of natural numbers representable by n bits.
{ ℕn }k	Array of size k containing natural numbers.
⌊𝑟⌋		The floor function. Returns the largest integer, smaller than or equal to 𝑟 ∈ ℝ.
⌈𝑟⌉	The ceiling function. Returns the smallest integer, larger than or equal to 𝑟 ∈ ℝ.
void

[bookmark: _Toc148681744]3.3	Abbreviations
AAD	Additional Authentication Data
AEAD1	Authenticated Encryption with Additional Data
AI	Algorithmic Instance
CF	Combined Flag
CK	Cipher Key (Confidentiality Key)
EtM	Encrypt-then-MAC
IBS	Input Bit Stream
IK	Integrity Key
IV	Initial Value
KSG	Key Stream Generator
LK	Legacy Key
MAC	Message Authentication Code
MtE	MAC-then-Encrypt
NCA	Network Combined Algorithm
NEA	Network Encryption Algorithm
NIA	Network Integrity Algorithm
OBS	Output Bit Stream	
PDCP	Packet Data Convergence Protocol
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1], in the non-redacted version of the specification [2] and the following apply. An abbreviation defined in the present document and its corresponding non-redacted version [2] takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

==============Next change==============
[bookmark: _Toc149894015][bookmark: _Toc163825733][bookmark: _Toc178091562][bookmark: _Toc148681745][bookmark: _Hlk148605056]4	Overview of the Specification
[bookmark: _Toc149894016][bookmark: _Toc163050194][bookmark: _Toc163825734][bookmark: _Toc178091563]4.1	Introduction
The specification of the 3GPP 256-bit Confidentiality and Integrity algorithms for the Air Interface is divided into three separate documents. Each document either specifies elements of the algorithm or provides reference code and test data of the algorithm. The present document consists of a keystream generator, which is acting as a core function for three dedicated modes. The three keystream generators utilized in the present document are the Snow 5G, AES-256, and ZUC-256. The key size in each case is 256-bits and the initial value (IV) is 128-bits. On top of these core algorithms, there are three modes 256-NEAx, 256-NIAx, and 256-NCAx where the "x" is either 4, 5 or 6 depending on the underlying core algorithm.
The x = 4 uses Snow 5G, and x = 5 uses AES-256, and x = 6 uses ZUC-256.
The different combinations are given in Table 4.1-1.
Table 4.1-1: Overview of the different core algorithms and modes defined in the present document
	
	Snow 5G
	AES-256
	ZUC-256

	[bookmark: _MCCTEMPBM_CRPT38190003___5]Confidentiality
	256-NEA4
	256-NEA5
	256-NEA6

	[bookmark: _MCCTEMPBM_CRPT38190004___5]Integrity
	256-NIA4
	256-NIA5
	256-NIA6

	[bookmark: _MCCTEMPBM_CRPT38190005___5]Authenticated Encryption with Additional Data (AEAD)
	256-NCA4
	256-NCA5
	256-NCA6

Readers familiar with the previous algorithms for the air interface will notice the introduction of an Authenticated Encryption with Additional Data (AEAD) mode. This combined algorithm is introduced because 3GPP anticipates that data transfer rates of the air interface will increase in the future, and thus it may become inefficient to treat confidentiality and integrity in two different algorithms. The 256-NCAx mode does the encryption and integrity protection in one pass, first encrypting the plain text and then integrity protecting the cipher text, so called Encrypt-then-MAC.
NOTE: 	The use of 256-NCAx as a separate mode will require changes to the order in which encryption and integrity protection is applied in the PDCP protocol ([7]), as the current version of PDCP does MAC-then-Encrypt.
All confidentiality algorithms 256-NEAx operate as pure stream ciphers, XORing the generated keystream from the core algorithm onto the plain text to produce the cipher text.
An overview of the 256-NEAx algorithm operation is shown in Figure 4.1-1.
[image: A diagram of a diagram

Description automatically generated]
Figure 4.1-1: Overview of the 256-NEAx algorithm encryption and decryption
The basis of the 256-NIAx integrity algorithms is the GMAC construction ([8]), where the message words are treated as coefficients in a polynomial which is evaluated at a secret point.
However, the field and the multiplication operation are taken from the POLYVAL function in the AES-GCM-SIV construction ([9]). This has the advantage that it can be faster in software implementations and at the same time it can optionally reuse existing hardware implementations of GHASH from AESGCM ([8]) (with some byte reversals and a simple multiplication).
Each of these three integrity protection algorithms can be used to produce MAC tags of length 4-16 bytes (32 – 128 bits).
An overview of the 256-NIAx algorithm operation is shown in Figure 4.1-2.
[image: A diagram of a diagram

Description automatically generated]
Figure 4.1-2: Overview of the 256-NIAx algorithm MAC generation
In Clause 5 of the present document, a generic Authenticated Encryption with Additional Data algorithm, called 256-AEAD1 will be described, and in Clause 6 the core algorithm ZUC-256.
Based on the 256-AEAD1 algorithm, the description will be provided of the 256-NEA4/5/6, 256-NIA4/5/6, and NCA4/5/6 algorithms. The second core algorithm AES-256 is specified in ([5]), while the third core algorithm Snow 5G is specified in ([6]).
[bookmark: _Toc149894017][bookmark: _Toc163050195][bookmark: _Toc163825735][bookmark: _Toc178091564]4.2	Notation
[bookmark: _Toc149894018][bookmark: _Toc163050196][bookmark: _Toc163825736][bookmark: _Toc178091565]4.2.1	General
Previous air interface security algorithms were reused between generations of cellular systems (3G, 4G, and 5G) and were specified at different times, spanning several years. This resulted in slightly inconsistent notation and conventions between specifications. This clause tries to unify the notation and conventions used in the present document.
[bookmark: _Toc149894019][bookmark: _Toc163050197][bookmark: _Toc163825737][bookmark: _Toc178091566]4.2.2	Void
[bookmark: _MCCTEMPBM_CRPT38190008___7]

[bookmark: _Toc149894020][bookmark: _Toc163050198][bookmark: _Toc163825738][bookmark: _Toc178091567]4.2.3	Radix
The prefix 0x is used to indicate hexadecimal numbers.
[bookmark: _Toc149894021][bookmark: _Toc163050199][bookmark: _Toc163825739][bookmark: _Toc178091568]4.2.4	Bit ordering and concatenations
[bookmark: _MCCTEMPBM_CRPT38190009___7]The present document utilizes different sets of integers, e.g., ℕ8, ℕ16 and ℕ128 (the set of natural numbers representable with 8, 16 and 128 bits respectively). For a number n ∈ ℕd, the most significant bit is denoted nmsb. A bit is an element of ℕ1.
Often there is a need to interpret a word 𝑏 ∈ ℕm as a collection of words in a smaller domain ℕn, 𝑚 = 𝑘𝑛 and vice versa. The concatenation of 𝑎i ∈ ℕn, 𝑖 = 0 … (𝑘 − 1) can be denoted into 𝑏 ∈ ℕm by:
[bookmark: _MCCTEMPBM_CRPT38190010___7]	𝑏 = 𝑎k-1 ∥ 𝑎k-2 ∥ ⋯ ∥ 𝑎1 ∥ 𝑎0 ,
[bookmark: _MCCTEMPBM_CRPT38190011___7]where 𝑎0 becomes the least significant part of 𝑏. Similarly, the decomposition of 𝑏 ∈ ℕm into 𝑎i ∈:
ℕn is written as
[bookmark: _MCCTEMPBM_CRPT38190012___7](𝑎k-1, 𝑎k-2, … , 𝑎1, 𝑎0) = 𝑏,
where 𝑎0 takes the value of the least significant part of 𝑏.
The following Figure 4.2.4-1 clarifies the bit ordering for an example of 𝑚 = 128, 𝑛 = 16:
					 						 b
 a7		 a6		 a5		 a4		 a3		 a2		 a1		 a0
15…0		15…0		15…0		15…0		15…0		15…0		15…0		15…0
127…112																31…16	15…0
MSB																				 LSB

Figure 4.2.4-1: Bit and byte ordering when concatenating eight 16-bit words into a larger 128-bit word
[bookmark: _MCCTEMPBM_CRPT38190013___7]Arrays of integers are denoted {ℕn}s, where 𝑠 is the size of the array. An array 𝐴 = {𝑁n}, is indexed 𝐴[0], 𝐴[1],… , 𝐴[𝑠 − 2], 𝐴[𝑠 − 1], where 𝐴[0] is the first element of the array. Every array is written from left to right, with the first element A[0] to the left.
EXAMPLE: 	A = {0,1,2,3} is an array with A[0] = 0, A[1] = 1, and so forth.
[bookmark: _MCCTEMPBM_CRPT38190014___7]{ℕd}* denotes an array of variable length; for example, {ℕ8}* denotes an array of bytes that could have different possible lengths, such as an array of message bytes. Conversions from arrays of smaller domains into arrays of larger domains (and vice versa) are not done in a consistent way. Both Little Endianness and Big Endianness are used throughout the present document. This is due to being backwards compatible with the existing 3GPP protocols, as well as keeping the order for externally defined algorithms. The specification aims to be very explicit about the bits and bytes ordering.
[bookmark: _Toc149894022][bookmark: _Toc163050200][bookmark: _Toc163825740][bookmark: _Toc178091569]4.2.5	Assignment operations
The assignment operator '='is used in many programming languages. Thus:
[bookmark: _MCCTEMPBM_CRPT38190015___2]<variable> = <expression>
It means that <variable> assumes the value that <expression> had before the assignment took place. For instance, :
x = x + y + 3
means:
[bookmark: _MCCTEMPBM_CRPT38190017___3](new value of x) becomes (old value of x) + (old value of y) + 3.
[bookmark: _MCCTEMPBM_CRPT38190018___3]
Also
[bookmark: _MCCTEMPBM_CRPT38190019___3]<variables> = <expressions>
for lists of variables and expressions, then the left-most variable assumes the value the left-most expression had before the assignment took place, the next left-most variable assumes the value the next left-most expression had before the assignment took place, and so on.
For instance,
[bookmark: _MCCTEMPBM_CRPT38190020___3]x[0]..x[2] = 3, 4, 5
means
[bookmark: _MCCTEMPBM_CRPT38190021___3](new value of x[0]) becomes 3,
(new value of x[1]) becomes 4,
[bookmark: _MCCTEMPBM_CRPT38190022___3](new value of x[2]) becomes 5.
Whereas:
[bookmark: _MCCTEMPBM_CRPT38190023___3]x[0]..x[2] = y[2]..y[0]
means:
[bookmark: _MCCTEMPBM_CRPT38190024___3](new value of x[0]) becomes (old value of y[2]),
(new value of x[1]) becomes (old value of y[1]),
(new value of x[2]) becomes (old value of y[0]).
[bookmark: _Toc163050201][bookmark: _Toc163825741][bookmark: _Toc178091570][bookmark: _Toc149894023]4.3	Initial Value (IV) Specification
[bookmark: _Toc149894024][bookmark: _Toc163050202][bookmark: _Toc163825742][bookmark: _Toc178091571]4.3.1	General
All three core algorithms take a 256-bit key and a 128-bit IV. The IV is regarded as a byte array of length 16. The value of the IV is generated from various inputs, some coming from higher layers in the communication stack, and some inputs are dependent on the mode and core algorithm.
The following inputs are currently given by the 3GPP communication stack.
Table 4.3.1-1: IV partial values (Part 1)
	Parameter
	Type
	Size [bits]
	Comment

	COUNT
	[bookmark: _MCCTEMPBM_CRPT38190026___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190027___4]32
	Frame dependent counter, split into bytes (C3, C2, C1, C0) where C0 in the least significant byte.

	BEARER
	[bookmark: _MCCTEMPBM_CRPT38190028___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190029___4]5
	Bearer Identifier

	DIRECTION
	[bookmark: _MCCTEMPBM_CRPT38190030___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190031___4]1
	Direction. A single bit denoted D.

Table 4.3.1-2: IV partial values (Part 2)
	[bookmark: _MCCTEMPBM_CRPT38190032___4]Parameter
	Type
	Size [bits]
	Comment

	MAC_BYTES
	[bookmark: _MCCTEMPBM_CRPT38190033___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190034___4]5
	Size of MAC tag in bytes. Allowed values are 0 and 4…16 inclusive.

	CF
	[bookmark: _MCCTEMPBM_CRPT38190035___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190036___4]1
	Combined mode Flag, used to separate the NEA and NIA algorithms from NCA. CF = 0 means NEA or NIA. CF = 1 means NCA.

	LK
	[bookmark: _MCCTEMPBM_CRPT38190037___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190038___4]1
	Legacy key size support. For 128-bit key usage, set LK = 1. For 256-bit key usage, set LK = 0. The current specification uses LK = 0.

	AI
	[bookmark: _MCCTEMPBM_CRPT38190039___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190040___4]1
	Algorithmic Instance. Used during HQP parameter generation with the AES algorithm to avoid collisions with keystreams.

Table 4.3.1-3: Mapping of inputs to construct the IV value
	IV[n]
	Value of byte or bits of the byte. Bit ordering is so that 7 is the most significant bit.
	Comment

	
0
	7
	6
	5
	4
	3
	2
	1
	0
	3GPP-defined values. Least significant bit of MAC_BYTES is mapped to bit 3.

	[bookmark: _MCCTEMPBM_CRPT38190041___4]
	MAC_BYTES
	CF
	LK
	AI
	

	
1
	7
	6
	5
	4
	3
	2
	1
	0
	Least significant bit of BEARER is mapped to bit 1. D is the DIRECTION.

	[bookmark: _MCCTEMPBM_CRPT38190042___4]
	0
	0
	BEARER
	D
	

	2…7
	[bookmark: _MCCTEMPBM_CRPT38190043___4]EXTRA_IV[0…5]
	6 bytes for future extra entropy. EXTRA_IV [0] is mapped to IV[2] and so on.

	8…11
	[bookmark: _MCCTEMPBM_CRPT38190044___4](C3, C2, C1, C0)
	Most significant byte of COUNT is assigned to IV[8] (Big Endian).

	12…15
	[bookmark: _MCCTEMPBM_CRPT38190045___4]0
	Reserved for the 32-bit counter in AES-CTR. Set to zero otherwise.

[bookmark: _Toc149894025][bookmark: _Toc163050203][bookmark: _Toc163825743][bookmark: _Toc178091572]4.3.2	The Make_5GIV mapping
A mapping from the inputs to a byte array of length 16 can be defined as:
Make_5GIV:		(ℕ32, ℕ5, ℕ1, ℕ5, ℕ1, ℕ1, ℕ1, { ℕ8 }6) { ℕ8 }6
					(COUNT, BEARER, DIRECTION, MAC_BYTES, CF, LK, AI, EXTRA_IV) 												 Make_5GIV (COUNT, BEARER, DIRECTION, MAC_BYTES, CF, LK, AI, EXTRA_IV)
Where Make_5GIV maps the input according to Table 4.3.1-3. The Make_5GIV mapping is used in all algorithms to provide the Initial Value (IV).
[bookmark: _Toc149894026][bookmark: _Toc163050204][bookmark: _Toc163825744][bookmark: _Toc178091573]4.4	The KeyStream Generator (KSG) Interface
[bookmark: _Toc149894027][bookmark: _Toc163050205][bookmark: _Toc163825745][bookmark: _Toc178091574]4.4.1	General
All core algorithms operate as keystream generators together with the basic 256-AEAD1 algorithm (Clause 5), and for that purpose, a common interface is described in this Clause. The interface consists of three functions: one for initialising the KSG, one to generate the H, Q, and P values needed in the 256-AEAD1 algorithm, and one function to generate the keystream symbols. In the specifications for ZUC-256 and for AES ([5]) and for Snow 5G ([6]), the implementation of the KSG interface is specified for each algorithm.
[bookmark: _Toc149894028][bookmark: _Toc163050206][bookmark: _Toc163825746][bookmark: _Toc178091575]4.4.2	KSG.Initialise
Purpose: This interface takes two inputs, the KEY and the IV, and initialises the KSG. Initialisation of the KSG typically amounts to initialising the internal state that needs to be retained. It returns no output.
Table 4.4.2-1: Inputs to the KSG.Initialise interface
	[bookmark: _MCCTEMPBM_CRPT38190046___4]Parameter
	Type
	Size [bits]
	Comment

	KEY
	[bookmark: _MCCTEMPBM_CRPT38190047___4]{ ℕ8 }32
	[bookmark: _MCCTEMPBM_CRPT38190048___4]256
	Security key. Array of 32 bytes. Could be the Cipher Key (CK) or the Integrity Key (IK) or a common key for the NCA mode.

	IV
	[bookmark: _MCCTEMPBM_CRPT38190049___4]{ ℕ8 }16
	[bookmark: _MCCTEMPBM_CRPT38190050___4]128
	Initialization Value. Array of 16 bytes, initialized according to Clause 5.1.

[bookmark: _Toc149894029]
[bookmark: _Toc163050207][bookmark: _Toc163825747][bookmark: _Toc178091576]4.4.3	KSG.GenerateHQP
Purpose: Generate the three secret 128-bit values H, Q, and P used in the integrity protection functions 256-NIAx and the combined functions 256-NCAx.
This interface does not take any input values, but simply generates the three requested byte arrays. This interface function shall only be called once, directly after a preceding call to KSG.Initialise.
Table 4.4.3-1: Return values from the KSG.GenerateHQP interface
	[bookmark: _MCCTEMPBM_CRPT38190051___4]Return Value
	Type
	Size [bits]
	Comment

	H
	[bookmark: _MCCTEMPBM_CRPT38190052___4]{ ℕ8 }16
	[bookmark: _MCCTEMPBM_CRPT38190053___4]128
	The secret point in which the polynomial will be evaluated.

	Q
	[bookmark: _MCCTEMPBM_CRPT38190054___4]{ ℕ8 }16
	[bookmark: _MCCTEMPBM_CRPT38190055___4]128
	The secret truncation key.

	P
	[bookmark: _MCCTEMPBM_CRPT38190056___4]{ ℕ8 }16
	[bookmark: _MCCTEMPBM_CRPT38190057___4]128
	The final masking of the tag.

[bookmark: _Toc149894030]
[bookmark: _Toc163050208][bookmark: _Toc163825748][bookmark: _Toc178091577]4.4.4	KSG.Keystream
Purpose: Generates a keystream array of 16 bytes.
This interface does not take any input arguments, but simply generates the keystream array. A call to this interface shall be proceeded by a call to KSG.Initialise and possibly a single call to KSG.GenerateHQP. KSG.Keystream shall be called as many times as needed to produce the required quantity of keystreams.
Table 4.4.4-1: Inputs to the Key Stream Generator
	[bookmark: _MCCTEMPBM_CRPT38190058___4]Return Value
	Type
	Size [bits]
	Comment

	Z
	[bookmark: _MCCTEMPBM_CRPT38190059___4]{ ℕ8 }16
	[bookmark: _MCCTEMPBM_CRPT38190060___4]128
	The keystream.

[bookmark: _Toc149894031][bookmark: _Toc163050209][bookmark: _Toc163825749][bookmark: _Toc178091578]4.5	128-bit key usage
3GPP anticipates that there might be situations where the 256-bit algorithms defined in the present document will be used with only a 128-bit key. In such a case, the 256-bit key is formed by simply extending the 128-bit key with zeros. In a byte array setting, this means that the lowest index array elements of the 256-bit key are given the value of the corresponding bytes from the 128-bit key array, Key256[0…15] = Key128[0…15]. The upper index elements are set to zero, Key256[16…31] = {0}.
NOTE: 	The present document currently only allows 256-bit key size. If specifications, would permit the usage of 128-bit keys, the flag LK (Legacy Key size) in the IV constructed Clause 4.3 is set to 1 in all instances and invocations using 128-bit keys, to avoid initial state collisions.
[bookmark: _Toc149894032][bookmark: _Toc163050210][bookmark: _Toc163825750][bookmark: _Toc178091579]5	Authenticated Encryption 256-AEAD1
[bookmark: _Toc178071190][bookmark: _Toc178091580][bookmark: _Toc149894033][bookmark: _Toc163050211][bookmark: _Toc163825751]5.1	Introductory Information
[bookmark: _Toc178071191][bookmark: _Toc178091581]5.1.1	Introduction
[bookmark: _Hlk178078932]The 256-AEAD1 algorithm can be used as a pure encryption algorithm, a pure integrity protection algorithm, or combined into a so-called Authenticated Encryption with Additional Data (AEAD) algorithm. The benefit of using the AEAD mode is that implementations can do keystream generation and integrity protection in parallel, thereby increasing the overall speed of the security layer of the communication. In the 256-AEAD1 algorithm, the integrity protection tag is calculated over the ciphertext, an order which is often referred to as Encrypt-then-MAC (EtM). In the context of current (5G) protocols in 3GPP, this increasing speed cannot be utilised since the protocols due to legacy have adopted the opposite order and calculate the integrity protection tag over the plaintext (MAC-then-Encrypt, MtE). The combined AEAD operation can be considered as something that could potentially be adopted by 3GPP.
The 256-AEAD1 algorithm is based on the AES-GCM ([8]) construction with some important differences. The Figure 5.1.1-1 gives a schematic overview of the 256-AEAD1 algorithm.

[image:]
Figure 5.1.1-1: Overview of 256-AEAD1 and the relation to 256-NEA4/5/6 and 256-NIA4/5/6
The upper/right part relates to the implementation of 256-NEA4/5/6. This is a normal stream cipher, producing the ciphertext as the XOR of the plaintext together with the keystream symbols 𝑧i.
The lower/left part relates to 256-NIA4/5/6. Similarly to AES-GCM ([8]), the ciphertext output words are treated as coefficients in a polynomial over 𝐺𝐹(2128), which is evaluated at a secret point 𝐻. The main schematic difference is that 256-AEAD1 uses an additional secret point 𝑄, which is multiplied in the last step, before the masking with the secret value 𝑃. The other implementational disparity from AES-GCM is that the multiplication with 𝐻 is reduced modulo a different polynomial, which is taken from the POLYVAL ([9]) construction. The mathematical details can be found in Annex A.
[bookmark: _Toc178071192][bookmark: _Toc178091582]5.1.2	Notation
The notation and conventions on bit order are described in Clause 4.2 of the present document.
[bookmark: _Toc178071193][bookmark: _Toc178091583]5.2	Authenticated Encryption Construction 256-AEAD1
[bookmark: _Toc178071194][bookmark: _Toc178091584]5.2.1	Inputs and Outputs
The inputs of the algorithm are given by below Table 5.2.1-1.
Table 5.2.1-1: 256-AEAD1 Inputs
	Parameter
	Type
	Size (bits)
	Comment

	KEY
	{ ℕ8}32
	256
	Security key for authenticated encryption. Array of 32 bytes.

	IV
	{ ℕ8}16
	128
	Initialisation Vector for authenticated encryption. Array of 16 bytes.

	KSG
	Keystream generator
	N/A
	The underlying keystream generator used for encryption and authentication. This KSG adheres to the functionality described in Clause 4.4.

	MODE
	ℕ1
	1
	0 = Encrypt, 1 = Decrypt

	MAC_BYTES
	ℕ5
	5
	Length of output MAC in bytes; maximum supported value is 16. If MAC_BYTES == 0, then no authentication or verification is done.

	AAD
	{ ℕ8 }*
	Smallest multiple of 8, large enough to hold AAD_LENGTH bits.
	Array of bytes containing additional authenticated data of length defined by the next parameter.

	AAD_LENGTH
	ℕ32
	32
	The number of bits of additional authenticated data. This is the actual number of bits, without padding to full byte.

	IBS
	{ ℕ8 }*
	Smallest multiple of 8, large enough to hold S_LENGTH bits.
	Input Bit Stream. Array of bytes containing the input bit stream of length defined by the next parameter.

	S_LENGTH
	ℕ32
	32
	Stream Length. The number of bits of data to be encrypted/decrypted. This is the actual number of bits, without padding to the full byte.

The outputs of the algorithm are given by below Table 5.2.1-2.
Table 5.2.1-2: 256-AEAD1 Outputs
	Parameter
	Type
	Size (bits)
	Comment

	OBS
	{ ℕ8 }*
	Smallest multiple of 8, large enough to hold S_LENGTH bits.
	Output Bit Stream. Array of bytes containing the output bit stream of length defined by the S_LENGTH parameter. Any additional bits in the last byte will be set to zero.

	MAC
	{ ℕ8 }MAC_BYTES
	8 MAC_BYTES
	Array of bytes containing the message authentication code.

[bookmark: _Toc178071195][bookmark: _Toc178091585]5.2.2	Algorithmic description
This algorithm utilises a generic stream cipher that conforms to the KSG Interface described in Clause 4.4 of the present document. The functions ClearBits, Mac5G.Update, and Mac5G.Final are described below in Clause 5.2.3.
The 256-AEAD1 algorithm:
	1: 		procedure 256-AEAD1() := {
	2: 		KSG.Initialise(Key, IV)
	3: 		if MAC_BYTES > 0 then [H, Q, P] = KSG.GenerateHQP()
	4: 		if S_LENGTH > 0 then
	5: 			let S_BYTES : ℕ32 = [S_LENGTH / 8]						# Number of bytes in IBS
	6: 			for I in 0…S_BYTES – 1 do
	7: 				if (i mod 16) == 0 then ks = KSG.Keystream()
	8: 				OBS[i] = IBS[i] ⊕ ks[i mod 16]
	9: 			endfor
	10: 		# Unused bits (towards lsb) in the last byte are set to zero.
	11: 		OBS[S_BYTES – 1] = ClearBits(OBS[S_BYTES – 1], S_LENGTH)
	12: 	endif
	13: 	if MAC_BYTES > 0 then
	14: 		let A : {ℕ8}16 = {0}16 											# A byte array of 16 bytes, all set to zero
	15: 		if AAD_LENGTH > 0 then
	16: 			let AAD_BYTES : ℕ32 = [AAD_LENGTH / 8] 	 		# Number of bytes in AAD
	17: 			# Unused bits (towards lsb) in the last byte are set to zero.
	18: 			AAD[AAD_BYTES – 1] = ClearBits(AAD[AAD_BYTES – 1], AAD_LENGTH)
	19: 			A = Mac5G.Update(H, A, AAD, AAD_BYTES)
	20: 		endif
	21: 		if MODE == 0 then 												# Pick the stream containing the ciphertext
	22: 			A = Mac5G.Update(H, A, OBS, S_BYTES)
	23: 		else
	24: 			A = Mac5G.Update(H, A, IBS, S_BYTES)
	25: 		endif
	26: 		A = Mac5G.Final(Q, A, P, AAD_LENGTH, S_LENGTH)
	27: 		for i in 0…MAC_BYTES – 1 do # Truncate to the correct number of bytes
	28: 			MAC[i] = A[i]
	29: 		endfor
	30: 	endif
	31: 	}

[bookmark: _Toc178071196][bookmark: _Toc178091586]5.2.3	Functions used in 256-AEAD1
[bookmark: _Toc178071197]5.2.3.1	General
It is not mandatory to implement the functions in this clause as separate entities, and the APIs for these functions are not normative. For optimisation purposes, these functions can be incorporated into the main 256-AEAD1 procedure and/or implemented in more efficient ways.
[bookmark: _Toc178071198]5.2.3.2	ClearBits
ClearBits is a function to clear (set to zero) the correct number of bits in the last byte of the stream. If s is a multiple of 8, then all bits in the last byte are active.
ClearBits: (ℕ8,ℕ32) → ℕ8
(𝑏, 𝑠) → ClearBits(𝑏, 𝑠)
Where:
1: 		function ClearBits(b,s) := {
2: 		let bitpad : {ℕ8}8 = {0xFF, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE}
3: 		return b & bitpad[s mod 8]
4: 		}
[bookmark: _Toc178071199]5.2.3.3	pdot
pdot is a function used to calculate (𝐴 𝐵 x -128) mod (𝑥128 + 𝑥127 + 𝑥126 + 𝑥121 + 1). The two byte-arrays, 𝐴 and 𝐵, are interpreted as elements in 𝐺𝐹(2128). The general element of 𝐺𝐹(2128) as 𝑐127𝑥127 + 𝑐126𝑥126 …𝑐1𝑥1 + 𝑐0𝑥0 can be mapped such that the least significant bit of A[0] is mapped to the 𝑐0 coefficient, and the most significant bit of A[0] is mapped to 𝑐7. Continuing in this fashion such that the least significant bit of A[15] is mapped to 𝑐120 and the most significant bit of A[15] is mapped to 𝑐127. Then the product 𝐴 ∗ 𝐵 ∗ 𝑥 -128 is calculated and reduced modulo the generating polynomial 𝑥128 + 𝑥127 + 𝑥126 + 𝑥121 + 1. The resulting element in 𝐺𝐹(2128) is then interpreted as a byte-array 𝑅 using the same mapping; the coefficient of 𝑥127 becomes the most significant bit in R[15] all the way down to the coefficient of 𝑥0 becoming the least significant bit of R[0]. In the following informative example implementation, it is assumed a word size of 64 bits, but other sizes are possible.
pdot: 		({ℕ8}16, {ℕ8}16) → {ℕ8}16
(A, B) → pdot(A, B)
Where,
	1: 		function pdot(A,B) := {
	2: 		let 𝑟0 ∶ ℕ64 = 0, 𝑟, ∶ ℕ64 = 0
	3: 		# 𝑏0 and 𝑏, are constructed from the B byte array in Little Endian style.
	4: 		# B[0] and B[8] become the least significant bytes of the two 64-bit words.
	5: 		let 𝑏0: ℕ64 = 𝐵[7] ∥ 𝐵[6] ∥ ⋯ ∥ 𝐵[0]
	6: 		let 𝑏1: ℕ64 = 𝐵[15] ∥ 𝐵[14] ∥ ⋯ ∥ 𝐵[8]
	7: 		for byte_idx in 0…15 do
	8: 			for bit_idx in 0…7 do
	9: 				if (A[byte_idx] ≫8 bit_idx) & 0x1 == 1 then
	10: 				𝑟0 = 𝑟0 ⊕𝑏0
	11: 				𝑟1 = 𝑟1 ⊕𝑏1
	12: 			endif
	13: 			let 𝑟𝑒𝑑𝑐 ∶ {ℕ64} = 0
	14: 			if (𝑟0 & 1) == 1 then 𝑟𝑒𝑑𝑐 = 0𝑥𝐸100000000000000
	15: 			𝑟0 = (𝑟0 ≫64 1)⊕(𝑟1 ≪64 63)
	16: 			𝑟1 = (𝑟1 ≫64 1)⊕𝑟𝑒𝑑𝑐
	17: 		endfor
	18: 	endfor
	19: 	# return a byte array R where R[0] is the least significant byte of 𝑟0
	20: 	# and R[15] is the most significant byte of 𝑟,
	21: 	let R : {ℕ𝟖}𝟏𝟔 = ByteArray_LittleEndian((𝑟1 ≪128 64)⊕𝑟0)
	22: 	return R
	23: 	}

The implementation above can be explained as follows. Let the polynomial 𝐴(𝑥) be 𝑎127𝑥127 + 𝑎126𝑥126 …𝑎1𝑥1 + 𝑎0𝑥0, let the polynomial 𝐵(𝑥) be 𝑏127𝑥127 + 𝑏126𝑥126 …𝑏1𝑥1 + 𝑏0𝑥0, let the generating polynomial 𝐺(𝑥) be 𝑥128 + 𝑥127 + 𝑥126 + 𝑥121 + 1 as mentioned above, and initialise the polynomial 𝑅(𝑥) = 𝑟127𝑥127 + 𝑟126𝑥126 …𝑟1𝑥1 + 𝑟0𝑥0 to zero. Then the following should be done:
	for i in 0…127 do
		𝑅(𝑥) = 𝑅(𝑥) + 𝑎i . 𝐵(𝑥)
		𝑅(𝑥) = 𝑥 -1 . 𝑅(𝑥) mod 𝐺(𝑥)
	endfor
[bookmark: _Toc178071200]5.2.3.4	Mac5G.Update
Function used to update the MAC value during computation. The current MAC value is stored in A and returned to the caller.
Mac5G.Update: 		({ℕ8}16, {ℕ8}16, {ℕ8}∗, ℕ32) → {ℕ8}16
(H, A, DATA, D_BYTES) → Mac5G.Update(H, A, DATA, D_BYTES)
Where,
	1: 		function Mac5G.Update(H, A, DATA, D_BYTES) := {
	2: 		let didx : ℕ32 = 0
	3: 		while D_BYTES >= 16 do
	4: 			for i in 0…15 do
	5: 				A[i] = A[i] ⊕ DATA[didx + i]
	6: 			endfor
	7: 			didx = didx + 16
	8: 			A = pdot(A, H)
	9: 			D_BYTES = D_BYTES–- 16
	10: 	endwhile
	11: 	if D_BYTES > 0 then 								# If D_BYTES is not a multiple of 16
	12: 		for i in 0…D_BYTES-1 do
	13: 			A[i] = A[i] ⊕ DATA[didx + i]
	14: 		endfor
	15: 		A = pdot(A, H)
	16: 	endif
	17: 	return A
	18: 	}

[bookmark: _Toc178071201]5.2.3.5	Mac5G.Final
This function is used to finalise the MAC computation by incorporating the length of the AAD bitstream and the encrypted bitstream, both given in number of bits. The final MAC value is masked with the P variable and returned untruncated.
Mac5G.Final: 		({ℕ8}16, {ℕ8}16, {ℕ8}16, ℕ32, ℕ32) → {ℕ8}16
(Q, A, P, A_LEN, S_LEN)→ Mac5G.Final(Q, A, P, A_LEN, S_LEN)
Where,
	1: 		function Mac5G.Final(Q, A, P, A_LEN, S_LEN) := {
	2: 		let mac_len : {ℕ8}16 = {0}16 						# A byte array of 16 bytes, all set to zero
	3: 									# Little endian encoding of the 4-bytes integers A_LEN and S_LEN into mac_len.
	4: 		mac_len[0…3] = {S_LEN0, S_LEN1, S_LEN2, S_LEN3 }
	5: 		mac_len[8..11] = {A_LEN0, A_LEN1, A_LEN2, A_LEN3}
	6: 		A = A ⊕ mac_len 											# XOR of all 16 elements
	7: 		A = pdot(A, Q)
	8: 		A = A ⊕ P 													# XOR of all 16 elements
	9: 		return A
	10: 	}
[bookmark: _Toc149894042][bookmark: _Toc163050220][bookmark: _Toc163825761][bookmark: _Toc178091587]6	Specification of the ZUC-256 Algorithm
[bookmark: _Toc149894043][bookmark: _Toc163050221][bookmark: _Toc163825762][bookmark: _Toc178091588]6.1	Introductory Information
[bookmark: _Toc149894044][bookmark: _Toc163050222][bookmark: _Toc163825763][bookmark: _Toc178091589]6.1.1	Introduction
[bookmark: _MCCTEMPBM_CRPT38190112___7]At its core, ZUC-256 is the same algorithm as ZUC-128 ([19]). The differences lie in the Key/IV-loading scheme and the initialisation. A new Key/IV-loading scheme has been described by the original ZUC designers in ([20], [21]). In this new KEY/IV-loading scheme, the number of initialisation rounds is 32+1, unchanged from ZUC-128. Due to recent attacks ([22], [23]) on the initialisation phase, 3GPP believes that this number of initialisation rounds provides too little security margin, and hence the present document defines as a parameter (𝑃) the number of initialisation rounds that shall be used. The original ZUC-256 scheme uses 𝑃 = 32, whereas 3GPP in the present document recommends 𝑃 = 48. It will be up to the receiving standardisation body to finally define the value of 𝑃 to best fit their purpose and acceptable security margins.
[bookmark: _Toc149894045][bookmark: _Toc163050223][bookmark: _Toc163825764][bookmark: _Toc178091590]6.1.2	Notation
The notation and conventions on bit order are described in Clause 4.2 of the present document. In addition, the following two notations are used in the present document:
	[bookmark: _MCCTEMPBM_CRPT38190113___4]αH
	The 16 most significant bits of the integer α.

	[bookmark: _MCCTEMPBM_CRPT38190114___4]αL
	The 16 least significant bits of the integer α.

[bookmark: _Toc149894046][bookmark: _Toc163050224][bookmark: _Toc163825765][bookmark: _Toc178091591]6.2	Algorithmic description of ZUC-256
[bookmark: _Toc149894047][bookmark: _Toc163050225][bookmark: _Toc163825766][bookmark: _Toc178091592]6.2.1	General
As previously pointed out, the core of ZUC-256 is exactly the same as ZUC-128. Figure 6.2.1-1 gives an overview of the algorithm. The top layer is a linear feedback shift register (LFSR) of 16 stages, the middle layer is for bit-reorganization (BR), and the bottom layer is a nonlinear function F.
[image: A diagram of a machine

Description automatically generated]
Figure 6.2.1-1: General structure of ZUC-256
[bookmark: _Toc149894048][bookmark: _Toc163050226][bookmark: _Toc163825767][bookmark: _Toc178091593]6.2.2	The linear feedback shift register (LFSR)
[bookmark: _MCCTEMPBM_CRPT38190115___7]The linear feedback shift register has sixteen 31-bit cells (𝑠0, 𝑠1,…, 𝑠15). Each cell 𝑠𝑖, 0 ≤ 𝑖 ≤ 15, is restricted to take values from the following set:
Ñ31 = ℕ31\{0} = {1,2,3,…, 232 − 1}.
The LFSR has 2 modes of operation: the initialisation mode and the working mode.
[bookmark: _MCCTEMPBM_CRPT38190116___7]In the initialisation mode, the LFSR receives a 31-bit input word 𝑢 ∈ ℕ31, which is obtained by removing the least significant bit from the 32-bit output 𝑊 of the nonlinear function F, i.e., 𝑢 =𝑊 ≫32 1.
More specifically, the initialisation mode works as follows:
LFSR Update algorithm during initialisation:
[bookmark: _MCCTEMPBM_CRPT38190117___7]	1: 		procedure LFSRWithInitialisationMode(𝑢 ∶ ℕ31)
	2: 		𝑣 = 215𝑠15 + 217𝑠13 + 221𝑠10 + 220𝑠4 + (1 + 28)𝑠0 𝑚𝑜𝑑 (231 − 1)
	3: 		𝑡𝑚𝑝 = (𝑣 + 𝑢) 𝑚𝑜𝑑 (231 − 1)
	4: 		if 𝑡𝑚𝑝 == 0 then 𝑡𝑚𝑝 = 231 − 1
	5: 		(𝑠0, 𝑠1,…, 𝑠14, 𝑠15) = (𝑠1, 𝑠2,…, 𝑠15, 𝑡𝑚𝑝) 						# shift towards lower index
In the working mode, the LFSR does not receive any input, and it works as follows:
LFSR Update algorithm during work:
	1: procedure LFSRWithWorkMode()
[bookmark: _MCCTEMPBM_CRPT38190119___7]	2: 𝑡𝑚𝑝 = 215𝑠15 + 217𝑠13 + 221𝑠10 + 220𝑠4 + (1 + 28)𝑠0 𝑚𝑜𝑑 (231 − 1)
	3: if 𝑡𝑚𝑝 == 0 then 𝑡𝑚𝑝 = 231 − 1
	4: (𝑠0, 𝑠1,…, 𝑠14, 𝑠15) = (𝑠1, 𝑠2,…, 𝑠15, 𝑡𝑚𝑝) 						# shift towards lower index
[bookmark: _MCCTEMPBM_CRPT38190120___5]
[bookmark: _MCCTEMPBM_CRPT38190121___7]NOTE 1: 	Since the multiplication of a 31-bit integer 𝑠 by 2i over 𝐺𝐹(231 − 1) can be implemented by a cyclic shift of 𝑠 to the left by 𝑖 bits, only addition modulo 231 − 1 is needed in step 2 of the above procedures. More precisely, step 2 of LFSRWithInitialisationMode can be implemented by:
[bookmark: _MCCTEMPBM_CRPT38190122___7]	𝑣 = (𝑠15 ⋘31 15) + (𝑠13 ⋘31 17) + (𝑠10 ⋘31 21) + (𝑠4 ⋘31 20) + (𝑠0 ⋘31 8)
	+ 𝑠0 𝑚𝑜𝑑 (231 − 1)
and similarly for step 2 in LFSRWithWorkMode.
[bookmark: _MCCTEMPBM_CRPT38190123___7]NOTE 2:	 For two elements 𝑎, 𝑏 over GF(231 − 1), the computation of 𝑣 = 𝑎 + 𝑏 𝑚𝑜𝑑 (231 − 1) involves two steps: (1) compute 𝑣 = 𝑎 + 𝑏; and (2) if the carry bit is 1, then set 𝑣 = 𝑣 + 1. Alternatively (and better if the implementation should resist possible timing attacks): compute 𝑤 = 𝑎 + 𝑏 where 𝑤 ∈ ℕ32(and (2) set 𝑣 = (least significant 31 bits of 𝑤) + (most significant bit of 𝑤).
[bookmark: _Toc149894049][bookmark: _Toc163050227][bookmark: _Toc163825768][bookmark: _Toc178091594]6.2.3	The bit-reorganisation
[bookmark: _MCCTEMPBM_CRPT38190124___7]The middle layer of the algorithm is the bit-reorganisation. It extracts 128 bits from the cells of the LFSR and forms four 32-bit words, where the first three words will be used by the nonlinear function F in the bottom layer, and the last word will be involved in producing the keystream 𝑧.
Recall the notation 𝑠H (and 𝑠L) to denote the 16 most (least) significant bits of a cell 𝑠. The bitreorganisation forms four 32-bit words 𝑋0, 𝑋1, 𝑋2, 𝑋3 from the eight cells 𝑠0, 𝑠2, 𝑠5, 𝑠7, 𝑠9, 𝑠11, 𝑠14, 𝑠15 of the LFSR as follows:
Bit-reorganisation

	1: 		procedure BitReorganisation()
[bookmark: _MCCTEMPBM_CRPT38190125___7]	2:	 	𝑋0 = 𝑠15H ∥ 𝑠14L
	3: 		𝑋1 = 𝑠11L ∥ 𝑠9H
	4: 		𝑋2 = 𝑠7L ∥ 𝑠5H
	5: 		𝑋3 = 𝑠2L ∥ 𝑠0H

[bookmark: _MCCTEMPBM_CRPT38190126___7]To be precise, the 16 most significant bits of 𝑠15 ∈ Ñ31 (which means bits 30…15) are concatenated with the 16 least significant bits of 𝑠14 ∈ Ñ31 to form the word 𝑋0 ∈ ℕ32. The bits from 𝑠15 form the most significant bits of 𝑋0. The 16 least significant bits of 𝑠11 ∈ Ñ31 (bits 15…0) are concatenated with the 16 most significant bits (bits 30…15) of 𝑠9 ∈ Ñ31 to form the word 𝑋1 ∈ ℕ32. The bits from 𝑠9 form the most significant bits of 𝑋1. Similarly for 𝑋2, 𝑋3.
[bookmark: _Toc149894050][bookmark: _Toc163050228][bookmark: _Toc163825769][bookmark: _Toc178091595]6.2.4	The nonlinear function F
[bookmark: _MCCTEMPBM_CRPT38190127___7]The nonlinear function F has two 32-bit memory cells 𝑅$, 𝑅(∈ ℕ'(. Let the inputs to F be 𝑋#, 𝑋$, 𝑋(∈ ℕ'(, which come from the outputs of the bit-reorganisation layer. Then the function F outputs a word 𝑊 ∈ ℕ'(. The detailed process of F is as follow:
The nonlinear function F:
[bookmark: _MCCTEMPBM_CRPT38190128___7]	1: 		procedure F(𝑋0, 𝑋1, 𝑋2:ℕ32) → ℕ32
	2: 		𝑊 = (𝑋0 ⊕𝑅1)⊞32 𝑅2
	3: 		𝐴 = 𝑅1 ⊞32 𝑋1 							# temporary variable A
	4: 		𝐵 = 𝑅2 ⊕𝑋2 								# temporary variable B
	5: 		𝑅1 = 𝑆(𝐿1(𝐴L ∥ 𝐵H)D
	6: 		𝑅2 = 𝑆(𝐿2(𝐵L ∥ 𝐴H)D
	7: 		return 𝑊

[bookmark: _MCCTEMPBM_CRPT38190129___7]where 𝑆 is a 32 × 32 SBox (see Clause 6.2.5), and 𝐿1 and 𝐿2 are linear transformations as defined in Clause 6.2.6.
[bookmark: _Toc149894051][bookmark: _Toc163050229][bookmark: _Toc163825770][bookmark: _Toc178091596]6.2.5	The SBox
[bookmark: _MCCTEMPBM_CRPT38190130___7]The 32 × 32 SBox 𝑆 is composed of 4 juxtaposed 8 × 8 SBoxes, i.e., 𝑆 = (𝑆0, 𝑆1, 𝑆2, 𝑆3), where 𝑆0 = 𝑆2 and 𝑆1 = 𝑆3. The definitions of 𝑆0 and 𝑆1 can be found in Figures 6.2.5-1 and 6.2.5-2 respectively.
Let 𝑥 ∈ ℕ8 be an input to 𝑆0 (or 𝑆1). Write 𝑥 into two hexadecimal digits as 𝑥 = ℎ ∥ 𝑙, then the entry at the intersection of the ℎ-th row and the 𝑙-th column in Figure 6.2.5-1 (or Figure 6.2.5-2) is the output of 𝑆0 (or 𝑆1). For example, 𝑆0(0𝑥12) = 0𝑥𝐹9 and 𝑆1(0𝑥34) = 0𝑥𝐶0.
For the full 32-bit input, split the input 𝑋 and output 𝑌 into bytes
	𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3), 𝑥i ∈ ℕ,
	𝑌 = (𝑦0, 𝑦1, 𝑦2, 𝑦3), 𝑦i ∈ ℕ,
[bookmark: _MCCTEMPBM_CRPT38190131___7]The juxtaposed SBox is then computed as 𝑦i = 𝑆i(𝑥i), 𝑖 = 0…3.
For example, let 𝑋 = 0𝑥12345678, then calculate the output as:
	𝑌 = 𝑆(0𝑥12345678) = 𝑆0(0𝑥12) ∥ 𝑆1(0𝑥34) ∥ 𝑆2(0𝑥56) ∥ 𝑆3(0𝑥78) = 0𝑥𝐹9𝐶05𝐴4𝐸.
[bookmark: _MCCTEMPBM_CRPT38190132___4][image: A grid of numbers and letters

Description automatically generated]
Figure 6.2.5-1: The SBox S0

[bookmark: _MCCTEMPBM_CRPT38190133___4][image: A grid of numbers and letters

Description automatically generated]
Figure 6.2.5-2: The SBox S1
[bookmark: _Toc149894052][bookmark: _Toc163050230][bookmark: _Toc163825771][bookmark: _Toc178091597]6.2.6	The linear transforms L1 and L2
[bookmark: _MCCTEMPBM_CRPT38190134___7]Both 𝐿1 and 𝐿2 are linear transformations ℕ32 → ℕ32 and defined according to:
	𝐿1(𝑋) = 𝑋⊕(𝑋⋘32 2)⊕(𝑋⋘32 10)⊕(𝑋⋘32 18)⊕(𝑋⋘32 24)
	𝐿2(𝑋) = 𝑋⊕(𝑋⋘32 8)⊕(𝑋⋘32 14)⊕(𝑋⋘32 22)⊕(𝑋⋘32 30)
[bookmark: _Toc149894053][bookmark: _Toc163050231][bookmark: _Toc163825772][bookmark: _Toc178091598]6.2.7	The Key/IV-loading
[bookmark: _MCCTEMPBM_CRPT38190135___7]The key and IV loading will expand a 256-bit key and 128-bit IV into the 16 cells of 31-bit integers as the initial state of the LFSR. Let the byte array 𝐾: {N8}32 be the byte array of key material and let 𝐼𝑉: {ℕ8}32 be the byte array of the initialisation vector. The initialisation also utilises an array of 7-bit constants, called 𝑑i:ℕ7 , 0 ≤ 𝑖 ≤ 15. The values of 𝑑& are the binary expansion of the constant 𝜋 including the integer part.
											𝑑0 	= 	1100100 (0𝑥64)
											𝑑1 	= 	1000011 (0𝑥43)
											𝑑2 	= 	1111011 (0𝑥7𝑏)
											𝑑3 	= 	0101010 (0𝑥2𝑎)
											𝑑4 	= 	0010001 (0𝑥11)
											𝑑5 	= 	0000101 (0𝑥05)
											𝑑6 	= 	1010001 (0𝑥51)
											𝑑7 	= 	1000010 (0𝑥42)
											𝑑8 	= 	0011010 (0𝑥1𝑎)
											𝑑9 	= 	0110001 (0𝑥31)
											𝑑10 = 	0011000 (0𝑥18)
											𝑑11 = 	1100110 (0𝑥66)
											𝑑12 = 	0010100 (0𝑥14)
											𝑑13 = 	0101110 (0𝑥2𝑒)
											𝑑14 = 	0000001 (0𝑥01)
											𝑑15 = 	1011100 (0𝑥5𝑐)

The 31-bit cells in the LFSR are now initialised according to:
[bookmark: _MCCTEMPBM_CRPT38190136___7]
[bookmark: _MCCTEMPBM_CRPT38190137___7]										𝑠0 	= 	𝐾0 	∥ 	𝑑0 	∥ 	𝐾16 ∥ 	𝐾24
										𝑠1 	= 	𝐾1 	∥ 	𝑑1 	∥ 	𝐾17 ∥ 	𝐾25
										𝑠2 	= 	𝐾2 	∥ 	𝑑2 	∥ 	𝐾18 ∥ 	𝐾26
										𝑠3 	=	𝐾3 	∥ 	𝑑3 	∥ 	𝐾19 ∥ 	𝐾27
										𝑠4 	= 	𝐾4 	∥ 	𝑑4 	∥ 	𝐾20 ∥ 	𝐾28
										𝑠5 	= 	𝐾5 	∥ 	𝑑5 	∥ 	𝐾21 ∥ 	𝐾29
										𝑠6 	= 	𝐾6 	∥ 	𝑑6 	∥ 	𝐾22 ∥ 	𝐾30
										𝑠7 	= 	𝐾7 	∥ 	𝑑7 	∥ 	𝐼𝑉0 ∥ 	𝐼𝑉8
										𝑠8 	= 	𝐾8 	∥ 	𝑑8 	∥ 	𝐼𝑉1 ∥ 	𝐼𝑉9
										𝑠9 	= 	𝐾9 	∥ 	𝑑9 	∥ 	𝐼𝑉2 ∥ 	𝐼𝑉10
										𝑠10	 = 	𝐾10 ∥ 	𝑑10 ∥ 	𝐼𝑉3 ∥ 	𝐼𝑉11
										𝑠11 	= 	𝐾11 ∥ 	𝑑11 ∥ 	𝐼𝑉4 ∥ 	𝐼𝑉12
										𝑠12 	= 	𝐾12 ∥ 	𝑑12 ∥ 	𝐼𝑉5 ∥ 	𝐼𝑉13
										𝑠13 	= 	𝐾13 ∥ 	𝑑13 ∥ 	𝐼𝑉6 ∥ 	𝐼𝑉14
										𝑠14 	= 	𝐾14 ∥ 	𝑑14 ∥ 	𝐼𝑉7 ∥ 	𝐼𝑉15
										𝑠15 	= 	𝐾15 ∥ 	𝑑15 ∥	𝐾23 ∥ 	𝐾31

[bookmark: _MCCTEMPBM_CRPT38190138___7]where 𝐾0 becomes the most significant bits of 𝑠0, and so on.
[bookmark: _Toc149894054][bookmark: _Toc163050232][bookmark: _Toc163825773][bookmark: _Toc178091599]6.2.8	The operation of ZUC-256
Two procedures of ZUC-256 can be specified, namely the initialisation procedure and the key generation procedure. The initialisation procedure takes the two byte arrays KEY and IV and runs a parametrised number P of initialisation rounds.
ZUC-256 Initialisation:
[bookmark: _MCCTEMPBM_CRPT38190139___7]	1: 		procedure ZUC256.Initialisation(𝐾𝐸𝑌 ∶ {ℕ8}32, 𝐼𝑉 ∶ {ℕ8}16)
	2: 		Map 𝐾𝐸𝑌and 𝐼𝑉 into the LFSR according to Clause 6.2.7.
	3: 		𝑅1 = 0, 𝑅2 = 0 										# Set registers to zero
	4: 		for r in 1…𝑃 do 										# P is the number of initialisation rounds.
[bookmark: _MCCTEMPBM_CRPT38190140___5]				3GPP recommends P=48.
	5: 			BitReorganisation () 								# See Clause 6.2.3
[bookmark: _MCCTEMPBM_CRPT38190141___7]	6: 			𝑊 ∶ ℕ32 = 𝐹(𝑋0, 𝑋1, 𝑋2) 							# See Clause 6.2.4
	7: 			LFSRWithInitialisationMode (𝑊 ≫32 1) 		# See Clause 6.2.5
[bookmark: _MCCTEMPBM_CRPT38190142___5]	8: 		endfor
	9: 		BitReorganisation()
[bookmark: _MCCTEMPBM_CRPT38190143___7]	10: 	𝐹(𝑋0, 𝑋1, 𝑋2) 											# Discard output from F
	11: 	LFSRWithWorkMode()
[bookmark: _MCCTEMPBM_CRPT38190144___7]For the working stage, ZUC-256 will produce a word 𝑍 ∈ ℕ32 as keystream output.
[bookmark: _MCCTEMPBM_CRPT38190145___5]ZUC-256 Keystream generation:

	1: 		procedure ZUC256.Keystream() → {ℕ8}4
	2: 		BitReorganisation()
[bookmark: _MCCTEMPBM_CRPT38190146___7]	3: 		𝑧 ∶ ℕ32 = 𝐹(𝑋0, 𝑋1, 𝑋2)⊕𝑋3
[bookmark: _MCCTEMPBM_CRPT38190147___5]	4: 		LFSRWithWorkMode()
[bookmark: _MCCTEMPBM_CRPT38190148___7]			𝑍 = {𝑧3, 𝑧2, 𝑧1, 𝑧0} where 𝑧 = (𝑧3, 𝑧2, 𝑧1, 𝑧0) 		# Big Endian conversion ℕ32 → {ℕ8}4
	5: 		return keystream array 𝑍
[bookmark: _MCCTEMPBM_CRPT38190149___5]
In summary, now the complete ZUC-256 cipher operational procedure can be described as:
ZUC-256 Operation:
[bookmark: _MCCTEMPBM_CRPT38190150___7]	1: 		procedure ZUC256(𝐾𝐸𝑌 ∶ {ℕ8}32, 𝐼𝑉12 ∶ {ℕ8}12) → {ℕ8}4∗
[bookmark: _MCCTEMPBM_CRPT38190151___5]	2: 		ZUC256.Initialisation(KEY, IV12)
	3: 		while more keystream symbols needed do
	4: 		Output ZUC256.Keystream()
The length of the output array is of course dependent on the number of needed keystream symbols, but will be a multiple of 4 bytes.

[bookmark: _Toc178091600]6.3	KeyStream Generator (KSG) Interface

[bookmark: _Toc178091601]6.3.0	General
To be able to use ZUC-256 in the 256-AEAD1 algorithm (see Document 2 of this specification), it needs to conform to the KSG interface. The KSG interface is described in Document 1. This section describes how to implement the three procedures using ZUC-256.

[bookmark: _Toc178091602]6.3.1	ZUC256.Initialise
This interface is implemented as a single call to the Initialisation procedure described in Clause 6.2.8.
ZUC256.Initialise interface implementation:

1: 	procedure Initialise(KEY, IV)
2: 	Initialisation(KEY, IV)

[bookmark: _Toc178091603]6.3.2	ZUC256.GenerateHQP
This interface is implemented as twelve consecutive calls to generate new keystream symbols.

ZUC256.GenerateHQP interface implementation:

1: 	procedure GenerateHQP()
2: 	ℎ0 = Keystream(), 							# Each output ℎi ∈ {ℕ8}4 is a 4-byte array.
ℎ1 = Keystream(),
ℎ2 = Keystream(),
ℎ3 = Keystream()
3: 	H = {ℎ0, ℎ1, ℎ2, ℎ3}
= {ℎ0[0], ℎ0[1], ℎ0[2], ℎ0[3], ℎ1[0],…, ℎ3[3] }		# Concatenate the 4-byte arrays into a 16-byte array
4: 	𝑞0 = Keystream(),
𝑞1 = Keystream(),
𝑞2 = Keystream(),
𝑞3 = Keystream()
5: 	Q = {𝑞0, 𝑞1, 𝑞2, 𝑞3}
6: 	𝑝0 = Keystream(),
𝑝1 = Keystream(),
𝑝2 = Keystream(),
𝑝3 = Keystream()
7: 	P = {𝑝0, 𝑝1, 𝑝2, 𝑝3}
8: return (H, Q, P)

[bookmark: _Toc178091604]6.3.2	ZUC256.Keystream

This interface is simply executing the keystream generation procedure four times to produce a 128-bit
output.

ZUC256.Keystream interface implementation:

1: 	procedure Keystream()
2: 	𝑧0 = Keystream(),
𝑧1 = Keystream(),
𝑧2 = Keystream(),
𝑧3 = Keystream()
3: Z = {𝑧0, 𝑧1, 𝑧2, 𝑧3}
4: return Z

[bookmark: _Toc149894055][bookmark: _Toc163050233][bookmark: _Toc163825774][bookmark: _Toc178091605]7	Specification of the 256-NxA4/5/6 Algorithms
[bookmark: _Toc163050234][bookmark: _Toc163825775][bookmark: _Toc149894056][bookmark: _Toc178091606]7.1	Confidentiality Algorithms 256-NEA4/5/6
[bookmark: _Toc149894057][bookmark: _Toc163050235][bookmark: _Toc163825776][bookmark: _Toc178091607]7.1.1	Inputs and Outputs
The confidentiality algorithms 256-NEA4/5/6 is a stream cipher that encrypts/decrypts blocks of data using the confidentiality key CK. The message shall be between 1 and (232 − 1) bits in length.
The inputs to the algorithm are given by below Table 7.1.1-1.
Table 7.1.1-1: 256-NEA4/5/6 Inputs
	[bookmark: _MCCTEMPBM_CRPT38190152___4]Parameter
	Type
	Size (bits)
	Comment

	COUNT-C
	[bookmark: _MCCTEMPBM_CRPT38190153___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190154___4]32
	Frame dependent input counter.

	BEARER
	[bookmark: _MCCTEMPBM_CRPT38190155___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190156___4]5
	Bearer identity.

	DIRECTION
	[bookmark: _MCCTEMPBM_CRPT38190157___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190158___4]1
	Direction of transmission.

	EXTRA_IV
	[bookmark: _MCCTEMPBM_CRPT38190159___4]{ ℕ8}6
	[bookmark: _MCCTEMPBM_CRPT38190160___4]48
	Extra entropy for future use.

	CK
	[bookmark: _MCCTEMPBM_CRPT38190161___4]{ ℕ8}32
	[bookmark: _MCCTEMPBM_CRPT38190162___4]256
	Confidentiality key. Array of 32 bytes.

	LENGTH
	[bookmark: _MCCTEMPBM_CRPT38190163___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190164___4]32
	The number of bits to be encrypted/decrypted. This is the actual number of bits, without padding to full byte.

	IBS
	[bookmark: _MCCTEMPBM_CRPT38190165___4]{ ℕ8 }*
	Smallest multiple of 8, large enough to hold LENGTH bits.
	Input Bit Stream. Array of bytes containing the input bit stream of length defined by the LENGTH parameter.

The outputs of the algorithm are given by below Table 7.1.1-2.
Table 7.1.1-2: 256-NEA4/5/6 Outputs
	[bookmark: _MCCTEMPBM_CRPT38190166___4]Parameter
	Type
	Size (bits)
	Comment

	OBS
	[bookmark: _MCCTEMPBM_CRPT38190167___4]{ ℕ8 }*
	Smallest multiple of 8, large enough to hold LENGTH bits.
	Output Bit Stream. Array of bytes containing the output bit stream of length defined by the LENGTH parameter. Any additional bits in the last byte will be set to zero.

[bookmark: _Toc149894058][bookmark: _Toc163050236][bookmark: _Toc163825777][bookmark: _Toc178091608]7.1.2	Components and Architecture
For 256-NEA6, the keystream generator is the ZUC-256, and for 256-NEA4 the keystream generator is Snow 5G described in ([6]) and for 256-NEA5, the keystream generator is the AES-256 described in ([5]). In all three cases, the operational procedure is based on the 256-AEAD1 algorithm specified in Clause 5 of the present document.
[bookmark: _Toc149894059][bookmark: _Toc163050237][bookmark: _Toc163825778][bookmark: _Toc178091609]7.1.3	Input Variable Mapping
In this clause it will be defined how the input variables to the 256-AEAD1 algorithm are constructed from the input variables of 256-NEA4/5/6 and other constants.
The mapping of the input variables is given by Table 7.1.3-1.
Table 7.1.3-1: Input variables mapping
	[bookmark: _MCCTEMPBM_CRPT38190168___4]256-AEAD1 Input Variable
	256-NEA4/5/6 Input Variable
	Other Constant

	KEY
	CK
	

	IV
	
	See Clause 7.1.5

	KSG
	
	= Snow 5G for 256-NEA4
= AES-256 for 256-NEA5
= ZUC-256 for 256-NEA6

	MODE
	
	= 0

	MAC_BYTES
	
	= 0

	AAD
	
	= { } The empty array

	AAD_LENGTH
	
	= 0

	IBS
	IBS
	

	S_LENGTH
	LENGTH
	

[bookmark: _Toc149894060][bookmark: _Toc163050238][bookmark: _Toc163825779][bookmark: _Toc178091610]7.1.4	Output Variable Mapping
In this clause it will be defined how the output of the 256-AEAD1 algorithm is mapped to the output of the 256-NEA4/5/6 algorithm.
The mapping of the output variables is given by Table 7.1.4-1.
Table 7.1.4-1: Output variables mapping
	[bookmark: _MCCTEMPBM_CRPT38190169___4]256-AEAD1 Output Variable
	256-NEA4/5/6 Output Variable
	Other Constant

	OBS
	OBS
	

[bookmark: _Toc149894061][bookmark: _Toc163050239][bookmark: _Toc163825780][bookmark: _Toc178091611]7.1.5	The IV Construction for the 256-NEA4/5/6
To construct the IV input variable to 256-AEAD1 the following values are used according to the Make_5GIV mapping defined in Clause 4.3.2 of the present document.
The Make_5GIV variables mapping for 256-NEA4/5/6 is given by Table 7.1.5-1.
Table 7.1.5-1: The Make_5GIV Variables mapping for 256-NEA4/5/6
	[bookmark: _MCCTEMPBM_CRPT38190170___4]Make_5GIV Input Variable
	256-NEA4/5/6 Input Variable
	Other Constant

	COUNT
	COUNT-C
	

	BEARER
	BEARER
	

	DIRECTION
	DIRECTION
	

	MAC_BYTES
	
	= 0

	CF
	
	= 0

	LK
	
	= 0

	AI
	
	= 0

	EXTRA_IV
	EXTRA_IV
	

[bookmark: _Toc149894062]
[bookmark: _Toc163050240][bookmark: _Toc163825781][bookmark: _Toc178091612]7.2	Integrity Algorithms 256-NIA4/5/6
[bookmark: _Toc163825782][bookmark: _Toc178091613]7.2.0	General
The integrity algorithms 256-NIA4/5/6 compute a Message Authentication Code (MAC) on an input message under an integrity key IK. The message shall be between 1 and (232 -1) bits in length.
[bookmark: _Toc149894063][bookmark: _Toc163050241][bookmark: _Toc163825783][bookmark: _Toc178091614]7.2.1	Inputs and Outputs
The inputs to the algorithm are given in Table 7.2.1-1.
Table 7.2.1-1: 256-NIA4/5/6 Inputs
	[bookmark: _MCCTEMPBM_CRPT38190171___4]Parameter
	Type
	Size (bits)
	Comment

	COUNT-I
	[bookmark: _MCCTEMPBM_CRPT38190172___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190173___4]32
	Frame dependent input counter.

	BEARER
	[bookmark: _MCCTEMPBM_CRPT38190174___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190175___4]5
	Bearer identity.

	DIRECTION
	[bookmark: _MCCTEMPBM_CRPT38190176___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190177___4]1
	Direction of transmission.

	EXTRA_IV
	[bookmark: _MCCTEMPBM_CRPT38190178___4]{ ℕ8}6
	[bookmark: _MCCTEMPBM_CRPT38190179___4]48
	Extra entropy for future use.

	IK
	[bookmark: _MCCTEMPBM_CRPT38190180___4]{ ℕ8}32
	[bookmark: _MCCTEMPBM_CRPT38190181___4]256
	Integrity key. Array of 32 bytes.

	LENGTH
	[bookmark: _MCCTEMPBM_CRPT38190182___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190183___4]32
	The number of bits to be encrypted/decrypted. This is the actual number of bits, without padding to full byte.

	MESSAGE
	[bookmark: _MCCTEMPBM_CRPT38190184___4]{ ℕ8 }*
	Smallest multiple of 8, large enough to hold LENGTH bits.
	Array of bytes containing the input bit stream of length defined by the LENGTH parameter.

	MAC_BYTES
	[bookmark: _MCCTEMPBM_CRPT38190185___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190186___4]5
	Length of the MAC tag in bytes. Allowed values are 4…16 inclusive.

The outputs of the algorithm are given by below Table 7.2.1-2.
Table 7.2.1-2: 256-NIA4/5/6 Outputs
	[bookmark: _MCCTEMPBM_CRPT38190187___4]Parameter
	Type
	Size (bits)
	Comment

	MAC-I
	[bookmark: _MCCTEMPBM_CRPT38190188___4]{ ℕ8 }MAC_BYTES
	[bookmark: _MCCTEMPBM_CRPT38190189___4]8 MAC_BYTES
	Array of bytes containing the MAC tag.

[bookmark: _Toc149894064][bookmark: _Toc163050242][bookmark: _Toc163825784][bookmark: _Toc178091615]7.2.2	Components and Architecture
For the 256-NIA6, the underlying keystream generator is ZUC-256 described in Clause 6, and for 256-NIA4 the underlying keystream generator is Snow 5G described in ([6]) and for 256-NIA5, the keystream generator is the AES-256 described in ([5]). In all three cases, the operational procedure is based on the 256-AEAD1 algorithm specified in Clause 5 of the present document.
[bookmark: _Toc149894065][bookmark: _Toc163050243][bookmark: _Toc163825785]7.2.3	Input Variable Mapping
The mapping of the input variables is given by Table 7.2.3-1.
Table 7.2.3-1: 256-NIA4/5/6 Inputs
	[bookmark: _MCCTEMPBM_CRPT38190190___4]256-AEAD3 Input Variable
	256-NIA4/5/6 Input Variable
	Other Constant

	KEY
	IK
	

	IV
	
	See Clause 7.2.5

	MODE
	
	= 0

	MAC_BYTES
	MAC_BYTES
	

	AAD
	MESSAGE
	

	AAD_LENGTH
	LENGTH
	

	IBS
	
	= { } The empty array

	S_LENGTH
	
	= 0

[bookmark: _Toc149894066][bookmark: _Toc163050244][bookmark: _Toc163825786][bookmark: _Toc178091616]7.2.4	Output Variable Mapping
In this clause it will be defined how the output of the 256-AEAD3 algorithm is mapped to the output of the 256-NEA4/5/6 algorithm.
The mapping of the output variables is given by Table 7.2.4-1.
Table 7.2.4-1: Output variables mapping
	[bookmark: _MCCTEMPBM_CRPT38190191___4]256-AEAD1 Output Variable
	256-NIA4/5/6 Output Variable
	Other Constant

	MAC-I
	MAC
	

NOTE: 	The current PDCP ([7]) specifies that the integrity check should be done on the plaintext message. To achieve that the MESSAGE should be fed to the 256-AEDA3 algorithm as pure Additional Authenticated Data (AAD). The S_LENGTH is equal to zero so no encryption / decryption will be performed.
[bookmark: _Toc149894067][bookmark: _Toc163050245][bookmark: _Toc163825787][bookmark: _Toc178091617]7.2.5	The IV Construction for the 256-NIA4/5/6
To construct the IV input variable to 256-AEAD1, the following values according to the Make_5GIV mapping defined in Clause 4.3.2 shall be used.
The Make_5GIV variables mapping for 256-NIA4/5/6 is given by Table 7.2.5-1.
Table 7.2.5-1: The Make_5GIV Variables mapping for 256-NIA4/5/6
	[bookmark: _MCCTEMPBM_CRPT38190192___4]Make_5GIV Input Variable
	256-NIA4/5/6 Input Variable
	Other Constant

	COUNT
	COUNT-I
	

	BEARER
	BEARER
	

	DIRECTION
	DIRECTION
	

	MAC_BYTES
	MAC_BYTES
	

	CF
	
	= 0

	LK
	
	= 0

	AI
	
	= 0

	EXTRA_IV
	EXTRA_IV
	

[bookmark: _Toc149894068][bookmark: _Toc163050246][bookmark: _Toc163825788][bookmark: _Toc178091618]7.3	Combined Algorithms 256-NCA4/5/6
[bookmark: _Toc163825789][bookmark: _Toc178091619]7.3.0	General
The algorithms 256-NCA4/5/6 combine ciphering and integrity protection using a single key. They also allow for additional authenticated data (AAD) which is not confidentiality protected, but only integrity protected. The additional authenticated data shall be between 0 and (232-1) bit in length, and the message that will be both confidentiality and integrity protected shall be between 0 and (232-1) bit in length.
NOTE: 	When decrypting, this algorithm will return the calculated MAC as well as the decrypted plaintext. The caller verifies the calculated MAC against the received MAC before processing the plaintext in any way. If the calculated MAC does not agree with the received MAC, the plaintext is discarded without further processing.
[bookmark: _Toc149894069][bookmark: _Toc163050247][bookmark: _Toc163825790][bookmark: _Toc178091620]7.3.1	Inputs and Outputs
The inputs to the algorithm are given in Table 7.3.1-1.
Table 7.3.1-1: 256-NCA4/5/6 Inputs
	[bookmark: _MCCTEMPBM_CRPT38190193___4]Parameter
	Type
	Size (bits)
	Comment

	COUNT
	[bookmark: _MCCTEMPBM_CRPT38190194___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190195___4]32
	Frame dependent input counter.

	BEARER
	[bookmark: _MCCTEMPBM_CRPT38190196___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190197___4]5
	Bearer identity.

	DIRECTION
	[bookmark: _MCCTEMPBM_CRPT38190198___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190199___4]1
	Direction of transmission.

	EXTRA_IV
	[bookmark: _MCCTEMPBM_CRPT38190200___4]{ ℕ8}6
	[bookmark: _MCCTEMPBM_CRPT38190201___4]48
	Extra entropy for the IV.

	KEY
	[bookmark: _MCCTEMPBM_CRPT38190202___4]{ ℕ8}32
	[bookmark: _MCCTEMPBM_CRPT38190203___4]256
	Security key for authenticated encryption. Array of 32 bytes.

	MODE
	[bookmark: _MCCTEMPBM_CRPT38190204___4]ℕ1
	[bookmark: _MCCTEMPBM_CRPT38190205___4]1
	= 0 for encryption
= 1 for decryption

	IBS
	[bookmark: _MCCTEMPBM_CRPT38190206___4]{ ℕ8 }*
	Smallest multiple of 8, large enough to hold S_LENGTH bits.
	Input Bit Stream. Array of bytes containing the input bit stream of length defined by the S_LENGTH parameter.

	S_LENGTH
	[bookmark: _MCCTEMPBM_CRPT38190207___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190208___4]32
	The number of bits to be encrypted/decrypted and authenticated. This is the actual number of bits, without padding to full byte.

	MAC_BYTES
	[bookmark: _MCCTEMPBM_CRPT38190209___4]ℕ5
	[bookmark: _MCCTEMPBM_CRPT38190210___4]5
	Length of the MAC tag in bytes. Allowed values are 4…16 inclusive.

	AAD
	[bookmark: _MCCTEMPBM_CRPT38190211___4]{ ℕ8 }*
	Smallest multiple of 8, large enough to hold AAD_LENGTH bits.
	Array of bytes containing additional authenticated data of length defined by the next parameter.

	AAD_LENGTH
	[bookmark: _MCCTEMPBM_CRPT38190212___4]ℕ32
	[bookmark: _MCCTEMPBM_CRPT38190213___4]32
	The number of bits of additional authenticated data. This is the actual number of bits, without padding to full byte.

The outputs of the algorithm are given by below Table 7.3.1-2.
Table 7.3.1-2: 256-NCA4/5/6 Outputs
	[bookmark: _MCCTEMPBM_CRPT38190214___4]Parameter
	Type
	Size (bits)
	Comment

	OBS
	[bookmark: _MCCTEMPBM_CRPT38190215___4]{ ℕ8 }*
	Smallest multiple of 8, large enough to hold S_LENGTH bits.
	Output Bit Stream. Array of bytes containing the output bit stream of length defined by the S_LENGTH parameter. Any additional bits in the last byte will be set to zero.

	MAC
	[bookmark: _MCCTEMPBM_CRPT38190216___4]{ ℕ8 }MAC_BYTES
	[bookmark: _MCCTEMPBM_CRPT38190217___4]8 MAC_BYTES
	Array of bytes containing the MAC tag.

[bookmark: _Toc149894070]
[bookmark: _Toc163050248][bookmark: _Toc163825791][bookmark: _Toc178091621]7.3.2	Components and Architecture
For the 256-NCA6, the underlaying keystream generator is ZUC-256, and for 256-NCA4 the underlaying keystream generator is Snow 5G described in [6] and for 256-NCA5, the keystream generator is the AES-256 described in ([5]). In all three cases, the operational procedure is based on the 256-AEAD1 algorithm specified in Clause 5 of the present document.
[bookmark: _Toc149894071][bookmark: _Toc163050249][bookmark: _Toc163825792][bookmark: _Toc178091622]7.3.3	Input Variable Mapping
The inputs to the 256-AEAD1 algorithm are practically identical to the input variables of 256-NCA4/5/6. The only part missing is the specification of the IV value, whose construction is defined in Clause 7.3.5.
[bookmark: _Toc149894072][bookmark: _Toc163050250][bookmark: _Toc163825793][bookmark: _Toc178091623]7.3.4	Output Variable Mapping
The output of 256-AEAD3 algorithm is identical to the output of 256-NCA3.
[bookmark: _Toc149894073][bookmark: _Toc163050251][bookmark: _Toc163825794][bookmark: _Toc178091624]7.3.5	The IV Construction for the 256-NCA3
To construct the IV input variable to 256-AEAD1, use the following values according to the Make_5GIV mapping defined in Clause 4.3.2.
The Make_5GIV variables mapping for 256-NCA4/5/6 is given by Table 7.3.5-1.
Table 7.3.5-1: The Make_5GIV Variables mapping for 256-NCA4/5/6
	[bookmark: _MCCTEMPBM_CRPT38190218___4]Make_5GIV Input Variable
	256-NCA4/5/6 Input Variable
	Other Constant

	COUNT
	COUNT
	

	BEARER
	BEARER
	

	DIRECTION
	DIRECTION
	

	MAC_BYTES
	MAC_BYTES
	

	CF
	
	= 1

	LK
	
	= 0

	AI
	
	= 0

	EXTRA_IV
	EXTRA_IV
	

[bookmark: _Toc149894074]

[bookmark: _Toc163050252][bookmark: _Toc163825795]Annex A (informative):
Reference Code in C/C++
This clause provides informative reference implementations of all algorithms needed to implement the air interface encryption and integrity functions 256-NEA6, 256-NIA6, and 256-NCA6.
[bookmark: _MCCTEMPBM_CRPT38190220___7]

#define ZUC256_INIT_ROUND_CLOCKS 48

// --
// Common components
// --
#include <stdint.h>
#include <stdlib.h>
#include <memory.h>

typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;

// Endianness tools
u64 EndianTool(int n, char isBigEndian, const u8 * x)
{
	u64 r = 0;
	for (int i = 0; i < n; i++)
		r = (r << 8) | (u64)(isBigEndian ? x[i] : x[n - 1 - i]);
	return r;
}

void EndianTool(int n, char isBigEndian, u8 * x, u64 v)
{
	for (int i = 0; i < n; i++, v >>= 8)
		if (isBigEndian)
			x[n - 1 - i] = (u8)v;
		else
			x[i] = (u8)v;
}

u16 LittleEndian16(const u8 * x) { return (u16)EndianTool(2, 0, x); }
u32 LittleEndian32(const u8 * x) { return (u32)EndianTool(4, 0, x); }
u64 LittleEndian64(const u8 * x) { return (u64)EndianTool(8, 0, x); }
u16 BigEndian16(const u8 * x) { return (u16)EndianTool(2, 1, x); }
u32 BigEndian32(const u8 * x) { return (u32)EndianTool(4, 1, x); }
u64 BigEndian64(const u8 * x) { return (u64)EndianTool(8, 1, x); }

void LittleEndian16(u8 * x, u16 v) { EndianTool(2, 0, x, v); }
void LittleEndian32(u8 * x, u32 v) { EndianTool(4, 0, x, v); }
void LittleEndian64(u8 * x, u64 v) { EndianTool(8, 0, x, v); }
void BigEndian16(u8 * x, u16 v) { EndianTool(2, 1, x, v); }
void BigEndian32(u8 * x, u32 v) { EndianTool(4, 1, x, v); }
void BigEndian64(u8 * x, u64 v) { EndianTool(8, 1, x, v); }

// Exclusive-OR over lanes of 128 bits
void xor128(void * dst, const void * in1, const void * in2)
{
	((u64*)(dst))[0] = ((u64*)(in1))[0] ^ ((u64*)(in2))[0];
	((u64*)(dst))[1] = ((u64*)(in1))[1] ^ ((u64*)(in2))[1];
}

// Arithmetical 16-bit additions over lanes of 128 bits
void add128(u8 * dst, const u8 * in1, const u8 * in2)
{
	for (int i = 0; i < 8; i++)
	{ 	u16 a = LittleEndian16(in1 + 2 * i);
		u16 b = LittleEndian16(in2 + 2 * i);
		LittleEndian16(dst + 2 * i, (u16)(a + b));
	}
}

// ending masks for unaligned data bits
static const u8 bitPad[8] = { 0xff, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };

// Common IV configuration
void MAKE_FULL_KEY_IV(
	u8 fkey[32], /* out, 32-byte full key = KEY padded with zeroes if KEY_BYTES < 32 */
	u8 fiv[16], /* out, 16-byte full iv = IV12 padded with zeroes */
	u8 * KEY, /* [16/32] bytes */
	u8 KEY_BYTES, /* key size, also determines the flag LK */
	u32 COUNT, /* 32 bits */
	u8 BEARER, /* 5 bits */
	u8 DIRECTION, /* 1 bit */
	u8 * EXTRA_IV, /* [0/6] bytes, 48 bits, extra entropy for IV */
	u8 MAC_BYTES, /* 5 bits, size of MAC tag, [0..16] */
	u8 CF /* 1 bit, Combined mode flag */
)
{
	// prepare full IV
	// bit 0 of iv[0] is reserved for AI flag, set to 0 by default
	fiv[0] = ((KEY_BYTES == 16) << 1) | (CF << 2) | (MAC_BYTES << 3);
	fiv[1] = DIRECTION | (BEARER << 1);
	if (EXTRA_IV)
		memcpy(fiv + 2, EXTRA_IV, 6);
	else
		memset(fiv + 2, 0, 6);
	BigEndian32(fiv + 8, COUNT);
	memset(fiv + 12, 0, 4);

	// prepare full key
	memcpy(fkey, KEY, KEY_BYTES);
	memset(fkey + KEY_BYTES, 0, 32 - KEY_BYTES);
}

// --
// Mac5G: Truncatable MAC construction, based on POLYVAL
// POLYVAL-dot returns (A * B * x^-128) mod (x ^ 128 + x ^ 127 + x ^ 126 + x ^ 121 + 1)
// --
void polyval_dot(u8 * R, const u8 * A, const u8 * B)
{
	u64 r0 = 0, r1 = 0, u0 = LittleEndian64(B), u1 = LittleEndian64(B + 8);

	for (int i = 0; i < 16; i++)
		for (int j = 0; j < 8; j++)
		{
			// multiplication & addition
			if ((A[i] >> j) & 1)
				r0 ^= u0, r1 ^= u1;
			// shift & reduction
			u64 redc = (r0 & 1ULL) ? 0xe100000000000000ULL : 0ULL;
			r0 = (r0 >> 1) | (r1 << 63);
			r1 = (r1 >> 1) ^ redc;
		}

	LittleEndian64(R, r0);
	LittleEndian64(R + 8, r1);
}

// computes A' = (A + data) * H
void Mac5G_update(const u8 * H, u8 * A, const u8 * data, u64 length_bits)
{
	u8 tmp[16];
	for (; length_bits >= 128; length_bits -= 128, data += 16)
	{
		xor128(A, A, data);
		polyval_dot(A, A, H);
	}
	if (!length_bits) return;

	// unaligned bytes and bits are padded with zeroes
	memset(tmp, 0, 16);
	int full_bytes = (int)((length_bits + 7ULL) >> 3);
	int unaligned_bits = (int)(length_bits & 7ULL);
	memcpy(tmp, data, full_bytes);
	tmp[full_bytes - 1] &= bitPad[unaligned_bits];
	xor128(A, A, tmp);
	polyval_dot(A, A, H);
}

// A = (A + LENs) * Q + P, where Q is the secure truncation key
void Mac5G_final(const u8 * Q, u8 * A, const u8 * P, u64 lenAAD_bits, u64 lenC_bits)
{
	u8 tmp[16];
	LittleEndian64(tmp + 8, lenAAD_bits);
	LittleEndian64(tmp, lenC_bits);
	xor128(A, A, tmp);
	polyval_dot(A, A, Q);
	xor128(A, A, P); /* The resulting AuthTag is in A[], not yet truncated */
}

// --
// ZUC-256 core
// --
struct Zuc256
{
	// Internal state
	u32 lfsr[16], R1, R2;
	void lfsr_update(u32 W)
	{
		u64 s = (u64)W + (u64)lfsr[0]
			+ (((u64)lfsr[0]) << 8)
			+ (((u64)lfsr[4]) << 20)
			+ (((u64)lfsr[10]) << 21)
			+ (((u64)lfsr[13]) << 17)
			+ (((u64)lfsr[15]) << 15);
		s = (s & 0x7fffffffULL) + (s >> 31);
		s = (s & 0x7fffffffULL) + (s >> 31);
		memmove(lfsr, lfsr + 1, sizeof(lfsr[0]) * 15);
		lfsr[15] = (u32)(s ? s : 0x7fffffffUL);
	}
	u32 br_hl(u32 a, u32 b)
	{
		return ((a << 1) & 0xffff0000UL) | (b & 0x0000ffffUL);
	}
	u32 br_lh(u32 a, u32 b)
	{
		return (a << 16) | (b >> 15);
	}
	u32 rotl(u32 x, const int i)
	{
		return (x << i) | (x >> (32 - i));
	}

	u32 sboxes(u32 x)
	{
		static const u8 S0[256] = {
		0x3E,0x72,0x5B,0x47,0xCA,0xE0,0x00,0x33,0x04,0xD1,0x54,0x98,0x09,0xB9,0x6D,0xCB,
		0x7B,0x1B,0xF9,0x32,0xAF,0x9D,0x6A,0xA5,0xB8,0x2D,0xFC,0x1D,0x08,0x53,0x03,0x90,
		0x4D,0x4E,0x84,0x99,0xE4,0xCE,0xD9,0x91,0xDD,0xB6,0x85,0x48,0x8B,0x29,0x6E,0xAC,
		0xCD,0xC1,0xF8,0x1E,0x73,0x43,0x69,0xC6,0xB5,0xBD,0xFD,0x39,0x63,0x20,0xD4,0x38,
		0x76,0x7D,0xB2,0xA7,0xCF,0xED,0x57,0xC5,0xF3,0x2C,0xBB,0x14,0x21,0x06,0x55,0x9B,
		0xE3,0xEF,0x5E,0x31,0x4F,0x7F,0x5A,0xA4,0x0D,0x82,0x51,0x49,0x5F,0xBA,0x58,0x1C,
		0x4A,0x16,0xD5,0x17,0xA8,0x92,0x24,0x1F,0x8C,0xFF,0xD8,0xAE,0x2E,0x01,0xD3,0xAD,
		0x3B,0x4B,0xDA,0x46,0xEB,0xC9,0xDE,0x9A,0x8F,0x87,0xD7,0x3A,0x80,0x6F,0x2F,0xC8,
		0xB1,0xB4,0x37,0xF7,0x0A,0x22,0x13,0x28,0x7C,0xCC,0x3C,0x89,0xC7,0xC3,0x96,0x56,
		0x07,0xBF,0x7E,0xF0,0x0B,0x2B,0x97,0x52,0x35,0x41,0x79,0x61,0xA6,0x4C,0x10,0xFE,
		0xBC,0x26,0x95,0x88,0x8A,0xB0,0xA3,0xFB,0xC0,0x18,0x94,0xF2,0xE1,0xE5,0xE9,0x5D,
		0xD0,0xDC,0x11,0x66,0x64,0x5C,0xEC,0x59,0x42,0x75,0x12,0xF5,0x74,0x9C,0xAA,0x23,
		0x0E,0x86,0xAB,0xBE,0x2A,0x02,0xE7,0x67,0xE6,0x44,0xA2,0x6C,0xC2,0x93,0x9F,0xF1,
		0xF6,0xFA,0x36,0xD2,0x50,0x68,0x9E,0x62,0x71,0x15,0x3D,0xD6,0x40,0xC4,0xE2,0x0F,
		0x8E,0x83,0x77,0x6B,0x25,0x05,0x3F,0x0C,0x30,0xEA,0x70,0xB7,0xA1,0xE8,0xA9,0x65,
		0x8D,0x27,0x1A,0xDB,0x81,0xB3,0xA0,0xF4,0x45,0x7A,0x19,0xDF,0xEE,0x78,0x34,0x60
		};

		static const u8 S1[256] = {
		0x55,0xC2,0x63,0x71,0x3B,0xC8,0x47,0x86,0x9F,0x3C,0xDA,0x5B,0x29,0xAA,0xFD,0x77,
		0x8C,0xC5,0x94,0x0C,0xA6,0x1A,0x13,0x00,0xE3,0xA8,0x16,0x72,0x40,0xF9,0xF8,0x42,
		0x44,0x26,0x68,0x96,0x81,0xD9,0x45,0x3E,0x10,0x76,0xC6,0xA7,0x8B,0x39,0x43,0xE1,
		0x3A,0xB5,0x56,0x2A,0xC0,0x6D,0xB3,0x05,0x22,0x66,0xBF,0xDC,0x0B,0xFA,0x62,0x48,
		0xDD,0x20,0x11,0x06,0x36,0xC9,0xC1,0xCF,0xF6,0x27,0x52,0xBB,0x69,0xF5,0xD4,0x87,
		0x7F,0x84,0x4C,0xD2,0x9C,0x57,0xA4,0xBC,0x4F,0x9A,0xDF,0xFE,0xD6,0x8D,0x7A,0xEB,
		0x2B,0x53,0xD8,0x5C,0xA1,0x14,0x17,0xFB,0x23,0xD5,0x7D,0x30,0x67,0x73,0x08,0x09,
		0xEE,0xB7,0x70,0x3F,0x61,0xB2,0x19,0x8E,0x4E,0xE5,0x4B,0x93,0x8F,0x5D,0xDB,0xA9,
		0xAD,0xF1,0xAE,0x2E,0xCB,0x0D,0xFC,0xF4,0x2D,0x46,0x6E,0x1D,0x97,0xE8,0xD1,0xE9,
		0x4D,0x37,0xA5,0x75,0x5E,0x83,0x9E,0xAB,0x82,0x9D,0xB9,0x1C,0xE0,0xCD,0x49,0x89,
		0x01,0xB6,0xBD,0x58,0x24,0xA2,0x5F,0x38,0x78,0x99,0x15,0x90,0x50,0xB8,0x95,0xE4,
		0xD0,0x91,0xC7,0xCE,0xED,0x0F,0xB4,0x6F,0xA0,0xCC,0xF0,0x02,0x4A,0x79,0xC3,0xDE,
		0xA3,0xEF,0xEA,0x51,0xE6,0x6B,0x18,0xEC,0x1B,0x2C,0x80,0xF7,0x74,0xE7,0xFF,0x21,
		0x5A,0x6A,0x54,0x1E,0x41,0x31,0x92,0x35,0xC4,0x33,0x07,0x0A,0xBA,0x7E,0x0E,0x34,
		0x88,0xB1,0x98,0x7C,0xF3,0x3D,0x60,0x6C,0x7B,0xCA,0xD3,0x1F,0x32,0x65,0x04,0x28,
		0x64,0xBE,0x85,0x9B,0x2F,0x59,0x8A,0xD7,0xB0,0x25,0xAC,0xAF,0x12,0x03,0xE2,0xF2
		};

		u32 b0 = S1[(u8)(x >> 0)];
		u32 b1 = S0[(u8)(x >> 8)];
		u32 b2 = S1[(u8)(x >> 16)];
		u32 b3 = S0[(u8)(x >> 24)];
		return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
	}
	void fsm_update(void)
	{
		u32 X1 = br_lh(lfsr[11], lfsr[9]) + R1;
		u32 X2 = br_lh(lfsr[7], lfsr[5]) ^ R2;
		R1 = (X1 << 16) | (X2 >> 16);
		R2 = (X2 << 16) | (X1 >> 16);
		R1 = R1 ^ rotl(R1, 2) ^ rotl(R1, 10) ^ rotl(R1, 18) ^ rotl(R1, 24); // L1
		R2 = R2 ^ rotl(R2, 8) ^ rotl(R2, 14) ^ rotl(R2, 22) ^ rotl(R2, 30); // L2
		R1 = sboxes(R1);
		R2 = sboxes(R2);
	}

	u32 update(char is_init)
	{
		u32 X0 = br_hl(lfsr[15], lfsr[14]);
		u32 X3 = br_lh(lfsr[2], lfsr[0]);
		u32 W = (X0 ^ R1) + R2;
		u32 z = W ^ X3;
		if (!is_init) W = 0;
		fsm_update();
		lfsr_update(W >> 1);
		return z;
	}

	void keyiv_setup(u8 * key /* [32] */, u8 * iv /* [16] */)
	{
		R1 = R2 = 0;
		static const u8 dvect[16] = { 0x64, 0x43, 0x7b, 0x2a, 0x11, 0x05, 0x51, 0x42,
									 0x1a, 0x31, 0x18, 0x66, 0x14, 0x2e, 0x01, 0x5c };

#define zuci(i, b, a) lfsr[i] = (((u32)key[i]) << 23) \
						^ (((u32)dvect[i]) << 16) ^ (((u32)b) << 8) ^ (((u32)a) << 0)
		zuci(0, key[16], key[24]);
		zuci(1, key[17], key[25]);
		zuci(2, key[18], key[26]);
		zuci(3, key[19], key[27]);
		zuci(4, key[20], key[28]);
		zuci(5, key[21], key[29]);
		zuci(6, key[22], key[30]);
		zuci(7, iv[0], iv[8]);
		zuci(8, iv[1], iv[9]);
		zuci(9, iv[2], iv[10]);
		zuci(10, iv[3], iv[11]);
		zuci(11, iv[4], iv[12]);
		zuci(12, iv[5], iv[13]);
		zuci(13, iv[6], iv[14]);
		zuci(14, iv[7], iv[15]);
		zuci(15, key[23], key[31]);

		for (int i = 0; i < (ZUC256_INIT_ROUND_CLOCKS + 1); i++)
			update(i < ZUC256_INIT_ROUND_CLOCKS);
	}
};

// --
// Generic internal function for NxA6 (ZUC-256)
// --
// Returns 0 if OK, otherwise <0 if error
int AEAD_ZUC256(
	u8 MODE, /* 0=Encrypt, 1=Decrypt mode */
	u8 FKEY[32], /* full key */
	u8 FIV[16], /* full iv */
	u8 * MAC, /* In/Out MAC of size [MAC_BYTES] bytes */
	u8 MAC_BYTES, /* [4..16] */
	u8 * AAD, /* Authentication Data */
	u32 AAD_LENGTH, /* length of AAD in bits */
	u8 * IBS, /* Input stream */
	u8 * OBS, /* Output stream */
	u32 S_LENGTH /* the number of bits in IN/OUT streams */
)
{
	u8 H[16], Q[16], P[16], A[16] = { 0 };
	Zuc256 s;
	s.keyiv_setup(FKEY, FIV);

	// If MACing should happen (NIA6 and NCA6)
	if (MAC && MAC_BYTES)
	{
		for (int i = 0; i < 16; i += 4) BigEndian32(H + i, s.update(0));
		for (int i = 0; i < 16; i += 4) BigEndian32(Q + i, s.update(0));
		for (int i = 0; i < 16; i += 4) BigEndian32(P + i, s.update(0));
	}

	// If Encryption/Decryption should happen
	if (IBS && OBS && S_LENGTH)
	{
		u8 z[4];
		long long i, BLEN = ((u64)S_LENGTH + 7ULL) >> 3;
		for (i = 0; i < (BLEN - 3LL); i += 4LL)
		{
			BigEndian32(z, s.update(0));
			OBS[i + 0] = IBS[i + 0] ^ z[0];
			OBS[i + 1] = IBS[i + 1] ^ z[1];
			OBS[i + 2] = IBS[i + 2] ^ z[2];
			OBS[i + 3] = IBS[i + 3] ^ z[3];
		}

		// handle unaligned bytes
		if (i != BLEN)
		{
			BigEndian32(z, s.update(0));
				for (int k = 0; i < BLEN; i++, k++)
					OBS[i] = IBS[i] ^ z[k];
		}

	// handle unaligned bits
	OBS[i - 1] &= bitPad[S_LENGTH & 7];
	}

	// If MACing should happen
	if (MAC && MAC_BYTES)
	{
		if (AAD && AAD_LENGTH)
			Mac5G_update(H, A, AAD, AAD_LENGTH);

		u8 * tmp = MODE ? IBS : OBS; // pick the stream with Ciphertext
		if (tmp)
			Mac5G_update(H, A, tmp, S_LENGTH);
		Mac5G_final(Q, A, P, AAD_LENGTH, S_LENGTH);

		if (MODE == 0)
			memcpy(MAC, A, MAC_BYTES);
		else
		{ // MAC verification
			if (memcmp(MAC, A, MAC_BYTES))
				return -1;
		}
	}
	return 0;
}

// --
// 3GPP API
// Authenticated Encryption
// --
// Returns 0 if OK, otherwise <0 if error
int NCA6_256(
	u8 MODE, /* 0=Encrypt, 1=Decrypt mode */
	u32 COUNT, /* 32 bits */
	u8 * EXTRA_IV, /* [6] bytes, 48 bits, extra entropy for IV */
	u8 DIRECTION, /* 1 bit */
	u8 BEARER, /* 5 bits */
	u8 * KEY, /* [16/32] bytes */
	u8 KEY_BYTES, /* 16/32 bytes */
	u8 * MAC, /* In/Out MAC of size [MAC_BYTES] bytes */
	u8 MAC_BYTES, /* [4..16] */
	u8 * AAD, /* Authentication Data */
	u32 AAD_LENGTH, /* length of AAD in bits */
	u8 * IBS, /* Input stream */
	u8 * OBS, /* Output stream */
	u32 S_LENGTH /* the number of bits in IN/OUT streams */
)
{
	u8 fiv[16], fkey[32];
	MAKE_FULL_KEY_IV(fkey, fiv, KEY, KEY_BYTES, COUNT, BEARER, DIRECTION, EXTRA_IV,
	MAC_BYTES, 1);
	return AEAD_ZUC256(MODE, fkey, fiv, MAC, MAC_BYTES, AAD, AAD_LENGTH, IBS, OBS,
				S_LENGTH);
}
// --
// Encryption only
// --
void NEA6_256(
	u32 COUNT_C, /* 32 bits */
	u8 * EXTRA_IV, /* [6] bytes, 48 bits, extra entropy for IV */
	u8 DIRECTION, /* 1 bit */
	u8 BEARER, /* 5 bits */
	u8 * CK, /* [16/32] bytes */
	u8 CK_BYTES, /* 16 or 32 */
	u8 * IBS, /* Input stream */
	u8 * OBS, /* Output stream */
	u32 S_LENGTH /* the number of bits to be encrypted */
)
{
	u8 fiv[16], fkey[32];
	MAKE_FULL_KEY_IV(fkey, fiv, CK, CK_BYTES, COUNT_C, BEARER, DIRECTION, EXTRA_IV, 0, 0);
	AEAD_ZUC256(0, fkey, fiv,
		NULL, 0, /* MAC=NULL => skip MAC computation */
		NULL, 0, /* AAD=NULL */
		IBS, OBS, S_LENGTH /* IN and OUT streams are given => Encrypt/Decrypt */
);
}
// --
// Integrity only
// --
void NIA6_256(
	u32 COUNT_I, /* 32 bits */
	u8 * EXTRA_IV, /* [6] bytes, 48 bits, extra entropy for IV */
	u8 DIRECTION, /* 1 bit */
	u8 BEARER, /* 5 bits */
	u8 * IK, /* [16/32] bytes */
	u8 IK_BYTES, /* 16 or 32 */
	u8 * MESSAGE, /* Input message */
	u32 LENGTH, /* the number of bits to be MACed */
	u8 * MAC_I, /* Output MAC of size [MAC_BYTES] bytes */
	u8 MAC_BYTES /* [4..16] */
)
{
	u8 fiv[16], fkey[32];
	MAKE_FULL_KEY_IV(fkey, fiv, IK, IK_BYTES, COUNT_I, BEARER, DIRECTION, EXTRA_IV,
	MAC_BYTES, 0);
	AEAD_ZUC256(0, fkey, fiv,
		MAC_I, MAC_BYTES, /* MAC != NULL, and we do Encrypt mode => will compute MAC value */
		MESSAGE, LENGTH, /* AAD = MESSAGE, which goes to MACing as-is */
		NULL, NULL, 0 /* Both IN and OUT streams are NULL => no encryption */
);
}

4	Technical provisions
The technical provisions of the ZUC based 256-bits algorithm specification are contained in the non-redacted version of the present document [2].

[bookmark: _Toc22544395][bookmark: _Toc22544826][bookmark: _Toc26877466][bookmark: _Toc145421634]==============Next change==============

==============End of change==============

image1.png
Kev.

DIRECTION

LENGTH

Core Algorithm

ke

DIRECTION

LENGTH

Core Algorithm

EE Rersrea
siock siock
o crnon
siock
256-NEAX 256-NEAX

PLANTEXT
BLOCK

image2.png
Kev.

DIRECTION MESSAGE

Core Algorithm MAC Algorithm

image3.emf

image4.png
mod 2 1

56

57

s

0

s

su

s12

s

“nlb

SoL,

su

SoL

{515

image5.png
It hi: Tl

°

3E

5B

00

04

98

09

CB

F9

6A

B8

1D

08

90

-

4D

84

D9

DD

48

8B

Ac

D

F8

69

BS

39

63

38

76

57

F3

14

21

9B

E3

SE

5A

oD

49

SF

1c

1A

D5

24

sC

3B

DA

DE

SF

3A

80

cs

Bl

37

13

7c

89

c7

56

07

97

35

61

A6

FE

BC

95

A3

<o

E1

5D

DO

1

42

Fs

74

3

AB

E7

E6

6C

F1

F6

36

SE

71

D6

40

OF

SE

77

3F

30

B7

Al

65

m (o] o|w|e|ele|w]|o|vn]|s|w

sD

1A

A0

45

DF

60

image6.png
hi: To|

55

63

3B

cs8

47

86

DA|

8C

94

A6

1A

13

00

16

F9

-

68

81

D9

45

3E

c6

39

3A

56

co

6D

B3

05

BF

FA

1

36

[

c1

CF

F5

4

5C

57

A4

BC

DF

sD

D8

Al

14

17

7D

73

70

61

19

SE

4B

5D

FIEIEIEIE

AE

CB

oD

FC

F4

6E

E8

4D

A5

SE

83

9E

B9

D

o1

BD

24

SF

38

15

B8

DO

c7

OF

B4

6F

FO

79

A3

EA

6B

18

EC

30

E7

5A

54

41

31

92

35

07

TE

88

98

F3

3D

60

D3

65

mlm(o|a|w|e|ole|w|o|un]|s|w

85

59

8A

D7

AC

03

