	
3GPP TSG-SA3 Meeting #125	S3-254255-r2
Dallas, US, 17 – 21 November 2025

Source:	Huawei, HiSilicon
Title:	GSMA NESAS change to TS 33.117
Document for:	Other
Agenda item:	5.1.3
Spec:	3GPP TS 33.117
Version:	19.2.0
Work Item:	SCAS_5GA 

Comments
The changes in this contribution are from GSMA NESASG. The changes are classified into 3 categories: 
· Undefined terms.
· Ambiguity during test execution.
· Some subjective terms (sufficient, huge amount of, suitable, etc.)
* * * First Change * * * *
[bookmark: _CR3_1][bookmark: _Toc187937453][bookmark: _Toc35348353][bookmark: _Toc19542351]3.1	Definitions
For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
NOTE: 	The term “User” appears multiple times in the present document. Though its definition in TR 21.905 [1] only takes human-beings for example, the actual meaning of “User” depends on the context.
Automatic assessment tool: A software that operates with a minimal human intervention and aids the user in evaluation of the security of computer programs, systems and/or networks.
Developer: A creator of systems, components, or services for use on or with a 3GPP network.
Expert knowledge: Possessing skills, training and experience in analysing and understanding security threats in a wide variety of situations.
Identifiable person: one who can be identified, directly or indirectly, in particular by reference to an identification number, name or to one or more factors specific to their physical, physiological, mental, economic, cultural or social identity. 
NOTE 1: 	personal data can be gathered from user data and traffic data.
Local access: Communication through a direct network access interface.
Machine Accounts: accounts used for authentication and authorization from system to system or between applications on a system and cannot be assigned to a single person or a group of persons.
Network Element: As defined in TS 23.501[18]
Network Function: As defined in TS 23.501[18]
Network product: As defined in TR 33.916[19]
Network product class: As defined in TR 33.916[19]
Owner: The person or enity responsible for creating and maintaining content. The person or entity determines who has access to the content and the content permissions.
Pcap file: A network packet capture file that records raw data packets traveling across a network.
Personal data: any information relating to an identified or identifiable natural person ('data subject').
NOTE: 	void
Remote access: Communication through an external network access interface.
Screenshot: A digital image that shows the contents of a display.
Sensitive data: data used for authentication or may help to identify the user, such as user names, passwords, PINs, cryptographic keys, IMSIs, IMEIs, MSISDNs, or IP addresses of the UE, as well as files of a system that are needed for the functionality such as firmware images, patches, drivers or kernel modules. 
System group account: a predefined system account in the network product, usually with special privileges, which has a predefined user id and hence cannot be tied to a single user (individual) in a normal operating environment. 
EXAMPLE:	the 'root' account.
Vendor: A commercial supplier of 3GPP network software or hardware.
Vulnerability: As defined in TR 33.916[19].

[bookmark: _Toc19542374][bookmark: _Toc35348376][bookmark: _Toc187937478]4.2.3.2.4	Protecting data and information in transfer
Requirement Name: Protecting data and information in transfer
Requirement Reference: In accordance with industry best practice
Requirement Description:
-	Usage of cryptographically protected network protocols is required. 
-	The transmission of data with a need of protection shall use industry standard network protocols with sufficient security measures and industry accepted algorithms. In particular, a protocol version without known vulnerabilities or a secure alternative shall be used.
Threat References: TR 33.926 [4], clause 5.3.6, Information disclosure
Test case: 
Test Name: TC_PROTECT_DATA_INFO_TRANSFER_1
Purpose:
Verify the mechanisms implemented to protect data and information in transfer to and from the Network Product's O&M interface. 
NOTE: 	The test is limited to the O&M interface although the requirement does not have this limitation because the protection of standardised interfaces will be covered by regular interoperability testing and the proprietary use of HTTPS is covered in clause 4.2.5.1.
Procedure and execution steps:
Pre-Conditions:
Network product documentation containing information about supported O&M protocols is provided by the vendor,
A peer implementing the security protocol configured by the vendor (e.g. SSH client supporting SSHv2 or HTTPS client) shall be available.
Network product documentation stating which security protocols for protection of data in transit are implemented and which profiles in TS 33.310 [9] and TS 33.210 [15] are applicable is provided by the vendor
For TLS/DTLS, the tester shall base the tests on the profile defined by 3GPP in TS 33.310 [9] and TS 33.210 [15]. For IKE and IPsec, the tester shall base the tests on the profile defined by 3GPP in TS 33.210 [15]. For protocols, for which 3GPP did not define a security profile, e.g. SSH, the tester shall base the tests on a widely recognised and publicly available security profile (e.g., security profile defined by IETF or NIST).
Execution Steps 
1.	The tester shall check that compliance with the selected security profile can be inferred from detailed provisions in the product documentation.
2.	The tester shall check that the default security parameters are the same as those stated in the product documentation.
3.	The tester shall establish a secure connection between the network product and the peer and verify that all protocol versions and combinations of cryptographic algorithms that are mandated by the security profile are supported by the network product and the network product does not use the deprecated or unsecure protocol versions and algorithms.
4.	The tester shall try to establish a secure connection between the network product and the peer and verify that this is not possible when the peer only offers a feature, including protocol version and combination of cryptographic algorithms, that is forbidden by the security profile. 
Expected Results:
The traffic is properly protected, and insecure options are not accepted by the Network Product. 
Expected format of evidence:
Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

[bookmark: _Toc19542379][bookmark: _Toc35348381][bookmark: _Toc187937483]4.2.3.3.3	System handling during excessive overload situations
Requirement Name: System handling during excessive overload situations.
Requirement Reference: In accordance with industry best practice.
Requirement Description: The system shall act in a predictable way if an overload situation cannot be prevented. A system shall be built in this way that it can react on an overload situation in a controlled way. However, it is possible that a situation happens where the security measures are no longer sufficient.
However, it is possible that a situation happens where the security measures cannot prevent overload of system. In such case it shall be ensured that the system cannot reach an undefined and thus potentially insecure state. In an extreme case this means that a controlled system shutdown is preferable to uncontrolled failure of the security functions and thus loss of system protection.
The vendor shall provide a technical description of the network product's Over Load Control mechanisms (especially whether these mechanisms rely on cooperation of other network elements e.g. eNodeB) and the accompanying test case for this requirement checks that the description provides sufficient detail in order for an evaluator to understand how the mechanism is designed.
Threat References: TR 33.926 [4], clause 5.3.7, Denial of service.
Test case: 
Test Name: TC_SYSTEM_HANDLING_OF_OVERLOAD_SITUATIONS
NOTE: 	This test case covers requirements 4.2.3.3.1 and 4.2.3.3.3.
Purpose:
Verify that the network product:
-	has a detailed technical description of the overload control mechanisms used to deal with overload scenarios;
-	has test results verifying the operation of the overload control mechanisms. 
Procedure and execution steps:
Pre-Conditions:
-	A document which provide a detailed technical description of the overload control mechanisms.
-	Test results from a test execution phase of overload control mechanism testing.
Execution Steps
-	The tester verifies that there is:
-	A technical description providing a high-level overview of the overload control design:
-	An overview of the types of overload scenarios that the network product overload control mechanisms are expected to handle. 
-	An overview of the overload control thresholds that the network product uses to trigger overload control mechanisms.
-	Description of the types of attacks that can cause an overload to the network product and how these are handled.
-	A description of how the network product discards or handles input during various overload situations including excessive overloads. i.e. where the overload is significantly greater than the thresholds where overload detection is triggered. 
-	A description of how the network product security functions operate and perform during overload.
-	A description of how the network product shuts down or performs or takes other abatement or corrective actions during excessive overload conditions. 
-	The tester verifies that the test results:
-	Contain details of the overload conditions used in the test execution that are consistent with the technical description document.
-	Describe test procedures used to verify the overload control mechanisms.
-	Contain data which demonstrates/indicates that the overload control mechanisms described in the technical description document have been implemented.
-	Contain details of the test set-up including the mechanisms for creating the overload. Where simulators and/or scripts are used to artificially create a load then details of these should also be included.
Expected Results:
-	A technical description provides a high-level overview of the overload control design.
-	A overview of the types of overload scenarios and overload control thresholds that are considered.
-	Description on the types of attacks that may cause an overload to the system and how these are handled.
-	A description of how the network product discards or handles input during various overload situations.
-	Describes if or how the network product security functions operate and perform during overload.
-	If parts of the system shutdown or take other abatement or corrective actions these should be described.
NOTE: 	If some of the items listed above are not applicable to a network product then, in those cases, it should be clarified by the vendor why these items are not applicable.
The test results should:
-	Contain details of the overload conditions used in the test execution that are consistent with the technical description document.
-	Describe the test procedures used to verify the overload control mechanisms.
-	Contain data which demonstrates/indicates that the overload control mechanisms described in the technical description document have been implemented.
-	Contain details of the test set-up including the mechanisms for creating the overload.
Expected format of evidence:
Documentation showing each of the points in the results sections.

[bookmark: _Toc19542381][bookmark: _Toc35348383][bookmark: _Toc187937485]4.2.3.3.5	Network Product software package integrity 
Requirement name: Network product Software integrity validation
Requirement reference: In accordance with industry best practice
Requirement Description: 
1)	Software package integrity shall be validated in the installation/upgrade stage.
2)	Network product shall support software package integrity validation via cryptographic means, e.g. digital signature. To this end, the network product has a list of public keys or certificates of authorised software sources, and uses the keys to verify that the software update is originated from only these sources.
3)	Tampered software shall not be executed or installed if integrity check fails.
4)	A security mechanism is required to guarantee that only authorized individuals can initiate and deploy a software update, and modify the list mentioned in bullet 2.
Threat References: TR 33.926 [4], clause 5.3.3.6, Malware
Test case: 
Test Name: TC_SW_PKG_INTEGRITY_1
Purpose:
Verify that:
1.	The Network Product validates the software package integrity during the installation/upgrade stage.
2.	The software package integrity validation mechanism is performed using cryptographic mechanisms, e.g. digital signature using the public keys or certificates configured in the network product. 
3. 	Software that fails an integrity check is rejected by the network product.
4. 	Only authorized users are allowed to install software.
Procedure and execution steps:
Pre-Conditions:
-	A network product document containing information regarding software package integrity checks, including details of how the integrity check is carried out, where public keys or certificates of sources authorised to sign software packages are stored on the network product and who these sources are, and what evidence is created to prove that the integrity check has been executed and what the result of the check was. Documentation which describes the installation procedure including how a user is authorized and authenticated to perform installation process. 
-	A valid network product software load/package and one that is not-valid (or could be deemed to have been tampered with) are available.
Execution Steps
1.	The tester checks the permissions required to install software on the network product ensuring that a user is properly authenticated by the network product and that they have the required access privileges to perform the installation activity.
2.	The tester checks, when a software package is attempted to be installed on the network product, that the software package integrity check is executed (check for evidence of execution as described in network product documentation) and that valid software is allowed to be installed but invalid software is rejected.
2.	The tester checks the access control permissions for the software package integrity checking process, the list of public keys of authorised software sources, and any related credentials or keys for the process, to ensure that the process cannot be controlled by persons that are not authorized to do so.
Expected Results:
-	Evidence that the software package integrity check has been executed for both cases of software installation (valid and invalid software packages).
-	Authentication and access control mechanisms are in operation for software package installation and around the software package integrity checking mechanism.
-	The installation/upgrade operation fails when using an invalid software package.
-	The installation/upgrade operation is successful when using a valid software package.
Expected format of evidence:
Snapshots containing the result of the installation of valid and invalid packages A and B.

[bookmark: _Toc19542394][bookmark: _Toc35348396][bookmark: _Toc187937501]4.2.3.6.1	Security event logging
Requirement Name: Security event logging
Requirement Reference: In accordance with industry best practice
Requirement Description: Security events shall be logged together with a unique system reference (e.g. host name, IP or MAC address) and the exact time the incident occurred. For each security event, the log entry shall include user name and/or timestamp and/or performed action and/or result and/or length of session and/or values exceeded and/or value reached.
IETF RFC 3871 [3], section 2.11.10 specifies the minimum set of security events. Each vendor shall document what security events the product logs so that it can be verified by testing.
In particular, it shall be possible to log the following events (which are intended to be supported by the network product and which can be enabled by default at manufacturing time or at a later time by the network operator):
	EventTypes
	Description
	Event data to be logged

	Incorrect login attempts
	Records any user incorrect login attempts to the network product
	• Username,
• Source (IP address) if remote access
• Timestamp

	Administrator access
	Records any access attempts to accounts that have system privileges.
	• Username,
• Timestamp,
• Length of session,
• Source (IP address) if remote access

	Account administration
	Records all account administration activity, i.e. configure, delete, enable, and disable.
	• Administrator username,
• Administered account,
• Activity performed (configure, delete, enable and disable)
• Timestamp

	
	
	

	Resource Usage 
	Records events that have been triggered when system parameter values such as disk space, CPU load over a longer period have exceeded their defined thresholds.
	• Value exceeded,
• Value reached
(Here suitable threshold values shall be defined depending on the individual system.)
• Timestamp

	Configuration change
	Changes to configuration of the network device
	• Change made
• Username

	Reboot/shutdown/crash
	This event records any action on the network device that forces a reboot or shutdown OR where the network device has crashed.
	• Action performed (reboot, shutdown, etc.)
• Username (for intentional actions)
• Timestamp

	Interface status change
	Change to the status of interfaces on the network device (e.g. shutdown)
	• Interface name and type
• Status (shutdown, missing link, etc.)
• Timestamp



In addition, optionally it shall be possible to log also the following event (if supported):
	EventTypes
	Description
	Event data to be logged

	Change of group membership or accounts
	Any change of group membership for accounts
	
• Administrator username,
• Administered account,
• Activity performed (group added or removed)
• Timestamp.



Threat References: TR 33.926 [4], clause 5.3.4.4, Log Tampering
Test case: 
Test Name: TC_SECURITY_EVENT_LOGGING
Purpose:
To verify that the network product correctly logs all required security event types.
Procedure and execution steps:
Pre-Conditions:
-	The following information shall be provided by the documentation accompanying the network product:
-	The log where the event is recorded and how it can be accessed (e.g. the complete path).
-	If the event type is enabled by default or how to enable it.
-	What O&M services can be used on the Network Product in the configuration according to the pre-requisites for testing in clause 4.1 and how to use them.
-	The tester has the needed administrative privileges to sufficiently perform the tests
-	If needed for testing specific O&M services, a tester machine is available.
Execution Steps
For each O&M service perform the following test steps
1.-	The Tester sequentially triggers each security event listed in the requirement, while covering each option detailed in the individual security event descriptions. 
2.-	The Tester verifies whether the security events, and their individual options, were correctly logged. In particular it is verified whether they include at least the event data specified as required to be logged.
Expected Results:
All security events are appropriately logged, including all required event data.
Expected format of evidence:
-	List of O&M services
-	Commands executed per O&M services
-	The relevant parts of the logs in appropriate form (e.g. file, screenshot)

[bookmark: _Toc19542414][bookmark: _Toc35348416][bookmark: _Toc187937525]4.2.6.2.2	Interface robustness requirements
Requirement Name: Interface robustness
Requirement Reference: In accordance with industry best practice
Requirement Description:
A network device shall be not affected in its availability or robustness by incoming packets, from other network elements, that are manipulated or differing the norm. This means that inappropriate or manipulated packets shall be detected as invalid and be discarded. The process shall not be affecting the performance of the network device. This robustness shall be just as effective, for a great mass of invalid packets as for individual or a small number of packetsregardless of the number of invalid packets.
Examples of such packets are:
-	Mass-produced TCP packets with a set SYN flag to produce half-open TCP connections (SYN flooding attack).
-	Packets with the same IP sender address and IP recipient address (Land attack).
-	Mass-produced ICMP packets with the broadcast address of a network as target address (Smurf attack).
-	Fragmented IP packets with overlapping offset fields (Teardrop attack).
-	ICMP packets that are larger than the maximum permitted size (65,535 Bytes) of IPv4 packets (Ping-of-death attack).
-	Uncorrelated reply packets (i.e. packets which cannot be correlated to any request). 
Sometimes the relevant behaviour of the network device is configured. In other cases, the behaviour of the network device can only be verified by the relevant tests.
Threat References: TR 33.926 [4], clause 5.3.7, Denial of service
Test case: Refer to Test Case in clause 4.4.4.

[bookmark: _Toc19542432][bookmark: _Toc35348434][bookmark: _Toc187937543]4.3.3.1.4	SYN Flood Prevention 
Requirement Name: SYN Flood Prevention
Requirement Reference: In accordance with industry best practice
Requirement Description:
The network product shall support a mechanism to prevent SYN Flood attacks (e.g. implement the TCP SYN Cookie technique in the TCP stack by setting net.ipv4.tcp_syncookies = 1 in the linux sysctl.conf file). This feature shall be enabled by default.
Threat References: TR 33.926 [4], clause 5.3.7.2, Implementation Flaw
Test Case: 
Test Name: TC_SYN_FLOOD_PREVENTION
Purpose:
Verify that the Network Product supports a Syn Flood Prevention technique. 
Procedure and execution steps:
Pre-Conditions:
-	Vendor documentation describing the SYN flood attack prevention mechanism or setting and where to check for them.
-	The Network Product is listening on a TCP port on one of its interfaces.
-	A network traffic analyser on the network product (e.g. TCPDUMP) or an external traffic analyser directly connected to the network product is available.
-	A host is connected to the Network Product interface and it is equipped with a tool able to reproduce a SYN Flood attack (e.g. nmap or hping)
Execution Steps
1.	The tester verifies the prevention mechanism or setting described in the vendor documentation.
2.	The tester configures the tool to send a large quantity number huge amount of TCP SYN packets against the Network Product (e.g. hping3 -i <waiting time between each packet> -S -p <TCP port> -d <Data Size> -c <Number of packets> < Network Product IP>)
NOTE: 	To calculate the large quantity number of packets the tester checks in the product documentation the link speed supported by the DUT in bytes (L). The tester chooses a size packet for the attack in bytes (S). Based on L and S, the tester calculates the amount of packets per second (P) to use with this formula:
 P = L / S. 
3.	The tester verifies that the Network Product is still functioning as expected, its services are still accessible and responsive to typical service function requests, and the memory or CPU usage does not exceed acceptable thresholds. Additionally, the tester confirms there are no crashes or deadlocks.
a.	While the SYN Flood attack is ongoing.
b.	After the SYN Flood attack was executed.
Expected Results:
The Network Product does not become inoperative.
Expected format of evidence:
-	Executed commands or script used for the SYN flood attack.
-	The number of SYN packets sent per second.
-	Part of the configuration (plaintext or screenshot) showing the prevention mechanism or setting.

[bookmark: _Toc19542434][bookmark: _Toc35348436][bookmark: _Toc187937545]4.3.3.1.6	External file system mount restrictions
Requirement Name: External file system mount restrictions
Requirement Reference: In accordance with industry best practice
Requirement Description: 
If a user is allowed to mount external file systems (attached locally or via the network), OS-level restrictions shall be set properly in order to prevent privilege escalation or extended access permissions due to the contents of the mounted file systems.
Implementation example: In Linux® systems, administrators shall set the options nodev and nosuid in the /etc/fstab for all filesystems, which also have the "user" option.
NOTE: 	This requirement does not apply when the docker is used to mount file system.
Threat References: TR 33.926 [4], clause 5.3.8.2, Over-Privileged Processes/Services
Test Case: 
Test Name: TC_EXTERNAL_FILE_SYSTEM_MOUNT_RESTRICTIONS
Purpose:
Verify that OS-level restrictions are set properly for users that are allowed to mount external file systems (attached locally or via the network). This is to prevent privilege escalation or extended access permissions due to the contents of the mounted file systems.
Procedure and execution steps:
Pre-Condition:
Tester has admin access to check and configure the external filesystem mount permissions in the OS.
Tester has username and password of a user in the network product that has external filesystem mount privileges.
Execution Steps
1.	The tester shall verify that OS-level restrictions are set properly in order to prevent privilege escalation due to the contents of the mounted file systems (e.g. In Linux® systems, administrators shall set the options nodev and nosuid in the /etc/fstab for all filesystems, which also have the "user" option). The tester checks that OS-level parameters are configured correctly on the system.
2.	The tester mounts an external filesystem prepared by the tester with files exploiting privilege escalation methods (e.g. with writable SUID/GUID files).
3.	The tester tries to gain privileged access to system by using a suitable privilege escalation method, using the contents of the mounted file system, and then the tester confirms that privilege escalation doesn't happen.
Expected Results:
The OS-level restrictions are set properly in order to prevent privilege escalation or extended access permissions due to the contents of the mounted file systems.
Any privilege escalation method used by the tester should be blocked.
Expected format of evidence:
Screenshot containing the configuration file showing that OS-level restrictions are set properly for users that are allowed to mount external file systems.

[bookmark: _Toc19542443][bookmark: _Toc35348445][bookmark: _Toc187937554]4.3.4.8	Access rights for web server configuration
Requirement Name: Access rights for web server configuration files 
Requirement Reference: In accordance with industry best practice
Requirement Description: Access rights for web server configuration files shall only be granted to the owner of the web server process or to a user with system privileges. Implementation example: Delete "read" and "write" access rights for "others." Only grant "write" access to the user who configures the web server.
Threat References: TR 33.926 [4], clause 5.3.8, Elevation of privilege
Test Case: 
Test Name: TC_ACCESS_RIGHTS_WEB_SERVER_FILES
Purpose:
To verify that the access rights for Web server configuration files are correctly set.
Procedure and execution steps
Pre-Conditions:
-	The tester has administrative privileges
-	A tester machine is available. 
-	Recommended: an automatic assessment tool has been configured / script adapted in line with the Requirement Description.
Execution Steps
1.	The tester identifies the user owning the web server process.
2.	The tester verifies that only the owner of the web server process and users with system privileges have "read" and "write" access rights for all web server configuration files and configuration directories.
Expected Results:
Access rights for web server configuration files and directories are adequately set, as required in the requirement description.
Expected format of evidence:
Log files and screen shots of test executions

[bookmark: _Toc19542455][bookmark: _Toc35348457][bookmark: _Toc187937566]4.3.6.2	No code execution or inclusion of external resources by JSON parsers
Requirement Name: No code execution or inclusion of external resources by JSON parsers.
Requirement Reference: In accordance with industry best practice
Requirement Description: 
Parsers used by Network Functions (NF) shall not execute JavaScript or any other code contained in JSON objects received on Service Based Interfaces (SBI). Further, these parsers shall not include any resources external to the received JSON object itself, such as files from the NF’s filesystem or other resources loaded externally.
[bookmark: _Hlk19541849]Threat References: TR 33.926 [4], clause 6.3.2.1, JSON Parser Exploits
Test Case: 
Test Name: TC_JSON_PARSER_CODE_EXEC_INCL
Purpose:
NFs implementing SBI transfer application data serialized as JSON objects. When receiving such data, an NF parses this JSON representation and creates equivalent internal data structures. Since the contents of the JSON objects shall be considered untrusted, blindly executing code fragments or loading resources from a local path or Uniform Resource Identifier (URI) shall not be possible.
Procedure and execution steps:
Pre-Conditions:
-	The tester has the privileges to log in the network product and to access to all system resources (e.g. log files)
-	A list of all available network services containing at least the following information shall be included in the documentation accompanying the Network Product:
-	all interfaces providing IP-based protocols;
-	the available transport layer protocols on these interfaces;
-	their open ports and associated services in the form of an OpenAPI3.0 interface specification;
-	The tester has access to a Web Application Security (WAS) test tool that allows the tester to generate HTTP messages exploiting JSON parsers that do not prevent the above-mentioned scenarios of code execution and loading external resources. The test lab is expected to have sufficient expertise to recognize the level of effectiveness of the available tools.
-	A network traffic analyser on the network product (e.g. TCPDUMP) or an external traffic analyser directly connected to the network product and on a tester machine is available.
Execution Steps
1.	The tester uses ae WAS test tool to generate HTTP requests (as described above in pre-conditions) towards the network product’s API endpoints via its Service Based Interfaces.
2.	Using a network traffic analyser on the network product, e.g. TCPDUMP or an external traffic analyser directly connected to the network product, the tester verifies that no external resources get loaded during JSON parsing.
3. 	Depending on the actual JavaScript code in the HTTP message, the tester verifies that the network product does not execute any of the contained actions.
Expected Results:
-	The NF does not load any resources external to the JSON object itself.
-	The NF does not execute any JavaScript code contained in JSON objects.
Expected format of evidence:
-	The used tool(s) name and version information
-	Settings and configurations used
-	The output log file of the chosen tool that displays the results (passed/failed).
-	Screenshot

[bookmark: _Toc35348464][bookmark: _Toc187937573]4.4.4	Robustness and fuzz testing 
Requirement Name: Robustness and fuzz testing
Requirement Reference: 4.2.6.2.2. – Interface Robustness 
Requirement Description:
It shall be ensured that externally reachable services are robust enough to detect or dismiss unexpected or malformed input.
Threat References: TR 33.926 [4], clause 5.3.7, Denial of service
Test case: 
Test Name: TC_BVT_ROBUSTNESS_AND_FUZZ_TESTING
Purpose:
To verify that the network product provides externally reachable services which are robust against unexpected or malformed input. The target of this test are the protocol stacks (e.g. diameter stack) rather than the applications (e.g. web app).
Procedure and execution steps:
Pre-Conditions:
-	The tester has the privileges to log in the network product and to access all system resources (e.g. log files)
-	A list of all available network services containing at least the following information shall be included in the documentation accompanying the Network Product:
-	all interfaces providing IP-based protocols;
-	the available transport layer protocols on these interfaces;
-	their open ports and associated services;
-	and a free-form description of their purposes.
NOTE:	This list is to be validated as part of the BVT port scanning activity.
-	The robustness and fuzzing tools that are selected for this test shall be capable to identify input which causes the Network Product to behave in an unspecified, undocumented, or unexpected manner.
-	Fuzz testing tools are a highly sophisticated technology and adaptation to the individual protocols in question is needed to be effective. Therefore, there is a lack of effective fuzz testing tools available especially for protocols proprietary to the Telco industry. Taking into account note 4 in clause 7.2.4 of TR 33.916 [19], test labs shall acquire fuzz testing tools for those protocols where commercially feasible.
-	It needs to be taken into account that fuzz testing tools might show drastic differences in terms of effectiveness. The tester is expected to recognize faults, misuse, or crashes in the protocol under test to determine the level of effectiveness of the available tools.
-	A network traffic analyser on the network product (e.g. TCPDUMP) or an external traffic analyser directly connected to the network product and on a tester machine is available.
Execution Steps
The tester is required to execute the following steps:
1.	Execution of fuzzing tools against the protocols available via interfaces providing IP-based protocols of the Network Product for a coverage of tests sufficient to be effective.
2.	Execution of robustness test tools against the protocols available via interfaces providing IP-based protocols of the Network Product for a coverage of tests sufficient to be effective.
3.	For both step 1 and 2:
a.	Using a network traffic analyser on the network product (e.g. TCPDUMP) or an external traffic analyser directly connected to the network product, the tester verifies that the packets are processed correctly by the network product. 
b.	The testers verifies that the network product and any running network service does not crash. 
c.	The execution of tests shall run sufficient times. 
Expected Results:
A list of all of the protocols of the network product reachable externally on an IP-based interface, together with an indication whether robustness and fuzz testing tools have been used against them, shall be part of the testing documentation. If no tool can be acquired for a protocol, a free form statement shall be used to explain why not.
The used tool(s) name, their unambiguous version (also for plug-ins if applicable), used settings, and the relevant output is evidence and shall be part of the testing documentation.
Any input causing unspecified, undocumented, or unexpected behaviour, and a description of this behaviour shall be highlighted in the testing documentation.
COTS fuzzing tools, by their nature, may have an acceptable failure rate (e.g. 0.1%) due to different non-deterministic variables in their implementation. At some point the tool’s documentation may even mention that the failing test shall be repeated to check whether it is really a recurring problem or not. The tester shall make best effort to determine if there is an issue with NE or the test tool and if necessary, work with the vendor of the network product to come to a consensus on the test result outcome.
Expected format of evidence:
-	The used tool(s) name and version information,
-	Settings and configurations used
-	The output log file of the chosen tool that displays the results (passed/failed).
-	Screenshot
-	Log/evidence tracing possible crashes
-	Any input causing unspecified, undocumented, or unexpected behaviour
* * * End of Change * * * *

