	
3GPP TSG-SA3 Meeting #125	S3-254060-r5
Dallas, US, 17 – 21 November 2025

Source:	Nokia
Title:	Pseudo-CR on Solution proposal Symmetric key SUCI
Document for:	Approval
Agenda item:	5.2.1
Spec:	3GPP TR 33.703
Version:	0.2.0
Work Item:	FS_PQC

Comments

This pCR is introducing the Solution proposal Symmetric key SUCI procedures.
The proposed solution is to be added into the TR study on supporting the PQC [1].
The revision1 includes new added Editor’s Notes, and clarifications due to received feedback.
[1]			3GPP TR 33.771, “Study on Transitioning to Post Quantum Cryptography (PQC)”

* * * First Change * * * *
[bookmark: _Toc211866806][bookmark: _Toc211867886]

[bookmark: _Toc211892374][bookmark: _Toc211951669][bookmark: _Toc211952211]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
ANSSI			Agence Nationale de la Sécurité des Systèmes d'Information
CA			Certification Authority
CBOR			Concise Binary Object Representation
COSE			CBOR Object Signing and Encryption
CRL			Certificate Revocation Lists
CRQC			Cryptographically Relevant Quantum Computer
DSA			Digital Signature Algorithm
ECC			Elliptic Curve Cryptography
ECDH			Elliptic Curve Diffie–Hellman key Exchange
ECIES			Elliptic Curve Integrated Encryption Scheme
FN-DSA			Fast-Fourier Transform over NTRU-Lattice-Based DSA
HBS			Hash-Based Signature
HQC			Hamming Quasi-Cyclic
HSS			Hierarchical Signature System
IKEv2			Internet Key Exchange Protocol Version 2
JSON			JavaScript Object Notation
JWE			JSON Web Encryption
JWS			JSON Web Signature
KEM			Key Encapsulation Mechanism
MIKEY-SAKKE			Multimedia Internet KEYing – Sakai-Kasahara Key Encryption
ML-DSA			Module-Lattice-Based DSA
ML-KEM			Module Lattice-Based Key-Encapsulation Mechanism
NCSC 			National Cyber Security Centre
NSA			National Security Agency
NSM			National Security Memorandum
NTRU			Nth-degree Truncated Polynomial Ring Units
PKI			Public Key Infrastructure
PKIX			Public Key Infrastructure X.509
PQC			Post-Quantum Cryptography
PRNG			Pseudo Random Number Generator
SA			Security Association
SDO			Standards Development Organizations
SECG			Security Engineering & Consulting Group
SLH-DSA			Stateless Hash-Based DSA
SUCI			Subscription Concealed Identifier
TLS 1.2			Transport Layer Security Version 1.2
TLS 1.3			Transport Layer Security Version 1.3
UDM			Unified Data Management
XMSS			eXtended Merkle Signature Scheme

* * * Next Change * * * *

	[x1]	NIST SP-800-90A
	[x2]	3GPP TS 33.501
	[x3]	

* * * Next Change * * * *

7.2.1.Y	Solution Y: Symmetric crypto based SUCI
Overview: The UDM is creating a collection of relevant SUPI values. The UDM is encrypting by using symmetric crypto each of SUPI values from the list and is sending these to the UE. The UE is appending the selected encrypted SUPI and is hashing the encrypted SUPI together with the concatenated hashed Key KSUPI. The UDM can verify the authenticity of the SUPI. The UDM can verify the authenticity of the UE, and in successful case the UDM-UE auth can be processed.
[bookmark: _Toc211866807][bookmark: _Toc211867887]7.2.1.Y.1	 Introduction
This solution addresses the key issue#1.
[bookmark: _Toc211866808][bookmark: _Toc211867888]7.2.1.Y.2 	Solution details
Editor’s Note: The description of a resynchronisation procedure is FFS.
Editor’s Note: It is FFS about the first registration procedure.
Editor’s Note: It is FFS How are new encrypted SUPIs provisioned to UEs.
Editor’s Note: It is FFS How does the UDM regenerate the new symmetric keys for Pseudonyms.
Editor’s Note: Resynchronization of desynchronized RANDs is FFS.
Editor’s Note: Impact on fulfilling LI requirements is FFS.
Editor’s note: The elaboration for why the SUCI has to be encrypted is FFS.

Overview of Encrypted SUCI in UDM:

Figure 7.2.1.Y.2-1: Encrypted SUCI in UDM (overview)

In the above Figure 7.2.1.Y.2-1 the list of Encrypted SUCI is generated in UDM is shown. The UDM will first generate the key KSUPI using hash of SUPI, long term credentials of Subscriber K, RANDSUPI. Also, in parallel there will be list of Random numbers (RANDSUCI#1, RANDSUCI#2, etc) are generated using PRNG (Pseudo Random Number Generator). Use the newly generated key KSUPI to encrypt all the RANDSUCI#1, RANDSUCI#2, etc, to generate Enc(RANDSUCI#1), Enc(RANDSUCI#2), etc.

Overview of Temporary SUCI:

Figure 7.2.1.Y.2-2: Temporary SUPI (overview)

The following steps are applicable:
Pre-configuration Phase
1.) The UDM is creating the list of SUCI values and is encrypting these by using symmetric cryptography. (Rationale: Actually, symmetric cryptography is assumed to be quantum safe.) The UDM is creating a Key KSUPI for the SUPI encryption and must store this key, because this key is later used for the decryption.
Editor’s Note: How does the UDM create the SUCI values, and why is it then encrypting them? The SUCI values will be computed as shown by Figure 7.2.1.Y.2-1. The SUCI values will be encrypted to provide privacy during transition phase.
How does the UDM create KSUPI? The KSUPI is the hashed output value of input parameters/values (i.e., long-term key K, RANDSUPI, and hash value of SUPI). For the KDF, the hash functions of the SHA-3 family are considered quantum-resistant, i.e., digests (hash values) that are 128, 224, 256, 384 or 512 bits, are candidates for use in the KDF. It can be assumed, that the UDM has sufficient processing capacity to run the KDF for KSUPI computation.
2.) The list of encrypted SUCI’s is sent to the UE along with RANDSUPI. This RANDSUPI is used by UDM to generate the Key KSUPI (reference “Overview of Encrypted SUCI in UDM” of this document).
Editor’s Note: What is RANDSUPI, how is it generated and is it sent to the UE in plaintext? If it is sent in plaintext, can an eavesdropper compromise the privacy of the UE? The RANDSUPI is a random value with predefined length and is used for freshness purposes. For random number generation the NIST Special Publication 800-90A [x1] is to be used as reference. The RANDSUPI is not encrypted, which is similar to the RAND from the AV in EAP-AKA (refer to TS 33.501 [x2]). The privacy of the UE can NOT be compromised by disclosing the RANDSUPI, because the RANDSUPI can NOT be used for identification of the subscriber.
3.) The UE is storing the received list of encrypted SUCI’s. USIM/ ME will also use RANDSUPI to generate Key KSUPI.
Editor’s Note: Where does the UE store the encrypted SUCIs? Why does the UE need to generate KSUPI? The storage place of the SUCI should non-volatile memory. RANDSUCI values have been used should be moved into volatile memory. The KSUPI must be processed, because this is providing a binding to the specific long-term key, basically, this is providing a proof-of-possession, i.e., the encrypted RANDSUCI, which will be sent to the Network includes the long-term key K.

Registration Phase
4.) The UE is now selecting one encrypted SUCI.
5.) The UE is sending the registration request to the UDM and is added new processed values into this message. The following needs to be processed by the UE: The root key is the Key K which is stored inside the USIM of that UE. The UE is creating a hash of that Key KSUPI. Furthermore, the UE is concatenating the Encrypted SUCI and is hashing both, the Encrypted SUCI together with the hashed Key KSUPI. The rationale for creating this concatenation is the following: The Encrypted SUCI is used by the UDM to verify the authentication of the SUCI value, while the hashed key KSUPI is used by the UDM to verify the authenticity of the UE (could also be called, the legitimacy of the UE for sending these information elements).
6.) The UDM is receiving the Registration Request message and is first using the Encrypted SUCI value for the look-up on which key is needed for the decryption. Now since the UDM knows which key is to be used and since it knows the UE, the UDM is taking the fetching the computed key KSUPI, is hashing this, and is fetching the encrypted SUCI from the local stored memory and is hashing the concatenated encrypted SUCI and the hashed key KSUPI. The outcome of this hashing (refers to the expected hash) will be compared with the received hash value.
7.) This refers to the registration and auth execution and completion. Rationale: The execution steps above refer basically to the auth of the encrypted SUCI and the authentication (legitimacy) of the UE. After this the normal Auth needs to be processed.
8.) After successful encrypted SUCI usage, both UE and UDM deletes this value from the list and same UE can’t use the same for further communications.
9.)10.)11.) This refers to the renewing and deployment of new list of encrypted SUCI values. UDM could use old RANDSUPI and continue to use the KSUPI for encryptions, but also UDM could decide to refresh this key KSUPI by creating new RANDSUPI and pass it to UE.

[bookmark: _Toc211866809][bookmark: _Toc211867889]7.2.1.Y.3 	Evaluation
TBD
Editor’s Note: Further evaluation to be added.

* * * End of Changes * * * *

image1.emf
KDF

Long Term Key

of Subscriber

Hash of SUPI

RAND

SUPI

Key K

SUPI

PRNG

List of RAND

SUCI

Encryption Algo

List of Enc(RAND

SUCI

)

Microsoft_Visio_Drawing.vsdx
KDF
Long Term Key
of Subscriber
Hash of SUPI
RANDSUPI
Key KSUPI
PRNG
List of RANDSUCI
Encryption Algo
List of Enc(RANDSUCI)

image2.emf
USIM / UE UDM

1. UDM generates ͞n͟�number of RAND

SUCI

per subscriber.

SUPI#1

K

SUPI#1

SUPI#2

K

SUPI#2

SUPI#3

K

SUPI#3

SUPI#N

K

SUPI#N

Enc(RAND

SUCI#8

)

Enc(RAND

SUCI#9

)

Enc(RAND

SUCI#10

)

Enc(RAND

SUCI#11

)

Enc(RAND

SUCI#1

)

Enc(RAND

SUCI#2

)

Enc(RAND

SUCI#3

)

Enc(RAND

SUCI#4

)

Enc(RAND

SUCI#13

)

Enc(RAND

SUCI#14

)

Enc(RAND

SUCI#15

)

Enc(RAND

SUCI#16

)

Enc(RAND

SUCI#19

)

Enc(RAND

SUCI#20

)

Enc(RAND

SUCI#21

)

Enc(RAND

SUCI#22

)

2.Configure in USIM / UE

(list of temporary encrypted SUCI and RAND

SUPI

)

SUPI#1

K

SUPI

Enc(RAND

SUCI#1

)

Enc(RAND

SUCI#2

)

Enc(RAND

SUCI#3

)

Enc(RAND

SUCI#4

)

3a. USIM stores ͞n͟�number of

Enc(RAND

SUCI

)

per subscriber and

RAND

SUPI

. USIM also generated K

SUPI#1

Pre-configuration

SUPI mapping table

:

During

Registration

4a. UE / USIM selects one from the mapping table

5. Registration Request

Calculated SUCI , 3x RAND

SUCI

available)

6. Search the mapping table and Subscription

identified. AKA challenge is sent.

7. Authentication and registration is completed.

After

registration

8b. Delete the used Enc(RAND

SUCI1

) 8a. Delete the used Enc(RAND

SUCI1

)

9.creates new list of Enc(RAND

SUCI-n

)

10. UPU parameter

(list of Enc(RAND

SUCI-n

) and new RAND

SUPI

)

11.stores the list of Enc(RAND

SUCI-n

)

USIM will use RANDSUPI to generate new K

SUPI

As UE reported only 5 RANDSuci

available and Network should

ensure N (6) should be available at

the UE, so Network will create new

Enc(RANDSuci) and provide it to UE

4b.(Enc(RANDSUCI#1)+ SHA(Enc(RAND

SUCI#1

|| SHA(K

SUPI#1

))

Microsoft_Visio_Drawing1.vsdx
USIM / UE
UDM
1. UDM generates “n” number of RANDSUCI per subscriber.
SUPI#1
KSUPI#1
SUPI#2
KSUPI#2
SUPI#3
KSUPI#3
SUPI#N
KSUPI#N
Enc(RANDSUCI#8)
Enc(RANDSUCI#9)
Enc(RANDSUCI#10)
Enc(RANDSUCI#11)
Enc(RANDSUCI#1)
Enc(RANDSUCI#2)
Enc(RANDSUCI#3)
Enc(RANDSUCI#4)
Enc(RANDSUCI#13)
Enc(RANDSUCI#14)
Enc(RANDSUCI#15)
Enc(RANDSUCI#16)
Enc(RANDSUCI#19)
Enc(RANDSUCI#20)
Enc(RANDSUCI#21)
Enc(RANDSUCI#22)
2.Configure in USIM / UE
(list of temporary encrypted SUCI and RANDSUPI)
SUPI#1
KSUPI
Enc(RANDSUCI#1)
Enc(RANDSUCI#2)
Enc(RANDSUCI#3)
Enc(RANDSUCI#4)
3a. USIM stores “n” number of Enc(RANDSUCI) per subscriber and RANDSUPI. USIM also generated KSUPI#1
Pre-configuration
SUPI mapping table
:
During Registration
4a. UE / USIM selects one from the mapping table
5. Registration Request
Calculated SUCI , 3x RANDSUCI available)
6. Search the mapping table and Subscription identified. AKA challenge is sent.
7. Authentication and registration is completed.
After
registration
8b. Delete the used Enc(RANDSUCI1)
8a. Delete the used Enc(RANDSUCI1)
9.creates new list of Enc(RANDSUCI-n)
10. UPU parameter
(list of Enc(RANDSUCI-n) and new RANDSUPI)
11.stores the list of Enc(RANDSUCI-n)
USIM will use RANDSUPI to generate new KSUPI
As UE reported only 5 RANDSuci available and Network should ensure N (6) should be available at the UE, so Network will create new Enc(RANDSuci) and provide it to UE
4b.(Enc(RANDSUCI#1)+ SHA(Enc(RANDSUCI#1 || SHA(KSUPI#1))

