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[bookmark: _Ref488331639]Introduction
In RAN plenary # 102, the SID on AI mobility [1] is approved. The simulation relevant objectives covered by the third main bullet is as follows:
· The evaluation of the AI/ML aided mobility benefits should consider HO performance KPIs (e.g., Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction) etc.) and complexity tradeoffs [RAN2]
· NOTE: Simulation assumption and methodology can leverage TR 38.901, 38.843 and 36.839. And leave the detail discussion to RAN2

The objective text is rather simple without further detailed assumption description. This contribution intends to show our understanding of how to build simulations.
Discussion
There are bound to be many aspects companies want to investigate. We’d better make those aspects clear and share common understanding about the needed simulations and background configurations. Otherwise, the discussion on simulation assumptions and evaluation would be very complicated.
Dataset generation
It is well-known that different datasets may have significant impacts on the performance of AL/ML-based methods. Both field data and synthesized data from simulators could be potentially used for AI mobility use case study. Field data can be used if companies can share their data publicly, with clear descriptions of how the field data is collected and processed. But since it is costly and time-consuming activity, companies may have to rely on synthesized data for evaluation. 
Synthesized datasets based on 3GPP agreed channel model and deployment can be used to investigate the impact of different dataset generation alternatives. Thus, it is more economic and efficient way to evaluate and cross-validate results of different use cases.
Proposal 1: AI mobility SI uses synthesized datasets based on 3GPP agreed channel model and deployment for evaluation. Field data is optional.
For 5G NR, mobility is a beam-related activity. The assumptions and scenarios of the AI mobility study can be based on those, defined for the beam management case in TR 38.843 [2]. For instance, the dataset of L1 beam measurement results can be used to obtain cell-level measurement results by agreeing on common approach for post-processing of L1 measurements, such as consolidation and L3 filtering. TR 38.843 has shown that RAN1’s simulation platform can already generate satisfactory L1 beam measurement that has abundant information for AI/ML to learn and can achieve sufficient prediction accuracy. 
Observation 1: Current RAN1’s simulation platform can generate dataset for L1 beam measurement results.
If we can reuse RAN1’s simulation platform to generate L1 data, much efforts can be saved. However, RAN1’s study focuses on measurements for the serving cell. For mobility, neighbouring cells are of the same-level significance as the serving since handover is a multi-cell-related behaviour. If we want to reuse the simulation platform from RAN1, we need to at least extend it to neighbouring cell measurements.
Proposal 2: Reuse current RAN1’s simulation assumptions and platform as much as possible by extending data generation to neighbouring cells.
Simulation principles
For comparison purposes, new AI/ML mobility management and reporting procedures shall follow the same baseline assumptions as for legacy (non-AI). For example, it is expected that UE is configured to send L3 measurement reports to the NW which are then used to make HO decisions. The legacy (non-AI/ML) L3 measurement report configurations (such as event types, RRC configurations (e.g., offset, time-to-trigger, timers, etc.) could be also taken as a starting point. Otherwise, it is not clear whether performance gains are obtained by AI/ML or purely by legacy parameter tuning. Therefore, it is proposed that
[bookmark: _Hlk161417054]Proposal 3: Once a set of simulation parameters and assumptions per each sub-use case (e.g., propagation scenario, deployment topology, channel modelling, UE trajectories, etc.) are settled, it should be used for baseline case (i.e. without AI/ML model), and for training (e.g. data set generation), validation, and inference etc. of AI/ML models.
Overfitting of data does achieve good performance in certain scenarios, however, may encounter failures when the wireless environment slightly changes. It is not proper for commercial implementation. A random seed is a number (or vector) used to initialize a pseudorandom number generator. To avoid overfitting of simulated data, different random seeds need to be generated for training, testing, and independent simulation drops/runs. Hence, for different random seeds it is ensured that the UE’s initial position, moving trajectory, and channel state are randomly generated and are different to each other.
Proposal 4: Clarify and document the use of random seeds in between the training and test dataset, simulation drops/runs at least for channel modelling and UE trajectory.
There are two types of calibrations in simulation: calibration/alignment of assumptions and calibration of results. The former means aligning the simulation scenarios and parameters, while the latter focuses on making sure that every company’s result follows the same trend and does not deviate much from each other. 
To confirm the rationality of evaluation results for fair checking by companies, the calibration of simulation assumptions for AI models is necessary, and that should be aligned before conducting system-level evaluation. 
For result calibration, we need to generate a common training/testing dataset and/or have a calibrated AI/ML model across companies. As in TR 36.839 [3], the calibration results averaged over the results from all the participating companies. This type of calibration would spend lots of time and discussions, and should be considered with lower priority. 
Without result calibration, companies can compare the performance of an AI/ML model to their own baseline. The gains achieved by introducing AI/ML can thus be obtained. It is anticipated that gains reported from companies will fall within a reasonable range as basic simulation assumptions have been aligned. To avoid too huge/small gains caused by simulation errors, companies are also encouraged to independently report their AI model description and training methodology used for evaluation for information and cross-checking purposes.
Proposal 5: Calibration/alignment of simulation assumptions is necessary, but explicit result calibration (e.g., as in TR 36.839) is not expected. Companies can independently report their gains achieved by AI/ML over their own baseline with detailed evaluation descriptions for cross-checking purposes.
Assumption alignment
Handover assumptions
Frequency band is a critical factor in determining the performance of handover. Lower frequency bands (FR1) provide better coverage and penetration through obstacles but offer limited bandwidth. On the other hand, higher frequency bands (FR2) provide larger bandwidths for higher data rates but have limited coverage and are more susceptible to signal attenuation. The nature of FR1 and FR2 determines that mobility under different frequency coverage leads to distinct handover performance. Therefore, both FR1 and FR2 should be considered in the AI mobility SI. 
5G NR has explored some new frequency bands including n77, n78, and n257. They have been commercialized and thus can be used as the baseline to simulate actual wireless environment. Besides, the operating band of n257 is from 26.5GHz to 29.5GHz and is very close to the 30GHz adopted by RAN1-led AI/ML for air SID. That means RAN1’s work can be reused as much as possible if we consider band n257 of FR2-1. FR2-2 should be excluded considering there is no related commercial plan at this stage and the majority of them are unlicensed spectrum.
Proposal 6: AI mobility SI considers both FR1 and FR2:
· For FR1, band n77/n78 is considered with 4GHz as the central frequency.
· For FR2, only FR2-1 is considered, e.g., band n257. 30GHz central frequency can be adopted to reuse RAN1’s work as much as possible.
Compared to FR1, FR2-1 to FR2-1 handover is more likely to be affected by the mobility environment and faces more connection problems. It is reported that FR2 handover has more ping-pong rate and short time of stay rate than FR1-to-FR1 handover in the field. Therefore, if AI/ML can bring FR1 and FR2 handover performance to the same level, more optimization gains can be expected from FR2-1 to FR2-1 handover. On the other hand, the gain of measurement reduction could be achieved both for FR1 to FR1 handover and FR2-1 to FR2-1 handover and FR1 is more maturely deployed in the field.
Observation 2: FR2-1 to FR2-1 handover is more challenging and hence more performance gain is expected than FR1-to-FR1 handover
Therefore, it is proposed that
Proposal 7: RAN2 is kindly asked to discuss whether/how to prioritize between FR1-to-FR1 handover and FR2-1-to-FR2-1 handover.
Measurement assumptions
The SID objective states that “Cell-level measurement prediction including intra and inter-frequency”. Intra-frequency is easier to evaluate and has already been tested by RAN1 in Rel-18 SI [TR 38.843] For inter-frequency, there are three different cases:
· The first one is RRM prediction that happens in the frequency domain. Prediction in frequency domain may be feasible if the real measured carrier and predicted carrier are co-located and the two frequencies supposes to be close in frequency domain as such that there is some frequency domain consistency. But such study has never been done in RAN1 in Rel18 before. Plus, it also means to support RRM measurement prediction across cells or even among cells, which is not the case for time or spatial domain prediction.
· [bookmark: _Hlk161415478]The second one is temporal/spatial domain inter-frequency RRM prediction with the serving cell and neighbouring cells using different frequency bands. We assume that measurement prediction is done within either the serving cell or the neighbouring cell. So, there is no essential difference whether the neighbouring cell is an intra-frequency or inter-frequency cell.
· The third one is measurement event prediction with measurements from two inter-frequency cells as AI/ML model input. In this regard, whether the neighbouring cell is intra-frequency or inter-frequency may make a difference. But we can prioritize intra-frequency measurement for evaluation purposes.
The potential benefit of frequency domain prediction is that some measurement gap(s) may be saved so that UE can get more chances to be scheduled apart from saved measurement efforts. But it is brand-new area which was not studied by RAN1 before. It is not clear which scenario to target e.g. whether and how to guarantee the correlation between serving frequency and target frequency and how. It is more likely that RAN1 need be involved while this SID is lack of RAN1 TU. So overall some discussion is needed how to prioritize between intra-frequency and inter-frequency measurement.
[bookmark: _Hlk162885433]Proposal 8: RAN2 is kindly asked to discuss whether/how to prioritize between intra-frequency and inter-frequency measurement.
Propagation scenario
Urban Macro (Uma) is the basic scenario for dataset generation and performance evaluation in TR 38.843. In AI mobility SI, we can reuse the assumption and focus our simulation on UMa. As for UMi, RMa and other scenarios, they can be considered in model generalization analysis to test whether an AI/ML model trained in one scenario can be implemented in a different scenario directly, i.e., without retraining. As a part of generalization analysis, model training in the scenarios other than UMa can be still considered to evaluate the performance difference.
Proposal 10: To focuses on Urban Macro (UMa) as starting point propagation scenario and revisit whether Umi is needed afterwards.
Deployment topology
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Figure 1. Typical cell layouts
Hexagonal grid is the most common cell layout we use in simulations. A two-tier model with warp-around, i.e., 7 sites with 3 sectors/cells per site, has been adopted in TR 38.843 for beam management. During AI/ML for air Rel-18 SID, we did see some other topologies, e.g., Manhattan grid and Madrid grid, are studied by companies. However, they are channel models outside of 3GPP as per TR 38.901. Compared to the hexagonal grid, the modelling of those topologies may take companies more time.
Proposal 11: RAN2 takes hexagonal regular topology as the starting point. Other cell layouts are FFS and not precluded, e.g., Manhattan grid and Madrid grid.
Channel modelling
If FR2-1 to FR2-1 handover is given priority in the study, we can reuse RAN1’s assumption from Rel18 SI for beam management use case. Table 6.3.1-1 in TR 36.843 has listed the baseline simulation assumptions for AI/ML in beam management evaluations, within which channel-modelling-related parameters include at least BS/UE antenna configuration, BS Tx power, and BS/UE antenna height. Without duplicate work on those assumption alignments, much time and effort can be saved.
In TR 38.843, UE rotation is optionally modelled for system-level simulation for temporal beam prediction. One of the reasons is that even for a smartphone, the rotation will not occur in some scenarios, e.g., a smartphone in a car. For evaluation, UE rotation is more of a generalization discussion. Excessive rotation during movement would cause the adopted AI model to require huge samples to converge. To make the simulation focused, UE rotation does not need to be considered at the starting point of the AI mobility SID. 
Proposal 12: Take baseline simulation assumptions from Table 6.3.1-1 in TR 38.843 as the starting point for channel modelling, e.g., BS/UE antenna configuration, BS Tx power, and BS/UE antenna height. UE rotation is excluded in the initial phase of evaluation.
UE trajectory model
UE trajectory will impact the prediction accuracy of an AI/ML model. For example, the location and channel state of a UE would be easy to predict if the user always moving along a straight line. On the other hand, immediate random direction change could be completely unpredictable. In section 6.3.1 of TR 38.843, there are three options listed for trajectory modelling, namely linear trajectory model with random direction change, linear trajectory model with random and smooth direction change, and random direction straight-line trajectories. So far, these models were not evaluated in larger-scale inter-cell mobility scenarios, but they still can be considered as the baseline for AI mobility study.
Proposal 13: UE trajectory model uses options 1-3 in TR 38.843 section 6.3.1 as the starting point. Other models are not precluded. 
Model generalization
Model generalization is important for real-world implementation, where an AI/ML model will need to process data that it has never seen before. For AI mobility, various deployment scenarios (e.g., UMa, UMi, 200m ISD or 500m ISD), different or changing UE speeds (e.g., 30km/h, 60km/h, and 120km/h), various RRC configurations (e.g., A3-offset, time-to-trigger, and T310), and different frequencies (e.g., 2GHz and 4GHz), would all impact generalization performance of an AI/ML model. However, at the early stage of this SI, we do not need to spend too much time on generalization. This is because the main goal at the beginning is to explore the benefits brought by AI/ML techniques. During this phase, it is more important to focus on understanding the common dataset and selecting appropriate use cases and metrics for the task at hand. After such candidate use-cases are identified, the generalization must be considered early enough, so that efforts are not wasted to study cases, which bring gains but only in very limited or unrealistic scenarios.
Proposal 14: AI/ML model generalization could be addressed after sufficient performance gains for different use cases are found.
Conclusion
In this contribution, we share our understanding of how to build simulations for the AI mobility SI and have the following observations:
Observation 1: Current RAN1’s simulation platform can generate datasets for L1 beam measurement results.
Observation 2: FR2-1 to FR2-1 handover is more challenging and hence more gain is expected than FR1-to-FR1 handover
Proposal 1: AI mobility SI uses synthesized datasets based on 3GPP agreed channel model and deployment for evaluation. Field data is optional.
Proposal 2: Reuse current RAN1’s simulation assumptions and platform as much as possible by extending data generation to neighbouring cells.
Proposal 3: Once a set of simulation parameters and assumptions per each sub-use case (e.g., propagation scenario, deployment topology, channel modelling, UE trajectories, etc.) are settled, it should be used for baseline case (i.e. without AI/ML model), training (e.g. data set generation), validation, and inference etc.
Proposal 4: Clarify and document the use of random seeds in between the training and test dataset, simulation drops/runs at least for channel modelling and UE trajectory.
Proposal 5: Calibration/alignment of simulation assumptions is necessary, but explicit result calibration (e.g., as in TR 36.839) is not expected. Companies can independently report their gains achieved by AI/ML over their own baseline with detailed evaluation descriptions for cross-checking purposes.
Proposal 6: AI mobility SI considers both FR1 and FR2:
· For FR1, band n77/n78 is considered with 4GHz as the central frequency.
· For FR2, only FR2-1 is considered, e.g., band n257. 30GHz central frequency can be adopted to reuse RAN1’s work as much as possible.
Proposal 7: RAN2 is kindly asked to discuss whether/how to prioritize between FR1-to-FR1 handover and FR2-1-to-FR2-1 handover
Proposal 8: RAN2 is kindly asked to discuss whether/how to prioritize between intra-frequency and inter-frequency measurement.
Proposal 10: To focuses on Urban Macro (UMa) as starting point propagation scenario and revisit whether Umi is needed afterwards.
Proposal 11: RAN2 takes hexagonal regular topology as the starting point. Other cell layouts are FFS and not precluded, e.g., Manhattan grid and Madrid grid.
Proposal 12: Take baseline simulation assumptions from Table 6.3.1-1 in TR 38.843 as the starting point for channel modelling, e.g., BS/UE antenna configuration, BS Tx power, and BS/UE antenna height. UE rotation is excluded in the initial phase of evaluation.
Proposal 13: UE trajectory model uses options 1-3 in TR 38.843 section 6.3.1 as the starting point. Other models are not precluded. 
Proposal 14: AI/ML model generalization could be addressed after sufficient performance gains for different use cases are found.
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RP-234055 Study on Artificial Intelligence (AI)/Machine Learning (ML) for mobility in NR
TR 38.843 Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface
TR 36.839 Mobility enhancements in heterogeneous networks
Annex 
Detailed simulation assumptions example for AI/ML mobility
By following the principles and assumptions in the above-mentioned discussions, the following detailed simulation assumptions and parameters are provided based on TR 38.843, TR 36.839, and TR 38.901.
Table 5-1: Detailed simulation assumptions for AI/ML mobility
	General assumptions

	Parameters
	Description

	Frequency Range
	FR2 @ 30 GHz;


	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel model
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901
Transmission blockage are optional

	System BW
	80MHz

	UE Speed
	30km/h (baseline), 60km/h (optional) 90km/h (optional), 120km/h (optional)
Other values are not precluded

	UE distribution
	100% outdoor

	BS Antenna Configuration
	Antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
Other assumptions are not precluded.

Number of BS beams: 32 or 64 downlink Tx beams (max number of available beams) at NW side. Other values, e.g., 256 not precluded.

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	Antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)
Other assumptions are not precluded

Number of UE beams: 4 or 8 downlink Rx beams (max number of available beams) per UE panel at UE side. Other values, e.g., 16 not precluded.

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	BS Tx Power
	40 dBm (baseline)
Other values (e.g., 34 dBm) not precluded

	Inter-site distance
	200 m

	BS Antenna height
	25 m

	UE Antenna height
	1.5 m

	Scenario
	Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
Other scenarios are not precluded. 

Intra-frequency is of high priority while inter-frequency is considered together with HetNet scenario.

	UE trajectory model
	Options 1-3 in TR 38.843 section 6.3.1
Other options are not precluded

	UE rotation
	Not considered at the starting point
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