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1 Introduction

The study on AI/ML for mobility in NR has been approved in the RAN plenary #102 meeting [1], and the objectives for simulation are given as follows:
	· The evaluation of the AI/ML aided mobility benefits should consider HO performance KPIs (e.g., Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction) etc.) and complexity tradeoffs [RAN2]

· NOTE: Simulation assumption and methodology can leverage TR 38.901, 38.843 and 36.839. And leave the detail discussion to RAN2


In this contribution, we will discuss the basic assumption of simulations for AI mobility, including the simulation principle and the typical scenario configuration set.
2 Discussion
2.1 Simulation principle
2.1.1 Dataset for prediction
The dataset collection is the foundation for AI mobility simulation. In the research of R18 air interface AI, some agreements have been achieved on the simulation assumptions in TR 38.843 [2], including channel modelling, UE trajectory, and topology etc. Therefore, it is convenient for RAN2 to reuse these assumptions and generate the dataset by system level simulation. 

In addition, field data is an important asset of each company, so that it is challenging to disclose the data. Besides, the field data of each company may be collected under different conditions, which will take extra time to align these datasets. Therefore, we prefer to conduct research based on results from system level simulation.
Proposal 1: Generate datasets for AI mobility study by the system level simulation.
2.1.2 Baseline alignment
To ensure a consistent understanding of the generated datasets across companies, RAN2 needs to have common assumptions for system level simulations. The AI mobility research involves three use cases, i.e., measurement prediction, HOF/RLF prediction and measurement event prediction. It is time-consuming and unnecessary to make simulation assumptions for each use case separately. Therefore, all the simulation assumptions for data generation should be applicable to all three use cases. On the other hand, the KPIs, the metrics and evaluation methods can be case specific, as each use case focuses on different performance gains.
Proposal 2: RAN2 should make some common simulation assumptions for all three use cases, while the KPIs, metrics and evaluation methods can be case specific. 
To verify the performance gains brought by AI/ML, the legacy system (i.e. non-AI system) and the system with AI/ML should use the same configuration during simulation. Further, in order to make the gains convincing, companies should validate their AI/ML performance against the aligned baseline results, which means the baseline is generated by calibrating (averaging) the simulation results of companies based on the agreed simulation assumptions.
But for the model, there is already a wide variety of AI/ML model types and training methods, and the performance gains that companies provided may vary depending on the choices they make. To enable comparison of simulation results across companies, two options are presented here:
· Option 1: align the training process of AI/ML models, including the training/testing dataset and the model structure;
· Option 2: companies choose the AI/ML models independently, but they need to provide the simulation results with some description of the models, such as the model structure and the dataset size.
Discussing the details of AI/ML model training on the standard will cost too much time and may be difficult to converge, thus option 2 is preferred.
Proposal 3: The gains of AI/ML should be evaluated against the aligned baseline result, while companies can choose the AI/ML models independently and provide the simulation results with some description of the models, such as the model structure and the dataset size. 
In addition, the determination of observation and prediction window also has important impact on the performance of AI/ML model. It is observed that RAN1 has given the sizes of observation and prediction window in clause 6.2 of TR 38.843. However, these values are not appropriate for L3 mobility, since only few L3 measurement samples can be collected in a period of this magnitude. Therefore, RAN2 needs to define the applicable window sizes based on the assumption of RAN1.
Proposal 4: RAN2 should define the observation and prediction window sizes which are appropriate for L3 measurements and may be different from the assumptions used by RAN1 in Rel-18.
2.2 Simulation assumption
2.2.1 Typical scenarios
According to the description of measurement prediction in SID, multiple scenarios can be formed. There is no need to study all scenarios at the beginning, and RAN2 can select some high-priority scenarios as the starting point. We summarize the sub-use cases and analyse their priorities in the following table:
Table 1: Sub-use cases of measurement prediction 
	Scenario
	Sub-use case
	Priority

	Intra-frequency
	Intra-cell temporal domain (use historical measurement of the serving/ neighbouring cell to predict the future measurement of the same cell)
	High priority. The measurement predictions of the serving/ neighbouring cell are the basis of HO.

	
	Cell-level/Beam-level inter-cell prediction (use measurement of the serving cell to predict the measurement of the intra-frequency neighbouring cell at the same moment)
	Low priority. The gap measurement is not required for intra-frequency neighbouring cell measurement in current mechanism, thus the benefits of this use case are not clear.

	Inter-frequency
	Intra-cell temporal domain (use historical measurement of the inter-frequency neighbouring cell to predict the future measurement of the same neighbouring cell)
	High priority. Replacing measurement results with predicted results to reduce the gap measurement overhead.

	
	Cell-level/Beam-level inter-cell prediction (use measurement of the serving cell to predict the measurement of the inter-frequency neighbouring cell at the same moment)
	High priority. The measurement gap cost can be reduced.


Based on the analysis above, there are two solutions to reduce the gap measurement overhead:

· Alt1: use historical measurement results of inter-frequency neighbouring cell to predict the future measurement result of the same neighbouring cell. In this way, some actual measurement actions of the neighbouring cell can be avoided, and the prediction result is used instead.

· Alt2: use historical measurement results of the serving cell to predict the future measurement result of the inter-frequency neighbouring cell. Thanks to this, the measurement of neighbouring cell can be avoided.

Based on the above, we suggest to focus on intra-cell temporal domain prediction and inter-frequency neighbouring cell prediction.
Proposal 5: For measurement prediction use case, the following scenarios should be prioritized:

1. Intra-cell temporal domain (use historical measurement of the serving/ neighbouring cell to predict the future measurement of the same cell)
2. Intra-cell temporal domain (use historical measurement of the inter-frequency neighbouring cell to predict the future measurement of the same neighbouring cell)
3. Cell-level/Beam-level inter-cell prediction (use measurement of the serving cell to predict the measurement of the inter-frequency neighbouring cell at the same moment)
When it comes to HOF/RLF and measurement even prediction use cases, it is recommended that RAN2 focuses on FR2 and high-speed scenarios to facilitate the verification of performance gains brought by AI/ML, since the handover performance in FR1/low-speed scenarios is good enough in the existing mechanism.
Proposal 6: For HOF/RLF and measurement even prediction use cases, RAN2 prioritizes FR2 and high-speed scenarios.
2.2.2 Assumptions common to all use cases
In this section, we will discuss the common assumption for all three use cases.
(1) Deployment scenario
Urban Macro (UMa) and hexagonal grid topology (7 sites, 3 sectors/cells per site) are considered as the baseline scenario for study on air interface AI in TR 38.843. We believe we can reuse this assumption and start the research on AI mobility in UMa and hexagonal grid scenario. When the performance gains of AI mobility are verified, then we can extend the study to other scenarios, such as UMi and RMa.
Proposal 7: RAN2 focuses on Urban Macro (UMa) and hexagonal grid topology scenario.
(2) Channel modelling
The channel modelling has been standardized in TR 38.901 [3], and reused by RAN1 in the research of R18. Therefore, to reduce extra efforts to align assumptions in this aspect, RAN2 can also reuse the channel modelling defined in TR 38.901.
Proposal 8: Reuse channel model defined in TR 38.901.
(3) UE trajectory
UE trajectory, which indicates the speed and moving direction of a UE, is an important factor that affects the prediction performance of the AI/ML model. There are three options of UE trajectory for beam management in TR 38.843:

	Excerpt from TR 38.843

For temporal beam prediction, the following options are considered as a starting point for UE trajectory model. Companies report further changes or modifications from those. Other options are not precluded. UE orientation can be independently modelled from UE moving trajectory. Other UE orientation model is not precluded:
-
Option 1: Linear trajectory model with random direction change.

-
UE moving trajectory: UE will move straight along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 

-
UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].

-
UE moves straight within the time interval with the fixed speed.

-
Option 2: Linear trajectory model with random and smooth direction change.

-
UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.

-
UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].

-
The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  

-
UE moves straight within the time sub-interval with the fixed speed.

-
Option 3: Random direction straight-line trajectories. 

-
Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.

-
The initial UE location should be randomly drop within the following blue area:
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where d1 is the minimum distance that UE should be away from the BS. 

-
Each sector is a cell and that the cell association is geometry based.

-
During the simulation, inter-cell handover or switching should be disabled.


Since the objectives of the SID cover the inter-cell handover case, the option 3 can be deprioritized. Considering that option 1 is simpler to implement while it achieves similar effect as option 2, we suggest to agree to use option 1 in the simulations.
Proposal 9: Option 1 of UE trajectory model defined in TR 38.843 is considered as the baseline for simulations in RAN2.
3 Conclusion

Simulation principle
Proposal 1: Generate datasets for AI mobility study by the system level simulation.

Proposal 2: RAN2 should make some common simulation assumptions for all three use cases, while the KPIs, metrics and evaluation methods can be case specific. 
Proposal 3: The gains of AI/ML should be evaluated against the aligned baseline result, while companies can choose the AI/ML models independently, and provide the simulation results with some description of the models, such as the model structure and the dataset size. 
Proposal 4: RAN2 should define the observation and prediction window sizes which is appropriate for L3 measurements and may be different from the assumptions used by RAN1 in Rel-18.
Typical scenario configuration set
Proposal 5: For measurement prediction use case, the following scenarios should be prioritized:

1. Intra-cell temporal domain (use historical measurement of the serving/ neighbouring cell to predict the future measurement of the same cell)
2. Intra-cell temporal domain (use historical measurement of the inter-frequency neighbouring cell to predict the future measurement of the same neighbouring cell)
3. Cell-level/Beam-level inter-cell prediction (use measurement of the serving cell to predict the measurement of the inter-frequency neighbouring cell at the same moment)
Proposal 6: For HOF/RLF and measurement even prediction use cases, RAN2 prioritizes FR2 and high-speed scenarios.
Proposal 7: RAN2 focuses on Urban Macro (UMa) and hexagonal grid topology scenario.
Proposal 8: Reuse channel model defined in TR 38.901.
Proposal 9: Option 1 of UE trajectory model defined in TR 38.843 is considered as the baseline for simulations in RAN2.
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