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Introduction
A work item on “Artificial Intelligence (AI) and Machine Learning (ML) for NR air interface” has been approved for Rel.19 [1]. The one of objectives is to further study the following CSI feedback enhancement aspects.
· CSI feedback enhancement
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity / overhead
· e.g., considering extending the spatial / frequency compression to spatial / temporal / frequency compression, cell / site specific models, CSI compression plus prediction (compared to Rel.18 non-AI/ML-based approach), etc.
· Alleviate / resolve issues related to inter-vendor training collaboration
while addressing other aspects requiring further study / conclusion as captured in the conclusions section of the TR 38.843.
· For CSI prediction (one-sided model), further study performance gain over Rel.18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study / conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell / site specific model could be considered to improve performance gain).
The agreements / working assumption made in RAN1#116 are captured in the Appendix. This document provides our view on CSI compression. We also provide our preliminary results related to localized model.
Temporal domain aspects of CSI compression
In the last meeting, the following 6 cases were agreed for the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19.
	Case
	Target CSI slot(s)
	Whether the UE uses past CSI information
	Whether the network uses past CSI information

	0
	Present slot
	No
	No

	1
	Present slot
	Yes
	No

	2
	Present slot
	Yes
	Yes

	3
	Future slot(s)
	Yes
	No

	4
	Future slot(s)
	Yes
	Yes

	5
	Present slot
	No
	Yes



Case 0
Case 0 can be viewed as Rel.18 use case, i.e., spatial-frequency domain CSI compression. The example structure of Case 0 is illustrated in Fig.1. Note that “Input ()” means the input to the AI/ML encoder (e.g., precoding matrix) at time instance , “CSI feedback ()” means the CSI feedback at time instance , and “Output ()” means the output of AI/ML decoder (e.g., reconstructed CSI) at time instance . In this case, the time instance  can also be referred to the “present slot”, i.e., the slot of the most recent CSI-RS measurement used to generate the CSI report. Note that although whether UE uses past CSI information is “No” in Case 0, our understanding is this is just for CSI compression / prediction purpose only. The measurement results at time instance  may be outcome using the past CSI information for the averaging purpose (we think this is true in other cases as well).
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Figure 1: Case 0

Case 1
One of realization of Case 1 would be non-predictable spatial-time-frequency domain CSI compression considering multiple CSI measurement occasions (time instances). The example structure of Case 1 is illustrated in Fig.2. In Case 1, CSIs on several slots are jointly compressed and feedback together. UE compress CSI from measurements after receiving a burst of CSI-RS resource at different time instances. The encoder compresses these measurements to generate the spatial-time-frequency domain codeword. Then, the gNB uses the decoder to reconstruct the codeword into spatial-time-frequency domain CSI. In order to achieve better compression performance, encoder and decoder needs to capture the spatial-time-frequency domain correlation of CSI well. Therefore, this approach is more suitable for aperiodic CSI-RS resources. For example, aperiodic CSI-RS burst with  resources with time interval  slots introduced in Rel.18 could be used. From complexity perspective, AI/ML model for joint compression of spatial-temporal-frequency domain CSI may be more complex than spatial-frequency domain CSI compression model. Therefore, trade-off between performance and complexity should be studied.
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Figure 2: Case 1


Case 2
In Case 2, both the encoder and decoder models uses past CSI information. This allows the CSI feedback to be compressed better since it could, for example, be conveyed in a differential manner relative to a previous report. The example structures of Case 2 are illustrated in Fig.3. Two architectures could be considered for Case 2. One is recurrent architecture, in which the encoder outputs accumulated CSI information in addition to CSI feedback and accumulated CSI information from the previous time instance is used as additional input to the encoder to compress the present CSI. Decoder also outputs accumulated CSI information in addition to reconstructed CSI and accumulated CSI information from the previous time instance is used as additional input to the decoder to reconstruct the present CSI. The other is feedforward architecture, in which the encoder input is augmented with input at the previous time instance and decoder input is augmented with CSI feedback at previous time instance. Potential realization of recurrent architecture is a LSTM module is chained on top of a CSI compression module (e.g., CNN, Transformer etc.) for both the encoder and decoder. From complexity perspective, additional LSTM module is necessary in addition to CSI compression module. On the other hand, compression of LSTM output (i.e., differential information) may have possibility to reduce the model size / complexity of CSI compression module. Then, trade-off between performance and complexity should be studied. In Case 2, the observation window for storing the past CSI information is assumed as continuous and accumulated (for recurrent architecture), which means the past CSI information for each slot is continuously stored and applied to the next slot. Therefore, this case is more suitable for periodic and semi-persistent CSI-RS resource. The potential issue for Case 2 is error propagation due to CSI reconstruction inaccuracy and instability due to lost / dropped / erroneous CSI feedback.

[image: ]
(a) Recurrent architecture
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(b) Feedforward architecture
Figure 3: Case 2

Case 3
In Case 3, the CSI report is predictive, i.e., the final CSI retrieved by the NW corresponds to one or more future slots. In Case 3, while UE uses past CSI information, the NW does not. The example structure of Case 3 is illustrated in Fig.4. In this example, the prediction and compression happen as separate operations. Joint operation of the prediction and compression can also be considered. As discussed in our contribution of the last meeting [2], considering the prediction timing can be usually different from actual downlink resource allocation, the merit of only UE-side CSI prediction should be clarified from system perspective, for example at least the comparison between Case 3 and Case 4 would be necessary.
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Figure 4: Case 3

Case 4
In Case 4, in our understanding, UE-side encoder part can be same as Case 1, i.e., non-predictable spatial-time-frequency domain CSI compression considering multiple CSI measurement occasions (time instances). The gNB uses the decoder to reconstruct the codeword into spatial-time-frequency domain CSI followed by NW-side CSI prediction. The example structure of Case 4 is illustrated in Fig.5. In our view, Case 1 and Case 4 has the same encoding process at UE side, i.e., spatial-temporal-frequency domain compression. Then, whether Case 1 (w/o NW-side prediction) is used, or Option 4 (w/ NW-side prediction) is used can be just up to NW implementation. Compared to Case 3, this case may have advantage of prediction at NW side since NW knows the actual downlink resource allocation timing for PDSCH.
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Figure 5: Case 4

Case 5
Case 5 is the case where spatial-frequency domain compression followed by NW-side prediction. The example structure of Case 5 is illustrated in Fig.6. In our view, Case 0 and Case 5 has the same encoding process at UE side, i.e., spatial-frequency compression without temporal domain information. Then, whether Option 0 (w/o NW-side prediction) is used or Option 5 (w/ NW-side prediction) is used can be just up to NW implementation. Therefore, Case 5 can be viewed as Rel.18 use case (spatial-frequency domain compression) with implementation of NW-side CSI prediction.
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Figure 6: Case 5

Impact of non-ideal UCI feedback
Case 2, Case 4 and Case 5 uses the past CSI information at the NW side and then, the impact resulting from non-ideal UCI feedback should be studied. The impact of non-ideal UCI feedback would be different among cases. For Case 2, both encoder and decoder AI/ML models need the information from the previous time instances. Therefore, if UCI is missed, encoder and decoder AI/ML modelparts become inconsistent. Then, the impact of error propagation may be relatively large. For Case 4 and Case 5, past CSI information usage is for NW-side CSI prediction in which the impact of UCI missing might be small.
When UCI is missed, what input is provided to AI/ML model would also make some difference. One of design candidate could be just to input some neutral value or to reset accumulation. The other design candidate could be explicit input of “missing” and such situation is also trained. For the case of UE dropping CSI, if both encoder model and decoder model can be performed with some neutral value or explicit input of “missing. Then, encoder and decoder models could be aligned even when UCI is missed if event of UCI missing is identified at both UE and NW side. On the other hand, for the case of gNB failing to decode CSI, encoder model will work without UCI missing, while decoder model will work with UCI missing and may work with some neutral value or explicit input of “missing”. In this case, there might be misalignment of two-sided model between UE and NW. Therefore, for the case of gNB failing to decode CSI, the mechanism to indicate the UCI missing situation from NW to UE is necessary.

Based on the above analysis, we have the following observations on temporal domain aspects of CSI compression.
Observation 1: Case 0 and 5 can be viewed as Rel.18 use case, i.e., spatial-frequency domain CSI compression without NW-side prediction in Case 0 and with NW-side prediction in Case 5.
Observation 2: Case 1 and 4 can be realized by joint spatial-time-frequency domain CSI compression considering multiple CSI measurement occasions. In addition, NW-side prediction is applied in Case 4.
Observation 3: For Case 2, two architectures could be considered; one is recurrent architecture, and the other is feedforward architecture.
Observation 4: Case 1 and 4 is more suitable for aperiodic CSI-RS resources.
Observation 5: Case 2 is more suitable for periodic and semi-persistent CSI-RS resource.
Observation 6: Trade-off between performance and complexity should be studied for each case.
Observation 7: For the cases where CSI prediction is used either UE-side or NW-side (i.e., Case 3, 4, and 5), whether UE-side CSI prediction has merit over NW-side CSI prediction taking into account the misalignment between predicted CSI resource reported by UE and the actual downlink allocation should be considered.
Observation 8: The impact of non-ideal UCI feedback would be different among cases. For the case both encoder and decoder AI/ML models need the information from the previous time instances (i.e., Case 2), if UCI is missed, encoder and decoder AI/ML models become inconsistent. Therefore, the impact of error propagation may be relatively large.
Observation 9: When UCI is missed, what input is provided to AI/ML models would also make some difference. One of design candidate could be just to input some neutral value or to reset accumulation. The other design candidate could be explicit input of “missing” and such situation is also trained.
Observation 10: For the case of gNB failing to decode CSI, the mechanism to indicate the UCI missing situation from NW to UE is necessary.

Performance evaluation of localized model
We perform a preliminary evaluation on spatial-frequency domain CSI compression to compare the performance of localized model and generalized model. Detailed parameters in our evaluation are shown in Table 1. For generalized model, training dataset is constructed by mixing datasets from UMa and UMi scenarios. UE distribution of {80% indoor and 20% outdoor} is assumed. For localized model training, training dataset is constructed from single scenario (either UMa or UMi). In addition, UE distribution of 100% outdoor is assumed. The SGCS comparison between generalized model and localized model is shown in Table 2. Localized model respectively achieves 0.14% and 0.41% in UMa scenario and UMi scenario relative gain compared to generalized model. In the case AI/ML model is trained using generalized scenarios such as mixing the dataset of UMa and UMi scenarios with typical UE distribution (i.e., 80% indoor and 20% outdoor), even if inference scenario is scenario specific such as UMa or UMi scenario with UE distribution of 100% outdoor, it is observed that generalized model can work well. In order to see whether the localized model is beneficial or not, further evaluation and investigation is necessary to determine under what cell / site / scenario / configuration the localized model provides the performance gain.

Table 1: Evaluation assumptions
	Parameter
	Value

	Scenario
	UMa, UMi

	Frequency range
	2 GHz

	Inter-BS distance
	UMa: 500m, UMi: 200 m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8, 8, 2, 1, 1, 2, 8), (, ) = (0.5, 0.8)

	Antenna setup and port layouts at UE
	4 Rx: (1, 2, 2, 1, 1, 1, 2), (, ) = (0.5, 0.5)

	BS antenna height
	UMa: 25 m, UMi: 10 m

	UE antenna height and gain
	Follow TR 36.873

	Numerology
	Slot / non-slot
	14 OFDM symbol slot

	
	SCS
	15 kHz

	Simulation BW
	10 MHz

	UE distribution
	Generalized model; 80 % indoor (3 km/h), 20 % outdoor (30 km/h)
Localized model: 100 % outdoor (30 km/h)

	Feedback assumption
	Ideal

	Channel estimation
	Ideal

	Rank number
	1

	CSI compression model
	Transformer [3, 4]

	Dataset size for training and inference
	294,000 for training
42,000 for inference



Table 2: SGCS comparison between generalized model and localized model
	
	UMa
	UMi

	Generalized model
	0.971
	0.974

	Localized model
	0.973
	0.979

	Gain of localized model
	0.16%
	0.43%



Observation 11: In order to see whether the localized model is beneficial or not, further evaluation and investigation is necessary to determine under what cell / site / scenario / configuration the localized model provides the performance gain.

Inter-vendor collaboration
In the last meeting, the following 5 options were agreed for the study to alleviate / resolve the issue related to inter-vendor training collaboration of AI/ML-based CSI compression using two-sided model.
· Option 1: Fully standardized reference model (structure + parameters)
· Option 2: Standardized dataset
· Option 3: Standardized reference model structure + parameter exchanges between NW-side and UE-side
· Option 4: Standardized data / dataset format + dataset exchange between NW-side and UE-side
· Option 5: Standardized model format + reference model exchange between NW-side and UE-side

Option 1: Fully standardized reference model (structure and parameters)
· Inter-vendor collaboration complexity
· Since Option 1 use fully standardized reference model (including structure + parameters), bilateral collaboration is not required between vendors.
· Performance
· Performance depends on the standardized reference model.
· Actual device specific optimization would be allowed (e.g., compiling, bit-width, order of the calculation).
· Only single or a few generalized models could be standardized in this option. If localized model is believed to have performance gain, there might be performance loss compared to localized model.
· Interoperability and RAN4 / testing related aspects
· Since AI/ML model is checked by 3GPP performance specification by using standardized reference model, this option can maintain interoperability.
· This option is aligned with the RAN4 progress on testing of two-sided models (related to RAN4 Option 3 or 4).
· RAN4 Option 3: Full decoder specification in standard
· Option 3 target is that a single decoder defined in the specifications for at least a single test for any DUTs
· RAN4 Option 4: TE vendor provides the decoder specification
· Option 4 target is that a single decoder implemented by each TE vendor will be enough for at least a single test for any DUTs. TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party. If this is found infeasible, another option in which TE vendors need to collaborate with DUT/infra vendors to implement the decoder could be considered.
· Feasibility
· Feasible. More standardization effort may be needed in 3GPP, but less IOT testing effort would be required.

Option 2: Standardized dataset
For Option 2, we think there are following candidates to realize the standardized dataset.
· Option 2-1: 3GPP specific dataset is specified.
· Option 2-2: 3GPP dataset database is specified.
In Option 2-1, the actual dataset itself is specified. In Option 2-2, datasets submitted by operators, NW vendors, UE vendors, and/or chipset vendors are registered in the 3GPP database. Since these datasets are disclosed to everyone and registered by 3GPP, it could be called as standardized dataset. The analysis of the above options is as follows.
· Inter-vendor collaboration complexity
· This option also does not require bilateral collaboration between vendors.
· Performance
· For Option 2-1, performance depends on the standardized dataset. To specify dataset for localized model and specific implementation (of gNB, UE, site, channel conditions, etc.) may be infeasible.
· For Option 2-2, the datasets are the result of the specific environment / implementation (of gNB, UE, site, channel conditions, etc.).
· Interoperability and RAN4 / testing related aspects
· Since AI/ML model is checked by 3GPP performance specification by using standardized dataset, this option can maintain interoperability.
· For Option 2-1, less IOT testing effort would be required, but it might depend on the number of specified datasets.
· For Option 2-2, IOT testing effort depends on the amount of combination of datasets.
· Feasibility
· Feasible. For Option 2-1, more standardization effort may be needed in 3GPP. For Option 2-2, less standardization effort is expected in 3GPP.

Option 3: Standardized reference model structure + parameter exchange between NW-side and UE-side
· Inter-vendor collaboration complexity
· This option corresponds to training collaboration Type 1 with known model structure (or model transfer type z4 with a known model structure at UE). Offline coordination between either NW side and UE side or intra-vendor entities is not necessary if the model structure can be specified, and parameter exchange is via over the air.
· Performance
· Performance may depend on the standardized reference model structure.
· This may not allow device specific optimization. 
· This option can naturally support localized model to ensure the performance benefit of CSI compression. UE side model switching only includes the updating of parameters, while model training is not needed.
· Interoperability and RAN4 / testing related aspects
· It may be unclear this option can achieve 3GPP-level multi-vendor interoperability. In order to provide interoperability, UE model needs to be checked by 3GPP performance specification.
· Feasibility
· FFS. More standardization effort to provide the same working environment, i.e., the parameters / conditions that shall be considered for inference encoder training should be aligned between NW and UE.

Option 4: Standardized data / data formant + dataset exchange between NW-side and UE-side
· Inter-vendor collaboration complexity
· This option corresponds to training collaboration Type 3 with standardized dataset structure. In addition, it is preferred to also standardize the dataset delivery method to ensure that the UE side can receive datasets from all NW vendors, so that the UE side is able to train its encoder(s) to work with multiple NW vendors.
· Performance
· This option allows each UE manufacture designs their algorithm with the help of operator / network vendor specific information.
· This option can also support localized model to ensure the performance benefit of CSI compression.
· Interoperability and RAN4 / testing related aspects
· It may be unclear this option can achieve 3GPP-level multi-vendor interoperability. In order to provide interoperability, UE model needs to be checked by 3GPP performance specification.
· Feasibility
· FFS. Less standardization effort is expected at least in RAN1

Option 5: Standardized model format + reference model exchange between NW-side and UE-side
· Inter-vendor collaboration complexity
· This option corresponds to training collaboration Type 1 with unknown model structure (or model transfer type z5).
· Performance
· This option has potential to support localized model by exchanging the reference model specific to localized area.
· Interoperability and RAN4 / testing related aspects
· It may be unclear this option can achieve 3GPP-level multi-vendor interoperability.
· Feasibility
· Infeasible. Model transfer z5 is deprioritized in RAN1#116.

Based on the above analysis, we have the following observations, proposals. The pros/cons of different options can be summarized as in Observation 12.
Proposal 1: For Option 2, two candidates to realize the standardized dataset can be considered.
· Option 2-1: 3GPP specific dataset is specified.
· Option 2-2: 3GPP dataset database is specified.
Observation 12: For Option 3, more standardization effort to provide the same working environment, i.e., the parameters / conditions that shall be considered for inference encoder training should be aligned between NW and UE.
Proposal 2: Option 5 is deprioritized in Rel.19 study.
Observation 13: 
	
	Inter-vendor collaboration
	Performance
	Interoperability / RAN4 testing
	Feasibility

	Option 1
	Not required
	Depends on standardized reference model
	Less IOT testing effort is required.
	Feasible

	Option 2-1:
3GPP specific dataset is specified.

	Not required
	Depend on the standardized dataset.

	Less IOT testing effort is required (but depending on the number of specified datasets).

	Feasible


	Option 2-2:
3GPP dataset database is specified.
	Not required
	The datasets are the result of the specific environment / implementation (of gNB, UE, site, channel conditions, etc.)
	IOT testing effort depends on the amount of combination of datasets.
	Feasible

	Option 3
	Parameter exchanges
	Potential to support localized model by updating the parameters
	How to maintain interoperability should be considered.
	FFS

	Option 4
	Dataset exchange
	Potential to support localized model by exchanging the dataset specific to localized model.
	How to maintain interoperability should be considered.
	FFS

	Option 5
	Reference model exchange
	Potential to support localized model by exchanging the reference model specific to localized area.
	How to maintain interoperability should be considered.
	FFS



Potential specification impact
Scalability
Options for rank > 1 solution
For CSI compression with rank > 1, the following options were identified on the AI/ML model setting to adapt to ranks / layers.
· Option 1-1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference, any specific model operates on multi-layers jointly.
· Option 1-2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference, the model operates on multi-layer jointly.
· Option 2 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· Option 2-1: Layer specific and rank common (different models applied for different layers; for a specific layer, the same model is applied for all rank values)
· Option 2-2: Layer specific and rank specific (different models applied for different layers; for a specific layer, different models are applied for different rank values)
· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Option 3-1: Layer common and rank common (a unified AI/ML model is applied for each layer under any rank value to perform individual inference)
· Option 3-2: Layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)
In Option 1-1, separate AI/ML models are trained per rank value {1, 2, 3, 4} and applied for corresponding ranks to perform inference. Therefore, 4 AI/ML models, one per rank, needs to be trained and deployed. The output payload (number of UCI bits) can be optimized and be different for each rank. Rank selection is expected to be outside the AI/ML model, as the UE select the model to use and report the corresponding RI. Legacy rank selection method may be reused, or AI/ML-based rank selection may be implemented.
In Option 1-2, one AI/ML model needs to be trained and deployed. Rank selection may be inside the AI/ML model, and the AI/ML model also outputs the preferred rank RI. The output payload (number of UCI bits) may be optimized to the output rank RI from the model.
In Option 2-1, preprocessing to extract the layers is necessary (e.g., eigenvector). Separate AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference. Layers are ordered and numbered, e.g., the lowest layer index corresponds to the largest eigenvalue. 4 AI/ML models, one per layer {1, 2, 3, 4}, needs to be trained and deployed. The output payload (number of UCI bits) can be optimized and different for each layer. It may allow for UE side layer omission (dropping) if the UCI payload is insufficient to carry all layers.
In Option 2-2, preprocessing to extract the layers is necessary (e.g., eigenvector). Separate AI/ML models are trained for all layers within each rank and applied for corresponding layers to perform individual inference. Layers are ordered and numbered, e.g., the lowest layer index corresponds to the largest eigenvalue. 4 AI/ML models, one layer model per rank {1, 2, 3, 4}, needs to be trained and deployed. The output payload (number of UCI bits) can be optimized and different for each rank. It may allow for UE side layer omission (dropping) if the UCI payload is insufficient to carry all layers.
In Option 3-1, preprocessing to extract the layers is necessary (e.g., eigenvector). One AI/ML model is trained to be used for all layers and applied repeatedly for corresponding layers to perform individual inference. Layers are ordered and numbered, e.g., the lowest layer index corresponds to the largest eigenvalues. The output payload (number of UCI bits) is the same for each layer. It may allow for UE side layer omission (dropping) if the UCI payload is insufficient to carry all layers.
In Option 3-2, preprocessing to extract the layers is necessary (e.g., eigenvector). Separate AI/ML models are trained for all layers within each rank and applied for corresponding layers to perform individual inference. Layers are ordered and numbered, e.g., the lowest layer index corresponds to the largest eigenvalue. 4 AI/ML models, one layer model per rank {1, 2, 3, 4}, needs to be trained and deployed. The output payload (number of UCI bits) can be optimized and different for each rank. It may allow for UE side layer omission (dropping) if the UCI payload is insufficient to carry all layers.
Number of required AI/ML models to be trained and deployed is summarized in Table 1. Potential model size / complexity is also added in the table. For Option 2-2, since AI/ML model inference can be handled for each layer and each rank, model size and complexity could be smaller. For Option 1-1, 2-1, and 3-2, medium model size and complexity is expected. For Option 1-2 and 3-1, since single AI/ML inference needs to consider multiple rank and/or layers, model size could be large. On the other hand, Option 3-1 may not need to have rank selection inside the AI/ML model, the model might be less complicated than Option 1-2.
For Option 2-2, even if model size and complexity of each model can be smaller, many number of AI/ML models needs to be managed. This can be more complex than single large AI/ML model. Therefore, for complexity comparison to study the scalability of rank > 1 solutions, the total complexity with multiple models should be taken into account.
Table 1: Options for rank > 1 solution
	
	Option 1-1
(Rank specific)
	Option 1-2
(Rank common)
	Option 2-1
(Layer specific and rank common)
	Option 2-2
(Layer specific and rank specific)
	Option 3-1
(Layer common and rank common)
	Option 3-2
(Layer common and rank specific)

	Number of AI/ML models
	4
(one per rank)
	1
	4
(one per each layer)
	10
	1
	4
(one layer model per rank)

	Each of Model size/complexity
	Medium
	Large
	Medium
	Small
	Large but less than Option 1-2
	Medium


Observation 14: For complexity comparison to study the scalability of rank > 1 solutions, the total complexity with multiple models should be taken into account.

Inference
CQI/RI calculation
In current specification, CSI reporting may include RI, PMI, and CQI. For legacy Type II codebook, RI, PMI, and CQI are jointly reported to gNB, where RI and CQI are calculated by using the calculated PMI at UE side. gNB transmits DL data according to received RI, CQI, and PMI. Since the PMI matches well with RI and CQI, the system performance is expected by using the PMI as the precoder of DL data transmission. For CSI compression using two-sided model, the decoder at gNB side can be used to reconstruct the compressed CSI. Then, gNB can utilize the reconstructed CSI to calculate the precoder of DL data transmission. If the decoder is also deployed at UE side, RI and CQI can be calculated by using the precoder which obtained through the decoder. However, if the decoder is not deployed at UE side, the question is how to calculate RI and CQI. In order to solve the above question, for CQI determination in CSI report, if CQI in CSI report is configured, the following options were identified in SI phase.
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment
· Option 1c: CQI is calculated based on legacy codebook
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the network.
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precodeed CSI-RS transmitted with a reconstructed precoder.
In Option 1a, UE adopts the target CSI, which is input of the CSI generation part for CQI calculation which is different from what will be recovered by network. Such misalignment between the original channel and recovered channel will lead to misalignment of the CQI between network and UE, and the CQI calculated by UE would be overestimated. However, this may not be a big issue since network may always make some adjustment on UE reported CQI, for example based on outer-loop link adaptation using HARQ-ACK.
In Option 1b, to report more accurate CQI, UE compensates the CQI calculated with the original channel. As the UE may not have information on the received CSI, the CQI compression can be derived based on some assistance of network indication.
In Option 1c, UE may not be expected to calculate traditional codebook, not only it increases the UE complexity, e.g., UE has to process two types of CSI, but also PMI and CQI mismatching is unavoidable. If traditional codebook can already process accurate CSI, it would not be motivation to implement AI/ML model.
In Option 2a, UE may not be expected to have CSI reconstruction model as it increases UE computation / storage / power consumption burden to a large extent. In addition, the CSI reconstruction model is generally a proprietary design by network side. One of possibility to solve the issue would be that UE calculate CQI based on the CSI reconstruction output which is based on proxy model, which is different from the actual reconstruction model at the network.
In Option 2b, it needs two-step procedure to finish CQI determination, where the first step is UE receives a CSI-RS and report the precoder compressed by AI/ML model, and the second step for UE is to receive a precoded CSI-RS transmitted with the corresponding reconstructed precoder and report the CQI determined by precoded CSI-RS. Two-step procedure increases the time span of the CQI determination process, which may face the channel variation so that current CQI cannot match the previous CSI.
Although performance evaluation results may be needed for the down selection, at least based on the above analysis, our view is to further study Option 1a, 1b, and 2a.
Observation 15: For CQI determination in CSI report, further study following options.
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform construction model inference with potential adjustment
· The CSI reconstruction part for CQI determination at the UE is a proxy model, which is different from the actual CSI reconstruction part at the network.

Data collection
Network side data collection
For the ground-truth CSI reporting, reporting can be in grouped manner and/or sample-by-sample. The grouped reporting means that the data collection entity keeps collecting ground-truth CSIs and reports all (or part of) collected samples together, while the sample-by-sample reporting means once data collection entity collects one sample, it would be reported at once. Obviously, the grouped reporting can be applied to model training and non-real time (slow) monitoring, which needs a large amount of data but does not have stringent requirements on the timeliness of samples, while sample-by-sample reporting can be applied to fast performance monitoring, where a few samples are enough but should be timely delivered. Depending on the requirement for latency, what type of signaling is suitable should be considered. For example, ground-truth CSI reporting for model training and non-real time (slow) monitoring could be realized through U-plane. Assuming fast monitoring is 100s of ms order, U-plane, RRC, or MAC-CE can be sufficient.
[bookmark: _Hlk163135186]Observation 16: Data collection for model training and non-real time (slow) monitoring is not required to be real-time and then latency requirement can be relaxed.
Observation 17: Ground-truth CSI reporting could be realized through U-plane at least for data collection for model training and non-real time (slow) monitoring.
Observation 18: Assuming fast monitoring is 100s of ms order, U-plane, RRC or MAC-CE can be sufficient.

On data sample type / format for ground-truth CSI reporting, there can be various types as following options.
· Option 1: Legacy codebook-based format
· Option 2: High resolution codebook-based format
· Option 3: Floating point representation of raw CSI data
Option 1 represents the CSI in the same format as that of legacy CSI feedback and hence, less specification impact is needed. However, the data resolution based on legacy codebooks may be insufficient to build / train AI/ML models with good performance. In Option 3, the dataset corresponds to raw CSI, e.g., raw channel matrix or channel eigenvectors that are depicted based on floating point representation format. Option 3 would provide the best CSI representation among above three options where the CSI mismatch between actual CSI value and dataset can be made as small as possible via tuning the floating point representation. However, for MIMO systems, the overhead of raw channel matrix would be quite large and then, the mechanism on reducing overhead might be necessary. In order to reduce the overhead with keeping good performance, to further study Option 2 based approach, which were proposed by several companies, e.g., legacy codebook (e.g., eType II codebook) with potential enhancements such as extend more configurations in some parameters, looks reasonable direction.
Observation 19: On data sample type / format for ground-truth CSI reporting, high resolution codebook-based format e.g., legacy codebook (e.g., eType II codebook) with potential enhancements such as extend more configurations in some parameters, should be studied.

On the assistance information for NW-side data collection, it is useful that UE can log / store its ground-truth CSI together with the UE-side additional condition. We see the usefulness of the additional condition at least time stamps / situation of measurement (such as some CSI-RS may not be measured by DRX, random access procedure, or radio link failure), cell ID, and UE location. We also think that it might be useful to report Rx filter assumption such as antenna spacing and Rx RF gain imbalance to the network. If UE enable/disable certain antennas, such information is also useful. However, UE vendor may not want to disclose such information and then the feasibility of reporting such UE-side additional condition to the network should be studied. One of possibilities would be instead of explicit UE Rx filter assumption, to report relative information among different CSI-RS measurements is used for UE-side assistance information for data collection, i.e., as far as the relative CSI-RS measurements relations are similar, UE side additional condition is seen as similar.
Observation 20: For NW-side data collection, at least time stamps / situation of measurement, cell ID and UE location should be considered as the UE-side additional condition.
Observation 21: For NW-side data collection, the necessity and feasibility of UE reporting Rx filter assumption to network should be studied.

UE-side data collection
For UE side data collection for UE side training, it would be necessary to identify the scenario to collect the data. In CSI-RS transmission, NW-side additional condition like the antenna layout, antenna elements to TxRU mapping, digital/analog beamforming, precoding and so on depends on the network implementation. With a different setting of these configurations, a given CSI-RS port would present different channel distributions observed at UE. Being able to categorize the data that is collected based on the scenario or configuration may prove useful during the development of AI/ML models. To facilitate such categorization of the collected data, it is necessary for the network to provide NW-side additional condition to identify the scenario or configuration in which the data is being collected if the training is UE side. However, network may not want to disclose such information as such NW-side additional condition can be related to the competition among networks. In addition, UE vendor does not know the change of the network deployment (such as new cells are added in the neighbor locations, some temporally ON/OFF of the cell for power saving in the midnight and so on). Then, instead of informing actual configuration, some kind of configuration ID and/or change timing of NW-side additional condition is necessary. Configuration ID means the same ID is used in the similar network actual configuration even when the cell ID or locations are different.
Observation 22: For UE-side data collection for UE side training, in order to identify the scenario / configuration, how to share the NW-side additional condition should be studied. Instead of informing actual configuration, some kind of configuration ID and /or change timing of NW-side additional condition is necessary.

Performance monitoring
In order to ensure availability of AI/ML model, the model performance needs to be monitored. There would be the following potential categorization of performance monitoring purpose.
· Category 1: To check new untested model / parameters behavior
· Category 2: To check current model / parameters are suitable to current environment
One of potential operation cases is Category 1 is applied to the performance monitoring of a set of preconfigured AI/ML models in which slow monitoring would be sufficient for model/parameter update decision. This operation could also be said as model validation. Category 2 is applied to the performance monitoring of current active AI/ML model in which fast monitoring would be required for model switching/activation/deactivation or fallback. After performance monitoring, which next action is taken would be up to UE in case of functional-based LCM and up to network in case of model-ID-based LCM.
Observation 23: There are at least two purposes for performance monitoring. One is to check new untested model / parameter behavior. The other is to check current model / parameters are suitable to current environment.

On the relationship between training type and performance monitoring (especially Category 1), if AI/ML models are trained by UE side and AI/ML model update cycle is non-real time, the AI/ML model would be tested sufficiently or offline before the deployment. Then, UE vendor specific monitoring tool could be sufficient. If AI/ML models are trained by network side, A/B test can be used at least when AI/ML model update cycle is non-real time. It means only small number of UEs runs new models in a cell and the performance of these UEs are compared with other models or non-AI/ML operation. For Category 1 monitoring with network-trained AI/ML model, non-real time performance monitoring can also be used for model training (including validation).
Observation 24: If AI/ML models are trained by UE side and AI/ML model update cycle is non-real time, UE vendor specific monitoring in offline sufficiently work.
Observation 25: If AI/ML models are trained by network side and AI/ML model update cycle is non-real time, A/B test can be used, and data collected for non-real time performance monitoring can also be used for model training.

UE and gNB should interact with some essential information related to the model, such as indicator related to model performance deterioration, information reflecting model performance and/or information related to both measurement results and inference results. In RAN1#112, to study intermediate KPIs based monitoring was agreed with following directions.
· Direction 1: Network-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE side.
· Direction 2: UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the network or obtained from the network side.
· Direction 3: UE-side monitoring based on the output of the CSI reconstruction model at the UE side.
Direction 1 includes two steps after the UE performs the measurement of CSI-RS to derive the ground-truth CSI and the CSI feedback. In the first step, UE feeds back the ground-truth CSI as well as the CSI feedback to the network. In the second step, the network recovers the CSI using the CSI reconstruction part, and calculate the intermediate KPI (such as SGCS) with the recovery and the reported ground-truth CSI. For Direction 1, the potential specification impact is how to obtain/report target CSI from UE to network, and it can be one of discussion points in data collection. Direction 1 may be useful when the whole model training is located in the network side or model-ID-based LCM (regardless model is trained by network side or UE side) since which next action is taken would up to network in case of model-ID-based LCM.
On Direction 2, if the output of the CSI reconstruction model is indicated by the network, this includes three steps. In the first step, UE feeds back the CSI feedback to the network. In the second step, the network recovers the CSI using the CSI reconstruction model, and indicates the recovery CSI to the UE afterwards. In the third step, the UE calculates the intermediate KPI (such as SGCS) with the measured ground-truth CSI and the received recovery CSI. Direction 2 requires much overhead to indicate the recovery CSI to the UE. Direction 2 may be useful for the case that network side of CSI reconstruction part is trained by UE (i.e., UE-side Type 1 joint training). However, we doubt the feasibility of this training type.
On Direction 3, if model training does not happen at UE, the complicated CSI reconstruction model should be transferred to UE, which may have concern in proprietary and compatibility issues. To address this, it was proposed to introduce a framework that utilize proxy model. Proxy model is trained to emulate the actual model, but with a much simpler structure and fewer parameters. As a result, the transfer of proxy model is much easier and poses fewer issues regarding overhead, model proprietary and compatibility. Although the proxy models may not achieve the same level of performance as the actual model, this does not prevent performance monitoring to consider proper performance gap between proxy model and the actual model. Direction 3 may be useful for the case that the model trained by network is commonly shared to UE or UE side model is trained by UE with model-ID-based LCM.
Observation 26: Further study Direction 1 and Direction 3 with proxy model framework.
· Direction 1: Network-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE side.
· Direction 3: UE-side monitoring based on the output of the CSI reconstruction model at the UE side.
· The CSI reconstruction part for performance monitoring at the UE is a proxy model, which is different from the actual CSI reconstruction part at the network.

Conclusion
In this contribution, we provide our view on the AI/ML-based CSI compression. We made following proposals and observations.
Section 2: Temporal domain aspects of CSI compression
Observation 1: Case 0 and 5 can be viewed as Rel.18 use case, i.e., spatial-frequency domain CSI compression without NW-side prediction in Case 0 and with NW-side prediction in Case 5.
Observation 2: Case 1 and 4 can be realized by joint spatial-time-frequency domain CSI compression considering multiple CSI measurement occasions. In addition, NW-side prediction is applied in Case 4.
Observation 3: For Case 2, two architectures could be considered; one is recurrent architecture, and the other is feedforward architecture.
Observation 4: Case 1 and 4 is more suitable for aperiodic CSI-RS resources.
Observation 5: Case 2 is more suitable for periodic and semi-persistent CSI-RS resource.
Observation 6: Trade-off between performance and complexity should be studied for each case.
Observation 7: For the cases where CSI prediction is used either UE-side or NW-side (i.e., Case 3, 4, and 5), whether UE-side CSI prediction has merit over NW-side CSI prediction taking into account the misalignment between predicted CSI resource reported by UE and the actual downlink allocation should be considered.
Observation 8: The impact of non-ideal UCI feedback would be different among cases. For the case both encoder and decoder AI/ML models need the information from the previous time instances (i.e., Case 2), if UCI is missed, encoder and decoder AI/ML models become inconsistent. Therefore, the impact of error propagation may be relatively large.
Observation 9: When UCI is missed, what input is provided to AI/ML models would also make some difference. One of design candidate could be just to input some neutral value or to reset accumulation. The other design candidate could be explicit input of “missing” and such situation is also trained.
Observation 10: For the case of gNB failing to decode CSI, the mechanism to indicate the UCI missing situation from NW to UE is necessary.

Section 3: Performance evaluation of localized model
Observation 11: In order to see whether the localized model is beneficial or not, further evaluation and investigation is necessary to determine under what cell / site / scenario / configuration the localized model provides the performance gain.

Section 4: Inter-vendor collaboration
Proposal 1: For Option 2, two candidates to realize the standardized dataset can be considered.
· Option 2-1: 3GPP specific dataset is specified.
· Option 2-2: 3GPP dataset database is specified.
Observation 12: For Option 3, more standardization effort to provide the same working environment, i.e., the parameters / conditions that shall be considered for inference encoder training should be aligned between NW and UE.
Proposal 2: Option 5 is deprioritized in Rel.19 study.
Observation 13: 
	
	Inter-vendor collaboration
	Performance
	Interoperability / RAN4 testing
	Feasibility

	Option 1
	Not required
	Depends on standardized reference model
	Less IOT testing effort is required.
	Feasible

	Option 2-1:
3GPP specific dataset is specified.

	Not required
	Depend on the standardized dataset.

	Less IOT testing effort is required (but depending on the number of specified datasets).

	Feasible


	Option 2-2:
3GPP dataset database is specified.
	Not required
	The datasets are the result of the specific environment / implementation (of gNB, UE, site, channel conditions, etc.)
	IOT testing effort depends on the amount of combination of datasets.
	Feasible

	Option 3
	Parameter exchanges
	Potential to support localized model by updating the parameters
	How to maintain interoperability should be considered.
	FFS

	Option 4
	Dataset exchange
	Potential to support localized model by exchanging the dataset specific to localized model.
	How to maintain interoperability should be considered.
	FFS

	Option 5
	Reference model exchange
	Potential to support localized model by exchanging the reference model specific to localized area.
	How to maintain interoperability should be considered.
	FFS



Section 5: Potential specification impact
Observation 14: For complexity comparison to study the scalability of rank > 1 solutions, the total complexity with multiple models should be taken into account.
Observation 15: For CQI determination in CSI report, further study following options.
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform construction model inference with potential adjustment
· The CSI reconstruction part for CQI determination at the UE is a proxy model, which is different from the actual CSI reconstruction part at the network.
Observation 16: Data collection for model training and non-real time (slow) monitoring is not required to be real-time and then latency requirement can be relaxed.
Observation 17: Ground-truth CSI reporting could be realized through U-plane at least for data collection for model training and non-real time (slow) monitoring.
Observation 18: Assuming fast monitoring is 100s of ms order, U-plane, RRC or MAC-CE can be sufficient.
Observation 19: On data sample type / format for ground-truth CSI reporting, high resolution codebook-based format e.g., legacy codebook (e.g., eType II codebook) with potential enhancements such as extend more configurations in some parameters, should be studied.
Observation 20: For NW-side data collection, at least time stamps / situation of measurement, cell ID and UE location should be considered as the UE-side additional condition.
Observation 21: For NW-side data collection, the necessity and feasibility of UE reporting Rx filter assumption to network should be studied.
Observation 22: For UE-side data collection for UE side training, in order to identify the scenario / configuration, how to share the NW-side additional condition should be studied. Instead of informing actual configuration, some kind of configuration ID and /or change timing of NW-side additional condition is necessary.
Observation 23: There are at least two purposes for performance monitoring. One is to check new untested model / parameter behavior. The other is to check current model / parameters are suitable to current environment.
Observation 24: If AI/ML models are trained by UE side and AI/ML model update cycle is non-real time, UE vendor specific monitoring in offline sufficiently work.
Observation 25: If AI/ML models are trained by network side and AI/ML model update cycle is non-real time, A/B test can be used, and data collected for non-real time performance monitoring can also be used for model training.
Observation 26: Further study Direction 1 and Direction 3 with proxy model framework.
· Direction 1: Network-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE side.
· Direction 3: UE-side monitoring based on the output of the CSI reconstruction model at the UE side.
· The CSI reconstruction part for performance monitoring at the UE is a proxy model, which is different from the actual CSI reconstruction part at the network.
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Appendix: Agreements / working assumption in RAN1#116
Agreements:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19, adopt the following categorization for study.
	Case
	Target CSI slot(s)
	Whether the UE uses past CSI information
	Whether the network uses past CSI information

	0
	Present slot
	No
	No

	1
	Present slot
	Yes
	No

	2
	Present slot
	Yes
	Yes

	3
	Future slot(s)
	Yes
	No

	4
	Future slot(s)
	Yes
	Yes

	5
	Present slot
	No
	Yes


· Note 1: For the UE, the past CSI information may include past model inputs and/or any information derived from them. For the network, the past CSI information may include past CSI feedback instances and/or any information derived from them.
· Note 2: For Case 3 and Case 4, the UE may perform prediction as a separate step or jointly with compression. Similarly, the network may perform prediction as a separate step or jointly with reconstruction. Companies to report which option is selected, the number of future slots, and whether the prediction is AI/ML based or not.
· Note 3: “Target CSI slot(s)” refers to the slot(s) to which the CSI feedback in the report corresponds. “Present slot” refers to the slot of the most recent CSI-RS measurement used to generate the CSI report. “Future slot(s)” includes at least one slot after the present slot and may include the present slot as well.
· Note 4: Down selection is not precluded.

Agreements:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19, for cases with prediction of future CSI, in which prediction and compression are separated, to optionally evaluate a scheme with ideal prediction as an additional evaluation case for reference.
· Note: The ideal prediction scheme should model realistic channel estimation.

Agreements:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19, for Case 2, Case 4 and Case 5, study the performance impact resulting from non-ideal UCI feedback.

Agreements:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19, adopt the following as baseline options for UE distribution.
· Option 1: 80% indoor, 20% outdoor
· Option 2: 100% outdoor
· Note: Indoor speed is 3 km/h, outdoor speed is chosen from the following options: 10 km/h, 20 km/h, 30 km/h, 60 km/h, 120 km/h. Assumption on O2I penetration loss and spatial consistency follow the Rel.18 AI/ML-based CSI prediction.

Agreements:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19, adopt the following evaluation assumptions.
· CSI-RS configuration
· Periodic: 5 ms periodicity (baseline), 20 ms periodicity (encouraged)
· Aperiodic (for cases with prediction): Optional, CSI-RS burst with  resources and time interval  ms (based on Rel.18 MIMO eType II)
· CSI reporting periodicity: {5, 10, 20} ms; other values are not precluded.
· For cases with the use of past CSI information, to report observation window, including number / time distance of historic CSI / channel measurements
· For cases with prediction, to report prediction window, including number / time distance of predicted CSI / channel.

Working assumption:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19, adopt the following benchmark schemes for performance comparison.
· For cases without prediction of future CSI, use the same benchmark scheme assumed in Rel.18 AI/ML-based CSI compression study.
· For cases with prediction of future CSI, use the same benchmark scheme assumed in Rel.18 AI/ML-based CSI prediction study, with Rel.18 MIMO eType II codebook for compressing the feedback.

Agreements:
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel.19
· Adopt the CSI feedback overhead rate as reference, where the CSI feedback overhead rate is the average bit-rate of CSI feedback overhead across time.
· Note: The CSI feedback overhead of a single report is calculated as in Rel.18 CSI compression study.

Agreements:
· For the evaluation of AI/ML-based CSI compression using localized models in Rel.19, study the following aspects of the performance / complexity trade-off when comparing the localized model with a benchmark model that is not localized.
· Performance of the localized model that has similar or lower complexity as the benchmark model
· Model complexity of the localized model that achieves similar or better performance as the benchmark model

Agreements:
· For the evaluation of AI/ML-based CSI compression using localized models in Rel.19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region.
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901.
· E.g., dropped in a specific cell or within a specific boundary
· Option 2: By using a scenario / configuration specific to the local region
· E.g., indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
· Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.

Agreements:
· To alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression using two-sided model, study the following options.
· Option 1: Fully standardized reference model (structure + parameters)
· Option 2: Standardized dataset
· Option 3: Standardized reference model structure + parameter exchanges between NW-side and UE-side
· Option 4: Standardized data / dataset format + dataset exchange between NW-side and UE-side
· Option 5: Standardized model format + reference model exchange between NW-side and UE-side
· Note 1: The above options may not be mutually exclusive and may be used together.
· Note 2: Other options are not precluded.
· Note 3: The study should consider how different methods of exchanging the parameters / dataset / reference model would affect the feasibility and collaboration complexity of Options 3 / 4 / 5 respectively, e.g., over the air interface, offline delivery, etc.
· Note 4: “Dataset” refers to a set of data samples of CSI feedback and associated target CSI.

Agreements:
· For the study of inter-vendor collaboration issues for AI/ML-based CSI compression using a two-sided model, consider at least the following aspects when comparing different options.
· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
· Performance
· Interoperability and RAN4 / testing related aspects
· Feasibility
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