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1 Introduction
In RAN#102 meeting, a new WID was approved for Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [1]. The WID consists of two parts, the first part is to provide the normative support for the general framework for AI/ML for air interface, enable the recommended use cases in the preceding study; the second part is to tackle and hopefully resolve some outstanding issues for a number of study objectives, deepen the understanding of a potential future normative work.
In this contribution, we focus on the study objectives for RAN1 on the CSI compression use case. The related text of study objectives in the WID is copied below.
	[bookmark: _Hlk155703828]Study objectives with corresponding checkpoints in RAN#105 (Sept’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
…
· Testability and interoperability [RAN4]: 
· Finalize the testing framework and procedure for one-sided models and further analyse the various testing options for two-sided models, in collaboration with RAN1, and including at least: 
· Relation to legacy requirements
· Performance monitoring and LCM aspects considering use-case specifics
· Generalization aspects 
· Static/non-static scenarios/conditions and propagation conditions for testing (e.g., CDL, field data, etc.)
· UE processing capability and limitations
· Post-deployment validation due to model change/drift
· RAN5 aspects related to testability and interoperability to be addressed on a request basis

 …


2 Inter-vendor training collaboration issues
2.1 The importance of maintaining 3GPP-level interoperability for two-sided AI/ML model use cases
In the closed Rel-18 Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface study item [2], inter-vendor training collaboration was identified in RAN1 as one of the two main issues for the CSI compression using two-sided use case:
· Several training collaboration types have been studied in RAN1 and multi-vendor training is feasible in theory (although there is no clear preferred type). There is no clear idea on the amount of efforts needed for the industry to organize such a multi-vendor training method and establish the infrastructure and framework, but the need for large effort is speculated.
· Highly related to inter-vendor collaboration is the study in RAN4, where different options of test decoder for UE conformance testing were discussed in the closed SI, however, the study has not concluded the feasibility of any of the testing options and more study will be conducted in RAN4 in Rel-19. 
Interoperability is a cornerstone of the success of the 3GPP specifications. Interoperability enables an eco-system in which, based on the specifications and associated conformance testing, a wide and competitive marketplace of devices can roam within a variety of networks and network nodes all over the world. An operator deploying a network does not need to take care about which devices are operating in the network since they are all 3GPP compliant devices. 
The studied CSI compression use case has the characteristics that requires the support for interoperability since CSI reporting is a fundamental component of mobile communications and a feature that 3GPP standardization has provided successfully in the past (as opposed to localized use cases such as communication or positioning in a certain factory, where there may be less need for interoperability and roaming, i.e., less need to adhere to a global standard).
Interoperability is achieved based upon careful and necessary standardization in RAN1, 2 and 3 and detailed performance requirements and conformance test specification in RAN4 and RAN5. One trade-off of interoperability vs optimal performance is that vendors of networks and UEs cannot arbitrarily select the basic coding schemes and signalling as they see fit best, but need to follow the specification. This alignment allows economic benefits in terms of scale. 
[bookmark: _Toc163231794]Interoperability is an essential part of the commercial success of 3GPP standards, economy of scale and use of NR and LTE. 
In the context of two-sided models, if UE vendors or network vendors would each define their own models, then there would be a strong risk that this inter-operability would be undermined. Networks would need to be trained with and operators need to run a large number of decoder models in parallel and in real time, and UEs would need to be trained for and be able to load different AI/ML models depending on which network it is connected to and where. 
If this many models becomes reality, ensuring robust performance meeting RAN4 requirements would become extremely complex. In addition, complex arrangements would be needed for exchanging IP relating to models and training (including training data) between stakeholders (UE vendors, network vendors, CSPs, TE vendors etc.) 
There is a big risk that some UEs would not be able to run their models in certain networks and vice-versa, hence the interoperability benefits are lost, and Uu becomes “vendor-vendor specific”. Of course, the backup of using legacy non-AI based CSI reporting would exist, but nonetheless a lack of interoperability support would in practice severely limit the commercial utilization of AI/ML based two-sided models and two-sided CSI compression which is of interest for this discussion.
[bookmark: _Toc163231795]There is a large risk, unless carefully handled, that introduction of two-sided models in 3GPP specifications breaks the strength of 3GPP eco-system with its successful interoperability, economy of scale and global roaming benefits.
As mentioned earlier, this issue is also highly related to the RAN4 work on testing of two-sided models and to coming RAN5 work. Hence, RAN1 and RAN4 need to work closely on this use case in Rel.19.  
To reiterate, the purpose and success of 3GPP standardization is the strong multi-vendor interoperability and if issues such as model training and conformance testing cannot be solved and 3GPP-level interoperability is broken, it is questionable whether this should be part of 3GPP at all. This issue is more urgent and must urgently be resolved with a much higher priority than the task of searching for more gains vs. complexity for CSI compression.   
Several options were proposed in RAN1#116 discussions on resolving the inter-vendor training collaboration issues and further progress has been made in RAN4 on studying different performance testing options while maintaining the interoperability. In the following subsections, we first present the RAN1 and RAN4 discussion status on this issue, then, we analyse different options proposed in RAN1 and RAN4. Based on our analysis, we observe that some options proposed in RAN1 and RAN4 could solve the inter-vendor training collaboration issue while still maintain the 3GPP-level interoperability.   
[bookmark: _Toc163231796]There are candidate options proposed in RAN1 and RAN4 that could solve the inter-vendor training collaboration issue while still maintaining the 3GPP-level interoperability.
2.2 RAN1 study status and its relation to RAN4 discussion
In RAN1 #116 meeting, options to alleviate/resolve the inter-vendor training collaboration for CSI compression using two-sided AI/ML models were proposed, and the following agreements were made on studying and comparing these different options:
	Agreement
To alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression using two-sided model, study the following options:
· Option 1: Fully standardized reference model (structure + parameters)
· Option 2: Standardized dataset
· Option 3: Standardized reference model structure + Parameter exchange between NW-side and UE-side
· Option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side
· Option 5: Standardized model format + Reference model exchange between NW-side and UE-side
Note 1: The above options may not be mutually exclusive and may be used together.
Note 2: Other options are not precluded.
Note 3: The study should consider how different methods of exchanging the parameters / dataset / reference model would affect the feasibility and collaboration complexity of options 3 / 4 / 5 respectively, e.g., over the air-interface, offline delivery, etc.
Note 4: “Dataset” refers to a set of data samples of CSI feedback and associated target CSI.
Agreement
For the study of inter-vendor collaboration issues for AI/ML-based CSI compression using a two-sided model, consider at least the following aspects when comparing different options:
· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors.
· Performance.
· Interoperability and RAN4 / testing related aspects.
· Feasibility.



Regarding testing of two-sided models, RAN4 discussed four different options of test decoder for UE encoder conformance testing in the closed Rel-18 SI, and the corresponding text in the TR [2] is copied below:
	Following the above principles, the considered options of test decoder are listed below
-	Option 1: DUT provides the decoder
-	Option 2: Infra vendor provides the decoder
-	Option 3: Full decoder specification in standard
-	Option 4: TE vendor provides the decoder
Option 3 target is that a single decoder defined in the specifications for at least a single test for any DUTs. 
For option 4, the following aspects should be considered
-	TE vendor should be able to develop the decoder based on the specifications
-	Test repeatability should be ensured (variation among TE vendor implementations should be bound)
-	Other vendors should also be able to develop such a decoder and which can deliver similar performance
-	Interoperability should be ensured based on the parameters that need to be specified
-	Parameters that need to be specified are FFS
-	Candidate parameters/conditions that may be considered for defining test decoder include
-	Training data set for TE decoder training
-	Model structure (Activation function is included in the model structure)
-	Performance parameters for the TE decoder (e.g. cosine similarity, loss function, etc)
-	Maximum FLOPs allowed for the test decoder
-	Maximum number/size of model parameters
-	Compression ratio of decoder (output size/input size)
-	Quantization level
-	Other parameters are not precluded and to be further discussed. 
-	Note: Feasibility of definition of parameters needs further investigated.
Option 4 target is that a single decoder implemented by each TE vendor will be enough for at least a single test for any DUTs. TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party. If this is found infeasible, another option in which TE vendors need to collaborate with DUT/infra vendors to implement the decoder could be considered.



In the RAN4 #110 meeting, the following agreement was made for UE encoder conformance testing of CSI-compression using two-sided model case:
	Agreement: 
RAN4 to further discuss only options 3 and 4


In addition, in the RAN4 #110 meeting, RAN4 started discussions on model architecture and model training related parameters for option 3 (fully standardized test decoder), which are captured in a table and will be continue discussed in the RAN4 #110bis meeting.
[bookmark: _Toc163231797]Progress was made in both RAN1 #116 meeting and RAN4 #110 meeting on the study of multi-vender training collaboration and interoperability issues for AI/ML-based CSI compression using two-sided model. The studied options listed in RAN1 and RAN4 agreements are closely linked.

2.3 Comparison of different options for inter-vendor training collaboration
In this section, we analyze and compare the five different options listed in the RAN1 agreement in terms of the identified aspects (inter vendor collaboration complexity, performance, interoperability/RAN4-testing and feasibility). 
2.3.1 Option 1: Fully standardized reference model 
Option 1: Fully standardized reference model (structure + parameters)
Interoperability can be maintained if a reference model for one-part of the two-sided model is specified. Interoperability is achieved at a nominal/minimum performance level by defining a reference model, the associated reference data set and a nominal/minimum performance requirement. 
To address both inter-vendor collaboration and interoperability requirements using the standardized reference model based approach, two additional key aspects should be considered for training the second-part model of the two-sided model case, regardless of if the standardized reference model is for the UE or the NW part:  
· Channel conditions associated to the standardized reference model: Defining one-part of the two-sided model is not enough to allow the second side to train their part model independently. Additional information about the reference data set associated to the standardized reference model should be known. For example, the actual data set, or at least the channel conditions assumed to obtain that data set, so that the second side can regenerate such a data set on its own using the standardized reference model. 
· Defining the nominal/minimum acceptable performance level which is used to validate the performance of the second-part model. If the second-part model fulfills the performance requirements, it can be paired with the reference model in actual deployments. It is up to RAN4 to define those performance requirements. 

By defining the reference model for one part of the two-sided model, information about the reference data set, and the nominal/minimum performance level requirement, the second side can train their nominal model independently and yet interoperability can be maintained in a multi-vendor eco-system. 

In fact, the actual models used by the NW and the UE could be something different (e.g., an extension trained on a larger dataset) from the standardized reference model, or the nominal second-part model trained with the reference data set. Either side can train and validate its actual model of the two-sided model case that may be developed/optimized without exposing the actual other part model implemented at the NW or UE. 
[bookmark: _Toc163231798]Standardizing a reference model for one part of the two-sided model, including at least information about the reference data set (e.g., channel conditions), and a minimum performance requirement can potentially resolve the Inter-vendor training collaboration issues and maintaining 3GPP based interoperability for the CSI compression using two-sided model use case.

In the following, we provide an example for potential independent NW and UE side model training optimizations assuming a reference UE-part model is standardized. 

For further optimizing the UE-part model at the UE-side: 
· UE-side trains a nominal reference NW-part model, based on the reference data set and using the standardized reference UE-part model. The pair of the trained nominal reference NW-part model and the standardized reference UE-part model shall fulfil the minimum performance requirement. 
· UE-side may train an optimized UE-part model, based on a larger data set (where the reference data set is only a subset of this larger data set) and using nominal reference NW-part model. 
· The performance of the optimized UE-part model is validated at the UE-side using the reference data set and the nominal reference NW-part model. 
· If the minimum performance requirement is fulfilled, the UE-side would assume that the optimized UE-part model can still pass the RAN4 performance requirements even if it is not using the standardized reference UE-part model.

Similar procedure can be followed by the NW-side for training or future optimizing its NW-part of the two-sided model assuming a reference UE-part model is standardized.: 
· NW-side can train a NW-part model, based on the reference data set and using the standardized reference UE-part model. The pair of the trained reference NW-part model and the standardized reference UE-part model shall fulfil the minimum performance requirement.
· NW-side may train an optimized NW part model, based on a larger data set (where the reference data set is only a subset of this larger data set) and using the standardized reference UE-part model. 
· The NW side tests if the optimized NW-part model still allows the UE-side independently developed UE-part model to fulfil nominal/minimum performance requirement by testing the optimized NW-part model against the reference UE-part model and by using the reference data set. 
The optimizations at the UE and/or NW can be performed independently, where each one separately can verify that the nominal performance can be achieved.   
For conformance testing purposes, the standardized reference model can be used by the TE vendors to produce the model in the test equipment. If the reference UE-part model is standardized, then, the TE vendors train a nominal test NW-part model using the standardized reference UE-part model, the reference data set and the minimum performance requirement. The nominal test NW-part model is run on the TE and used to validate the performance of the UE-part model. This approach is well in line with RAN4 option 4 (TE vendor provides the decoder), where any TE would be able to develop the test decoder based on the specified reference encoder and conditions that should be considered for training the test decoder (including the performance parameters, and sufficient information about the training data set).
[bookmark: _Toc163231799]The RAN1 “option 1: fully standardizing reference encoder” is an enabler for RAN4 “option 4: TE vendor provides the decoder based on the specifications”.

If the reference NW-part model is standardized instead, then, this reference model is implemented in the TE to validate the performance of the UE-part models, which is in line with RAN4 discussions on the interoperability aspects (Option 3 in RAN4: full decoder specification in standard).
[bookmark: _Toc163231800]The RAN1 “option 1: fully standardizing reference decoder” and RAN4 “option 3: standardizing test decoder” are very closely linked.

If 3GPP standardized test encoder/decoder or reference encoder/decoder, the outcome is the same. We have seen that using this option interoperability can be achieved and the inter-vendor collaboration complexity is minimal since separate independent optimization can be performed. However, we acknowledge that defining the test/reference model is a challenging task to do particularly when there is no access to good quality field data during the process of standardizing that model. If the data assumed for training the standardized model does not sufficiently capture different channel conditions or aspects that can be faced in real deployment, the model will fail to generalize well or provide good performance which will severely limit the utilization of two-sided models and two-sided CSI compression. Therefore, if this option is to be agreed, ensuring that the quality and generalization properties of the data set used for training is crucial. 
The feasibility of this option depends on companies’ willingness to agree on a standardized reference Al model (or potentially limited set of models) with reasonable implementation complexity and that can show sufficient gains in a range of applicable scenarios. Therefore, the criteria for defining a reference model should include at least: 
· Sufficient performance gains compared to the benchmark.
· Complexity of the model (Maximum FLOPs allowed)
· Model architecture (type, depth, layers, and size, Maximum number/size of model parameters, Compression ratio (output size/input size, Quantization level)
· Candidate parameters/conditions for the scenarios to be covered by the training data. 
· Training related parameter (dataset size, quality, format of the input/output, field data vs. synthetic data, loss function)

As highlighted before, RAN4 started discussions on model architecture and model training related parameters for option 3 (fully standardized test decoder), which are captured in a table and will be continue discussed in the RAN4 #110bis meeting. The same discussion points are equally valid for fully standardizing a test encoder, however, RAN4 has not considered that yet. A close alignment between RAN1 and RAN4 is needed to ensure that a single solution is delivered for standardized test/reference encoder and/or decoder. Alternatively, the discussion would be led by a single WG. Since RAN4 already initiated the discussion on parameterization of test model as part of RAN4 option 3, the study of the feasibility of this option can be handled by RAN4.   
[bookmark: _Toc163231810]Align the proposals for standardized reference/test encoder/decoder (parameters) between RAN1 and RAN4, and conclude that the feasibility study of this option is handled by RAN4. 
2.3.2 Option 2 and Option 4 (Data set based approaches)
Option 2: Standardized dataset
Note 4: “Dataset” refers to a set of data samples of CSI feedback and associated target CSI.
Indeed, standardizing the dataset reduce the required inter-vendor collaboration needed for training each side of the two-sided model. Using option 2 (Standardized dataset), UE vendors or network vendors would independently define their own models, including their own choice of model architecture and training parameters. Nonetheless, standardizing a dataset presents a challenge, particularly concerning the acquisition of the corresponding target CSI. Two potential approaches exist. In the first, companies propose datasets containing both data samples of the CSI feedback and the associated target CSI. RAN1 must then choose among these proposals. However, the criteria for dataset selection remain unclear, especially if the process by which the associated target CSI was obtained is not disclosed by the companies. Alternatively, in the second approach, the standardized dataset is generated based on encoder and channel conditions agreed upon in 3GPP. Consequently, the effort required by RAN1 to reach a consensus on this option mirrors that of option 1. While in option 1, the reference model and conditions are standardized, in option 2, the input and output of the reference model are standardized.
Additionally, ensuring robust performance in the field or even meeting RAN4 requirements would become extremely challenging if no additional conditions on the training is specified. Take RAN4 testing for example, there would be no guarantee that the test decoders developed by different TE would provide similar results when testing the same encoder. The choice of the model architecture and training parameter has implication on the performance of the paired encoder/decoder. Accordingly, an encoder tested against one test decoder from a TE vendor, might fail the same test when tested against another test decoder from another TE vendor that has different choice of model architecture. In fact, RAN4 has started discussing parameters that need to be specified to ensure the interoperability, a listed of candidate parameters/conditions that may be considered for defining test decoder was captured in the RAN4 agreement copied above, in order to ensure the interoperability and to make sure that “test decoder” can be developed by the test equipment vendor based on specification and that the network vendor can assume that the CSI compression performance of any UE encoder can meet requirements if the decoder is similar to the test decoder. These candidate parameters/conditions include: 
· Training data set for TE decoder training
· Model structure (Activation function is included in the model structure)
· Performance parameters for the TE decoder (e.g. cosine similarity, loss function, etc)
· Maximum FLOPs allowed for the test decoder
· Maximum number/size of model parameters
· Compression ratio of decoder (output size/input size)
· Quantization level
· Other parameters are not precluded and to be further discussed. 
· Note: Feasibility of definition of parameters needs further investigated.

Option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side
Similar observation can be made for option 4 (Standardized data / dataset format + Dataset exchange between NW-side and UE-side), with largely increased complexity for model training as it requires exchanging the dataset between the NW and UE, and the interoperability/RAN4-testing issue remains unsolved. 
In Rel-18 two types of dataset delivery methods were proposed by companies, i.e., over-the-air dataset delivery and offline dataset delivery. To enable a gNB to serve multiple UEs simultaneously and to keep implementation efficiency, cost and complexity feasible at the NW side, it is required that a single model is operated at the gNB side, regardless of the multitude of models operated in different UEs with different vendor versions or/and chipset versions. Hence, option 4 shall be limited to the NW-side training option only, with data set transferred from the NW to UE.
Offline dataset delivery requires large offline inter-vendor collaboration effort for aligning the dataset delivery solution. To minimize the cross-vendor collaboration effort, it is preferred to also standardize the dataset delivery method to ensure that the UE side can receive datasets from all NW vendors, so that the UE-side is able to train its encoder(s) to work with multiple NW vendors. However, even with standardized dataset delivery method and standardized dataset structure, it is still unclear how the two-sided model performance can be verified without vendor-vendor specific conformance testing.
Over-the-air dataset delivery may largely minimize the offline multi-vendor collaboration issue for model training, however, it is unclear how the performance testing of the two-sided model can be done to maintain the 3GPP-level multi-vendor interoperability. In addition, there are many concerns on the feasibility and complexity of over-the-air dataset delivery: 
· Over-the-air dataset delivery can result in large Uu signalling overhead.
· Over-the-air dataset delivery can cause large UE power consumption.
· Over-the-air training dataset delivery can result in large latency, the model trained by using the delivered data can be outdated or have a short model-in-use time. 
· Over-the-air dataset delivery requires mechanisms to control which data samples within a training dataset shall be transmitted over which gNBs to which UEs in the network. This increases the standardization complexity, and it may still require some offline cross vendor collaboration effort. 
· Over-the-air dataset delivery requires mechanisms to enable each UE side aggregate the correct data samples from UEs to create a correct dataset for its UE-part model training. 
· Over-the-air dataset delivery requires mechanisms to control the reliability/quality of the over-the-air dataset delivery. 
· Over-the-air dataset delivery requires mechanisms to ensure that the dataset delivery will not impact normal services running at the network. 

[bookmark: _Toc163231801]The dataset-based approaches (RAN1 option 2: standardized dataset and RAN1 option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side) may potentially simplify the training procedure by allowing independent training of both encoder/decoder parts of the two-sided model, however, they are not sufficient for ensuring interoperability/RAN4-testing or robust performance in the field.
[bookmark: _Toc163231802]For RAN1 Option 4, the feasibility and complexity of the over-the-air dataset delivery is questionable.

2.3.3 Option 3 and Option 5 (model transfer/delivery based approaches)
Both options 3 and 5 relay on model transfer/delivery. 
Option 3: Standardized reference model structure + Parameter exchange between NW-side and UE-side
In our understanding, RAN1 option 3 corresponds to model transfer type z4, i.e., model transfer in open format of a known model structure at UE. In principle, model transfer can be from NW-side to UE-side, or vice versa. Based on the same reasoning discussed for RAN1 option 2/4, RAN1 Option 3 shall be limited to the NW-side training option only, with trained encoder(s) transferred from the NW to UE. 
To minimize the offline cross-vendor collaboration effort for developing/compiling the models, for RAN1 option 3, the encoder structure including at least the quantization methods of model parameters, and data pre-processing steps must be standardized. However, it is unclear if NW-side training and model transfer type z4 can achieve 3GPP-level multi-vendor interoperability. More studies are needed to answer the open questions like
· How to test if a UE can successfully receive the model parameters transferred from the NW, quantize, compile, and run the encoder on an existing model structure?
· How to test if a gNB can provide sufficient good model parameters?
· How to verify the two-sided model performance without “vendor-vendor specific” conformance testing?
· [bookmark: _Hlk162423727]How can the operator identify the responsibility if the two-sided model fails in operation in the field? E.g., is it due to the model parameters provided by NW is not good, or unreliable transmission/reception of the model parameters over the air, or UE's implementation/compiling/running of the encoder is not functioning well.

[bookmark: _Toc163231803]RAN1 option 3 (Standardized reference model structure + Parameter exchange between NW-side and UE-side) corresponds to model transfer type z4, it is unclear how the 3GPP level multi-vendor interoperability can be achieved by using this option.
Option 5: Standardized model format + Reference model exchange between NW-side and UE-side
Similar to the discussion for RAN1 options 2/3/4, RAN1 option 5 shall be limited to the NW-side training option only. And in our understanding, RAN1 option 5 corresponds to model transfer type z5, i.e., model transfer in open format of an unknown model structure at UE. Since it was agreed in the last RAN1 meeting that the model transfer/delivery Case z5 is decreolized for Rel-19 due to its feasibility issues, the RAN1 option 5 shall be deprioritized in this discussion. 
[bookmark: _Toc163231804]RAN1 option 5 (Standardized model format + Parameter exchange between NW-side and UE-side) corresponds to model transfer type z5, which was agreed to be deprioritized for Rel-19 in the last RAN1 meeting in agenda item 9.1.3.3.
2.3.4 Further aspects related to conformance testing in case of options 2,3,4,5
It has been highlighted in the above discussion that using any of the RAN1 options 2-5, regardless of it is feasible or not, "vendor-vendor specific” conformance testing would be needed to ensure robust performance (i.e., 3GPP-level multi-vendor interoperability cannot be maintained), if no additional training/testing conditions/parameters are agreed in RAN1 and/or RAN4. 
As an alternative to RAN4 conformance testing, a NW vendor might need to test the performance of each UE side model/functionality before enabling it, which means that the inter-vendor collaboration would still be needed, but now for performance testing instead of training. Hence, these options solve the inter-vendor collaboration issues for training but introduce new issues for performance testing purposes. Similar to the inter-vendor training discussion, the vendor specific performance testing can be done either offline prior to a UE-part model deployment at UE or over the air after a UE-part model deployment at UE. Both performance testing methods are problematic. For the offline performance testing method, extensive offline alignment between UE and NW vendors is needed to test the performance of each of UE vendor specific model against the NW sided model. Alternatively, a lot of network resources will be consumed for the over-the-air performance testing, which might undergo multiple iterations before a UE sided model/functionality that fulfil the requirements is found. It is also not clear how to identify the responsibility if the two-sided model fails during testing or operation in the field, e.g., is it due to NW side or UE side not functioning well. What would be the consequence of that? Should the UE be instructed to fallback to a legacy CSI reporting, or should the NW also not activate its NW-part model and by that impact the performance of other UEs connected to the cell.
[bookmark: _Toc163231805]RAN1 options 2, 3, 4, and 5 might minimize the inter-vendor collaboration needs for training purposes, however, using these options alone cannot solve the interoperability issue for performance testing.
Another possible scenario could be that based on the continue study, RAN4 concludes the feasibility and agrees on standardizing either of RAN4 option 3 (full test encoder/decoder) or RAN4 option 4 (TE develops the test decoder). In this case, there will be enough information in the spec that allows both UE and NW sides developing a nominal encoder/decoder, as already highlighted in the discussion for option 1 (fully standardizing a reference model). 
To re-iterate the findings from that discussion, standardizing a reference model for one part of the two-sided model, information about the reference data set, and a minimum performance requirement can potentially resolve the inter-vendor training collaboration issues and maintaining 3GPP based interoperability for the CSI compression using two-sided model use case. To improve the performance beyond the minimum requirement, the two parts of the two-sided model can be optimized based on a larger data set, potentially obtained from the operation in the field, as discussed earlier. 
Optimizations can be performed while still ensuring interoperability at the required minimum performance level. NW/ UE can collect additional dataset to optimize their actual encoder/decoder that is tested against the “test encoder/decoder”. We even explain the procedure in option 1 when we say that the “UE may train an optimized UE-part model, based on a larger data set (where the reference data set is only a subset of this larger data set) and using the nominal test NW-part model.” RAN1 options 2, 3 and 4 can be potential means to optimize the actual models. However, such optimizations should be down prioritized at this stage before the feasibility of the basic solution (RAN1 Option 1, RAN4 Option 3 or 4) is being studied and confirmed. Hence, the focus of RAN1 and RAN4 should be to study a potential solution that address both inter-vendor training collaboration and interoperability issues. 
[bookmark: _Toc163231806]Condition on the feasibility of RAN1 Option 1 based solution (i.e., standardized a reference model for one part of the two-sided model, information about the reference data set and a minimum performance requirement), RAN1 Option 2, 3 or 4 (if feasible) can be considered to further optimize the actual encoder/decoder on top of RAN1 Option 1 based solution.
[bookmark: _Toc163231811]Studying the feasibility of RAN1 Option 1 should be prioritized. RAN1 should down prioritize the study of Option 2, 3, and 4 until further progress being made regarding the feasibility of RAN1 Option 1 (RAN4 Option 3 or 4).
3 Trade-off between performance and complexity 
During Rel. 18 study, AI-based CSI compression discussed the compression in the spatial and frequency (SF) domain. To obtain additional gain, the compression may also involve the temporal domain (TSF domain). In RAN1 116, several cases are identified for having the temporal domain aspect for AI/ML-based CSI compression using two-sided model. The cases are captured in the following agreement.
	Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following categorization for study:
	Case
	Target CSI slot(s)
	Whether the UE uses past CSI information
	Whether the network uses past CSI information

	0
	Present slot
	No
	No

	1
	Present slot
	Yes
	No

	2
	Present slot
	Yes
	Yes

	3
	Future slot(s)
	Yes
	No

	4
	Future slot(s)
	Yes
	Yes

	5
	Present slot
	No
	Yes



Note 1: For the UE, the past CSI information may include past model inputs and/or any information derived from them. For the network, the past CSI information may include past CSI feedback instances and/or any information derived from them.
Note 2: For case 3 and case 4, the UE may perform prediction as a separate step or jointly with compression. Similarly, the network may perform prediction as a separate step or jointly with reconstruction. Companies to report which option is selected, the number of future slots, and whether the prediction is AI/ML-based or not.
Note 3: “Target CSI slot(s)” refers to the slot(s) to which the CSI feedback in the report corresponds. “Present slot” refers to the slot of the most recent CSI-RS measurement used to generate the CSI report. “Future slot(s)” includes at least one slot after the present slot and may include the present slot as well. 
Note 4: Down-selection is not precluded. 



In this section, we discuss use case 3, i.e., the case where the future slots are applied for the target CSI and the NW does not uses past CSI information to decode the CSI transmitted by the UE. In case 3, there are two aspects that are included in the AI/ML model(s), i.e., the prediction aspect and the compression aspect. The two aspects can be done in a sequential manner, e.g., predict then compress or be done in one unified model block. Here, we refer to the first case as case 3A and the second cases as case 3B, respectively.
[bookmark: _Hlk163221105]3.1 Case 3A – UE performs prediction in a separate step before compression
3.1.1 Use case description
The block diagram of the possible implementation of this use case can be seen in the following figure.
[image: ]
[bookmark: _Ref163216169]Figure 1  Case 3A: UE performs prediction in a separate step before compression.
In this use case 3A, the UE measures K CSI-RS occasions and uses the channel measurements to create inputs for the channel prediction block. The channel prediction block may be, for example, an AI/ML-based channel predictor or a non-AI AR-based channel predictor. The channel predictor block will output N4 predicted channels. The predicted channels will then be compressed with an AI/ML-based encoder at the UE-side. Note that before the compression, preprocessing may be done, e.g., by converting the channels into the eigenvectors. As multiple (pre-processed) predicted channels are compressed in a single encoder block, the encoder basically compresses 3 dimensions, i.e., the temporal, spatial, and frequency (TSF) domain. The output of the encoder may then be further processed, e.g., quantize with either scalar or vector quantization before transmitted to the NW as a single CSI report. Receiving the CSI report, the NW dequantizes the CSI and decompresses it, resulting in N4 predicted CSI. The predicted CSI, may, for example, be in the form of eigenvector (i.e., the same with the encoder inputs).
3.1.2 Simulation assumptions
3.1.2.1 Benchmark scheme
The following agreement and working assumption were made in RAN1 #116:
	Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, for cases with prediction of future CSI, in which prediction and compression are separated, to optionally evaluate a scheme with ideal prediction as an additional evaluation case for reference. 
Note: The ideal prediction scheme should model realistic channel estimation.
Working Assumption
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following benchmark scheme for performance comparison:
· For cases without prediction of future CSI, use the same benchmark scheme assumed in R18 AI/ML-based CSI compression study.
· For cases with prediction of future CSI, use the same benchmark scheme assumed in R18 AI/ML-based CSI prediction study, with R18 MIMO eType II codebook for compressing the feedback.



In this paper, we compare the AI/ML-based TSF compression model performance for Case 3A with two baselines:
· Baseline 1: non-AI AR-based CSI prediction at UE-side, with Rel-18 MIMO eType II codebook for compression the feedback
· Baseline 2: AI-based CSI prediction at the UE-side, with Rel-18 MIMO eType II codebook for compression the feedback. For the details of the AI model design, please refer to our paper [4].
For both Benchmarks, Rel. 18 eType II with paramCombination-Doppler-r18 = 5 (i.e., ), which corresponds to payload size of 322 bits, is assumed. 
3.1.2.2 AI model design
For Case 3A, the AI-based TSF domain CSI compression consists of a UE-sided AI CSI prediction model followed by a two-sided TSF domain CSI compression model with an encoder at the UE side, and a decoder at the NW side. 
The AI-based CSI prediction model at the UE-side has the same model design as the one described in our paper [4]. 
A transformer-based AI model is used for the two-sided TSF domain CSI compression model design (the design of the encoder and decoder shown in Figure 1). The input of the encoder is the eigenvector of all predicted N4 channel matrixes, which also serves as the target CSI (ground-truth label) and used together with an NMSE loss function to train the model. The training, testing, and the inference is done in the complex-domain and is implemented with Google’s JAX framework. The block diagram of the model used in this simulation can be seen in Figure 2, where the parameters used during the training can be seen in Table 1. The model parameter values apply for both the encoder and the decoder.

[image: ]
a. UE side (encoder)

[image: ]
b. NW side (decoder)
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c. Transformer encoder block

[image: ]
d.  Transformer decoder block

Figure 2	Transformer-based CSI compression
[bookmark: _Ref158985913]Table 1	Parameters for transformer model and training
	Parameters
	Values

	Dropout rate
	0.1

	Embedding dimension
	256

	Number of attention heads
	16

	Size of key, query, and values
	16

	Number of encoder/decoder blocks
	4

	Quantization
	4-bit scalar quantization
(2-bit for each real and imaginary part)

	Encoder output size
	64 (256 bits of payload size)

	Optimizer
	Adam

	Learning rate
	10-4



Training/testing dataset
To train the AI model, the data was collected with the parameters given in Table 4 in Appendix. Specifically, 5000 UE tracks, each with 150 slots, are used for the training. Ideal channel estimation is assumed. For the testing, dataset from 25 UE tracks, also with 150 slots each, outside the training dataset are being used.
3.1.2.3 Simulation parameters
For system performance evaluation, both DL mean UPT and 5%-UPT results are presented in figures and tables for RU = 20% and 50%. In the simulation, 5 CSI-RS measurements are used as the CSI prediction input of the CSI prediction block which outputs 4 predicted channels. The prediction parameters are set to 5/5ms for the observation window and 4/5ms/5ms for the prediction window. The UE speed is 30km/h. Ideal channel estimation is assumed at the UE side, and we will consider practical channel estimation in our continue studies. The more details parameters used for the simulation can be seen in Table 5 in Appendix.
3.1. UPT gain over baselines
[image: ]
Figure 3 DL mean UPT for observation window of 5/5ms and prediction window of 4/5ms/5m, UE speed of 30km/h, paramCombination-Doppler-r18 = 5 for baseline schemes. Ideal channel estimation at UE.

 [image: ]
Figure 4 DL 5-th percentile UPT for observation window of 5/5ms and prediction window of 4/5ms/5m, UE speed of 30km/h, paramCombination-Doppler-r18 = 5 for baseline schemes. Ideal channel estimation at UE.
Table 2 DL mean and 5% UPT gain over baselines
	Baseline
	RU = 20%
	RU = 50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	AR prediction + Rel. 18 eTypeII CB (baseline #1)
	3%
	10%
	13%
	27%

	AI prediction + Rel. 18 eTypeII CB (baseline #2)
	1%
	6%
	2%
	6%



From the above table, it can be observed that, under the assumption of ideal channel estimation at UE, the UE-sided AI CSI prediction with Rel. 18 MIMO CB outperforms UE-sided non-AI AR-based CSI prediction with Rel. 18 MIMO CB. On top of the prediction gain, two-sided TSF CSI compression adds additional gain due to better compression, however, the additional gain is small (1-2% for mean UPT, and 6% for 5-th percentile UPT).
Observation 1 [bookmark: _Toc163231807]For one use case of the Case 3 category, where UE performs prediction in a separate step before compression (i.e., joint UE-sided CSI prediction followed by two-sided TSF CSI compression), under ideal channel estimation assumption, this new use case does not provide large performance gain in terms of mean/5-% DL UPT, comparing to the UE-sided AI-based CSI prediction with Rel-18 MIMO eType II codebook for CSI feedback (baseline #2).
3.2 Case 3B – NW performs prediction jointly with reconstruction
In this section, we describe another example of AI/ML model design for the agreed Case 3 use case category that performs compression at the UE side in a way to preserve contextual information for prediction, and the gNB side performs prediction in a recursive manner as a separate step with reconstruction. 
This TSF compression use case has the advantage of preserving temporal dynamic information, which allows CSI prediction at the gNB side. This use case 3B allows for minimized additional spec impact comparing to the two-sided SF domain CSI compression use case studied in Rel-18. In particular, the difference can just be the presence of an inserted third neural network between the encoder and decoder, see Figure 1.  measured channel matrices, denoted by   to  with a time spacing  in slots are compressed and quantized to a feedback vector  by an encoder at UE side, where is the slot index of the first of the  measurement occasions. As shown in the figure, multi-step ahead predictions can be achieved based on the single feedback vector  by applying the dynamic model  to the feedback vector in a recursive manner until the desired prediction length  with a stride  is achieved. Then, the predicted latent vectors, …,  are reconstructed back to  predicted channel matrices, ,…, by a decoder at gNB side, where is the slot index of the earliest of the  time instances.

[image: ]
[bookmark: _Ref162527489]Figure 5 example of CSI compression case 3 that consists of three neural networks: encoder at the UE side and latent dynamic model  that takes care of the channel dynamics and decoder at the gNB side. 
4 Irregular antenna arrays as a new example for CSI compression use case
The CSI compression study in Rel.18 mainly assumes eigenvector reporting, which has the large benefit that it is agnostic to how the massive MIMO antenna array is built and therefore allow NW side to freely design new products that are much more cost effective and/or energy efficient and/or non-planar and/or with lower sidelobes and/or can have more bands etc. 
It should be noted that the complexity of massive MIMO antenna design is high with many constraints, size, weight, cooling and multi-bands with multiple overlapping arrays together, ranging from 1 to 5 GHz that all needs to fit inside the same radome. In addition, site constraints require new solutions where massive MIMO are to be deployed at lamp posts etc. If CSI reporting can be agnostic to how antenna arrays are built, it would greatly simplify the antenna design, and possibly easier for operators to find sites, and lead to even wider deployment of 3GPP technologies. 
But eigenvector reporting can be very costly in overhead or may even not be feasible to be carried as UCI on PUSCH, so here it may be motivated to use AI/ML based CSI compression. As an example, consider an eigenvector-based CSI reporting for a CSI-RS measurement with Nt=32 TX ports, N3=13 subbands and assume that each coefficient is quantized using Q=7 bits (4 bits for phase and 3 bits for amplitude), then the payload size per layer is about Nt*N3*Q=32*13*7=2912 bits. Note that the maximum UCI size for carrying UCI on PUSCH is 1706 bits. Hence, it is even unfeasible to transmit this uncompressed eigenvector-based CSI report on PUSCH.
This leads to our thinking that 3GPP could consider the emerging space of non-conventional antenna arrays (i.e., deviating from the current 3GPP assumption of a uniform planar 2D antenna array of equally spaced identical subarrays) where the current PMI reporting in 3GPP (which is antenna model based), perform poorly. 
We believe there is an opportunity here for AI/ML based CSI compression to bring a much larger value that conventional CSI reporting (i.e., the baseline) cannot match and it would make CSI reporting agnostic to antenna array implementation. 
[bookmark: _Toc163231808]The cases that take advantage of benefits of eigenvector reporting in AI/ML based CSI compression (which makes the CSI report agnostic to gNB antenna design) has not yet been explored in 3GPP, and can provide a new perspective in the search to find larger gains with AI/ML.  
To investigate this opportunity, 3GPP need to model gNB antennas that deviate from the uniform planar 2D antenna array of equally spaced identical subarray assumption. We are open how to model such non-conventional antenna arrays for evaluations, this can be further discussed in RAN1. 
However, as a starting point to demonstrate the potential gains with such approach, we have considered the CSI-RS antenna port muting scenario as a mean to achieve an irregular port layout structure. When antenna ports are muted on the gNB, which can be due to energy savings or can be non-intended due to faulty TRX modules, then the antenna array will be somewhat “non-conventional”, irregular, and doesn’t match the uniform planar 2D antenna array assumption and equally spaced antenna ports, of the 3GPP PMI codebook. 
If such simple deviation from the conventional array provides more gains for eigenvector reporting than what was observed in Rel.18 SI, then any larger deviations and non-conventional antennas such as cylindrical or spherical etc, could provide a lot more benefits of CSI compression. 
In order to verify the above, system level simulation (SLS) has been carried out to evaluate an irregular antenna array, obtained for example using the antenna port muting scenario, where a subset of antenna ports is muted for energy saving purpose. We follow the port muting specification from the Rel.18 network energy saving (NES) work item, except that Rel.16 eType II codebook is used as baseline (note that Rel.18 NES port muting feature only supports Type I codebook).
4.1 Simulation assumptions
We consider a setup where the gNB has an array with 24 antenna ports (2x6x2), as seen in Figure 1 left. The two columns (i.e., 8 ports) that are greyed are not used, resulting in an irregular antenna array. Hence, the remaining array has 2x4x2 = 16 active antenna ports. These 16 ports will be used for transmitting CSI-RS as well as PDSCH. Due to the remaining array being non-uniform, it is expected that directly applying the eType II codebook of 16 ports will introduce performance loss. 
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[bookmark: _Ref158927906]Figure 6 Two antenna arrays used in the evaluations. Left is a non-uniformly spaced 2x4x2 array obtained by muting 2 columns from a uniform 2x6x2 array. Right is a uniform 2x4x2 array. Both arrays have 16 active antenna ports and the 16 port codebook (N1=4, N2=2) was used.

UE is assumed to have 4 Rx antennas. SU-MIMO and MU-MIMO performance is evaluated (max 8 MU-MIMO layers and max rank 2 per UE) in the 3GPP UMi scenario at 3.5GHz. The remaining parameters follow Table 6.2.1-1 in [2]. 
4.2 Simulation results
To evaluate the potential of AI-based CSI, a proper metric needs to be devised. In our evaluation, the performance gain of an unquantized eigenvector feedback over the Rel.16 eType II codebook is used. The unquantized eigenvector feedback, which reports the eigenvectors of an antenna-frequency domain channel, essentially serves as an upper bound of the achievable performance. Hence, this metric reflects the maximum possible gain over legacy eType II reporting.
Formally, the proposed metric, for mean and 5th percentile UPT, can be written respectively as:
·  
· 

The above metrics are evaluated for both irregular antenna array (Figure 1, left) and uniformly spaced planar array, UPA (Figure 1, right). Both arrays have the same number of active antenna ports. The results at 50% resource utilization are summarized in Table 1.
Two parameter combinations (PC) of the Rel-16 eType II codebook, PC2 and PC6, are evaluated, which correspond to  and , respectively. Each UE can report up to a rank 2 CSI report in our simulation assumption.
For UPA, the potential gain in mean UPT with MU-MIMO by using eigenvector-based feedback for the simulated case is about 21% over eType II PC2 and 9% over eType II PC6. For irregular array, the corresponding gains increased to 45% and 17%, respectively. 
For UPA, the potential gain in 5th percentile UPT with MU-MIMO by using eigenvector-based feedback for the simulated case is about 54% over eType II PC2 and 30% over eType II PC6. For irregular array, the corresponding gains increased to 98% and 41%, respectively. 
Hence, using AI/ML based CSI compression for irregular array has much larger potential than for uniform array, where legacy codebook is designed for.
In general, it is observed that potential gain of using AI/ML based CSI compression is higher for MU-MIMO than SU-MIMO. This is due to that directly applying a DFT-based codebook on an irregular array may create grating lobes, which may not have as significant impact on SU-MIMO than on MU-MIMO, where more accurate nulling is required to avoid excessive multi-user interference.
In addition, the potential gain of using AI/ML based CSI compression is higher when fewer beams are selected. It is more important to select the correct beams when fewer beams can be selected by the UE. When more beams are selected, eType II has more freedom in the W2 calculation to partly compensate the impact of sub-optimal beams with grating lobes.
The gain for 5th percentile (e.g., cell-edge users) are more prominent, as those UEs are more likely to suffer more from inter-cell interference, which can be generated by the grating lobes when applying legacy codebook on irregular arrays. 
[bookmark: _Ref158973069]Table 3 Performance gain of eigenvector feedback over eType-II feedback for UPA array and irregular antenna array, at 50% resource utilization
	
	
	

	
	SU
	MU
	SU
	MU

	Uniform antenna array (eType II PC2)
	23%
	21%
	35%
	51%

	Uniform antenna array (eType II PC6)
	17%
	9%
	27%
	30%

	Irregular antenna array (eType II PC2)
	46%
	45%
	86%
	98%

	Irregular antenna array (eType II PC6)
	22%
	17%
	39%
	41%



Based on these results, we observe
[bookmark: _Toc163231809]The gain (over the eType-II PMI codebook) of eigenvector based CSI reporting used in AI/ML based CSI compression, is significantly higher for irregular antenna arrays than for uniform linear arrays. The gains are more prominent for MU-MIMO, cell-edge users and when fewer beams are configured. 
Hence, AI/ML based CSI compression of eigenvectors have greater potential for non-conventional antenna arrays and possibly for near field communication, which is believed to become more important in the near future, and our proposal is to study this direction further:
[bookmark: _Toc163231812]Consider assuming antenna arrays where the NR codebook design assumption of uniform planar 2D antenna array of equally spaced identical subarrays doesn’t hold for the CSI compression use case.
Conclusion
In the previous sections we made the following observations: 
Observation 1	Interoperability is an essential part of the commercial success of 3GPP standards, economy of scale and use of NR and LTE.
Observation 2	There is a large risk, unless carefully handled, that introduction of two-sided models in 3GPP specifications breaks the strength of 3GPP eco-system with its successful interoperability, economy of scale and global roaming benefits.
Observation 3	There are candidate options proposed in RAN1 and RAN4 that could solve the inter-vendor training collaboration issue while still maintaining the 3GPP-level interoperability.
Observation 4	Progress was made in both RAN1 #116 meeting and RAN4 #110 meeting on the study of multi-vender training collaboration and interoperability issues for AI/ML-based CSI compression using two-sided model. The studied options listed in RAN1 and RAN4 agreements are closely linked.
Observation 5	Standardizing a reference model for one part of the two-sided model, including at least information about the reference data set (e.g., channel conditions), and a minimum performance requirement can potentially resolve the Inter-vendor training collaboration issues and maintaining 3GPP based interoperability for the CSI compression using two-sided model use case.
Observation 6	The RAN1 “option 1: fully standardizing reference encoder” is an enabler for RAN4 “option 4: TE vendor provides the decoder based on the specifications”.
Observation 7	The RAN1 “option 1: fully standardizing reference decoder” and RAN4 “option 3: standardizing test decoder” are very closely linked.
Observation 8	The dataset-based approaches (RAN1 option 2: standardized dataset and RAN1 option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side) may potentially simplify the training procedure by allowing independent training of both encoder/decoder parts of the two-sided model, however, they are not sufficient for ensuring interoperability/RAN4-testing or robust performance in the field.
Observation 9	For RAN1 Option 4, the feasibility and complexity of the over-the-air dataset delivery is questionable.
Observation 10	RAN1 option 3 (Standardized reference model structure + Parameter exchange between NW-side and UE-side) corresponds to model transfer type z4, it is unclear how the 3GPP level multi-vendor interoperability can be achieved by using this option.
Observation 11	RAN1 option 5 (Standardized model format + Parameter exchange between NW-side and UE-side) corresponds to model transfer type z5, which was agreed to be deprioritized for Rel-19 in the last RAN1 meeting in agenda item 9.1.3.3.
Observation 12	RAN1 options 2, 3, 4, and 5 might minimize the inter-vendor collaboration needs for training purposes, however, using these options alone cannot solve the interoperability issue for performance testing.
Observation 13	Condition on the feasibility of RAN1 Option 1 based solution (i.e., standardized a reference model for one part of the two-sided model, information about the reference data set and a minimum performance requirement), RAN1 Option 2, 3 or 4 (if feasible) can be considered to further optimize the actual encoder/decoder on top of RAN1 Option 1 based solution.
Observation 14	For one use case of the Case 3 category, where UE performs prediction in a separate step before compression (i.e., joint UE-sided CSI prediction followed by two-sided TSF CSI compression), under ideal channel estimation assumption, this new use case does not provide large performance gain in terms of mean/5-% DL UPT, comparing to the UE-sided AI-based CSI prediction with Rel-18 MIMO eType II codebook for CSI feedback (baseline #2).
Observation 15	The cases that take advantage of benefits of eigenvector reporting in AI/ML based CSI compression (which makes the CSI report agnostic to gNB antenna design) has not yet been explored in 3GPP, and can provide a new perspective in the search to find larger gains with AI/ML.
Observation 16	The gain (over the eType-II PMI codebook) of eigenvector based CSI reporting used in AI/ML based CSI compression, is significantly higher for irregular antenna arrays than for uniform linear arrays. The gains are more prominent for MU-MIMO, cell-edge users and when fewer beams are configured.

Based on the discussion in the previous sections we propose the following:
Proposal 1	Align the proposals for standardized reference/test encoder/decoder (parameters) between RAN1 and RAN4, and conclude that the feasibility study of this option is handled by RAN4.
Proposal 2	Studying the feasibility of RAN1 Option 1 should be prioritized. RAN1 should down prioritize the study of Option 2, 3, and 4 until further progress being made regarding the feasibility of RAN1 Option 1 (RAN4 Option 3 or 4).
Proposal 3	Consider assuming antenna arrays where the NR codebook design assumption of uniform planar 2D antenna array of equally spaced identical subarrays doesn’t hold for the CSI compression use case.
[bookmark: _In-sequence_SDU_delivery] 
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Appendix
[bookmark: _Ref163217697]Table 4	Parameters used for data collection.
	Parameter
	Value

	Waveform
	OFDM

	Scenario
	Urban dense macro

	Carrier frequency
	2 GHz

	Inter-BS distance
	200 m

	UE tracks and slots per track
	5000 UEs with 150 slots each for training 
25 UEs with 150 slots each for testing

	UE mobility
	30 km/h

	Channel sampling frequency
	1 ms

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH, dV) = (0.5, 0.8) λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH, dV) = (0.5, 0.5) λ 

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9 dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15 KHz

	Simulation bandwidth
	10 MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	UE distribution
	100% outdoor. 

	Channel estimation         
	Ideal Channel estimation

	Spatial consistency 
	yes



[bookmark: _Ref163217684]Table 5	Parameters used for SLS.
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier frequency
	2 GHz

	Inter-BS distance
	200 m

	Layout and number of UEs
	3 sites and 100 UEs

	UE mobility
	30 km/h

	Channel model        
	According to TR 38.901

	Number of gNB ports
	32 ports

	Number of antennas at the UE
	2RX 

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25 m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256 QAM

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15 kHz

	Simulation bandwidth
	10 MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU-MIMO 

	MIMO rank
	1

	CSI feedback delay
	4 ms

	CSI-RS periodicity
	5 ms

	CSI report periodicity
	 (depending on Rel-18 eType II configuration)

	Traffic model
	FTP model 1 with packet size 0.5 Mbytes.

	Traffic load (Resource utilization)
	20/50% 

	UE distribution
	100% outdoor. 

	Channel estimation         
	Ideal

	Spatial consistency 
	yes
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