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1. Introduction
In RAN#102, the Rel-19 new work item on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface is endorsed. One of the objectives of the work item [1] is to further the study the following as a sequel to the Rel-18 study:

	*** text omitted***
Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain).
***text omitted***



In the following, we provide our views on the above issues. 













2. Further study on AI/ML-based CSI prediction
1 
2 
2.1 
2.2 
2.1 Considerations to improve performance-complexity trade-off  
Site/cell/location-specific models
One consideration to improve the trade-off between performance and complexity/overhead is to develop models, which are site/cell/location-specific. Theoretically, such models can better learn the underlining stronger correlation among samples collected from a certain environment. This may affect the prediction performance positively. Conversely, it may also enable smaller models to achieve the same performance as compared to larger generic models.  

In this regard, RAN1 may have to discuss how to model the evaluation of site/cell/location-specific models. Rel-18 SI considered 19 cells (57 sectors) with multiple UE drops, i.e., deployment scenario realizations. To modify this consideration to site/cell/location-specific models, the following alternatives can be considered:  
· Alt1: A single UE drop(s) on a single sector(s) with spatial consistency turned on and a large number of UE per drop.       
· Alt2: Ray-tracing channel model 
· Alt3: Field data (channel samples collected from real deployment)  

Considering the above alternatives, Alt2 and Alt3 may suffer from limitations on representativeness of the evaluation, i.e., the field data or ray-tracing-based channel model may not be generic (representative) enough to make meaningful conclusion on site/cell/locations. In this respect, multiple realizations of Alt1 can be considered to make sure the evaluation is generic enough. Additionally, Alt2 and Alt3 may not have the required controllability to evaluate the performance, e.g., to evaluate the various levels of site/cell-specific models.  

In this regard, RAN1#116 made the following agreement. The identified options belong to Alt3. Agreement RAN1#116
For the evaluation of AI/ML-based CSI prediction using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.




For option 1, we propose, the following to facilitate calibration of evaluation among companies.

Proposal#1: For the evaluation of AI/ML-based CSI prediction using localized models in Release 19, among the options for modeling the spatial correlation in the dataset for a local region consider
· A single drop on a single sector with spatial consistency turned on and a large number of UE per drop.
  
Figure 1 illustrates the performance gain in terms of SGCS of generic vs. site-(sector) specific prediction model over sample-and-hold (w/o prediction). The generic model is trained based on dataset collected from 57 sectors with 10 UE drops ( UMa realizations) and 10 drops per sector, i.e., 5700 UEs dropped in total. The site/specific model is trained from dataset based on Alt1 with the same number of UEs. Some performance gain is observed by site-specific model especially at a large prediction horizon. 

[image: ]
Figure 1 Gain of AI/ML-based CSI prediction over no prediction (sample-and-hold) for generic and sector-specific models (UE speed 30kmphr). 

Observation#1: Site-specific AI/ML prediction model trained based on dataset collected from a single drop on a single sector with spatial consistency turned on and a large number of UE per drop shows better performance (SGCS) as compared to generic model.  

For UE-side CSI prediction, the AI/ML model is in general trained by the UE-side vendor. To assist the data collection for training, the network may indicate its setting in an implicit manner that protects its proprietary implementation and privacy aspects. In Fig. 1 for example, the indicated information indirectly indicates the TRP corresponding to the UE’s CSI prediction. This indication may also implicitly indicate other aspects such spatial-domain pattern for network-energy saving, antenna tilt consideration, etc. Then, if UE vendors train localized/site/scenario/setting specific AI/ML model, the network may indicate its setting for the UE so that the collected data can be categorized. This can be considered as network-side additional condition as per RAN1#114bis agreement. One issue here is that in practice the model training and inference most likely happen in different times (not in a single RRC connection rather in weeks, months). This makes the TCI framework to be insufficient because the network has flexibility to change the mapping between the TCI IDs and the actual transmission configurations across UEs and different RRC configurations. Thus, the network may have to keep the same mapping between its settings and the required indication to ensure consistency between data collection for training and inference. 
[image: ]
Figure 2 CSI prediction from different TRPs

Proposal#2: In CSI prediction use case using UE-sided model, consider TRP related aspects for network-side additional condition indication. 


2.2 Aspects for further study   
1. On configuration related aspects
In Rel-18 SI, the EVM for CSI prediction assumed periodic measurements of CSI RS resources with m=5ms periodicity as a baseline. Moreover, the considered predicted CSI were for time instances which are located later in time than the last measurement by an integral multiple of m=5ms, e.g., 5ms, 10ms, 15ms, etc. This consideration is somehow simplistic and may not always be available in practice, e.g., aperiodic CSI measurement and reporting. This is a serious oversimplification considering that Type II CSI is available only for aperiodic reporting. 

[image: ]
Figure 3 CSI Measurement and reporting configurations considered in Rel-18 SI EVM for AI/ML CSI prediction

[image: ]
Figure 4 CSI measurement and reporting based on Rel-18 DD CSI enhancement for medium/high mobility

Moreover, the above consideration unfairly favours linear predictors in baseline#2, i.e., non-AI/ML CSI predictors such as Kalman, AR filters. For example, the linear predictors may keep track of the state of the channel (update the filter parameters) exploiting the availability of periodic measurements which is not possible for aperiodic measurement. Additionally, as illustrated in Figure 2, the EVM assumed the prediction instances are spaced with the same gap (or integral multiple of) as the measurement periodicity. This is in contrast to the flexible and more practical configurations available for Type II DD CSI reporting specified in Rel-18, e.g.,  The performance of baseline#2, i.e., linear predictors-based methods, may get affected by the additional interpolation needed to handle the flexible configuration in Figure 3. 

In Rel-18 SI, a prediction window of 5ms, 10ms and 15ms are considered. However, the reporting periodicity was fixed for 5ms. This makes the prediction instance beyond 5ms, e.g., 10, 15, 20ms, to be useless as a fresh report precedes them. To account this mismatch, we propose the following:

Proposal#3: For the evaluation of AI/ML-based CSI prediction
•  CSI reporting periodicity: {5, 10, 20} ms

In order to evaluate the performance of aperiodic CSI report and facilitate fair comparison, the CSI feedback overhead rate can be considered as one reference KPI.

Proposal#4: For the evaluation of AI/ML-based CSI prediction
•  adopt the CSI feedback overhead rate as reference, where the CSI feedback overhead rate is the average bit-rate of CSI feedback overhead across time.

Another issue is CSI-RS measurement configuration for data collection. Some of the CSI-RS resources for data collection may not correspond to CSI reporting, i.e., the UE may consume the measured CSI internally for its transparent reporting to the training server. Thus, the CSI report configuration may have to indicate which resources to be considered for CSI report and which resources are to be considered for data collection purpose only. Moreover, the UE may have to consider different priorities and CPU occupancy between the CSI measurements corresponding to a CSI report and data collection. 


Proposal#5: For the AI/ML based CSI prediction sub-use case, consider the following aspects for data collection
· CSI measurement and reporting framework.
· Data collection procedure and priority. 

If UE supports CSI prediction for multiple specified functionalities, e.g., ranges of UE velocity/mobility, it can indicate such capability in its capability report. Then, gNB can perform functionality selection based on direct or indirect measurement inputs, e.g., gNB may utilize (time domain correlation property) TDCP report to select one of the functionalities and configure the appropriate CSI measurement and reporting configurations. 
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Figure 5  Different aspect of CSI prediction with respect to UE mobility.

AI/ML CSI prediction inference complexity is an important factor which needs to be considered for the system design. The complexity may also include LCM-complexity which is also closely related to the number of active models UE runs to perform inference. In general, the best performance is expected to be achieved with condition-specific models, i.e., models which are trained and tested for each condition given by RRC configuration. For instance, a model trained for certain configuration of observation and prediction window and CSI-RS periodicity, performs best for the same configuration in the inference phase.  The following table shows the test performance in terms of NMSE for three different model sizes, trained and tested for three different training data set given by condition 1, condition 2 and a mixture of condition 1 and 2. Condition 1 is defined by 5 measurements  of observation window and 2 prediction instances, and a CSI-RS periodicity and the gap between prediction instances (‘m’ and ‘d’ in FIGURE 3, respectively) are set to 1ms. The observation and prediction window parameters are the same for condition 2, but the CSI-RS periodicity is m=5ms. The trained models are a) trained on data set generated based on condition 1, b) data set generated based on condition 2 and c) a mixture of the first two data sets. The test NMSE is only measured on test data set generated from condition 1 or condition 2. We also considered three different model sizes as below.

· Large: 5-layer 2D CNN with 100 output channels and kernel size =5
· Medium: 3-layer 2D CNN with 50 output channels and kernel size =5
· Small: 2-layer 2D CNN with 10 output channels and kernel size =5

As it can be observed from the below table, for each test condition, the best performance is achieved by a training the model with dataset from the same condition. It is also possible to train a single generic model based on the mixture of the two data sets with reasonable performance, but with certain degradation compared to condition-specific models. The last row shows the amount of performance degradation between a generic model and two condition-specific models. The degradation generally increases when lower complexity models are used. 

Table 1 Generalization performance for different observation and prediction window configurations (NTx,NRx)=(16,4), Test NMSE (dB)
	    Model tested
 on
Model 
trained on

	Condition 1
	Condition 2

	
	Model size
	Model size

	
	Large
	Medium
	Small
	Large
	Medium
	Small

	Condition 1
	-34.0
	-25.3
	-20.3
	13.4
	9.2
	4.8

	Condition 2
	-3.1
	-3.37
	-3.36
	-7.07
	-7.06
	-7.03

	Mixed condition (generic) 1 &2 
	-29.0
	-22.3
	-10.09
	-7.04
	-6.95
	-5.54

	Performance degradation (dB) from condition specific model to the generic one
	

	

	

	

	

	







1. On Model Monitoring  Agreement
For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM: 
· Type 1: 
· UE calculate the performance metric(s) 
· UE reports performance monitoring output that facilitates functionality fallback decision at the network
· Performance monitoring output details can be further defined 
· NW may configure threshold criterion to facilitate UE side performance monitoring (if needed). 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Type 2: 
· UE reports predicted CSI and/or the corresponding ground truth  
· NW calculates the performance metrics. 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Type 3: 
· UE calculate the performance metric(s)
· UE report performance metric(s) to the NW
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Functionality selection/activation/ deactivation/switching what is defined for other UE side use cases can be reused, if applicable. 
· Configuration and procedure for performance monitoring 
· CSI-RS configuration for performance monitoring
· Performance metric including at least intermediate KPI (e.g., NMSE or SGCS)
· UE report, including periodic/semi-persistent/aperiodic reporting, and event driven report.
· Note: down selection is not precluded.
· Note: UE may make decision within the same functionality on model selection, activation, deactivation, switching operation transparent to the NW. 



In RAN1#114 the above agreement was agreed for performance monitoring for AI/ML based CSI prediction at the UE side. In Type 1 monitoring, the UE may calculate the metric and report the monitoring outcome to the network. As an example, the UE may compare its predicted CSI and ground truth and indicate for fallback or functionality switching as monitoring outcome. In this case, the UE may need to access to the ground truth CSI through indirect or dedicated measurements. Moreover, the network may have better knowledge on the baseline performance to trigger fallback. Thus, the network may prefer to configure to the UE with the baseline CSI and performance threshold. Type 1 monitoring saves the uplink bandwidth as the overhead for monitoring outcome reporting is highly likely be smaller than the overhead for ground truth CSI reporting. 

[bookmark: _GoBack]Proposal#6: For the AI/ML based CSI prediction sub-use case, for Type 1 monitoring, consider 
· Configuration of CSI-RS resources for performance monitoring 
· Configuration for baseline CSI and threshold for UE’s calculation of performance metric
· Configuration and time-domain properties for monitoring outcome reporting.    

The performance monitoring for CSI prediction can also be performed at the network side. For example, according to Type 2 monitoring above, the network (base station) may compare the predicted CSI and the ground truth (target) CSI to determine the performance of the prediction. In this case, the network may get access to the ground truth CSI through the UE’s report or through some form of uplink measurement. To adjust the prediction window and other parameters, the network may also require ground truth CSI corresponding to multiple time instances within the prediction window of the predicted CSI. In this case, the UE may apply compression for the ground truth CSI reporting, e.g., Doppler domain. If the target CSI is for multiple time instances, Doppler-domain compression may be applied for CSI feedback overhead reduction. Such reporting for target CSI may depend on UE’s capability may affect the CSI processing unit (CPU) counting and its timeline.   

Proposal#7: For the AI/ML based CSI prediction sub-use case, for Type 2 monitoring, consider
· Configuration of CSI-RS resources for performance monitoring 
· Configuration and potential enhancement on Type II CSI for ground truth CSI reporting corresponding to multiple time instances. 
· Priority and CSI processing timeline 

Conclusion
In this contribution, the following observations and proposals are made:

Proposal#1: For the evaluation of AI/ML-based CSI prediction using localized models in Release 19, among the options for modeling the spatial correlation in the dataset for a local region consider the following for Option 1:
· A single drop on a single sector with spatial consistency turned on and a large number of UE per drop.

Observation#1: Site-specific AI/ML prediction model trained based on dataset collected from a single drop on a single sector with spatial consistency turned on and a large number of UE per drop shows better performance (SGCS) as compared to generic model.  

Proposal#2: In CSI prediction use case using UE-sided model, consider TRP related aspects for network-side additional condition indication. 

Proposal#3: For the evaluation of AI/ML-based CSI prediction
•  CSI reporting periodicity: {5, 10, 15, 20} ms

Proposal#4: For the evaluation of AI/ML-based CSI prediction
• adopt the CSI feedback overhead rate as reference, where the CSI feedback overhead rate is the average bit-rate of CSI feedback overhead across time.

Proposal#5: For the AI/ML based CSI prediction sub-use case, consider the following aspects for data collection
· CSI measurement and reporting framework.
· Data collection procedure and priority. 


Proposal#6: For the AI/ML based CSI prediction sub-use case, for Type 1 monitoring, consider 
· Configuration of CSI-RS resources for performance monitoring 
· Configuration for baseline CSI and threshold for UE’s calculation of performance metric
· Configuration and time-domain properties for monitoring outcome reporting.    

Proposal#7: For the AI/ML based CSI prediction sub-use case, for Type 2 monitoring, consider
· Configuration of CSI-RS resources for performance monitoring 
· Configuration and potential enhancement on Type II CSI for ground truth CSI reporting corresponding to multiple time instances. 
· Priority and CSI processing timeline 
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