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[bookmark: _Ref4817]Introduction
In RAN#102 meeting, a new WID on AI/ML for air interface was approved [1]. The following study objectives related to CSI prediction and CSI compression were included in the WID with corresponding checkpoints in RAN#105 (Sept ’24). 
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 
-------------- Other parts are omitted --------------



In this contribution, we review the Rel-18 study outcome, present our field test and provide our analysis and proposals for the CSI prediction.
Review of the Rel-18 study outcome
RAN1 agreed to select AI/ML CSI prediction using UE-side model as a representative sub-use case for CSI feedback enhancement in RAN1#111 meeting. RAN#100 meeting agreed to task RAN1 to further study the potential spec impact for AI/ML CSI prediction. Since only around half of the Rel-18 time is left for the CSI prediction study, the performance evaluation and potential specification impacts were not thoroughly studied. 
In RAN1#115, RAN1 concluded the following for the Rel-18 study of AI/ML CSI prediction [2].
	Agreement
Capture the following conclusion in section 8 of the TR 38.843
· From RAN1 perspective, there is no consensus on the recommendation of CSI prediction for normative work.
· The reason for the lack of RAN1 consensus on the recommendation of CSI prediction for normative work is due to 
· Lack of results on the performance gain over non-AI/ML based approach and associated complexity
· Other aspects that require further study/conclusion are captured in the summary.



[bookmark: _Hlk157282860]In summary, the AI/ML CSI prediction was not thoroughly simulated and analysed during Rel-18 due to the limited time. To further investigate the potential enhancement on AI/ML CSI prediction, Rel-19 can further conduct comprehensive simulations and specification impact analysis. 
Observation 1: AI/ML CSI prediction was not thoroughly simulated and analysed during Rel-18 due to the limited time. More simulations and discussions are needed to investigate the potential enhancement on AI/ML CSI prediction. 

During the Rel-18 study, most companies observed significant gains in AI/ML CSI prediction over the nearest historical CSI. However, the gain of AI/ML CSI prediction over the non-AI/ML based CSI prediction remains inconclusive due to the limited sources and diverging results. Only five companies submitted simulation results demonstrating the gain of AI/ML CSI prediction over the non-AI/ML based CSI prediction in Rel-18, and the observed outcomes were diverging.
	Based on the evaluation for CSI prediction, the following high-level observations are provided:
· From the perspective of basic performance gain over non-AI/ML benchmark, under the same UE speed for training and inference,
· AI/ML based CSI prediction outperforms the benchmark of the nearest historical CSI in general, where the majority of sources observe up to 10.6% gain in terms of mean UPT.
· for AI/ML based CSI prediction over non-AI/ML based CSI prediction, 3 sources observe 0.7%~7% gain while 2 sources observe performance loss of -0.1%~-17% in terms of mean UPT.



To facilitate a consensus by the September 2024 checkpoint, the Rel-19 study must gather additional simulation results from a broader range of companies. To enable meaningful comparisons, it is essential to select some simulation assumptions as baselines, e.g., observation windows, prediction windows, and UE speeds. In addition, given the significant variations in the performance of non-AI/ML based CSI prediction methods utilized by different companies, it is challenging to conduct comparisons among different companies. Therefore, it is also helpful to identify a standardized non-AI/ML based CSI prediction approach for evaluation purposes.
Proposal 1: To conduct comparison among different companies, RAN1 selects some baseline simulation assumptions for Rel-19, e.g., observation windows, prediction windows, and UE speeds.

Preliminary simulation results
In RAN1#116 meeting, the following agreements and conclusion were achieved. It is up to companies to choose whether/how to simulate the channel estimation error. In this section, we provide our preliminary simulation results of CSI prediction considering the channel estimation error. 
	Agreement
For Rel-19 study on CSI prediction, consider EVM agreed in Rel-18 CSI prediction based on UE-sided model as a starting point.
· FFS on additional assumptions, e.g., channel estimation error, phase discontinuity, CSI-RS periodicity.
· Note: Rel-18 CSI-RS configuration/reporting can be reused. 
· Note: additional EVM and corresponding template to collect the results can be updated.


Conclusion
For the evaluation of the AI/ML based CSI prediction, it is up to companies to choose the modelling method and companies should report if ‘Channel estimation’ and/or ‘phase discontinuity’ is/are considered by companies.



Simulation assumptions
The dataset for AI/ML model training and evaluation is generated according to the agreed parameters in RAN1#109-e, which is summarized in Table 7-1 in the appendix. The scenario is Dense Urban (Macro only). For antenna configuration, a single panel with (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.8) λ and 2 panels with (M, N, P, Mg, Ng) = (1, 4, 2, 1, 2) are used by the gNB and UE, respectively. 
The system bandwidth is 10M, with user mobility at 30km/h and 100% outdoor deployment. Based on these simulation assumptions, we generated 100K samples, of which 80K were used for training the AI model for CSI prediction, 10K for model validation, and 10K for model testing. For additional model parameters, please refer to Table 7-2 in the appendix. In this simulation, we trained an RB common AI model, which means training the model based on a single RB and generalizing it to other RBs. To account for the impact of non-ideal factors such as channel estimation, we added Gaussian white noise with a variance of a to both the model input and labels of the samples, i.e., 


Here, H represents the ideal channel after pre-processing with a variance of 1, while He is the channel considering the non-ideal factors. Additionally, n denotes Gaussian white noise with a variance of a. All these parameters, including H, He, and n, have a dimension of , where , , , and  represent the number of channel samples in time domain, the number of transmit antennas, the number of receive antennas, and the number of RBs, respectively. In terms of model input, Tm is the length of the measurement window, e.g., Tm=5 is applied in this simulation. While in terms of labels, Tlabel is the length of prediction window, e.g., Tlabel=1 is applied in this simulation.  
Simulation results
The simulation results of SGCS with AI based CSI prediction, Wiener filtering based CSI prediction (benchmark#2) and Sample & Hold (benchmark#1) together with the SGCS gain are depicted in Figure 1. The following observations can be made based on the simulation results.
· As the noise variance increases, the SGCS of AI-based CSI prediction, benchmark#1, and benchmark#2 all decrease. However, AI-based CSI prediction experiences a significantly narrower reduction. Notably, when the noise variance exceeds 0.18, the SGCS of AI-based CSI prediction remains above 0.7, whereas the SGCS of both benchmark#1 and benchmark#2 falls below 0.4.
· In scenarios with low noise variance (e.g., below 0.06), AI-based CSI prediction achieves comparable SGCS to benchmark#2. Subsequently, as the noise variance rises, the SGCS gain of AI-based CSI prediction over benchmark#2 widens. Notably, when the noise variance exceeds 0.21, an SGCS gain of over 50% can be observed.
· In low noise variance conditions (e.g., below 0.06), as the noise variance increases, the SGCS gain of AI-based CSI prediction compared to benchmark#1 initially decreases due to the decline in SGCS of AI-based CSI prediction. However, once the noise variance surpasses 0.06, the SGCS gain of AI-based CSI prediction over benchmark#1 starts to increase. Notably, when the noise variance exceeds 0.21, an SGCS gain exceeding 50% becomes evident.
[image: ]
Figure 1: Simulation results of SGCS for CSI prediction

Observation 2: Regarding CSI prediction considering the channel estimation error
· As the noise variance increases, the SGCS of AI-based CSI prediction, benchmark#1, and benchmark#2 all decrease. However, AI-based CSI prediction experiences a significantly narrower reduction. Notably, when the noise variance exceeds 0.18, the SGCS of AI-based CSI prediction remains above 0.7, whereas the SGCS of both benchmark#1 and benchmark#2 falls below 0.4.
· In scenarios with low noise variance (e.g., below 0.06), AI-based CSI prediction achieves comparable SGCS to benchmark#2. Subsequently, as the noise variance rises, the SGCS gain of AI-based CSI prediction over benchmark#2 widens. Notably, when the noise variance exceeds 0.21, an SGCS gain of over 50% can be observed.
· In low noise variance conditions (e.g., below 0.06), as the noise variance increases, the SGCS gain of AI-based CSI prediction compared to benchmark#1 initially decreases due to the decline in SGCS of AI-based CSI prediction. However, once the noise variance surpasses 0.06, the SGCS gain of AI-based CSI prediction over benchmark#1 starts to increase. Notably, when the noise variance exceeds 0.21, an SGCS gain exceeding 50% becomes evident.


[bookmark: _Hlk157949570]Potential specification impacts
An example of AI/ML CSI prediction is depicted in Figure 2, where the model input can be channel matrices or eigenvectors of past time instances. The model can predict the channel matrices or eigenvectors for future time instances.  In this example, the AI/ML model predicts the eigenvectors for time instance#3 and instance#4 (i.e., V3 and V4) based on the eigenvectors for time instance#1 and instance#2 (i.e., V1 and V2). After that, UE generates the Rel-18 MIMO predicted PMI.  The potential specification impact for AI/ML CSI prediction contains CSI-RS configuration, CSI report configuration, functionality/model LCM, data collection, and performance monitoring.


Figure 2. Example of AI/ML CSI prediction

CSI-RS configuration and CSI report configuration
Rel-18 MIMO CSI prediction is designed to support various CSI-RS configurations, including periodic, aperiodic, and semi-persistent CSI-RS. For periodic and semi-persistent configurations, each CSI-RS resource set contains a single resource. However, the aperiodic configuration introduces an offset parameter m to represent the time-domain interval between two CSI-RS resources. This parameter m can be set to either 1 or 2, and each CSI-RS resource set includes multiple resources.
When utilizing Rel-18 MIMO CSI prediction, the reported PMIs are associated with N4 consecutive slot intervals. The value of N4 can be 1, 2, 4, or 8. For aperiodic CSI-RS, the number of slots (d) included in each slot interval is either d=1 or m. For periodic or semi-persistent CSI-RS, the number of slots in each slot interval corresponds to the period of the CSI-RS resource. The number of P/SP-CSI-RS instances to be measured by UE for each report is left to implementation. The earliest slot interval among the N4 intervals commences at the slot l=n+δ, where n represents the uplink slot of the CSI report and δ belongs to the set .
When N4>1, Rel-18 MIMO CSI prediction permits configuring multiple CQIs. The value of X, which represents the number of CQIs, can be either 1 or 2. If X=2, the two CQIs are independently calculated.
Rel-18 MIMO CSI prediction employs a new eType II codebook for feedback of PMIs. This new codebook is an extension of the Rel-16 eType II codebook in the time domain. The time domain employs Q time domain basis vectors, with Q fixed to be 2.
For AI/ML CSI prediction with UE-side model, the aforementioned resource/reporting configurations can be reused. Furthermore, the AI/ML model can easily accommodate d as any number of slots less than the period of CSI-RS. For instance, d can be set as T/2 slots. However, more discussion is needed to justify the trade-off between reporting overhead and potential performance gain. 
Observation 3: The CSI-RS configuration and CSI report configuration defined for Rel-18 MIMO CSI prediction can be reused for AI/ML CSI predication at least for data collection for model training and inference.

[bookmark: _Hlk157287100]Functionality/model LCM
Since only UE-side model is considered for AI/ML CSI prediction, the functionality/model LCM for AI/ML CSI prediction can reuse what is defined for AI/ML temporal beam prediction with UE-side model. In this sense, the discussion on functionality/model LCM for AI/ML CSI prediction can be delayed until more progress is made for AI/ML temporal beam prediction with UE-side model. To our understanding, there are no specific issues for functionality/model LCM for AI/ML CSI prediction. 
Proposal 2: The LCM for AI/ML CSI prediction reuses the outcomes defined for AI/ML temporal beam prediction with UE-side model.

Performance monitoring
During the Rel-18 study, three types of performance monitoring methods were proposed by companies. 
	Type 1:
-	UE calculates the performance metric(s)
-	UE reports performance monitoring output that facilitates functionality fallback decision at the network
-	Performance monitoring output details can be further defined 
-	NW may configure threshold criterion to facilitate UE side performance monitoring (if needed). 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
Type 2: 
-	UE reports predicted CSI and/or the corresponding ground-truth  
-	NW calculates the performance metrics. 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
Type 3: 
-	UE calculates the performance metric(s) 
-	UE reports performance metric(s) to the NW
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 



The comparison among these three types is summarized in Table 1. 
	Method
	Reporting content
	Pros and Cons

	Type 1
	Performance monitoring output, e.g., UE’s recommendation on whether to deactivate the current model/Functionality
	Low reporting overhead
Limited information for network to make final decision

	Type 2
	Predicted CSI and the corresponding ground-truth
	Large reporting overheard
Rich information for network to make final decision

	Type 3
	Performance metric(s), e.g., prediction accuracy, SGCS, etc.
	Moderate reporting overhead
Sufficient information for network to make final decision



Although Type 2 reports rich information for network to make final decision on functionality management, the reporting overhead is a crucial issue. Compared with Type 1, Type 3 provides more information to the base station instead of just UE’s recommendation. However, since performance metric calculation is subject to UE implementation, different UEs may have different criteria to calculate the same performance metric. Thus, the additional information provided by Type 3 may not justify the additional reporting overhead. In this sense, our preference is Type 1.
Proposal 3: Regarding performance monitoring for AI/ML CSI prediction with UE-side model, Type 1 is adopted.
-	UE calculates the performance metric(s)
-	UE reports performance monitoring output that facilitates functionality fallback decision at the network
-	Performance monitoring output details can be further defined 
-	NW may configure threshold criterion to facilitate UE side performance monitoring. 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).

Another aspect that needs potential enhancement is CSI-RS configuration/triggering for performance monitoring. Normally, to reduce the CSI-RS transmission overhead, the CSI-RS is only transmitted during the observation window and is not transmitted during the prediction window during inference phase. However, UE may need the CSI-RS in prediction window to calculate the ground-truth CSI for performance monitoring. As shown in figure 2, UE needs CSI-RS during the prediction window to determine accuracy of the predicted CSI. UE predicts the CSI for slots within the prediction window. For example, UE calculates the SGCS between the predicted CSI and the actual CSI derived by the CSI-RS within the prediction window. 
Proposal 4: Study potential CSI-RS configuration/triggering enhancement for performance monitoring for AI/ML CSI prediction with UE-side model. 


Figure 2. An example of performance monitoring for AI/ML CSI prediction. 

Data collection
Data collection for different purposes may require different data. 
· Model training: Model training requires the model input and model output, which can be channel matrix or eigenvector up to UE implementation. If base station decides to collect data for model training (e.g., base station trains a model and transfers the model to UE or transfers the dataset to UE), the channel matrix or eigenvector needs to be collected. However, collecting the channel matrix or eigenvector causes heavy reporting overhead. In order to reduce the reporting overhead, the high-resolution CSI can be adopted to balance the quality of training dataset and reporting overhead. 
· Model inference: During model inference, since only UE-side model is adopted, UE can acquire the channel matrix or eigenvector by itself. Thus, there is no need to collect model input for the base station during model inference phase. Regarding the model output, as we analysed above, the Rel-18 MIMO CSI reporting mechanism can be adopted without any additional specification change.
· Performance monitoring: Depending on the detailed solution, UE may need to report different contents to the base station.
Type 1: Performance monitoring output, e.g., UE’s recommendation on whether to deactivate the current model/Functionality
Type 2: Predicted CSI and the corresponding ground-truth
Type 3: Performance metric(s), e.g., prediction accuracy, SGCS.

Proposal 5: Further study the data collection for model inference and performance monitoring for AI/ML CSI prediction with UE-side model. 

Conclusion
Review of the Rel-18 study outcome
Observation 1: AI/ML CSI prediction was not thoroughly simulated and analysed during Rel-18 due to the limited time. More simulations and discussions are needed to investigate the potential enhancement on AI/ML CSI prediction. 
Proposal 1: To conduct comparison among different companies, RAN1 selects some baseline simulation assumptions for Rel-19, e.g., observation windows, prediction windows, and UE speeds.

Preliminary simulation results
 Observation 2: Regarding CSI prediction considering the channel estimation error
· As the noise variance increases, the SGCS of AI-based CSI prediction, benchmark#1, and benchmark#2 all decrease. However, AI-based CSI prediction experiences a significantly narrower reduction. Notably, when the noise variance exceeds 0.18, the SGCS of AI-based CSI prediction remains above 0.7, whereas the SGCS of both benchmark#1 and benchmark#2 falls below 0.4.
· In scenarios with low noise variance (e.g., below 0.06), AI-based CSI prediction achieves comparable SGCS to benchmark#2. Subsequently, as the noise variance rises, the SGCS gain of AI-based CSI prediction over benchmark#2 widens. Notably, when the noise variance exceeds 0.21, an SGCS gain of over 50% can be observed.
· In low noise variance conditions (e.g., below 0.06), as the noise variance increases, the SGCS gain of AI-based CSI prediction compared to benchmark#1 initially decreases due to the decline in SGCS of AI-based CSI prediction. However, once the noise variance surpasses 0.06, the SGCS gain of AI-based CSI prediction over benchmark#1 starts to increase. Notably, when the noise variance exceeds 0.21, an SGCS gain exceeding 50% becomes evident.

Potential specification impacts
Observation 3: The CSI-RS configuration and CSI report configuration defined for Rel-18 MIMO CSI prediction can be reused for AI/ML CSI predication at least for data collection for model training and inference.
Proposal 2: The LCM for AI/ML CSI prediction reuses the outcomes defined for AI/ML temporal beam prediction with UE-side model.
Proposal 3: Regarding performance monitoring for AI/ML CSI prediction with UE-side model, Type 1 is adopted.
-	UE calculates the performance metric(s)
-	UE reports performance monitoring output that facilitates functionality fallback decision at the network
-	Performance monitoring output details can be further defined 
-	NW may configure threshold criterion to facilitate UE side performance monitoring. 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
Proposal 4: Study potential CSI-RS configuration/triggering enhancement for performance monitoring for AI/ML CSI prediction with UE-side model. 
Proposal 5: Further study the data collection for model inference and performance monitoring for AI/ML CSI prediction with UE-side model. 
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Appendix: 
For dataset generation and performance evaluation for AI/ML based CSI prediction, the parameters (if applicable) in the following table for Dense Urban scenario for SLS are applied.
Table 7-1. Assumptions for Dense Urban scenario for AI/ML based CSI prediction
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Scenario
	Dense Urban (Macro only) 

	Frequency Range
	FR1 only, 2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10 MHz

	UE distribution
	CSI prediction: 100% outdoor (30km/h)

	Channel estimation         
	Realistic as a baseline.





Table 7-2.  Training parameters of AI/ML model for CSI prediction based on raw channels
	Parameter
	Value

	Backbone
	LSTM

	Input CSI type
	Historical channel matrices measured by UE

	Output CSI type     
	Predicted channel matrix by AI/ML model in UE

	Model input size
	T1*2*32*1*1(T1*2*Nt*Nr*NRB)
Based RB common, Nr common

	Model output size
	T2*2*32*1*1(T1*2*Nt*Nr*NRB)

	Training dataset
	80K

	Validation dataset
	10K

	Testing dataset
	10K

	Batch size
	200

	Optimizer
	Adam

	Loss function
	MSE
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