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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14][bookmark: _GoBack]In R18 SI, we have studied on AI/ML general framework and the agreements have been collected in TR [1]
From RAN#101, some remaining open issues need to be further studied [2].
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· Necessity and details of model Identification concept and procedure in the context of LCM [RAN2/RAN1] 
· CN/OAM/OTT collection of UE-sided model training data [RAN2/RAN1]: 
· [bookmark: _Hlk152950182]For the FS_NR_AIML_Air study use cases, identify the corresponding contents of UE data collection
· Analyse the UE data collection mechanisms identified during the FS_NR_AIML_Air (TR 38.843 section 7.2.1.3.2) study along with the implications and limitations of each of the methods 
· Model transfer/delivery [RAN2/RAN1]: 
· [bookmark: _Hlk152950348]Determine whether there is a need to consider standardised solutions for transferring/delivering AI/ML model(s) considering at least the solutions identified during the FS_NR_AIML_Air study 


In the last meeting, the following agreements have been made.
	Agreement
· To facilitate the discussion, RAN1 studies the model identification type A with more details related to use cases.
· To facilitate the discussion, RAN1 studies the following options as starting point for model identification type B with more details related to all use cases 
· MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
· MI-Option 2: Model identification with dataset transfer
· MI-Option 3: Model identification in model transfer from NW to UE
· FFS: The boundary of the options
· Note: the names (MI-Opton1, MI-Option 2, MI-Option 3) are used only for discussion purpose
· Note: other options are not precluded
Observation
The other options are proposed for model identification type B by companies during the discussion:
· MI-Option 4. Model identification via standardization of reference models. (for CSI compression)
· MI-Option 5. Model identification via model monitoring
Agreement
· Regarding MI-Option 1 (Model identification with data collection related configuration(s) and/or indication(s)) of model identification type B, RAN1 further study the following aspects:
· Relationship between model ID and data collection related configuration(s) and/or indication(s) 
· Information transmitted from NW to UE (if any) 
· Information transmitted from UE to NW (if any)
· The associated procedure
· Usage/Applicable use case(s) of MI-Option 1 
Note: whether MI-Option 1 is needed or not is a separate discussion

Conclusion:
From RAN1 perspective, the model transfer/delivery Case z5 is deprioritized for Rel-19.  

Conclusion
RAN1 has no consensus to reply the SA5 LS (R1-2400035)  


In this contribution, we further discuss the general aspects of AI/ML framework.

Discussion on model identification
In last meeting, the following agreements of model identification options have been achieved, which will be discussed in this section.
	Agreement
· To facilitate the discussion, RAN1 studies the model identification type A with more details related to use cases.
· To facilitate the discussion, RAN1 studies the following options as starting point for model identification type B with more details related to all use cases 
· MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
· MI-Option 2: Model identification with dataset transfer
· MI-Option 3: Model identification in model transfer from NW to UE
· FFS: The boundary of the options
· Note: the names (MI-Opton1, MI-Option 2, MI-Option 3) are used only for discussion purpose
· Note: other options are not precluded
Observation
The other options are proposed for model identification type B by companies during the discussion:
· MI-Option 4. Model identification via standardization of reference models. (for CSI compression)
· MI-Option 5. Model identification via model monitoring
Agreement
· Regarding MI-Option 1 (Model identification with data collection related configuration(s) and/or indication(s)) of model identification type B, RAN1 further study the following aspects:
· Relationship between model ID and data collection related configuration(s) and/or indication(s) 
· Information transmitted from NW to UE (if any) 
· Information transmitted from UE to NW (if any)
· The associated procedure
· Usage/Applicable use case(s) of MI-Option 1 
Note: whether MI-Option 1 is needed or not is a separate discussion



MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
The relationship between model ID and data collection related configuration(s) and/or indication(s) is discussed first.
Dataset categorization (e.g., dataset ID or data categorization ID) and model ID have different underlying logic. 
· Dataset categorization represents certain NW-sided implementation/configurations and/or wireless channel characteristics. For example, NW would indicate different dataset categorizations for different types of NW device, different antenna pattern, different beam pattern, or different time-frequency resource allocation configurations.
· Model ID represents certain AI/ML model implementation, which may require additional control/awareness of model beyond dataset categorization. After receiving dataset categorization and collecting data samples, UE or UE server will train one or multiple models for the collected data samples, with one or multiple dataset categorizations. One model may be used for multiple dataset categorizations, and multiple models may be trained for one dataset categorization. It is also possible that different UEs would train different models with different performance targets that may need to be aware at NW side.
Observation 1: Dataset categorization (or data categorization ID) and model ID have different underlying logic.
· Dataset categorization represents certain NW-sided implementation/configurations and/or wireless channel environments. 
· Model ID represents certain AI/ML model implementation, which may require additional control/awareness of model beyond dataset categorization.
Data categorization as model ID may not be able to provide model level LCM. If such awareness is needed, we may need another “real model ID” for such purpose. Conceptually, this is not a favorable approach. As stated above, UEs may develop multiple models with different performance targets and complexities for the same dataset or UEs develop a single model applicable for multiple datasets. Model level awareness might be needed in the following cases. 
· Model switching timeline alignment across two sides; 
· Model selection with appropriate performance target and complexity tradeoff;
· Model monitoring metric calculation;
Observation 2: Directly using data categorization information as model ID is not future-proof for cases where real model-level awareness is needed. 
Based on the above analysis, for dataset indication/categorization, R19 could use dataset categorization as a starting point, rather than model ID. It would be better to not study refined model-level LCM in R19, since refined model-level LCM has many aspects to be studied and would need plenty of specification efforts.
Proposal 1: To address the issue of maintaining consistency between training and inference, dataset indication/categorization information can be used, rather than model ID.
The main procedure of dataset categorization, is listed as:
· Step 1: Dataset categorization is assigned by NW during data collection. Such information would be provided by NW in RS configuration or report configuration for data collection. Then UE collects the data and marks the samples with current dataset categorization.
· Step 2: The UE-side model is trained or fine-tuned using the collected dataset, and then this model is applicable to the dataset with its assigned dataset categorization. Note that one model could be related to multiple dataset categorizations, or multiple models may be trained for one dataset categorization.
· Step 3: During the inference stage, the current dataset categorization is provided by NW. UE can choose the applicable model. 
Proposal 2: The main procedure of dataset categorization, is listed as:
· Step 1: Dataset categorization is assigned by NW during data collection. 
· Step 2: The UE-side model is trained or fine-tuned using the collected dataset and associated dataset categorization information. 
· Step 3: During the inference stage, the current dataset categorization is provided by NW. UE can choose the applicable model based on the information. 

MI-Option 2: Model identification with dataset transfer
As discussed in data categorization, ID of transferred dataset (if feasible) denotes the data categorization and represents certain NW-sided implementation/configurations and/or wireless channel characteristics. However, Model ID represents certain AI/ML model implementation, which may require additional control/awareness of model beyond dataset categorization. After receiving the transferred dataset, UE or UE server will train one or multiple models, for one or multiple transferred dataset IDs. One model may be used for multiple transferred dataset IDs, and multiple models may be trained for one transferred dataset ID. It is also possible that different UEs would train different models with different performance targets that may need to be aware at NW side.
Observation 3: ID of transferred dataset (if feasible) is not the same as the ID for model identification based on similar reasons as above for data categorization.
Dataset transfer based model identification would bring large overhead. For dataset transfer, huge number of data samples would be needed and the bit length of each sample is large. Refer to data collection LS, the target channel of one sample may be eType-II format (up to ~1000 bits), eType-II-like format (~ a few 1000 bits), and float32 format (up to ~ 150K bits). Values in the order of eType II payload size may be assumed (up to ~ 1000 bits) for PMI of one sample. For model transfer, simple model may be used. Only part of model may be needed to be transferred, which could largely reduce the signalling overhead with acceptable performance.
Dataset transfer based model identification would bring large overhead. With received data, UE would have two options. Option a is the online training of the new model by UE device, which would need a lot of time, computation resources, and UE power. Option b is the offline training of the new model by UE server, where UE has to upload the received data samples to UE server and download the trained model from UE server. Extra time is need for training at UE server, dataset transmission and model transmission between UE and UE server. If the dataset transmission and model transmission are done through WIFI, the latency would be very large. If the dataset transmission and model transmission are done over the air, extra fee may be needed for these transmissions.
Observation 4: Feasibility of model identification with dataset transfer is dependent on the feasibility of dataset transfer itself.

MI-Option 3: Model identification in model transfer from NW to UE
Model identification is needed in model transfer cases where multiples models are transferred to UE.
The procedures for model identification in model transfer (model identification Type B2), as well as related pre- and follow-up procedures, are as follows:
· Step 0: UE indicates supportable model information to NW (e.g., model ID for which UE has capability to accept updated parameters from NW)
· Step 1: NW side (re-)trains a new model.
· Step 2 (model identification): NW transfers the new model to UE with a model ID.
Section 3 will show that model transfer is feasible, at least for model parameter update with known model structure. In Subsection 3.1, an initial lab test for model transfer with known model structure is done to find the main aspects in this procedure and obtain the actual latency. For even 10M parameters, the total latency of UE updating the received model parameters is just 12.472ms, which would result in the low latency of model transfer with known model structure.
Proposal 3: Model identification is needed for cases where multiple models are transferred from NW to UE. 

MI-Option 4. Model identification via standardization of reference models (for CSI compression).
In common understanding of model identification procedure, UE would report applicable models with corresponding model information, such as explicit or implicit supported NW-sided additional conditions. For model identification of reference model, the NW-sided additional conditions are aligned and the model may be identified during the standardization work of the reference model. Explicit model identification procedure may be not needed for reference model.
After the standardization of reference models, global model IDs may be specified for these reference models. UE would only need to report the global model IDs of these reference models to NW, before the usage of reference models. NW may assign local model IDs to save over-the-air signalling overhead. Using the specified model IDs or NW assigned model IDs, the reference model could be used in model-level LCM.
Proposal 4: Reference models may not need to be identified based on explicit model identification procedure, but IDs can still be associated with specified reference models to facilitate model-level LCM.

MI-Option 5. Model identification via model monitoring
We don’t understand this option. How this option works is not clear. UE may report to NW that one or some models are good for current NW sided additional conditions. Both UE and NW may not get further details. This seems to be functionality identification, where NW only has to know that the AI/ML model of UE can work well now and NW does not need to know the details of models.
Proposal 5: How model identification via model monitoring works is not clear.

Discussion on Model transfer/delivery
In R18 RAN1, different collaboration levels have been studied. Model transfer/delivery cases y, z1~z5 are considered and their benefits and disadvantages have been analyzed.
	The following Network-UE collaboration levels are considered as one aspect for defining collaboration levels
1.	Level x: No collaboration.
2.	Level y: Signalling-based collaboration without model transfer. Note: this level includes cases without model delivery.
3.	Level z: Signalling-based collaboration with model transfer.
Level x/y boundary is understood such as Level x is implementation-based AI/ML operation without any dedicated AI/ML-specific enhancement (e.g., LCM related signalling, RS) collaboration between network and UE. (Note: The AI/ML operation may rely on future specification not related to AI/ML collaboration. The AI/ML approaches can be used as baseline for performance evaluation for future releases.)
Level y/z boundary is defined based on whether model delivery over the air interface is done in a non-transparent manner to 3GPP signalling. Note: procedures other than model transfer/delivery are decoupled with collaboration Level y-z.
Table 4.3-1 introduces different options for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models:
Table 4.3-1: Model delivery/transfer cases
	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top.
	Outside 3GPP Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format.
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format.
	3GPP Network
	NW-side

	z3
	model transfer in open format.
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE, i.e., an exact model structure as has been previously identified between NW and UE and for which the UE has explicitly indicated its support. 
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE, i.e., any other model structure not covered in z4, including any model structure that is only partially known.
	3GPP Network
	NW-side

	Note:	The definition of various Cases is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.



When a model of a known structure at UE (e.g., Case z4) is transferred from the Network, the new model being identified (e.g., via Type B2) has the same structure as a previously identified model at the Network and UE.
For model delivery/transfer to UE (for UE-side models and UE-part of two-sided models):
-	Model delivery/transfer to UE, if feasible, may be beneficial to handle scenario/configuration specific (including site-specific configuration/channel conditions) models (i.e., when a single model cannot generalize well to multiple scenarios/configurations/sites), to reduce the device storage requirement.
-	Model delivery/transfer to UE after offline compiling and/or testing may be friendlier from UE’s implementation point of view compared to the case without offline compiling and/or testing. On the other hand, the case without offline compiling and/or testing (that can update parameter with known model structure), may have benefit at least in terms of shorter model parameter update timescale.
-	Model transfer/delivery of an unknown structure at UE has more challenges related to feasibility (e.g. UE implementation feasibility) compared to delivery/transfer of a known structure at UE.
-	For model trained at network side, Case y (w/ NW-side training) and Case z2 may incur the burden of offline cross-vendor collaboration such as sending a model to the UE-side and/or compiling a model.
-	For model trained at UE side/neutral site, Case z1 and Case z3 may incur the burden of offline cross-vendor collaboration to send the trained model from the UE-side to the network, compared to Case y (w/ UE-side training) which does not have such burden.
-	Model storage at the 3GPP network, compared to storing the model outside the 3GPP network, may come with 3GPP network side burden on model maintenance/storage.
-	Proprietary design disclosure concern may arise from model training and/or model storage at the network side compared to other cases (such as case y with UE side training) which does not have such issue.


To support model transfer/delivery, RAN2 has considered the following solutions. Potential RAN specification impacts of these solutions are also studied, which are omitted here to save space.
	Whether there is a need to consider standardised solutions for transferring/delivering AI/ML model(s) is unclear from the outcome of the present study. Nonetheless, to support AI/ML model transfer/delivery, the following solutions are considered:
-	Solution 1a: gNB can transfer/deliver AI/ML model(s) to UE via RRC signalling.
-	Solution 2a: Core Network (except LMF) can transfer/deliver AI/ML model(s) to UE via NAS signalling.
-	Solution 3a: LMF can transfer/deliver AI/ML model(s) to UE via LPP signalling.
-	Solution 1b: gNB can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 2b: Core Network (except LMF) can transfer/deliver AI/ML model(s) to UE via User Plane (UP) data.
-	Solution 3b: LMF can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 4a: OTT server can transfer/deliver AI/ML model(s) to UE (e.g., transparent to 3GPP).
-	Solution 4b: OAM can transfer/deliver AI/ML model(s) to UE.
Note:	The relationships between model transfer/delivery solutions and use cases can be derived from what is captured in clauses 7.3.2, 7.3.3, and 7.3.4.
The following areas are considered to evaluate the different model transfer/delivery solutions:
-	A1: Large, no upper limit model/model parameter size,
-	A2: Model transfer/delivery continuity (i.e., resume transmission of model (segments) across gNBs),
-	A3: Network controllability on model transfer/delivery (e.g., management decision at gNB),
-	A4: Model transfer/delivery QoS (for DRB) (including latency, etc.) and priority (for SRB).
For every model transfer/delivery solution, each of the above areas is analysed, focusing on the current status and gaps, and the potential impacts on RAN specification. The analysis is shown in the Tables below.


In this section, we further discuss feasibility and necessity of model transfer/delivery. Among all the options studied in Rel-18, the most promising option of model transfer would be Case Z4, i.e. model transfer in open format of a known model structure at UE. Its concerns and benefits will be discussed in the following.

Considerations on the feasibility of model transfer with known model structure from device perspective (Case z4)
From R18 study, the main concern from device implementation perspective of model transfer with known model structure is shown in the following.
· Model delivery/transfer to UE after offline compiling and/or testing may be friendlier from UE’s implementation point of view compared to the case without offline compiling and/or testing. 
An initial lab test for model transfer with known model structure is done to find the main aspects in this procedure and obtain the actual latency. For even 10M parameters, the total latency of UE updating the received model parameters is just 12.472ms, which would result in the low latency of model transfer with known model structure.
From the lab test, it is found that the model parameters updating with known model structure can be listed in 4 steps.
· Step1: UE generates one certain format of model executable file (e.g., engine file for TensorRT), where the model parameters and model structure related part are stored separately. Each model parameter group could be updated separately with very low latency. The results of a lab test would be provided later to show the detailed latency. The input data processing operations would be stored in model structure related part, e. g., matrix multiplications and additions. 
· Step2: UE extracts the target model parameters from the received new model file (e.g., ONNX or other open formats) from NW. The extracted parameters would be stored in buffer area temporarily. Simple quantization may be used and details will be discussed in the following.
· Step3: New model parameters would replace the previous model parameters directly.
· Step4: After the replacement of target model parameters, the model is available to run.
[image: ]
Figure 3.1-1. The procedure of model parameters updating with known model structure.
The following is the detailed latency test of model parameter updating for different number of parameters. A full connected model with 5 full connected layers is adopted in this lab test. The number of parameters of 5 layers are 1K, 10K, 100K, 1M and 10M respectively. The new model parameters are stored in ONNX format. The latency of parameter extraction from ONNX in Step 2 and the latency of parameter replacement in Step 3 are both provided. As the number of parameters increases, the latency of Step 2 and Step 3 both increases for more than 10K parameters. For the case with less than 10K parameters, the basic latency of hardware interaction may be the majority, which would have low correlation with the number of parameters. For even 10M parameters, the total latency of Step 2 and Step 3 is just 12.472ms, which would result in the low latency of model transfer with known model structure.
Table 3.1-1. Initial lab test for model parameter updating with known model structure
	Number of parameters in one group
	Latency of parameter extraction from ONNX in Step 2 (ms)
	Latency of parameter replacement in Step 3 (ms)

	1K
	0.212
	0.793

	10K
	0.223
	0.704

	100K
	0.344
	2.520

	1M
	1.342
	4.893

	10M
	6.740
	5.732



The feasibility of model transfer with known model structure were discussed by companies in Rel-18, where the major issues lie in necessity and feasibility of on device compilation. From our observation, the main issue based on previous discussion for on device compilation is how to quantize the trained models. There are two ways to handle this: post training quantization or quantization aware training. On device quantization is one kind of posting training quantization.
The alignment of quantization before model transfer could avoid the on device quantization, e.g., the transferred model parameters have been quantized by NW, using post training quantization or quantization-aware training.
On the other hand, if the quantization is not aligned beforehand, on device quantization would be needed. There are several aspects that need to be considered for on device quantization: the performance of on device quantization and involved complexities.
Since on device quantization is a kind of post training quantization, we did an experiment to compare the performance loss of post training quantization and quantization aware training. The loss would be small. The following tables shows the impact of different quantization levels for different use cases. The INT8 quantization is directly mapping Float32/16 values to INT8/16, which would be worst performance of post training quantization. For positioning, since the model inference may be not in UE modem, there may be no strict requirement on quantization.
Table 3.1-2. An example of the impact of different quantization levels for CSI compression, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	
	MLP model
	CNN model
	Transformer model

	SGCS of FP32 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of FP16 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of INT8 quantized model
	0.9413
	0.9486
	0.9573



Table 3.1-3. An example of the impact of different quantization levels for AI/ML assisted positioning.
	 
	90% positioning accuracy of AI/ML assisted positioning (m)

	FP32 quantized model
	0.970

	FP16 quantized model
	0.973



Table 3.1-4. An example of the impact of different quantization levels for beam spatial prediction, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	 
	Top-1 (%)
	Top-1 (%) with 1dB margin

	FP32 quantized model
	77.4
	96.6

	FP16 quantized model
	75.5
	96.3

	INT8 quantized model
	71.3
	94.9



On device quantization is also feasible at least for some operations with low complexity. For example, regular quantization from Float32/16 to INT8/16 by directly mapping Float32/16 values to INT8/16, or with minor adjustment based on parameter distribution. More advance quantization, e.g., non-uniform quantization, finetuning after quantization, does not seem to provide additional gains at least for current use cases.
Performance monitoring/assessment could monitor the performance of quantization and may provide some data samples for quantization calibration. UE could get some data samples through the measurement or from the data delivery from NW.
Based on above lab test and discussion on parameter quantization/compilation, we have the following proposal.
Proposal 6: Conclude that model transfer in open format of a known model structure at UE (i.e., Case z4) is feasible from device implementation perspective.

Considerations on model transfer with known model structure from NW perspective (Case z4)
For case z4, two aspect on feasibility were mentioned from NW perspective in Rel-18 study
· Model storage at the 3GPP network, compared to storing the model outside the 3GPP network, may come with 3GPP network side burden on model maintenance/storage.
· Proprietary design disclosure concern may arise from model training and/or model storage at the network side compared to other cases (such as case y with UE side training) which does not have such issue.
Consider the model storage aspect first. Model storage grows with number of UEs that need network to maintain the model. Different UEs, which have different device capability, would need different models with different requirements without specified model structure(s). If 3GPP specifies model structure(s) and UEs are expected to support the specified model structure(s), network side only needs to store the model parameters for the specified model structure(s) and different UE may share the model parameters. Then the burden of model storage at network side would be relieved.
Observation 5: The burden of model storage would be relieved if the model structure is specified in 3GPP.
Proprietary design disclosure may not be a concern if the model structure is widely known and does not involve any device-specific design decisions (such as number of layers, activation size, quantization, etc.).
Observation 6: Proprietary design disclosure may not be a concern if the model structure is widely known and does not involve any device-specific design decisions.

Benefits of model transfer with known model structure (Case z4) 
From R18 study, the benefits of model transfer with known model structure are listed in the following.
· Model delivery/transfer to UE, if feasible, may be beneficial to handle scenario/configuration specific (including site-specific configuration/channel conditions) models (i.e., when a single model cannot generalize well to multiple scenarios/configurations/sites), to reduce the device storage requirement.
· Model transfer with known model structure may have benefit at least in terms of shorter model parameter update timescale.
· Model transfer with known model structure may not incur the burden of offline cross-vendor collaboration such as sending a model to the UE-side and/or compiling a model.
· Model transfer with known model structure may not incur the burden of offline cross-vendor collaboration to send the trained model from the UE-side to the network.
We further elaborate the benefits of scenario/configuration specific (including site-specific configuration/channel conditions) models below based on field test results and spatial consistency results. 
Field test results of CSI compression
Field test of CSI compression is conducted as following. The data is collected from actual 5G network and the whole collecting area including Cell 1 and Cell 2 is about 250m * 150m. The detailed parameters are provided in Table 3.3-1.
Table 3.3-1. Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	55/93 bits payload



The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR of mobile phones. The coverage areas of two typical cells in the industrial park are shown in the below figure. Note that in the coverage areas of each cell, the signal of target cell is acceptable in most places but would be not always the strongest among all cells. This means that the map of actual cell section would be different from the following figure.
[image: ]
Figure 3.3-1. The map of data collecting cells.
For cell 1, we have collected about 144k outdoor samples. For cell 2, we have collected about 65k outdoor samples.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In below tables, the AI/ML models are trained by the data in each cell separately, and multiple AI/ML models are used. 55 bits overhead is used in Table 3.3-2 and 93 bits overhead is used in Table 3.3-3. CNN encoder and Transformer encoder are used. Here CNN is ResNet18 and its storage size is 213KB. The Storage size is 3302KB. Transformer decoder is used in this field test.
From the results, it is seen that cell/site specific model can provide attractive performance gain. For example, considering Cell 1 data with 55 feedback bits, the Transformer encoder can provide 17.6% SGCS gain.
Also, it is seen that simple and small models work well in this cell/site case. The performance gaps between CNN and transformer are small for all cases. For Cell 2 encoder testing on Cell 2 data, the relative SGCS difference of CNN and transformer is even lower than 0.1%, for both 55 bits overhead and 93 bits overhead. For Cell 1 encoder testing on Cell 1 data, the relative SGCS difference of CNN and transformer is 1.66% for 55 bits overhead and 1.32% for 93 bits overhead.
In addition, the Cell 1 encoder has poor performance on Cell 2 data, which is even worse than eType II. The SGCS performance of the Cell 2 encoder on Cell 1 data is even worse than 0.15 for both 55 bits overhead and 93 bits overhead.
Table 3.3-2. The SGCS results of multiple AI/ML models trained by the data of each cell separately, with 55 bits overhead.
	55 feedback bits
	eTypeII
	Cell 1 CNN encoder
	Cell 1 Transformer encoder
	Cell 2 CNN encoder
	Cell 2 Transformer encoder

	Cell 1
	0.677
	0.783 (+15.7%)
	0.796 (+17.6%)
	0.105
	0.109

	Cell 2
	0.839
	0.591
	0.646
	0.930 (+10.9%)
	0.930 (+10.9%)



Table 3.3-3. The SGCS results of multiple AI/ML models trained by the data of each cell separately, with 93 bits overhead.
	93 feedback bits
	eTypeII
	Cell 1 CNN encoder
	Cell 1 Transformer encoder
	Cell 2 CNN encoder
	Cell 2 Transformer encoder

	Cell 1
	0.762
	0.831 (+9.1%)
	0.842 (+10.5%)
	0.118
	0.143

	Cell 2
	0.880
	0.633
	0.700
	0.954 (+8.4%)
	0.955 (+8.5%)



Observation 7: From initial results for field test, cell/site specific model can provide up to 17.6% SGCS gain.
Observation 8: Field test shows model developed for one cell does not perform well for the other cell. 
Observation 9: Field test shows that simple and small models work well for different cases, at least for cell/site specific model. 

[bookmark: _Hlk163067302]Spatial consistency results of CSI compression
Spatial consistency simulation of CSI compression is conducted as following. Intuitively, spatial correlations in channels of different UEs within a specific region could help to improve the performance of SF and TSF compression, because the effective characteristic to be compressed in the dataset will be reduced. So, we investigate the performance of SF and TSF compression with cell/site specific models. Some of the parameters considered in our simulations are provided in the following Table.
[bookmark: _Ref159247172]Table 3.3-4. Simulation parameters for SF and TSF compression with cell/site specific models
	Parameter
	Value

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901 with spatial consistency
Spatial consistency is not adopted for general model, adopted for cell/site specific model

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH, dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	2 ports: (1,1,2,1,1,1,1), (dH, dV) = (0.5, 0.5)λ 

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	UE distribution
	Configuration 1: 100% outdoor (30km/h)
Configuration 2: 80% indoor (3 km/h), 20% outdoor (30 km/h)

	Feedback assumption
	Ideal for SF
CSI feedback periodicity (full CSI feedback) for TSF: 5 ms
CSI-RS periodicity for TSF: 5ms

	Channel estimation
	Ideal DL channel estimation

	Baseline for performance evaluation
	Rel-16 Type II Codebook, general model not specific to a region

	Rank number
	1

	Dataset size for training and inference 
	300, 000 randomly dropped UEs per region 



Since two scenarios have been considered in our simulation, we provide the illustrations for cell/site region in each scenario in below figure where the region size is sector size for Uma dense urban.


[bookmark: _Ref163051747]Figure 3.3-2. Schematic of cell/site data collection area for UMa scenarios
With each UE following the configurations presented in the above table, we drop 300K UEs in one sector in our simulations, and the cell/site specific model is trained and tested on data collected within each sector. Note that with spatial consistency the channels in different sectors may vary a lot, resulting in different levels of gains. To give an overall evaluation, we repeat the simulation procedures several times in different sectors (such as sector K/M/N in the above Figure).
[bookmark: _Ref159247466]As pointed out by some companies, time-variations in channel might affect the performance of SF compression with cell/site specific model. To investigate this issue, we simulate ~1000slots per UE to collect the data and consider two cases: 1) cell/site specific model trained based on data from slot0, where influence of doppler shift is not included; 2) cell/site specific model trained based on data from slot1000 or later, where influence of doppler shift is included. Some results of SF and TSF are given below:
Table 3.3-5. Results for SF compression with cell/site specific model trained based on data after slot1000 (Dense urban with 100% outdoor UEs considered)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB
	SF compression

	General model
	0.718
	0.737(+2.6%)

	Cell/site model on sector#3
	0.679
	0.750(+10.4%)

	Cell/site model on sector#4
	0.732
	0.811(+10.8%)

	Cell/site model on sector#5
	0.701
	0.781(+11.4%)



Table 3.3-6. Results for TSF compression case2 with cell/site specific model (Dense urban considered, 8:2 indicates that the ratio between indoor and outdoor UEs is 8:2)
	Dense urban
	R16 eType II CB
	TSF compression with CNN encoder
	TSF compression with transformer encoder

	General model (8:2)
	0.681
	0.683(+0.0%)
	0.766(+12.5%)

	Cell/site model on sector#3 (8:2)
	0.596
	0.720(+20.6%)
	0.758(+26.9%)

	Cell/site model on sector#4 (9.9:0.1)
	0.613
	0.805(+31.3%)
	0.820(+33.7%)

	Cell/site model on sector#5 (4:6)
	0.670
	0.707(+5.5%)
	0.738(+10.1%)



[bookmark: _Ref163066106]Table 3.3-7. Results for TSF compression case3 with cell/site specific model
	Dense urban
	PMI#0
	PMI#1
	PMI#2
	PMI#3
	Averaged

	R18 DD codebook 
(N4=4, Payload = 284bit)
	0.723
Seed11:0.656
Seed23:0.705
Seed37:0.672
	0.734
Seed11:0.667
Seed23:0.723
Seed37:0.668
	0.728
Seed11:0.661
Seed23:0.717
Seed37:0.664
	0.708
Seed11:0.636
Seed23:0.690
Seed37:0.649
	0.723
Seed11:0.655
Seed23:0.709
Seed37:0.663

	General model with Transformer encoder
	0.793
(+9.6%)
	0.814
(+10.9%)
	0.814
(+11.8%)
	0.793
(+12.0%)
	0.804
(+11.2%)

	Joint TSF cell/site model with Transformer encoder (seed11, ind UE: out UE=8:2)
	0.757
(+15.4%)
	0.783
(+17.3%)
	0.783
(+18.4%)
	0.756
(+18.6%)
	0.770
(+17.6%)

	Joint TSF cell/site model with Transformer encoder (seed37, ind UE: out UE=4:6)
	0.767
(+14.1%)
	0.780
(+16.7%)
	0.781
(+17.6%)
	0.768
(+18.3%)
	0.774
(+16.7%)



From results presented in above Tables, it can be observed that the SF and TSF cell/site models have additional gain compared to the general model, and the additional gain in some regions (random seeds) is very large compared to the general model. SF compression with cell/site specific model provides up to 11.4% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution. For UMa dense urban scenario, TSF compression with cell/site model achieves additional gain compared to the general model, with the maximum gain up to 12.5% for case2 and 6.6% for case3.
Observation 10:	SF compression with cell/site specific model provides up to 11.4% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution.
Observation 11:	For UMa dense urban scenario, TSF compression with cell/site model achieves additional gain compared to the general model, with the maximum gain up to 12.5% for case2 and 6.6% for case3.

RAN4 discussion on test model and reference model
It has been agreed in RAN4 to study test model and reference model [1]. The two-sided model test framework is considered as starting point. Both test decoder and test encoder are considered. Test decoder is discussed first as delegate, since the conclusions of test decoder can be easily applied to test encoder with small modifications. Pros and cons for 4 options of test decoder were extensively discussed in Rel-18. It has been agreed that some high level parameters for the test decoder/encoder may be specified, e.g. parameters related to processing complexity, model structure, etc. 
	Specification on the test may include some high-level parameters for the test decoder/encoder (e.g. parameters related to processing complexity, model structure, etc).
Following the above principles, the considered options of test decoder are listed below
-	Option 1: DUT provides the decoder
-	Option 2: Infra vendor provides the decoder
-	Option 3: Full decoder specification in standard
-	Option 4: TE vendor provides the decoder
Option 3 target is that a single decoder defined in the specifications for at least a single test for any DUTs. 
For option 4, the following aspects should be considered
· TE vendor should be able to develop the decoder based on the specifications
· Test repeatability should be ensured (variation among TE vendor implementations should be bound)
· Other vendors should also be able to develop such a decoder and which can deliver similar performance
· Interoperability should be ensured based on the parameters that need to be specified
· Parameters that need to be specified are FFS
· Candidate parameters/conditions that may be considered for defining test decoder include
· Training data set for TE decoder training
· Model structure (Activation function is included in the model structure)
· Performance parameters for the TE decoder (e.g. cosine similarity, loss function, etc)
· Maximum FLOPs allowed for the test decoder
· Maximum number/size of model parameters
· Compression ratio of decoder (output size/input size)
· Quantization level
· Other parameters are not precluded and to be further discussed. 
· Note: Feasibility of definition of parameters needs further investigated.
Option 4 target is that a single decoder implemented by each TE vendor will be enough for at least a single test for any DUTs. TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party. If this is found infeasible, another option in which TE vendors need to collaborate with DUT/infra vendors to implement the decoder could be considered.


Currently, RAN4 is working on Option 3 and Option 4, and have the following agreements in the last meeting.
	Issue 4-2: Testing options for 2-sided model
RAN4 to further discuss only options 3 and 4

Issue 4-3: Option 3 for 2-sided model
The table below contains a set of parameters which are needed in the process of the checking the feasibility of Option 3. The parameters in green are agreed. The parameters in yellow are tentatively agreed. The other parameters are still under discussion. Other parameters that are not yet listed might also be needed.
Companies are invited to bring proposals on which parameters to use in future meetings.
	Category
	Parameter
	Description/Examples

	Model architecture parameters
	Model type
	Transformer, CNN, RNN, MLP

	
	Model depth
	Number of layers

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)

	
	Encoder-decoder interface
	Number of bits of latent message

	
	Fixed point representation
	Int8, int16, floating point etc

	
	Format of input to encoder/output of decoder
	

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)

	
	Loss function
	SGCS, NMSE, etc.

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)





In Option 3, everything needed to define the model would need to be specified and reference model structure is of course needed. Some hype-parameters of model structure have been agreed.
To achieve target of Option 4 that TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party, at least reference model structure would be needed. The necessity of reference model structure of Option 4 is listed in the following:
· Reference model structure can reduce the performance difference for the reference decoder developed by different parties. The issues regarding different models having different performance can be resolved. Based on RAN1 evaluations and future RAN4 defined testing conditions, the corresponding performance of the reference model structure can be defined. Without reference model structure, it would be difficult to define performance requirement which can justify AI/ML gains.
· Simpler testing procedure can be achieved. TE can directly develop and implement the decoder, based on the reference model structure. DUT vendor can also develop similar decoder and then obtain the encoder. TE vendors and DUT vendors can easily involve in two-sided model test.
· Reference model structure can reduce the offline engineering for all vendors. Network/UE vendors can consider the partly specified reference decoder/encoder as part of their implementation. During implementation phase, less extra model structure design may be needed, and the related hardware and soft design would be simpler. 
Based on the above analysis, we have the following proposal.
Proposal 7: Defining reference model (structures) is also beneficial from RAN4 testing perspective. 

Defining reference model structure 
Based on above discussion:
· Model transfer with known model structure at UE (Case z4) is feasible from device implementation perspective.
· It is beneficial to specify reference model structure(s) in 3GPP to relieve the model storage concerns at NW side. 
· Model delivery/transfer to UE may be beneficial to handle scenario/configuration specific (including site-specific configuration/channel conditions) models to reduce the device storage requirement and to improve performance gains.
· Model transfer with known model structure has benefits at least in terms of shorter model parameter update timescale.
Thus, we propose the following:
Proposal 8: Support model transfer with known model structure at UE (Case z4).
In Appendix A, some model structures of different use cases are suggested, which can be used as the starting point for 3GPP discussion. 
Some efforts are needed to define the reference model structure. In the following, one possible method of aligning the reference model structure is provided.
· Step 0: Align evaluation assumptions. Previous aligned simulation assumptions could be used as a starting point. Take a step further, it would be useful to align the dataset containing only channel information. Companies could bring their own generated dataset and multiple datasets from different companies can be merged into one dataset, which is the aligned dataset. This dataset can be generated through 3GPP synthetic channel models. For CSI compression, this dataset only needs the channel information, i.e. the input for the encoder or the output for the decoder.
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. Model complexity may include Flops or model storage size, which can be restricted to avoid exceeding hardware capabilities and also serve as KPI of model quality. When evaluating model quality, it is important to consider not only its performance but also its implementation complexity. During this process, some restrictions may be aligned directly related to model complexity, e.g., model backbone and some important hyperparameters.
· Step 2: Determine the model hyperparameters that need to be aligned. Below are some important hyperparameters that need to be aligned for the model:
· Number of layers in the neural network.
· Number of neurons in each layer.
· Activation function(s) for each layer.
· Configuration of normalization layers.
· Special connection relationships between layers:
· ResBlock.
· Inception.
· Special hyperparameters for CNN:
· Parameters for the convolutional layers such as kernel size, stride, padding, activation function, bias, and channel number.
· Special hyperparameters for Transformer:
· Implementation method for multi-head attention, parameters for multi-head attention such as number of heads and dimensions of heads.
· Step 3: Align the hyperparameters of the model. Based on the aligned model backbone, detailed hyperparameters would be further aligned based on consensus and evaluation results on complexity and performance. If the dataset with only channel information is aligned in Step 1, each company could provide their own model trained by the aligned dataset, and then the best model structure may be selected from these models. 
Then we have the following proposal.
Proposal 9: The reference model structure may be aligned through the following procedures
· Step 0: Align evaluation assumptions
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Align the hyperparameters of the model.

Considerations on post deployment testing
One concern on model transfer is how to ensure that the transferred model works correctly at UE. Post deployment testing can be further studied to see whether it is necessary.
Take CSI compression as example, there may be several monitoring methods for post deployment testing:
· Method 1: UE obtains the test dataset containing only the channel (encoder input), gets the PMI by inputting the channel into the encoder, and then reports the PMI to the NW. The NW then determines whether the UE model is working properly based on the PMI feedback from the UE. The test dataset may be provided by NW or specified in TS.
· Method 2: UE obtains the test dataset containing both the channel and PMI. UE puts the channel into the encoder to obtain the PMI and then determines if the model is working properly. Then the UE can report whether the deployed model passed the test or not. The test dataset may be provided by NW or specified in TS.
· Method 3: UE collects the channel data from received RS, puts it into the encoder to obtain the PMI, then reports the channel and PMI back to the NW. The NW determines if the UE model is working properly based on the channel and PMI feedback from the UE.
· Method 4: The UE and NW both use the new model to obtain Tput1. Then, the UE and NW use non-AI codebook or randomly chosen PMI to obtain Tput2. The NW compares Tput1 with Tput2 to determine if the UE model is working properly.
In Method 1, 2 and 3, the number of data samples would be not large, since these samples are used to verify whether the transferred model is implemented correctly. Maybe tens or hundreds of samples would be enough. Then the sinalling overhead and the latency would be not affordable. Moreover, the test dataset could be specified in TS to further reduce the overhead and latency. This is the conformance test, not the performance test. The characteristic of the test dataset does not need to meet the actual wireless environment.
Method 4 is similar to RAN4 test of non-AI codebooks. Unlike the stable conditions in RAN4 test, the over-the-air Tput results are influenced by actual channel conditions. Sometimes, the transferred model may work normally but Tput1 may not meet the requirement. So, Method 4 is not suitable for the post deployment test.
Proposal 10: Further study necessity of post deployment testing. Take CSI compression as example, several monitoring methods can be considered as options for post deployment testing:
· Method 1: The UE obtains a test dataset containing only the channel (encoder input), obtains the PMI by encoder inference, and then reports the PMI to the NW. NW decide the results.
· Method 2: UE obtains the test dataset containing both the channel and PMI. UE decide the results.
· Method 3: UE reports the channel and PMI to NW. NW decide the results.

Data collection
In WID, the following aspects of data collection need to be studied by RAN2 and/or RAN1 [2].
	· CN/OAM/OTT collection of UE-sided model training data [RAN2/RAN1]: 
· For the FS_NR_AIML_Air study use cases, identify the corresponding contents of UE data collection
· Analyse the UE data collection mechanisms identified during the FS_NR_AIML_Air (TR 38.843 section 7.2.1.3.2) study along with the implications and limitations of each of the methods 


Data collection can be performed for mainly for three purposes in LCM, i.e., model training, model inference and model monitoring. Each may be done with different requirements and potential specification impact.
RAN1 has sent a LS to RAN2 data collection requirements and assumptions, including data content, typical data size, typical latency requirement for all noted three LCM purposes for all use cases [3][4]. The content in the previous LS comes does not differentiate between NW-sided data collection and CN/OAM/OTT collections of UE-sided model training data. Thus, the content of UE data can refer to this LS. If new content of data collection has been agreed in RAN1, it can be sent to RAN2.
Proposal 11:  For CN/OAM/OTT collections of UE-sided model training data, the data content can refer to the agreed LS table in [3][4]. 
In the LS, there are statements that some assistance information might be needed. In the following, we provide some views on AI Beam management and AI based positioning for assistance information.
For AI based beam management, our contribution [5] show that the DL Tx beam prediction performance with mis-matched codebook consistency of Set A and Set B, as well as the performance when Set A and Set B codebook is consistent, across both training and model inference. This includes codebooks where there are mis-matched beam pointing angles and mismatched beam widths across training and model inference. The results clearly demonstrate that significant performance improvements can be achieved with ensured consistency of Set A and Set B codebook on beam width/beam pointing angle across training and inference.
Observation 12: Information of relationship of Set A and Set B on beam width/beam pointing angle/beam pattern would be needed for AI based beam management.
For AI based positioning, the following assistance information would need to be exchanged according to the simulation results of our contribution [6].
· PRS configuration. Channel profile estimated under different RS bandwidth assumptions may be significantly different, which may further impair the positioning performance when training and inference with different bandwidths. 
· Tx beam related information. The transmission of PRS (and SRS) is beamformed, and a physical beam can be associated with a PRS resource. For a TRP, the estimated time-domain channel profile (CIR/PDP) can vary significantly for different PRS resources (e.g., with the same path delay but different path power when LOS; different path delay and power when NLOS). In this sense, when AI/ML model is trained under a beam pattern but inference under another beam pattern, obvious performance degradation may be observed.
Observation 13: PRS configuration and Tx beam related information would be needed for AI based positioning.
There are two methods to exchange assistance information:
· Implicit method: Dataset categorization can be used. The details have been discussed in Section 3.
· Explicit method: The assistance information is explicitly indicated. For example, detailed beam related information, e.g., beam power in different beam direction, can be specified to facilitate data collection. An example of specified beam pattern information will be introduced in the following.
In legacy non-AI positioning, the beam related information of DL-PRS has already specified in TS 37.355, based on which UE could obtain the beam pattern information from NW. In R16 positioning, NR-DL-PRS-BeamInfo has been specified to let UE get the beam boresight direction information of DL-PRS resources, which is shown in the below. 
	DL-PRS-BeamInfoElement-r16 ::= SEQUENCE {
	dl-PRS-Azimuth-r16				INTEGER (0..359),
	dl-PRS-Azimuth-fine-r16			INTEGER (0..9)					OPTIONAL,	-- Need ON
	dl-PRS-Elevation-r16			INTEGER (0..180)				OPTIONAL,	-- Need ON
	dl-PRS-Elevation-fine-r16		INTEGER (0..9)					OPTIONAL,	-- Need ON
	...
}


In R17 positioning, NR-TRP-BeamAntennaInfo has been specified to let UE get the beam power information in different beam direction of DL-PRS resources, which is shown in the below.
	
NR-TRP-BeamAntennaInfoAzimuthElevation-r17 ::= SEQUENCE {
	azimuth-r17					INTEGER (0..359)						OPTIONAL,	-- Cond Az
	azimuth-fine-r17			INTEGER (0..9)							OPTIONAL,	-- Cond AzOpt
	elevationList-r17			SEQUENCE (SIZE(1..1801)) OF ElevationElement-R17,
	...
}

ElevationElement-R17 ::= SEQUENCE {
	elevation-r17				INTEGER (0..180)						OPTIONAL,	-- Cond El
	elevation-fine-r17			INTEGER (0..9)							OPTIONAL,	-- Cond ElOpt
	beamPowerList-r17			SEQUENCE (SIZE (2..maxNumResourcesPerAngle-r17)) OF
										BeamPowerElement-r17,
	...
}

BeamPowerElement-r17 ::= SEQUENCE {
	nr-dl-prs-ResourceSetID-r17		NR-DL-PRS-ResourceSetID-r16			OPTIONAL,	-- Need OP
	nr-dl-prs-ResourceID-r17		NR-DL-PRS-ResourceID-r16,
	nr-dl-prs-RelativePower-r17		INTEGER (0..30),
	nr-dl-prs-RelativePowerFine-r17	INTEGER (0..9)						OPTIONAL,	-- Need ON
	...
}



With the beam boresight direction information and the beam power information, the whole beam pattern information of DL-PRS can be sent from NW to UE, to facilitate the non-AI positioning. Then AI/ML assistance information, e.g., like beam pattern information of DL-PRS in non-AI positioning, could also be used to facilitate data collection.
Proposal 12:  Additional information for UE side data collection include NW configuration information and Tx beam related information. 
Proposal 13: Implicit method (dataset categorization) and explicit method (explicitly indicated assistance information) could be used for provision of Tx beam related information.

Conclusions
Observation 1: Dataset categorization (or data categorization ID) and model ID have different underlying logic.
· Dataset categorization represents certain NW-sided implementation/configurations and/or wireless channel environments. 
· Model ID represents certain AI/ML model implementation, which may require additional control/awareness of model beyond dataset categorization.
Observation 2: Directly using data categorization information as model ID is not future-proof for cases where real model-level awareness is needed. 
Proposal 1: To address the issue of maintaining consistency between training and inference, dataset indication/categorization information can be used, rather than model ID.
Proposal 2: The main procedure of dataset categorization, is listed as:
· Step 1: Dataset categorization is assigned by NW during data collection. 
· Step 2: The UE-side model is trained or fine-tuned using the collected dataset and associated dataset categorization information. 
· Step 3: During the inference stage, the current dataset categorization is provided by NW. UE can choose the applicable model based on the information. 
Observation 3: ID of transferred dataset (if feasible) is not the same as the ID for model identification based on similar reasons as above for data categorization.
Observation 4: Feasibility of model identification with dataset transfer is dependent on the feasibility of dataset transfer itself.
Proposal 3: Model identification is needed for cases where multiple models are transferred from NW to UE. 
Proposal 4: Reference models may not need to be identified based on explicit model identification procedure, but IDs can still be associated with specified reference models to facilitate model-level LCM.
Proposal 5: How model identification via model monitoring works is not clear.
Proposal 6: Conclude that model transfer in open format of a known model structure at UE (i.e., Case z4) is feasible from device implementation perspective.
Observation 5: The burden of model storage would be relieved if the model structure is specified in 3GPP.
Observation 6: Proprietary design disclosure may not be a concern if the model structure is widely known and does not involve any device-specific design decisions.
Observation 7: From initial results for field test, cell/site specific model can provide up to 17.6% SGCS gain.
Observation 8: Field test shows model developed for one cell does not perform well for the other cell. 
Observation 9: Field test shows that simple and small models work well for different cases, at least for cell/site specific model. 
Observation 10:	SF compression with cell/site specific model provides up to 11.4% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution.
Observation 11:	For UMa dense urban scenario, TSF compression with cell/site model achieves additional gain compared to the general model, with the maximum gain up to 12.5% for case2 and 6.6% for case3.
Proposal 7: Defining reference model (structures) is also beneficial from RAN4 testing perspective. 
Proposal 8: Support model transfer with known model structure at UE (Case z4).
Proposal 9: The reference model structure may be aligned through the following procedures
· Step 0: Align evaluation assumptions
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Align the hyperparameters of the model.
Proposal 10: Further study necessity of post deployment testing. Take CSI compression as example, several monitoring methods can be considered as options for post deployment testing:
· Method 1: The UE obtains a test dataset containing only the channel (encoder input), obtains the PMI by encoder inference, and then reports the PMI to the NW. NW decide the results.
· Method 2: UE obtains the test dataset containing both the channel and PMI. UE decide the results.
· Method 3: UE reports the channel and PMI to NW. NW decide the results.
Proposal 11:  For CN/OAM/OTT collections of UE-sided model training data, the data content can refer to the agreed LS table in [3][4]. 
Observation 12: Information of relationship of Set A and Set B on beam width/beam pointing angle/beam pattern would be needed for AI based beam management.
Observation 13: PRS configuration and Tx beam related information would be needed for AI based positioning.
Proposal 12:  Additional information for UE side data collection include NW configuration information and Tx beam related information. 
Proposal 13: Implicit method (dataset categorization) and explicit method (explicitly indicated assistance information) could be used for provision of Tx beam related information.
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Appendix A: Reference model structure
In the following, some model structures of different use cases are suggested, which have good performance gain compared to non-AI algorithms. The suggested model structures are full-connected (FC) or CNN based, which have low complexity and low proprietary issue. For CSI compression, Transformer based encoder is also provided. The suggested models are provided as examples and the model hyperparameters could be adjusted.
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Figure A-1. Suggested model structures for CSI prediction, beam spatial prediction and positioning.
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Figure A-2. Suggested model structure for the encoder of CSI compression (CNN).
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Figure A-3. Suggested model structure for the encoder of CSI compression (Transformer).
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