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Introduction
In RAN#102 meeting, a new WID is approved for Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [5].

The objective of the normative work is copied below. In this contribution, we focus on the normative work for the use case of positioning accuracy enhancements.
	Provide specification support for the following aspects:
· AI/ML general framework for one-sided AI/ML models within the realm of what has been studied in the FS_NR_AIML_Air project [RAN2]:
· Signalling and protocol aspects of Life Cycle Management (LCM) enabling functionality and model (if justified) selection, activation, deactivation, switching, fallback
· Identification related signalling is part of the above objective 
· Necessary signalling/mechanism(s) for LCM to facilitate model training, inference, performance monitoring, data collection (except for the purpose of CN/OAM/OTT collection of UE-sided model training data) for both UE-sided and NW-sided models
· Signalling mechanism of applicable functionalities/models

· Beam management - DL Tx beam prediction for both UE-sided model and NW-sided model, encompassing [RAN1/RAN2]:
· Spatial-domain DL Tx beam prediction for Set A of beams based on measurement results of Set B of beams (“BM-Case1”)
· Temporal DL Tx beam prediction for Set A of beams based on the historic measurement results of Set B of beams (“BM-Case2”)
· Specify necessary signalling/mechanism(s) to facilitate LCM operations specific to the Beam Management use cases, if any
· Enabling method(s) to ensure consistency between training and inference regarding NW-side additional conditions (if identified) for inference at UE 
NOTE: Strive for common framework design to support both BM-Case1 and BM-Case2

· Positioning accuracy enhancements, encompassing [RAN1/RAN2/RAN3]:
· Direct AI/ML positioning:
· (1st priority) Case 1: UE-based positioning with UE-side model, direct AI/ML positioning
· (2nd priority) Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· (1st priority) Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning
· [bookmark: _Hlk155689576]AI/ML assisted positioning 		 
· (2nd priority) Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning	
· (1st priority) Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning
· Specify necessary measurements, signalling/mechanism(s) to facilitate LCM operations specific to the Positioning accuracy enhancements use cases, if any
· Investigate and specify the necessary signalling of necessary measurement enhancements (if any)
· [bookmark: _Hlk158742478]Enabling method(s) to ensure consistency between training and inference regarding NW-side additional conditions (if identified) for inference at UE for relevant positioning sub use cases

· Core requirements for the above two use cases for AI/ML LCM procedures and UE features [RAN4]:
· Specify necessary RAN4 core requirements for the above two use cases.
· Specify necessary RAN4 core requirements for LCM procedures including performance monitoring.



Note that for Case 1, there is no need to consider AI/ML assisted positioning.
Signaling enhancement for model inputs
In this Section, we investigate the issues related to model input. We first note that, for the following two positioning cases with UE-side model:
· (1st priority) Case 1: UE-based positioning with UE-side model, direct AI/ML positioning
· (2nd priority) Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning
the measurement generation process is collocated with the AI/ML models. The exact details of the model inputs are largely implementation issues. There is no need to specify model input for model inference stage. Whether model input need any specification work for training data collection can be further discussed.
[bookmark: _Toc161827802][bookmark: _Toc163235943]For Case 1/2a (UE-side model), channel measurement generation process is collocated in the same node with the AI/ML models. The exact details of the model inputs are implementation issues at least for model inference.
For the two direct AI/ML positioning cases:
· (1st priority) Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning
· (2nd priority) Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
the measurements obtained at one node (i.e., gNB or UE) need to be signaled to a second node (i.e., LMF) that applies the AI/ML models. Thus model input need to be specified at least for Case 3b/2b, and there is a need to clarify the model input formats. 
[bookmark: _Toc161827803][bookmark: _Toc163235944]For Case 3b (1st priority) and Case 2b (2nd priority), due to the LMF sided model, there is a need to clarify the target model input formats to be supported for the AI/ML positioning models.
For the 1st priority Case 3a, the need to specify channel measurements for model input depends on the node that hosts the AI/ML model, as discussed in section 3.7. If the need is confirmed by RAN3, the same design choices made for Case 2b/3b can be applied to Case 3a as well. Thus RAN1 can proceed with the model input discussion on Case 2b/3b.
[bookmark: _Ref163135552]Sample-based vs path-based measurements
In RAN1#116, it was agreed to investigate the way timing information was conveyed, i.e., sample-based vs path-based measurements:
	Agreement
In Rel-19 AI/ML based positioning, regarding the time domain channel measurements, RAN1 investigate the following alternatives:
· Alternative (a).  Sample-based measurements, where the timing information is an integer multiple of sampling periods. 
· Alternative (b).  Path-based measurements, where the timing information is according to the detected path timing and may not be an integer multiple of sampling periods.
The issues to be studied include, but not limited to, the following:
· Tradeoff of positioning accuracy and signaling overhead
· Impact and necessary details of gNB/UE implementation to obtain the channel measurement values. 
· Whether the same Alternative(s) applies to all cases or not
· Applicability and necessity of specifying the Alternative(s) to different cases
· Note: different sub-cases may have different issues. 
Note: In addition to timing information, the components for the channel measurement for model input may also include power and potentially phase. To provide the type of the channel measurement in their investigation.



This section provides investigation details to resolve this issue. After providing definitions of sample-based vs path-based measurements in section 2.1.1, section 2.1.2 provides detailed evaluations and analysis on the challenges of using path-based measurements as model input.
Evaluation results show that, compared to path-based measurements, sample-based measurements 
· requires lower receiver implementation complexity in the measurement node, 
· is more robust to measurement reports from different measurement node implementations, 
· achieves better positioning accuracy and 
· requires lower signaling overhead for sending the measurement report. 
For Cases that require sending measurement reports over standardized interfaces for inference (Case 2b/3b and potentially 3a), sample-based measurements are clearly preferred over path-based measurements, due to the lack of robustness and generalizability of path-based measurements, and its higher signaling overhead.
Even for Cases where measurements and inferences are performed by the same node (Case 1/2a and potentially 3a), sample-based measurements are preferred due to the higher receiver complexity and potentially reduced bandwidth processing capabilities associated with the path-based measurements.
Furthermore, there is no justification to support a mix of sample-based measurements and path-based measurements for AI/ML positioning. This increases the standardization effort and system complexity without bringing any benefits.  
Therefore, the following is proposed.

[bookmark: _Toc163235981]Adopt sample-based measurement for all relevant cases and LCM stages in Rel-19 AI/ML positioning.
[bookmark: _Toc163235982]Path-based measurement is not standardized for any Rel-19 positioning cases and LCM stages.
[bookmark: _Toc163235983]Do not support a mix of sample-based measurement and path-based measurement in Rel-19 AI/ML positioning.
[bookmark: _Ref163069493][bookmark: _Ref162357783]Definition of sample-based vs path-based measurements for PDP/DP reports 
In RAN1#116 meeting, the following agreements were made, which indicates that DP and PDP are supported as model input for Case 3b/2b. Thus, the definition discussion in this section focuses on PDP/DP.

	Agreement
· For AI/ML based positioning case 3b, at least the following types of time domain channel measurements are supported for reporting: 
(a) timing information;
(b) paired timing information and power information.

Agreement
· For AI/ML based positioning case 2b, at least the following types of time domain channel measurements are supported for UE reporting to LMF: 
(a) timing information;
(b) paired timing information and power information.



Thus far, there has been extensive RAN1 discussion on the definitions and/or distinction of measurement samples and Rel-17 RSRPP path reports. However, the discussion was not aided by clear definitions. In the following, we start with clear definitions of sample-based measurements and path-based measurements. After that, analysis of the two alternatives as model input is provided. 
[bookmark: _Ref158440195]Definitions of sample-based measurement
Assume there are  true channel taps with complex gains  and delays . The received reference symbol (PRS or SRS) at the -th sub-carrier at a receive antenna port  is given by:

for , where 
·  is the number of sub-carriers carrying the reference symbols (e.g., )
·  is the sub-carrier spacing (e.g.,  kHz)
·  is the known PRS or SRS on the -th sub-carrier
·  is received noise
The measured frequency domain channel response (FD CR) samples are obtained as

where 
Let 
·  denote the IFFT size (e.g., )
·  is the sampling rate (e.g., 4096×30 kHz = 122.88 MHz)
· , i.e., expressing the channel tap delays in terms of sampling periods
Then, the FD CR can be expressed as

Taking the IFFT of the frequency domain channel response samples gives the measured time domain channel impulse response (TD CIR) samples:

where , and  is IFFT of . Because of the  term, a true channel tap can induce TD responses on a large number of measurement samples, with larger responses near the true delay and attenuated for samples farther away from the true delay. For example, the following plot shows an example of a true channel delay of  ns, , and  (i.e., ).
[image: ]
[bookmark: _Ref158978303]Figure 1 Illustration of the  response function for a true channel delay of  ns, , and  (i.e., ).

Note these time domain or frequency domain channel measurement samples are directly observable at the receiver. Further processing on these measurement samples can be applied as follows.
A truncated TD CIR is obtained from the TD CIR by keeping only the first  samples and discarding the last  samples.
A TD power delay profile (TD PDP) is obtained from the (truncated) TD CIR by keeping only the power info across the antenna ports at each sampling grid points:

A sub-sampled TD CIR/PDP is obtained from a (truncated) TD CIR/PDP by
· Keeping the values at the  samples with the largest  powers
· Setting the other  samples to zeros
A time domain delay profile (TD DP) is obtained from a sub-sampled TD PDP by setting the  samples with the largest powers to a specific value. The specific value could a constant such as 1 or the RS RSRP of the link:


[bookmark: _Ref162445324]Definition of Rel-17 PRS-RSRPP path reports
Rel-17 PRS-RSRPP path reports is defined by the following RAN4 requirement copied from TS 38.133:
	TS 38.133
10.1.38.2.1         Absolute PRS RSRPP accuracy
[bookmark: _Hlk158381256]The absolute accuracy requirements for PRS-RSRPP measurement defined in Table 10.1.38.2.1-3 and Table 10.1.38.2.1-4 apply for the UE supporting supportedDL-PRS-ProcessingSamples [34]. 
Note: The requirements in this clause are derived based on two-tap channel defined in 38.101-4 Annex B.2.4 (a = 1, τd=0.45 µs and fD=5 Hz). 
Note: The requirements in this clause are derived based on the difference between the estimated PRS-RSRPP compared to the ideal PRS-RSRPP defined as 

Where:
[bookmark: _Hlk158380920] is the effective channel frequency response (over REs occupied by PRS) measured without receiver noise.
 is the exact delay of the p-th path in the channel model.



Following the notations introduced in the last section, the effective channel frequency response (over REs occupied by PRS) measured without receiver noise is given by

The dot above the variable is added to indicate that noise is ignored. The required quantity before taking the power is given by

and, therefore, the required PRS-RSRPP measurement is proportional to

That is, the existing PRS-RSRPP measurement is also a sub-sample of the TD PDP samples except that the sampling time is not restricted to the regular sampling grid ( is not necessarily an integer).

[bookmark: _Toc158978314][bookmark: _Toc161827804][bookmark: _Toc163235945]Existing PRS-RSRPP measurement is also a sub-sample of the TD PDP samples except that the sampling time is not restricted to a regular sampling grid ( is not necessarily an integer).

An example of the time domain samples of a 2-tap channel with delays at  and  ns is illustrated in Figure 2. Using , the two delays equivalently at  and  on the x-axis of Figure 2. The magnitudes of the samples on the sampling grid are shown as blue stems. 
· The regular samples on the sampling grid as shown as circles.
· The RAN4 requirement is to report the square of the two peak values of the red dotted curve (marked by ‘*’).
· The true channel coefficients are shown as diamonds.
· In the left figure, the true channel coefficients are  and .
· In the right figure, the true channel coefficients are  and .

 [image: ] [image: ] 
(a) true channel  and 				(b) true channel  and 
[bookmark: _Ref158382256]Figure 2 Example magnitudes of time domain samples of a 2-tap channel with delays at 265 and 290 ns. 

Note further that, even if the UE estimates the true channel tap delays perfectly, the PRS-RSRPP target  is in general not the same as the power of the true channel tap coefficient because the different true channel taps can interact with each other through the aforementioned  function:

In the example shown on the leftFigure 2Figure 2, the two true channel tap coefficients are  and . It can be clearly observed in the figure that the RAN4 PRS-RSRPP targets are not the same as the true channel coefficients. More importantly, the ratio of the RSRPP reports shall be 

according to the RAN4 requirement. This is different from the ratio of the true channel tap powers

Similarly, for the example shown on the right, the two true channel tap coefficients are  and . It can be clearly observed in the figure that the RAN4 PRS-RSRPP targets are not the same as the true channel coefficients. More importantly, the ratio of the RSRPP reports shall be 


[bookmark: _Toc158978315][bookmark: _Toc161827805][bookmark: _Toc163235946]Existing PRS-RSRPP measurement target is in general not the same as the true channel tap powers, even if the UE estimates the true channel tap delays perfectly, especially when the true channel taps are close to each other.

The PRS-RSRPP target  can be close to the power of the true channel tap coefficient when the true channel taps are far apart such as the one shown in Figure 3 with true channel tap delays at 215 and 348 ns.
 [image: ]
[bookmark: _Ref158384306]Figure 3 Example magnitudes of time domain samples of a 2-tap channel with delays at 215 and 348 ns. The two true channel tap coefficients are  and .

Improved PDP report for Rel-19
For a UE or a gNB equipped with multiple receive antenna ports, sources had investigated tradeoffs of using the following two different PDP input options during the SI phase:
· total-power PDP (summed over all antenna ports)

· Multi-port PDP (measurement at each receive antenna port individually) 

It is noted that the reference signals defined for positioning (DL PRS, UL positioning SRS) is single-port at transmit antenna. Hence 'multi-port' in this discussion refers to receive antenna ports only.
One set of evaluation results are copied in Table 1 where the 90%tile positioning errors of using 2-port PDP or the summed PDP are compared. It can be observed that
· The 2-port PDP input type doubles the signal sizes, requires higher computational complexity, and achieves marginal performance improvements when compared to the total PDP input type.
· Using only 1-port to compute PDP discards signal power and radio channel information that is readily available at the measurement node, which causes lower positioning accuracy when compared to the total PDP input type. The positioning accuracy degradation ranges from 11% with very large training datasets to 20% with smaller training datasets.

[bookmark: _Toc142672294][bookmark: _Toc158978316][bookmark: _Toc161827806][bookmark: _Toc163235947]When compared to the total-power PDP input type, the 2-port PDP input type (1) doubles the signal sizes; (2) requires higher computational complexity; and (3) achieves marginal performance improvements.
[bookmark: _Toc158978317][bookmark: _Toc161827807][bookmark: _Toc163235948]When compared to the total-power PDP input type, the 1-port PDP input type (1) discards signal power and radio channel information that is readily available, and (2) achieves lower positioning accuracy.

[bookmark: _Ref134019909]Table 1 90%tile 2D positioning accuracy (meters) using summed total-power PDP or 2-port PDP inputs for the small models and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario. . The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6].
	Input
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	80,000
	40,000
	20,000
	10,000

	total-power PDP
	0.36 M
	9 M
	0.43
	0.51
	0.66
	0.86

	2-port PDP
	0.37 M
	11 M
	0.40
	0.50
	0.64
	0.83

	1-port PDP
	0.36 M
	9 M
	0.47
	0.58
	0.76
	1.04



It can be concluded that the performance gains of using multi-port PDP do not justify the multiple increases in signaling sizes; and 1-port PDP discards useful information unnecessarily. Therefore, Rel-19 PDP reports should be based on PDP samples containing sample powers from all antenna ports.
Furthermore, the nonzero value positions of the DP report type should be determined based on PDP samples containing sample powers summed from all RX antenna ports.
In summary, for supporting Rel-19 AI/ML positioning case 3b and 2b, the PRS-RSRPP reporting requirement should be modified as follows.
	Note: The requirements in this clause are derived based on the difference between the estimated PRS-RSRPP-r19 compared to the ideal PRS-RSRPP defined as 

Where:
 is the effective channel frequency response (over REs occupied by PRS) measured without receiver noise on antenna port a.
 is the exact delay of the p-th path in the channel model.



Accordingly, definition of DP and PDP measurements in 38.215 should be made according to the above for AI/ML positioning.

[bookmark: _Toc163235984]For the model input types for Case 3b (1st priority) and Case 2b (2nd priority), consider input based on DP or PDP samples containing sample powers summed over all receive antenna ports, i.e., total-power PDP.

In addition to the PRS-RSRPP measurement definition changes, new test cases with more true channel taps and closer spaced true channel tap delays should be considered by RAN4, which is in contrast to the 2-tap channel in current specification. Also, the requirements in 38.133 Clause 10.1.38.2 apply for the first path PRS-RSRP measurement. It should be considered whether and what requirements should be defined for additional paths. The exact details on these issues are up to RAN4 discussion.

[bookmark: _Ref163069502]Challenges of using Rel-17 path-based measurement as model input
In Section 2.1.1, we showed 
· PDP sampled at regular sampling grid points, and
· (revised) RSRPP reports at estimated channel tap delays (not necessarily on the regular sampling grid)
are both sub-samples of the time domain PDP samples, there are nonetheless significant complexity and statistical differences between them. Most notably,
· PDP sub-samples taken from a regular sampling grid points according to strongest powers are straightforward computation from directly observable TD CIR as described in Section 2.1.1.1.
· RSRPP reports depend heavily on the UE’s capability to estimate the true channel tap delays accurately as well as the UE’s capability to interpolate between directly observable TD CIR samples well.
· The Rel-17 path-based reporting impose substantially higher computation complexity loads on the measurement nodes to prepare such reports.

[bookmark: _Toc158978318][bookmark: _Toc161827820][bookmark: _Toc163235949]While both PDP sub-samples from regular sampling grid points and RSRPP reports are both sub-samples of the TD PDP samples, there are statistical differences between them that may impact AI/ML model performance. Most notably, the former is obtained via straightforward computation, but the latter depend heavily on the UE’s channel estimation and interpolation capabilities. The Rel-17 path-based reporting impose substantially higher computation complexity loads on the measurement nodes than the sample-based reporting approach.

AI/ML models taking PDP sub-samples from a regular sampling grid points according to strongest powers had been extensively studied by the majority of sources during the SI phase as evidently documented in the TR 38.843. On the other hand, there has been no systematic study on the use of (off-grid) RSRPP reports as AI/ML model inputs in 3GPP. Particularly, the issues of accurate modeling of UE’s channel estimation and interpolation capabilities should be studied to check the feasibility of using such reports as AI/ML model inputs. At the minimum, the reported delays should be from an actual tap delay estimator operating at the correct SNR. For instance, a UE is not expected to find as accurate or as many tap delays for a low SNR (e.g., -5 dB) link to a far-away TRP than for a high SNR (e.g., 30 dB) link to a close-by TRP. Moreover, the configured reference signal (PRS or SRS) bandwidth is inversely related to the path timing detection accuracy, i.e., it significantly affects the achievable accuracy of the reported delays. Thus, without correct modeling of reference signal detection at the receiver, the performance of (off-grid) RSRPP reports as AI/ML model inputs can be exaggerated and there will be model input distributional mismatch between training and inference phases.

[bookmark: _Toc161827821][bookmark: _Toc163235950]There has been no systematic study on the use of (off-grid) RSRPP reports as AI/ML model inputs in 3GPP. Without correct modeling of UE channel estimation and interpolation capabilities, the performance of (off-grid) RSRPP reports as AI/ML model inputs can be exaggerated. 
[bookmark: _Toc161827822][bookmark: _Toc163235951]If the UE receiver implementation issues are not studied, there will be model input distributional mismatch between training and inference phases, when different UEs with different receiver implementation are used in training vs inference.

[bookmark: _Toc163235985]When studying the feasibility of (off-grid) RSRPP reports as AI/ML model inputs, the investigation should be based on at least realistic modeling of UE’s channel estimation capabilities. The reported per-path delays should be from an actual path delay estimator operating at the correct SNR.

In legacy measurement report of RSRPP together with per-path delay, there was no requirement on how to determine the reported values. Thus, different UE implementations are likely to produce different {per-path delay, per-path power} for a same radio channel. The observed channel measurement is the composite result of transmitter, radio channel, and receiver. Even if the transmitter and the radio channel stay constant, the UE receiver implementation differences will cause the observed channel measurements to vary from UE to UE. This causes the fingerprint of the radio channels of a given location to vary from UE to UE. 
Consider the simplified example, where model training of LMF-side model uses channel measurements produced by UE#1, and model inference uses channel measurements from UE#2 to determine UE#2 location. If the radio channel fingerprint is different between UE#1 and UE#2 for a same location due to different UE receiver implementation, the LMF-side model cannot be expected to find the correct location for UE#2. 
Thus, RAN1 should study whether/how to enhance existing {per-path delay, per-path power} definitions so that consistency in measurements can be achieved between model training and model inference, considering the various UE receiver implementations. If measurement consistency is not feasible with per-path report, then per-sample report should be prioritized. As explained earlier, DP/PDP of sub-samples from regular sampling grid points are direct channel observations, and they are not affected by UE's channel estimation and interpolation capabilities. 

In the remaining of this section, we present extensive investigation on the following issues when comparing sample-based and path-based signaling:
· Measurement node receiver complexity (section 2.1.2.1) 
· ML model robustness with measurement reports from different measurement nodes (section 2.1.2.2)
· Measurement node bandwidth processing capabilities (section 2.1.2.3)
· Positioning accuracy vs signaling size tradeoff (section 2.1.2.4)

[bookmark: _Ref163068287][bookmark: _Ref163037168]High receiver complexity with path-based measurement
The samples needed for direct sample-based reporting has been described in Section 2.1.1. As illustrated in the upper branch of Figure 4, the receiver performs common and low complexity processing of the received reference symbols to generate the reporting samples. 
In contrast, the Rel-17 path-based reporting requires the receiver to perform additional high complexity processing of the received signals. Because the locations of the true channel taps are not directly observable, their estimates can be obtained by employing a path searcher and channel estimator. In general, a channel estimator searches  estimated paths with complex gains  and delays  to minimize the differences to the measured FD CIR samples:

or to minimize the differences to the measured TD CIR samples:

The estimated complex gains and delays are then used to interpolate into the channel responses as required by the Rel-17 RAN4 path definition (see Section 2.1.1.2):

Clearly, this is a set of much more computationally intensive workload than simply truncating or selecting the samples with highest powers for the sample-based reporting approach.

[image: ]
[bookmark: _Ref162357902]Figure 4 Receiver processing flow comparison between direct sample-based reporting and Rel-17 path-based reporting schemes.

Furthermore, in order to control the computational complexity, channel estimation algorithms from different vendors are expected to be different based on the respective tradeoff between the target channel estimate accuracy and hardware/software computation constraints. The following lists a few design choice dimensions:
· Sophistication level of noise floor estimation
· Iterative or one-shot estimation
· Successive cancellation of found paths
· Linear or nonlinear estimation
· How much super-resolution is employed
In short, the channel estimation algorithm is up to implementation; alignment among all vendors is not possbile. It is then questionable that an ML model trained with the path-based reports from one channel estimation algorithm can perform as reliably when used on path-based reports from a different channel estimation algorithm.
The effect of using two specific realizations of channel estimator is provided in Figure 5 to further the robustness discussion. In this example, the true channel tap locations are
[35.8, 39.6, 42.7, 42.8, 46.6, 48.3, 52.5, 52.6, 53.1, 54.5, 54.7, 56.7, 60.4, 62.9, 64.7, 66.2, 73.6].
Two channel estimators are applied to the same channel in Figure 5 where different choices are made for the third bullet above (i.e., whether to apply successive cancellation of found paths) while holding other design choices the same: (a) a channel estimator without successive cancelation of found paths; and (b) a channel estimator with successive cancelation of found paths. 
· For channel estimator choice (a), it was able to find the path clustered around 42.7. But the true channel tap at 39.6 was missed because it was overshadowed by the sidelobes of the 42.7 cluster. Similarly, the two true channel taps at 46.6 and 48.3 was treated as one path.
· For a channel estimator choice (b), it was able to separate the path at 39.6 from the 42.7 cluster. Similarly, both paths at 46.6 and 48.3 are found by this more capable channel estimator.
Note further that the estimated channel coefficients are closer to true channel coefficients when such successive cancelation of found paths is used in the estimation process. For instance, compare the estimated magnitudes for the taps found around 47 or those around 63. It can also enable more accurate path delay estimation. For instance, it can be observed that the delay of the first path is estimated more accurately with successive cancelation of found paths.
It should be clear such successive cancellation or other equivalent techniques for improving channel estimation accuracy require substantial increase in processing complexity for preparing the measurement reports.

[bookmark: _Toc163235952]Rel-17 path-based reporting requires much higher computational complexity for the measurement node than the sample-based reporting approach, particularly when more capable and accurate channel estimation algorithms are used.

	[image: ]
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	(a). Using a channel estimator without successive cancelation of found paths
	(b). Using a channel estimator with successive cancelation of found paths



[bookmark: _Ref162361332]Figure 5 Comparison of estimated path delays from (a) a channel estimator without successive cancelation of found paths and (b) one with successive cancelation.

[bookmark: _Ref163068290]Lack of robustness with path-based measurement 
Based on the above discussion, it becomes paramount to investigate whether an ML model trained with the path-based reports from one channel estimation algorithm can perform as reliably when used on path-based reports from a different channel estimation algorithm. 
Toward this end, we prepare a dataset of the path delay reports from seven different channel estimation algorithms. A basic characterization of their behaviors is provided in Figure 6 which shows the CDF of the number of detect paths by the seven different channel estimators for the 1000x18 links between 1000 random UE locations and the 18 TRPs in the {60%, 6m, 2m} InF-DH scenario.
· The true number of channel taps generated by the 3GPP channel model is around 25. But some of these taps can be very close to each other (see an example discussed below) and not distinguishable even with a 100 MHz reference signal bandwidth.
· The number of paths found by the channel estimators depends on
· How close different true channel taps are
· The SNR of the link
· The computational complexity budgeted for the channel estimators
· Sophistication level of the channel estimation algorithms, see the design choice dimensions in section 2.1.2.1.
Note that, for channel estimators having similar overall found tap CDF, their behavior on a specific input channel impulse response can be different. For instance, channel estimator B and G have basically identical overall CDF for the number of detected taps as shown in Figure 6. But as can be observed from their joint PDF shown in Figure 7, the two channel estimators more often find different number of paths.

[image: ]
[bookmark: _Ref162360182]Figure 6 CDF of number of detect paths by the seven different channel estimators for the 1000x18 links between 1000 random UE locations and the 18 TRPs in the {60%, 6m, 2m} InF-DH scenario.
[image: ]
[bookmark: _Ref162432131]Figure 7 Joint PDF of number of detect paths for channel estimator B and G for the 1000x18 links between 1000 random UE locations and the 18 TRPs in the {60%, 6m, 2m} InF-DH scenario.

ML positioning models trained on the path reports from these seven channel estimators can achieve high positioning accuracy when applied to path reports from the same channel estimators the models were trained on. The 90%tile 2D positioning accuracy values of the Rel-17 path-based PDP models trained and tested on reports from the same channel estimators are compared to those of the sample-based PDP models in Table 2.
The columns of the Rel-17 path-based model accuracy are sorted based on the channel estimators’ tendency to find less or more paths as shown in Figure 6. That is, the curves from left to right in Figure 6 are corresponding to the columns from left to right in Table 2. This enables the following general observations.
· All these models using Rel-17 path-based reporting can achieve similar 2D positioning accuracy as models using sample-based reporting.
· Models using Rel-17 path-based reports from more capable channel estimators (i.e., capable of finding more channel taps) can generally achieve better performance than those using reports from less capable models. 

[bookmark: _Toc163235953]Positioning accuracy of ML models using Rel-17 path-based reports, which are trained and tested with data generated by a specific measurement implementation, depends significantly on the signal processing capabilities of the measurement nodes.

[bookmark: _Ref162429691]Table 2. 90%tile 2D positioning accuracy (meters) of PDP models using direct sample-based reporting or Rel-17 path-based reporting from seven different channel estimation algorithms for the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6]. For the models trained on the Rel-17 path-based reports, the same channel estimator was used for the training and inference.
	Test cases
	90%tile 2D positioning errors [m] based on 100 MHz RS bandwidth

	
	
	Sample based signaling
	Path-based signaling

	
	
	
	Average across estimators
	Different channel estimators

	
	
	
	
	D
	E
	A
	F
	B
	G
	C

	256
	16
	0.69
	0.70
	0.83
	0.78
	0.77
	0.68
	0.69
	0.57
	0.61

	128
	16
	0.67
	0.70
	0.82
	0.77
	0.73
	0.70
	0.65
	0.65
	0.60

	64
	16
	0.75
	0.82
	0.88
	0.86
	0.78
	0.86
	0.76
	0.87
	0.70

	256
	9
	0.82
	0.80
	0.85
	0.82
	0.80
	0.78
	0.79
	0.80
	0.77

	128
	9
	0.81
	0.78
	0.83
	0.80
	0.78
	0.79
	0.76
	0.77
	0.74

	64
	9
	0.82
	0.83
	0.90
	0.87
	0.79
	0.86
	0.77
	0.87
	0.74



While the models using Rel-17 path-based reports from the same channel estimators as their respective training set can achieve comparable 2D positioning accuracy as the models using sample-based reporting, such good positioning accuracy does not carry to Rel-17 path-based reports from different channel estimators. In Figure 8, we show the 2D positioning error CDF of a  and  model trained on PDP path reports from channel estimator G and tested on path reports from different channel estimators.
· The model achieves 90%tile 2D positioning error of 0.65 m when tested using reports from channel estimator G.
· As discussed in the above, channel estimator B and G have basically identical overall CDF for found taps as shown in Figure 6. However, the 90%tile 2D positioning error of the model degrades to 1.17 m, which is an 80% increase in positioning error.
· On the other hand, channel estimator C has substantially different number of detected paths than channel estimator G. But the 90%tile 2D positioning error of the model only degrades to 0.82 m.
· Furthermore, channel estimator A and F also have very similar overall CDF for found taps as shown in Figure 6. The model’s responses to the Rel-17 path-based reports from these channel estimators are quite different.
· When tested on reports from channel estimator A, the 90%tile 2D positioning error of the model degrades to 1.54 m.
· When tested on reports from channel estimator F, the 90%tile 2D positioning error of the model degrades to 0.79 m.
The above evaluation results show that, even setting aside the large dimensions and ranges of possible channel estimation algorithm design tradeoffs, channel estimators that yield similar number of detected paths can still lead to widely different ML model performance.
[image: ]
[bookmark: _Ref162432273]Figure 8 CDF of 2D positioning errors of a  and  model trained on PDP path reports from channel estimator G and tested on path reports from different channel estimators in the {60%, 6m, 2m} InF-DH scenario.

While the evaluations above focused on path-based PDP as model input, the same experiment is performed below using path-based CIR as model input. The 90%tile 2D positioning accuracy values of the Rel-17 path-based 2-port CIR models trained and tested on reports from the same channel estimators are compared to those of the sample-based PDP models in Table 3. Compared to using the PDP path-based reports, ML models using the CIR path-based reports achieves a reduction of 4.4% in 90%tile 2D positioning errors though some channel estimators enable more improvements than the others.
In Figure 9, we show the 2D positioning error CDF of a  and  model trained on 2-port CIR path reports from channel estimator G and tested on path reports from different channel estimators.
· The model achieves 90%tile 2D positioning error of 0.56 m when tested using reports from channel estimator G.
· As discussed in the above, channel estimator B and G have basically identical overall CDF for found taps as shown in Figure 6. However, the 90%tile 2D positioning error of the model degrades to 1.21 m, which is an 116% increase in positioning error.
· On the other hand, channel estimator C has substantially different number of detected paths than channel estimator G. But the 90%tile 2D positioning error of the model only degrades to 0.70 m.
· Furthermore, channel estimator A and F also have very similar overall CDF for found taps as shown in Figure 6. The model’s responses to the Rel-17 path-based reports from these channel estimators are quite different.
· When tested on reports from channel estimator A, the 90%tile 2D positioning error of the model degrades to 1.86 m.
· When tested on reports from channel estimator F, the 90%tile 2D positioning error of the model degrades to 0.72 m.
Overall, compared to path-based PDP as model input, path-based CIR reports enable marginal positioning accuracy improvements (4.4% error reduction averaged across different channel estimators) while requiring quadruple signaling sizes. The ML models using CIR path reports are even more sensitive to channel estimator mismatch between training and inference phases.

[bookmark: _Toc163235954]Models trained using Rel-17 path-based reports prepared by one channel estimator do not generalize to reports from different channel estimators.
[bookmark: _Toc163235955]Given the large dimensions and ranges of possible channel estimation algorithm design tradeoffs and algorithm behaviors, fingerprinting type ML models do not generalize to measurement reports generated from different channel estimation implementations.
[bookmark: _Toc163235956]Models using path-based PDP and path-based CIR as model input are sensitive to channel estimator mismatch between training and inference phases, with higher sensitivity observed for path-based CIR.

[bookmark: _Ref162881378]Table 3. 90%tile 2D positioning accuracy (meters) of 2-port CIR models using direct sample-based reporting or Rel-17 path-based reporting from seven different channel estimation algorithms for the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6]. For the models trained on the Rel-17 path-based reports, the same channel estimator was used for the training and inference.
	Test cases
	90%tile 2D positioning errors [m] based on 100 MHz RS bandwidth

	
	
	Sample based signaling
	Path-based signaling

	
	
	
	Average across estimators
	Different channel estimators

	
	
	
	
	D
	E
	A
	F
	B
	G
	C

	256
	16
	0.68
	0.68
	0.80
	0.74
	0.79
	0.65
	0.71
	0.50
	0.60

	128
	16
	0.64
	0.67
	0.76
	0.74
	0.72
	0.64
	0.64
	0.56
	0.59

	64
	16
	0.70
	0.78
	0.85
	0.79
	0.80
	0.77
	0.73
	0.75
	0.75

	256
	9
	0.82
	0.76
	0.81
	0.78
	0.81
	0.74
	0.76
	0.73
	0.71

	128
	9
	0.82
	0.73
	0.78
	0.78
	0.76
	0.72
	0.72
	0.70
	0.68

	64
	9
	0.80
	0.79
	0.86
	0.79
	0.80
	0.81
	0.76
	0.77
	0.73



[image: ]
[bookmark: _Ref162882191]Figure 9 CDF of 2D positioning errors of a  and  model trained on 2-port CIR path reports from channel estimator G and tested on path reports from different channel estimators in the {60%, 6m, 2m} InF-DH scenario.

[bookmark: _Ref163068296]Processing bandwidth/capability issues
In this section, we investigate the dependency of path-based measurements on RS bandwidth and receiver processing capability.
In Table 2 and Table 3, we compare the 90%tile 2D positioning accuracy of models using direct sample-based reporting or Rel-17 path-based reporting assuming an RS bandwidth of 100 MHz. We found that 
· For an RS bandwidth of 100 MHz, all models using Rel-17 path-based reporting can achieve similar 2D positioning accuracy as models using sample-based reporting. Models using Rel-17 path-based reports from more capable channel estimators (i.e., capable of finding more channel taps) can generally achieve better performance than those using reports from less capable models. On the other hand, when simpler and low computational complexity channel estimators are used for preparing the measurement reports, models using Rel-17 path-based reports can slightly underperform models using sample-based reporting.

[bookmark: _Toc163235957]On the basis of a same large RS bandwidth (e.g., 100 MHz), models using Rel-17 path-based measurements on average achieve similar positioning accuracy as models using sample-based measurements. 
The performance variation of the path-based measurements depends on whether more capable / high computational complexity channel estimators or simpler / lower complexity channel estimators are used for preparing the path measurement reports.

In Table 4, we compare the 90%tile 2D positioning accuracy of models using direct sample-based reporting or Rel-17 path-based reporting assuming an RS bandwidth of 25 MHz. We observe that
· For an RS bandwidth of 25 MHz, models using sample-based reporting achieve better 2D positioning accuracy than models using Rel-17 path-based reporting. ML models using Rel-17 path-based reporting on average have 28% higher 90%tile 2D positioning error than ML models using sample-based reporting.

[bookmark: _Toc163127624][bookmark: _Toc163128488][bookmark: _Toc163133008][bookmark: _Toc163145184][bookmark: _Toc163145413][bookmark: _Toc163147958][bookmark: _Toc163235958]On the basis of a same small RS bandwidth (e.g., 25 MHz), ML models using Rel-17 path-based reporting on average have 26% higher 90%tile 2D positioning error than ML models using sample-based reporting.

[bookmark: _Ref163037480]Table 4. 90%tile 2D positioning accuracy (meters) of PDP models using direct sample-based reporting or Rel-17 path-based reporting from seven different channel estimation algorithms for the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6]. For the models trained on the Rel-17 path-based reports, the same channel estimator was used for the training and inference.
	Test cases
	90%tile 2D positioning errors [m] based on 25 MHz RS bandwidth

	
	
	Sample based signaling
	Path-based signaling

	
	
	
	Average across estimators
	Different channel estimators

	
	
	
	
	D
	E
	A
	F
	B
	G
	C

	64
	16
	0.81
	0.99
	1.22
	1.13
	0.98
	1.00
	0.89
	0.94
	0.77

	32
	16
	0.84
	1.09
	1.26
	1.26
	1.00
	1.19
	0.90
	1.18
	0.86

	16
	16
	1.16
	1.83
	2.18
	2.10
	1.46
	2.20
	1.41
	2.15
	1.32

	64
	9
	1.00
	1.00
	1.20
	1.14
	0.98
	0.99
	0.92
	0.93
	0.84

	32
	9
	0.97
	1.10
	1.29
	1.20
	1.02
	1.22
	0.94
	1.19
	0.87

	16
	9
	1.22
	1.81
	2.14
	2.16
	1.47
	2.07
	1.41
	2.11
	1.31



However, because of the high computational complexity of path searching and channel estimation for preparing the Rel-17 path-based reports as discussed in Section 2.1.2.1, a measurement node with complexity constraints may not be able to process very wide RS bandwidth. This may limit the maximum PRS processing bandwidth capabilities that a UE may be able to report.
On the other hand, a measurement node capable of support a maximum carrier bandwidth of 100 MHz is definitely capable of performing FFT/IFFT on 100 MHz. Truncating and down-sampling the TD CIR/PDP/DP requires much lower complexity than path searching, channel estimation and channel interpolation. Hence, a complexity-constrained measurement node can support a wider RS bandwidth for sample-based reporting than for Rel-17 path-based reporting. It’s clear from signal processing theory, a larger transmitted and measured RS BW will enable higher positioning accuracy than a smaller transmitted and measured RS BW.
To provide a concrete example to demonstrate the issue, we compare 90%tile 2D positioning accuracy of
· ML models using sample-based reporting on 100 MHz RS bandwidth
· ML models using Rel-17 path-based reporting on 50 MHz RS bandwidth
· ML models using Rel-17 path-based reporting on 25 MHz RS bandwidth
The evaluation results are shown in Table 5. We can observe that ML models using Rel-17 path-based reporting underperform ML models using sample-based reporting significantly, which is the consequence of using a narrower bandwidth to detect the paths.
· ML models using Rel-17 path-based reporting on 50 MHz RS bandwidth on average have 20% higher 90%tile 2D positioning error than ML models using sample-based reporting on 100 MHz RS bandwidth.
· ML models using Rel-17 path-based reporting on 25 MHz RS bandwidth on average have 71% higher 90%tile 2D positioning error than ML models using sample-based reporting on 100 MHz RS bandwidth.

[bookmark: _Toc163235959]Given the same receiver computational complexity, a measurement node can support a wider RS bandwidth for sample-based reporting than for Rel-17 path-based reporting. The wider RS bandwidth measurement reports enable better positioning accuracy for the ML models using sample-based reporting.

[bookmark: _Ref163066184]Table 5. 90%tile 2D positioning accuracy  (meters) of PDP models using direct sample-based reporting or Rel-17 path-based reporting from seven different channel estimation algorithms for the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6]. For the models trained on the Rel-17 path-based reports, the same channel estimator was used for the training and inference.
	Sample-based over 100 MHz
	Path-based over 50 MHz
	Path-based over 25 MHz

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	Average
	Worst
	Best
	
	
	Average
	Worst
	Best

	256
	16
	0.69
	128
	16
	0.79
	0.96
	0.65
	64
	16
	0.99
	1.22
	0.77

	128
	16
	0.67
	64
	16
	0.81
	0.93
	0.67
	32
	16
	1.09
	1.26
	0.86

	64
	16
	0.75
	32
	16
	1.07
	1.20
	0.86
	16
	16
	1.83
	2.20
	1.32

	256
	9
	0.82
	128
	9
	0.85
	0.97
	0.76
	64
	9
	1.00
	1.20
	0.84

	128
	9
	0.81
	64
	9
	0.85
	0.94
	0.76
	32
	9
	1.10
	1.29
	0.87

	64
	9
	0.82
	32
	9
	1.07
	1.19
	0.89
	16
	9
	1.81
	2.16
	1.31



[bookmark: _Ref163068298]Burden of higher signaling size with path-based measurements
In this section, we provide a preliminary but more detailed signal size vs positioning accuracy trade-off analysis between the sample- and path-based signaling approaches.
For the sample-based signaling, most companies used 
"Sampling period = 1/(Nf ×∆f). For FR1, sampling period = 1/(4096×30)=8.14 (ns), where Nf =4096 according to 38.211, and ∆f =30 kHz is the subcarrier spacing."  
That is, sampling-based signaling with a resolution of 16Tc has been studied extensively by companies. Details of the signaling sizes for sample-based reporting are provided in Section 2.2.3.2.

For the path-based reporting, the existing timing information report (e.g., RSTD) allows the resolution step of 2kTc is commonly used, where the parameter k can be configured by the LMF within the range of 0<=k<=5. Thus, the timing information can be configured to be reported with granularity in the range of Tc to 32Tc. The number of bits needed to express a path delay has the following range
· 16 – 21 bits for the first path
· 9 – 14 bits for each additional relative path (7 bits shorter than for the first path)
[bookmark: _Hlk163038399]However, to achieve more granular path resolution than the sample-based signaling approach with 16Tc resolution, the parameter k for the path-based signaling should be configured in the range of 0<=k<=3 such that the timing information is configured to be reported with granularity in the range of Tc to 8Tc. Hence, the number of bits needed to express a path delay has the following range
· 18 – 21 bits for the first path
· 11 – 14 bits for each additional relative path (7 bits shorter than for the first path)
The signaling of one path report can contain up to three parts:
· Estimated delay
· Interpolated power of the path
· Interpolated phase of the path
If the signaling contains feedbacks for NTRP links, the number of bits for each part is
· Delays: NTRP × Bdelay bits
· Powers: NTRP × Nport × Nt' × Breal bits
· Phases: NTRP × Nport × Nt' × Breal bits
where 
· NTRP = 18 or dynamic TRP selection to 9, 6, 3 TRPs
· Nport = 2 for CIR and Nport = 1 for PDP
· Breal = 8 bits
· Bdelay = (11 × Nt' + 7) to (14 × Nt' + 7) bits for signaling Nt' delays according to existing specs
That is, for one positioning request, the total numbers of feedback bits are
· DP
· NTRP × Bdelay bits
· Optional: NTRP × (Bdelay + Breal) bits (including the RS RSRP for the TRP links)
· PDP
· NTRP × (Bdelay + Nt' × Breal) bits
· CIR
· NTRP × (Bdelay + 4 × Nt' × Breal) bits
Comparing these number of signaling bits using the Rel-17 path reporting approach with those using the regular sampling grid based signaling (see section 2.2.3.2), it can be seen that the only difference is whether the Nt bitmap is smaller or larger than the per-path delay reporting size Bdelay for the specific combinations of lengths, sub-sampling sizes and TRP down-selection case.

Using the smallest per-path delay reporting format (11 × Nt' + 7 bits) that is more granular (8Tc) than the sample-based reporting as an example for the Rel-17 path based reporting, we plot the comparison of signal sizes using the regular sampling grid signaling approach or the Rel-17 path reporting approach in Figure 10. To avoid over-crowding the plot, the comparison is based on the PDP input type. 
The 90%tile 2D UE positioning errors for the different channel estimators are averaged. Note that, since measurement nodes with computational constraints using simpler channel estimators, the ML models using the Rel-17 path-based reports tend to perform worse than models using sample-based reporting which requires much lower processing complexity. The averaged performance may be too optimistic when the measurement node is a UE.
We can observe that
· Sample-based signaling requires fewer signaling bits than path-based signaling for the following cases
· Nt = 64, Nt’ = 9
· Nt = 64, Nt’ = 16
· Nt = 128, Nt’ = 16
· Path-based signaling requires fewer signaling bits than sample-based signaling for the following cases
· Nt = 128, Nt’ = 9
· Nt = 256, Nt’ = 9
· Nt = 256, Nt’ = 16
· The efficiency/performance frontier formed by the sample-based signaling using the following combinations offer strictly better positioning accuracy and lower signaling sizes than path-based signaling:
· Sampled based Nt = 64, Nt’ = 9
· Sampled based Nt = 64, Nt’ = 16
· Sampled based Nt = 128, Nt’ = 16
· Sampled based Nt = 128, Nt’ = 32

[bookmark: _Toc163235960]Sample-based signaling can achieve better positioning accuracy and lower signaling sizes than path-based signaling using substantially simpler measurement node processing.
[image: ]
[bookmark: _Ref158906188]Figure 10 Scatter plot of measurement report sizes and the achieved 90%tile 2D UE positioning errors in the {60%, 6m, 2m} InF-DH scenario for PDP input types with different combinations of lengths  and sub-sampling sizes  using the regular sampling grid signaling approach or the Rel-17 path reporting approach. The points are labelled by the  parameters. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6].
Analysis of supporting phase information measurement
In RAN1#116, the following agreement was made to investigate whether phase information should be supported as a part of model input, for example, as list of phase information as in CIR or one phase value for the first detected path only. 
	Agreement
For AI/ML based positioning for all use cases, RAN1 investigate the necessity and feasibility of using phase information (in addition to timing information and power information) for determining model input. The issues to study include:
· Tradeoff of positioning accuracy and signaling overhead
· The impact of transmitter and receiver implementation
· Specification impact
· Other aspects are not precluded
Note: the phase information may be used in different ways, e.g., one phase value for the first path or first sample only; triplet of {timing information, power information, phase information} for CIR, etc.



In the sub-sections below, analysis is provided for the following aspects:
· Issues with non-spatial-dependent initial phases;
· Difficulty to align phase measurements between model training and model inference;
· Signaling overhead
Considering all the pros and cons of phase measurement as model input, we conclude that it is not feasible nor necessary to support phase information for determining model input, including CIR and single phase value for first path. 
[bookmark: _Toc163235986]Do not support phase information for determining model input, including CIR and single phase value for first path.
[bookmark: _Ref163131777]Issues with non-spatial dependent initial phases
The clock and/or frequency generation circuits are essential components in modern digital wireless communications systems. The circuits are used to drive reference waveform to demodulate signals received over the air. Due to the random states of clock/frequency generation circuits in the measurement radio node, the phase of the ML measurement data such as the time domain channel impulse responses may contain random and unhelpful information to AI/ML models. For the AI/ML positioning application, this means for UE revisiting the exact same location, the TD CIR sample sequences may still differ because the state of the clock/frequency generation circuits may be at different state. A TD CIR sample  measured at a first visit and  measured at a second visit may be different because of the different states of clock/frequency generation circuits. 
More specifically, let the sequence of  complex-valued TD CIR samples measured on receive antenna port  be 

where  are the sampling time locations of the TD CIR samples. The sampling time locations may be on a regular sampling grid with integer values or off the regular grid with non-integer values as discussed in the last section. The complex CIR samples can be equivalently represented by the power and phase parts:


where , for .
The above discussion indicates that the initial phase value  may in fact be random and contains no useful spatial dependent information. An AI/ML model trained with samples containing such spurious values will nonetheless learn to associate the target positions with these random initial phases in the training dataset. When fed with new measurements with new random phases during inference, the model will be confused and generates inaccurate position estimates.
For instance, we trained a ,  CIR model using a training dataset of 40,000 samples with the measured phases (i.e., containing the random initial phases). In Table 6, we tested the trained model under two different conditions:
· When the trained model is tested with consistent initial phase (that is, the initial phase values for different UE positions reflects only the spatial differences), the model achieves a 90%tile 2D UE positioning error of 0.38 m.
· When the trained model is tested with random initial phase (that is, the initial phase values for different UE positions reflects the spatial differences and random phases), the 90%tile 2D UE positioning error increases by 20% to 0.46 m.
[bookmark: _Ref163127728]Table 6 Comparison of 2D UE positioning errors  (in meters) for a ,  model trained without random initial phase and (1) tested without random initial phases or (2) tested with random initial phases in the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6].
	CDF Percentile
	UE 2D positioning errors [m] in {60%, 6m, 2m}
Model I trained with 40,000 CIR samples without random  

	
	Tested without random 
	Tested with random 

	50
	0.19
	0.23

	67
	0.25
	0.30

	80
	0.31
	0.38

	90
	0.38
	0.46



[bookmark: _Toc163235961]The initial phase values of measured CIR samples may be random and contains no useful spatial dependent information for an AI/ML model to learn the association between measured CIR samples and the target positions. Without addressing such spurious information during training and inference, fingerprinting ML models using the CIR inputs can produce inaccurate position estimates.
[bookmark: _Toc163235987]Before CIR can be adopted as model input, RAN1 need to investigate whether fingerprinting ML models can handle CIR phase measurements, which vary not only with the radio channel environment but also with the transmitter/receiver circuits.

While the initial phase  may be random and contains no useful channel dependent information, the relative phases of the samples 

still contain useful information relating the channel and the sampling time. Hence, one way to circumvent the impact of the random initial phases is to scrub it from the model input. That is, instead of recording/signaling  values of powers and  values of phases, only  values are signaled/recorded:


The phase of the initial sample  is taken as zero and not signaled. Equivalently, this is just applying a common phase de-rotation to the complex-valued CIR samples to set the initial phase to zero:

In Table 7, we compared the 90%tile 2D UE positioning errors  (in meters) for two sets of models:
· The first set of models are trained and tested CIR samples containing no random initial phases. Note that it’s not possible to collect such type of CIR samples in reality because of the random states of the clock and/or frequency generation circuits discussed in the above.
· The second set of models are trained and tested CIR samples containing relative phases as just described.
It can be observed that the models trained and tested CIR relative phase samples achieve essentially identical positioning accuracy (up to simulation noises) as the models trained and tested with idealized (but not physically feasible) CIR samples.

[bookmark: _Toc163235962]CIR samples containing relative phases can be used as inputs to AI/ML models to circumvent the impact of random initial phase values of measured CIR samples.

[bookmark: _Ref163128462]Table 7 Comparison of 90%tile 2D UE positioning errors  (in meters) for (1) models trained and tested with CIR samples containing no random initial phases and (2) models trained and tested with CIR samples containing relative phases in the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6].
	
	
	90%tile 2D positioning error [m] in {60%, 6m, 2m} InF-DH
Model I trained with 40,000 CIR samples

	
	
	Trained and tested 
without random initial phases
	Trained and tested 
with relative phases

	256
	128
	0.38
	0.39

	256
	64
	0.43
	0.44

	128
	64
	0.48
	0.46

	256
	32
	0.54
	0.55

	128
	32
	0.53
	0.55

	64
	32
	0.67
	0.66

	256
	16
	0.68
	0.69

	128
	16
	0.64
	0.65

	64
	16
	0.70
	0.71

	256
	9
	0.82
	0.84

	128
	9
	0.82
	0.81

	64
	9
	0.80
	0.80



For UL measurements based on SRS, if the relative phase described above is to be supported, then a new measurement type needs to be introduced in 38.215. An example is shown below and called UL RSRCP.
	UL reference signal relative carrier phase (RSRCP) is defined as a sequence of relative phase values of the channel response derived from the resource elements carrying sounding reference signals (SRS) configured for the measurement. For the j-th path, the relative phase is the difference between the phase of the j-th path and the phase of the first path. 



It is noted that the UL RSRCP illustrated above needs to be added in addition to the existing UL reference signal carrier phase (RSCP) introduced in Rel-18, which is only for the phase of the first detected path delay. Related to the new measurement type UL RSRCP, standardization effort is also needed in RAN1/RAN2/RAN3 for signaling support for training data collection and model inference, and potentially in RAN4 for requirements. RAN1 needs to take these into account in determining whether to support CIR in Rel-19.
Furthermore, the analysis above does not consider inter-path phase difference caused by the TRP’s and the UEs antenna patterns. As discussed in section 2.2.2, it is unclear how to remove such inter-path phase difference between model training and model inference, especially the phase offset caused by UE Tx or Rx antenna.

[bookmark: _Toc163235988]To decide whether to support phase information to enable CIR as model input, RAN1 should weigh the small positioning accuracy improvement against the standardization effort, the signaling overhead, and the difficulty to align phase information between training and inference.
[bookmark: _Toc163235989]If phase information is supported to enable CIR as model input, the phase values are reported in the format of relative phase.
[bookmark: _Ref163131948]Difficulty to align phase measurements between model training and model inference
Assuming a magnitude-phase measurement is used as model input, e.g., a complex CIR or even a single path, some ambiguity will need to be resolved. In the downlink, the phase component of a received path consists of the following:

In this equation, we can see that the receive phase is made of:
· The channel path phase , which is a function of the distance between the TRP and the UE.
· The TRP phase at the time of transmission , which includes a random phase rotation caused by the free-running oscillator, and a deterministic rotation caused by the beamforming weights and the Tx antenna pattern. Thus the initial phase depends on the direction of departure of the path. 
· The UE phase at the time of reception , which includes a random phase rotation caused by the free-running oscillator, and a deterministic rotation caused by the beamforming weights and the Rx antenna pattern. Thus the initial phase depends on the direction of arrival of the path. 

Let’s assume that the model input is the RSCP/RSCPD measurement defined in release 18, i.e., the (complex) phase/ phase difference for the first path. Carrier phase positioning specified in release 18 measures the phase difference between two DL PRSs received from two TRPs:

Doing so cancels out the UE’s own random phase error contribution to the phase error. We can assume there is no UE phase error contribution left if the UE knows its antenna pattern’s phase offset and can remove it. The remaining phase difference becomes:

To cancel out the TRPs contribution to the phase error, a PRU is used to collect a measurement from each TRP and form its own phase difference:

The assumption is that the PRU allows the estimator to perfectly know the distance between the TRP and the PRU, so that the differential phase errors between the TRPs can be estimated as:

The final phase difference then can be expressed as following and can be used to find : 

In the above, it is assumed that . If the PRU and the UE are collocated well enough, and the measurements are taken very close in time, the PRU-estimate of the differential phase error between TRPs corresponds to the TRP phase error experienced by the UE. for this reason, release 18 specified a measurement time window for RSCP/RSCPD measurements. Hence, if the Rel-18 measurement is used for measurement input, PRUs need to assist the measuring UE during inference, since the phase errors from TRPs are time-dependent. 
[bookmark: _Toc163235963]For the RSCPD measurement PRU assisted phase error compensation requires PRUs to be used during training and inference, further increasing the deployment cost and signaling overhead. 

During RAN1#116, it was also discussed to use inter-path phase information to resolve the issue of random phase at transmitter and receiver, see also analysis in section 2.2.1. Inter-path phase information will indeed remove the random phase error caused by the transmitter and receiver oscillators. What remains is the inter-path phase difference caused by the TRP’s and the UEs antenna patterns.  Phase errors due to the TRP antenna will be the same during training and inference and thus can be resolved, but the UE antenna pattern will be difficult to keep consistent between inference and training, since the UE’s antenna pattern as well as its relative orientation toward the TRP may be different between training and inference. One other alternative would be to remove the phase difference between path caused by the antenna, which means the UE phase error caused by the Rx (Tx) antenna must be known to the model, for each direction of arrival (departure). 
[bookmark: _Toc163235964]For inter-path phase measurements, the model input at training and inference must know the UE TX or RX antenna phase contribution, either by reporting the antenna phase contribution to the model, removing it, or assuming the same antenna pattern is used during inference and training. 
[bookmark: _Toc163235965]It is unclear how a mobile UE would know the direction of departure / arrival and associated phase offset for each path toward a given TRP.
Signaling size vs positioning accuracy tradeoff analysis
The complex-valued multi-port CIR samples have been found in the Rel-18 SI to achieve high positioning accuracy. However, these CIR samples require significantly larger signaling sizes than the total-power PDP. To reduce signaling sizes, many different down-sampling techniques such as truncation and sub-sampling have been investigated during the SI phase. It is therefore necessary to investigate the trade-off between signaling size requirements and achievable positioning accuracy of various combinations of sample lengths, sub-sample sizes and with CIR or PDP.

In the following, we present two signaling size vs positioning accuracy trade-off comparison.
· In Section 2.2.3.1, we use the number of real numbers to be signaled as a proxy of the signaling size.
· In Section 2.2.3.2, we construct a more detailed signaling size estimation based on specific feedback formats.
From both signaling sizes vs positioning accuracy trade-off analysis exercises, we arrive at the following observation.

[bookmark: _Toc163235966]For small or moderate signaling sizes, PDP and DP samples can achieve better positioning accuracy than CIR samples at the same or smaller signaling size. Multi-port CIR samples can achieve higher positioning accuracy only with very large signaling requirements.
[bookmark: _Toc163235967]For small or moderate signaling sizes, PDP and DP samples can achieve better positioning accuracy than CIR samples at the same or smaller signaling size as well as with substantially lower AI/ML model complexity.
[bookmark: _Toc163235968]For most given 90%tile 2D UE positioning error requirements, the DP samples requires the smallest signaling sizes.

Furthermore, the assumption of two receive antenna ports for the UE was a simplifying assumption made for Rel-17 Positioning WI. For the Rel-19 AI for PHY, it may be necessary to consider four receive antenna ports for the typical NR UEs. This would double the required numbers of real values to represent the multi-port CIR again for Case 2b (2nd priority).
For Case 3b (1st priority), a typical gNB/TRP may be equipped with dozens of receive antenna ports. Forwarding such large multi-port CIR samples to LMF will have significantly negative impact on radio and core networks.

[bookmark: _Toc163235969]Multi-port complex-valued CIR samples for both Case 3b (1st priority) and Case 2b (2nd priority) require very large signaling sizes, which can cause significantly negative impacts on the radio and core networks. 

Based on the extensive evaluation and analysis presented in this section, we propose

[bookmark: _Toc163235990]RAN1 to down-prioritize the signaling approach(es) and/or measurement definitions to support CIR model input types for Case 3b (1st priority) and Case 2b (2nd priority).

[bookmark: _Ref163133118]Simple signaling size comparison based on the number of real numbers to signal
In this section, we make a first quick comparison of feedback sizes and achievable positioning accuracy based on the number of real numbers needed in the signaling. An NR radio node is normally equipped with multiple RX antenna ports. AI/ML models with multi-port CIR inputs have been evaluated by several companies during the SI phase. As shown below, multi-port CIR can enable AI/ML models to achieve high positioning accuracy but will also require large signaling overhead. In the following, we investigate whether this accuracy vs overhead tradeoff can be improved by reducing the dimensions of the multi-port CIR inputs.
We consider two dimension-reduction approaches to reduce multi-port CIR inputs to a single vector:
· Strongest port CIR
The measuring radio node computes the RSRP of each RX antenna ports and signals CIR samples only for the port with the strongest received power.
· First principal component (1st PC) CIR
Let the  matrix  collects the TD CIR samples from all antenna ports. The first principal component is given by , where the length- vector  is the eigenvector corresponding to the largest eigenvalue of . 
Our positioning accuracy evaluation results for 2-port CIR, strongest port CIR, 1st PC CIR and PDP inputs are shown in Table 8. In this comparison, we classify different combinations of sample lengths, sub-sample sizes and with CIR or PDP based on the number of real numbers to represent the samples. Similarly, in Table 9, we compare the positioning accuracy vs signaling sizes with dynamic TRP selection for  18, 9, 6 or 3. The total number of real numbers to signal is given by  for PDP and  for 2-port CIR.
· For instance, a length  2-port CIR with  sub-samples require 128 real numbers per reported TRP to represent the complex-valued CIR samples. 
· For the same number of real numbers in signaling, the strongest port CIR or the 1st PC CIR samples can be of length  with  sub-samples per reported TRP.
· For the same number of real numbers in signaling, the PDP samples can be of length  with  sub-samples per reported TRP. 
It is then a fair comparison to check which approach achieves better performance when they require the same number of real values to represent the samples. From the table, we make the following observations:
· For small or moderate signaling sizes, PDP samples can achieve better positioning accuracy than 2-port CIR samples at the same or smaller signaling sizes. Using PDP samples, a 90%tile 2D positioning error of 0.52 m can be achieved.
· The higher positioning accuracy achieved by 2-port CIR is only possible with very large signaling sizes.
· While dimension reduction techniques reduce the signal sizes of CIR samples when compared to using the multi-port CIR directly, the achievable positioning accuracy is also compromised. Overall, applying dimension reduction to reduce the signaling sizes of the multi-port CIR samples does not appear to improve its accuracy vs overhead tradeoff. 
· The first principal component approach enables marginally better AI/ML model positioning accuracy than the strongest port selection approach.
From a model input design point of view, one can conclude from these evaluation results that
· With small to moderate number of samples available to an ML model, the total-power PDP input type is a very helpful induction bias to impose on the ML model based on human domain knowledge that the sample powers contain more important information about the UE positions.
· Using the real-valued PDP inputs also reduces the AI/ML model complexity substantially as shown in Table 10.
· Only with very large number of samples available to the ML model, the model can start to tease out how to use the additional information in the sample phases on its own.

[bookmark: _Toc163235970]With small to moderate number of samples available to an ML model, the total-power PDP input type is a very helpful induction bias to impose on the ML model based on human domain knowledge that the sample powers contain more important information about the UE positions. It’s only with very large number of samples that the model can start to tease out how to use the additional information in the sample phases on its own.
[bookmark: _Toc163235971]Dimension reduction techniques can be used to reduce the signal sizes of multi-port CIR samples. But the achievable positioning accuracy is also compromised. The overall accuracy vs overhead tradeoff situation of CIR samples is not improved by the two considered dimension reduction techniques.

[bookmark: _Ref163133242]Table 8 Comparison of 90%tile 2D UE positioning errors  (in meters) for 2-port CIR, 1-port CIR and PDP using different combination of sample lengths and sub-sampling sizes in the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6] and  18.
	Number of real values 
	2-port CIR
	1st PC CIR
	Strongest port CIR
	PDP

	
	
	
	
	
	
	
	
	
	
	
	
	

	1024×18
	256
	256
	0.37
	
	
	
	
	
	
	
	
	

	512×18
	256
	128
	0.38
	256
	256
	0.49
	256
	256
	0.48
	
	
	

	
	128
	128
	0.44
	
	
	 
	
	
	 
	
	
	

	256×18
	256
	64
	0.43
	256
	128
	0.50
	256
	128
	0.50
	256
	256
	0.51

	
	128
	64
	0.48
	128
	128
	0.62
	128
	128
	0.60
	
	
	 

	
	64
	64
	0.67
	
	
	 
	
	
	 
	
	
	 

	128×18
	256
	32
	0.54
	256
	64
	0.54
	256
	64
	0.57
	256
	128
	0.52

	
	128
	32
	0.53
	128
	64
	0.62
	128
	64
	0.63
	128
	128
	0.56

	
	64
	32
	0.67
	64
	64
	0.83
	64
	64
	0.88
	
	
	 

	
	32
	32
	1.60
	
	
	 
	
	
	 
	
	
	 

	64×18
	256
	16
	0.68
	256
	32
	0.66
	256
	32
	0.68
	256
	64
	0.52

	
	128
	16
	0.64
	128
	32
	0.69
	128
	32
	0.70
	128
	64
	0.57

	
	64
	16
	0.70
	64
	32
	0.84
	64
	32
	0.84
	64
	64
	0.71

	
	
	
	 
	32
	32
	1.80
	32
	32
	1.81
	
	
	 

	(36 or 32) ×18
	256
	9
	0.82
	256
	16
	0.80
	256
	16
	0.85
	256
	32
	0.58

	
	128
	9
	0.82
	128
	16
	0.78
	128
	16
	0.83
	128
	32
	0.59

	
	64
	9
	0.80
	64
	16
	0.87
	64
	16
	0.88
	64
	32
	0.72

	
	
	
	
	
	
	 
	
	
	 
	32
	32
	1.17

	(18 or 16) ×18
	
	
	
	256
	9
	0.97
	256
	9
	1.01
	256
	16
	0.69

	
	
	
	
	128
	9
	0.95
	128
	9
	0.99
	128
	16
	0.67

	
	
	
	
	64
	9
	0.99
	64
	9
	0.99
	64
	16
	0.75

	9×18
	
	
	
	
	
	
	
	
	
	256
	9
	0.82

	
	
	
	
	
	
	
	
	
	
	128
	9
	0.81

	
	
	
	
	
	
	
	
	
	
	64
	9
	0.82



[bookmark: _Ref163133373]Table 9 Comparison of 90%tile 2D UE positioning errors  (in meters) for 2-port CIR and PDP using different combination of sample lengths and sub-sampling sizes in the {60%, 6m, 2m} InF-DH scenario. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6] and dynamic TRP selection with  18, 9, 6 or 3.
	Number of real values 
	2-port CIR
	PDP

	
	
	
	
	
	
	
	
	

	18432
	18
	256
	256
	0.37
	 
	 
	 
	 

	9216
	9
	256
	256
	0.95
	 
	 
	 
	 

	6144
	6
	256
	256
	1.39
	 
	 
	 
	 

	4608
	 
	 
	 
	 
	18
	256
	256
	0.51

	3072
	3
	256
	256
	2.18
	 
	 
	 
	 

	2304
	 
	 
	 
	 
	9
	256
	256
	1.07

	1536
	 
	 
	 
	 
	6
	256
	256
	1.55

	768
	 
	 
	 
	 
	3
	256
	256
	2.16



[bookmark: _Ref163134465]Table 10 Complexity comparison for models with (1) 2-port CIR, (2) 1-port CIR, and (3) total Rx power (1-port) PDP inputs.
	2-port CIR
	1-port CIR
	(1-port/total) PDP

	# paras
	FLOPs
	# paras
	FLOPs
	# paras
	FLOPs

	0.73 M
	32 M
	0.52 M
	21 M
	0.36 M
	9 M



[bookmark: _Ref163048709]Signaling size comparison based on the number of signaling bits with direct sample-based feedback
The signaling of one TRP link for the DP input type consists of one part:
· Part 1: a bitmap of length Nt to indicate locations of non-zero samples
· This part is to support sub-sampling the TD measurement samples.
· The number of indicated non-zero samples in this bitmap is denoted by Nt'.
· For PDP and CIR, if sub-sampling is not configured, then this part is not needed and Nt'= Nt in the following.
The signaling of one TRP link for the PDP input type consists of Part 1 as defined above and
· Part 2: Nt' powers (or magnitudes) of non-zero samples starting from the lowest tap indices.
The signaling of one TRP link for the CIR input type consists of Part 1 and Part 2 as defined above as well as
· Part 3: Nt' phase of non-zero samples starting from the lowest tap indices.
If the signaling contains feedbacks for NTRP links, the number of bits for each part is
· Part 1: NTRP × Nt bits
· Part 2: NTRP × Nport × Nt' × Breal bits
· Part 3: NTRP × Nport × Nt' × Breal bits
where 
· NTRP = 18 or dynamic TRP selection to 9, 6, 3 TRPs
· Nport = 2 for 2-port CIR and Nport = 1 for PDP and 1st PC CIR
· Breal = 8 bits
That is, for one positioning request, the total numbers of feedback bits for reporting measurement are
· DP
· NTRP × Nt bits
· Optional: NTRP × (Nt + Breal) bits (including the RS RSRP for the TRP links)
· PDP
· NTRP × Nt × Breal bits if sub-sampling is not configured
· NTRP × (Nt + Nt' × Breal) bits if sub-sampling is configured
· 2-port CIR
· NTRP × 4 × Nt × Breal bits if sub-sampling is not configured
· NTRP × (Nt + 4 × Nt' × Breal) bits if sub-sampling is configured
· Note: factor 4 is used above since CIR uses 2-port and complex values
· 1st PC CIR
· NTRP × 2 × Nt × Breal bits if sub-sampling is not configured
· NTRP × (Nt + 2 × Nt' × Breal) bits if sub-sampling is configured
· Note: factor 2 is used above since CIR uses complex values
In Figure 11, we show the scatter plot of feedback sizes (i.e., number of bits to report measurements) and the achieved 90%tile 2D UE positioning errors for different AI/ML model input types with the following different combinations of lengths, sub-sampling sizes and TRP down-selection [6]:
· CIR/PDP
· Truncation to 256, 128, 64, 32 taps without sub-sampling
·  256-sample with 128, 64, 32, 16, 9 sub-samples
·  128-sample with  64, 32, 16, 9 sub-samples
·  64-sample with  32, 16, 9 sub-samples
· DP
· Truncation to 256, 128, 64 taps with  non-zero samples
· With magnitude 1 or optionally with RS RSRP
· Dynamic TRP selection to 9, 6, 3 TRPs with 256.

From the figure, we make the following observations:
· For small or moderate signaling sizes, PDP samples can achieve better positioning accuracy than 2-port CIR samples at the same or smaller signaling sizes. Using PDP samples, a 90%tile 2D positioning error of 0.52 m can be achieved.
· The higher positioning accuracy achieved by 2-port CIR is only possible with very large signaling sizes. 
· For most given 90%tile 2D UE positioning error requirements, the DP samples requires the smallest signaling sizes.
[image: ]
[bookmark: _Ref163134718]Figure 11 Scatter plot of feedback sizes and the achieved 90%tile 2D UE positioning errors in the {60%, 6m, 2m} InF-DH scenario for different AI/ML model input types with different combinations of lengths, sub-sampling sizes and TRP down-selection using the regular sampling grid signaling approach. The positioning accuracy is for the “small model” for centralized direct positioning trained with 40,000 samples [6].
[bookmark: _Toc158978326][bookmark: _Toc158978371][bookmark: _Toc159073353][bookmark: _Ref158896756]Components for PDP and DP
As discussed in the sections above, CIR has several disadvantages (e.g., phase measurement, large overhead) compared with PDP and DP. Further investigation is needed to overcome the difficulties. Thus in our view RAN1 can proceed with normative work with PDP and DP, while phase information (e.g., for CIR) is not supported as a part of model input in Rel-19. In the sub-sections below, components for PDP and DP are discussed in details.
[bookmark: _Ref159161484]Timing info for PDP and DP
During RAN1#116, the following agreement was made:
	Agreement
For AI/ML based positioning Case 3b, for gNB channel measurements reported to LMF, the timing information is represented relative to a reference time. 
· FFS: Whether any specification impact of the reference time used to represent the timing information. Details of the reference time



For model input (e.g., PDP, DP), the timing information is embedded within. For example, in the existing measurements of "first path" and "additional path", the path timings are signaled. 
For uplink measurements for model input, the embedded timing information can be represented as relative timing values, using the existing UL RTOA reference time. According to TS 38.215, UL RTOA reference time is an absolute time (i.e., clock time), as shown below.
TS 38.215, 5.2.2	UL Relative Time of Arrival (TUL-RTOA)
	Definition
	The UL Relative Time of Arrival (TUL-RTOA) is the beginning of subframe i containing SRS received in Reception Point (RP) [18] j, relative to the RTOA Reference Time [16]. 

The UL RTOA reference time is defined as , where
-	 is the nominal beginning time of SFN 0 provided by SFN Initialization Time [15, TS 38.455]
-	, where  and  are the system frame number and the subframe number of the SRS, respectively.
…



Hence, for case 3b, the existing definition for reference time can be reused. The UL RTOA definition can be largely re-used for reporting of timing information, except that the UL RTOAs can be as a list of paths or samples, pending RAN1 decision (see section 2.1). For case 3a, (AI ML assisted positioning) the reported information to the LMF does not change from legacy UL-TDOA, thus UL RTOA should be reported using legacy definition. 

[bookmark: _Toc163235991]For direct AI/ML positioning Case 3b, for gNB channel measurements reported to LMF,  the timing information of DP and PDP is represented relative to the UL RTOA reference time.  
For downlink measurement as model input, there is currently no equivalent absolute timing for reference. In existing measurement report from UE for DL-TDOA, relative timing is used, where the timing information is relative to a reference TRP. For example, see nr-RSTD definition below. The reference TRP is not fixed among different UEs, nor fixed over time for a given UE. The reference TRP is recommended by LMF to the UE, and the UE can make final decision on which TRP to use as its reference TRP.

	nr-RSTD
This field specifies the relative timing difference between this neighbour TRP and the PRS reference TRP, as defined in TS 38.215 [36].  Mapping of the measured quantity is defined as in TS 38.133 [46].

	nr-AdditionalPathList
This field specifies one or more additional detected path timing values for the TRP or resource, relative to the path timing used for determining the nr-RSTD value. If this field was requested but is not included, it means the UE did not detect any additional path timing values. If this field is present, the field nr-AdditionalPathListExt shall be absent.



For AI/ML, training data is collected over a period of time from multitudes of TRPs/UEs, while the model inference is performed at a later time with different UEs. Thus, a good reference time need to be defined, which can work for both training data collection stage and model inference stage. If the reference TRP continues to be used for DL measurements, then the same reference TRP has to be used between model training stage and model inference stage. Furthermore, for training data collection, all data samples collected from all PRUs/UEs need to use the same TRP as reference TRP. These demands are contradictory with the existing concept of reference TRP.
Thus, it is desirable to find a pre-defined reference time (i.e., absolute time or clock time) for the DL measurement, instead of the changeable reference TRP used by RSTD. The pre-defined reference time is required for training data collection, model training, model inference, and it does not vary for different UEs. This problem can be solved by mirroring the existing UL RTOA Reference Time to the downlink. For example, the following definition can be used for downlink:

The DL RTOA Reference Time (TDL-RTOA,ref) for the received PRS is defined as , where
-      is the beginning time of SFN 0 provided by SFN Initialization Time associated with the TRP transmitting the PRS 
-     , where  and  are the system frame number (SFN) and the subframe number of the PRS, respectively.

In contrast to using reference TRP to calculate timing, the DL RTOA Reference Time (TDL-RTOA,ref) gives an absolute time (i.e., clock time), the same as for UL. Regardless of when the training data is collected by which PRU/UE, or when the model inference is performed by which UE, the timing information embedded in the model input (e.g., PDP, DP) can be represented relative to TDL-RTOA,ref. An example is illustrated in Figure 12 below.

[image: ]
[bookmark: _Ref158751746]Figure 12. Illustration of timing information of three multi-path channel measurements. The channel measurements are used as model input for AI/ML based positioning. With the knowledge of DL RTOA reference time for each PRS resource, the channel measurements can be represented with proper relative timing values for model input.

For UL RTOA, the IE "SFN Initialisation Time" is provided as part of IE "TRP Information" over NRPPa. "SFN Initialisation Time" is T0 in the definition of UL RTOA reference time. Thus, with "SFN Initialisation Time" signalled, UL RTOA reference time can be calculated. 
TS 38.455:
	>>SFN Initialisation Time
	
	
	Relative Time 1900
9.2.36
	
	
	



To enable DL RTOA calculation, "SFN Initialisation Time" of the TRP can be similarly signaled over LPP, for example, as a part of assistance data sent from LMF to the UE. With "SFN Initialisation Time" of each TRP, the DL RTOA Reference Time (TDL-RTOA,ref) is easily obtained for each received PRS.  

In summary, an absolute time is used as reference point for both direct AI/ML positioning and AI/ML assisted positioning, for both UL and DL measurements, for both training data collection and model inference, at least for the cases where data collection for model training needs to be supported by specification (e.g. case 2a/2b, case 3a/3b). 

Based on the discussion above, the following are proposed.

[bookmark: _Toc163235992]Introduce DL RTOA reference time as an absolute time to facilitate training data collection and model inference for DL.
[bookmark: _Toc163235993][bookmark: _Hlk158751175]For model input with embedded timing information (e.g., DP, PDP), for training data collection and model inference, the timing information is represented relative to an absolute time.
[bookmark: _Toc163235994]For direct AI/ML positioning Case 2b, for UE channel measurements reported to LMF,  the timing information of DP and PDP is represented relative to the DL RTOA reference time.  

Power info (RSRPP) for PDP 
RSRP and RSRPP are defined for the DL PRS and UL SRS for positioning purposes and can be included for all timing-based positioning methods (DL-DTOA, ULTDOA, multi RTT). For Case 2b and 3b, power information is part of the measurement report sent over interfaces LPP and NRPPa, and is used as input to the LMF-side model when PDP is used. One issue to be clarified is the resolution of this input. The current specification uses 1 dB resolution of the first path measurements RSRP and 1dB resolution for the RSRPP difference for additional measurements. It is to be studied whether the existing resolution is sufficient for LMF-side AI/ML positioning, or the resolution needs to be improved.

[bookmark: _Toc158978327][bookmark: _Toc161827823][bookmark: _Toc163235995][bookmark: _Toc158978328]For Case 2b/3b, the need for increased RSRP/RSRPP resolution for UE/gNB reporting should be evaluated.  
Assistance data for AI/ML based positioning
For both direct and AI/ML assisted positioning, the receiving node (either the gNB or the UE, depending on the cases) will need assistance data to receive the reference signal prior to process it through the AI/ML model. The assistance data content consists of signaling enabling the reception of the reference signal, as in legacy, and is thus common to the AI/ML model implementation.
As agreed in RAN1#116, the existing DL PRS and UL positioning SRS will be reused in Rel-19. Thus their related assistance data can be largely reused.

[bookmark: _Toc161827824][bookmark: _Toc163235996]The assistance data required for PRS/SRS reception is the same across all use cases for both direct and AI/ML assisted positioning. 
[bookmark: _Toc163235997]The same enhancement(s) for PRS/SRS reception assistance data (if any) apply to model input for direct AI/ML positioning and AI/ML assisted positioning.
Additional information included in the measurement report
In legacy positioning, measurement reports contain additional information detailing the main measurements. For example, the IE used to report RSTD in DL-TDOA also provide the origin of the measurement (PRS resource, resource set and PFL ID,) quality index, power (RSRP/RSRPP) measurements, time stamp of the measurements, and TEG information. Some auxiliary information can be used as model input as well, e.g., TRP ID which was studied in TRP reduction in Rel-18 study item stage. At the minimum, measurements reported for the input to the AI/ML model should always be associated with the configuration details of the signals used to perform the measurements (as provided in NR-DL-TDOA-MeasElement for example for DL TDOA measurement reports).

The following is currently supported for time-based methods in legacy positioning:

	Method
	Report content

	Uplink: UL-TDOA method or Multi RTT (gnB leg) method
	(see Table 8.13.2.2-1 in 38.305)
Measurements:
· UL-RTOA /  gNB Rx-Tx time difference measurement
· UL-SRS-RSRP
· UL-SRS-RSRPP
· UL-RSCP measurement
· when used with UL-AoA for hybrid positioning:
· Single/multiple UL Angle of Arrival 
Attached information: 
· NCGI and TRP ID of the measurement
· TRP Rx TEG
· SRS Resource Type
· Time stamp of the measurement
· Quality for each measurement
· Beam Information for each measurement (spatial correspondence) 
· LoS/NLoS information for each measurement
· ARP ID of the measurement

	Downlink: DL-TDOA method, UE assisted Multi-RTT (UE leg) method 
note: UE based does not report measurements to the LMF, only the location is reported)
 
	Measurements:
· DL RSTD or UE Rx-Tx time difference measurement
· DL-PRS-RSRP measurement or DL-RSCPD measurement
· DL-RSCP measurement
· DL-PRS-RSRPP measurement
· TA offset used by UE
Attached information: 
· PCI, GCI, and PRS ID, ARFCN, PRS resource ID, PRS resource set ID  
· Time stamp of the measurement
· Quality for each measurement
· UE Rx TEG IDs, UE Tx TEG IDs, and UE RxTx TEG IDs for UE RxTx measurements, or UE Rx TEG IDs for DL RSTD measurements  
· LOS/NLOS information for UE measurements
· The association of UE Tx TEG ID and SRS (RTT only)
· Indication that DL-PRS bandwidth aggregation has been used for UE Rx-Tx time difference measurement or Indication that DL-PRS bandwidth aggregation has been used for DL RSTD measurement 
· Indication that the reported measurements are based on receiving single or multiple hops of DL-PRS
· UE Rx – Tx time difference subframe offset (RTT only)
· DL timing drift (RTT only)
 




To support model input in case 2b and 3b, the measurements should also be followed with similar information regarding the reference signal the measurement is based on, as well as the time the measurement was acquired. Further, the measurement report should also include quality indicator for each of the measurements, e.g. for the quality of the path/sample power as well as the quality of the time measurement (e.g. the path TOA measurement or the initial time reference for sample measurements). The accuracy of the measurement is also up to RAN4 discussion, similar to previous release positioning measurements.

[bookmark: _Toc163235998]For Case 2b/3b, the measurement reported for input to the AI/ML model inference should include at least the following side information:
a. [bookmark: _Toc163235999]Source of the measurement (TRP ID, PRS resource and resource set ID, PFL ID in the downlink, UL SRS resource and resource set ID in the uplink)
b. [bookmark: _Toc163236000]Time stamp of the measurement
c. [bookmark: _Toc163236001]Measurement quality indicator for the power information (for PDP) and timing information (for PDP, DP), for the reported path/samples.

Use of TEG indication:
TEGs (timing error groups) were introduced in Rel-17 as a way for the LMF to group measurements reported according to their relative consistency. Measurements with the same Tx TEGs and Rx TEGs were assumed to be consistent in terms of timing error. The Tx TEGs are associated with RS transmissions (e.g. the DL PRS Tx TEGs in the TRP, the UL SRS tx TEGs in the UE) and are thus found in assistance data information. the Rx TEGs are mapped to measurements and the UE can optionally provide a UE Rx TEG ID as part of a measurement element in a measurement report. The principle is that two measurements with the same UE Rx TEG ID have the same timing error margin, and could therefore be combined by the LMF.  
While the TEG was useful for geometry-based location calculation, AI/ML based positioning does not follow the same principle. Rel-17 TEG was suggested to be considered in the beginning of the Rel-18 study item. However, this information was not used in companies' AI/ML evaluations throughout Rel-18 SI. The AI/ML model follows the finger-printing principle, hence TEG is implicitly incorporated in the radio finger-print by the model. For AI ML based  positioning, the most important aspect is that there must be consistency between data collected during training data collection and data present in reported measurement for model inference. Data collected for training and the gNB (or UE) measurement reports for inference are in all likelihood not even associated with the same device, hence TEGs are not useful for aligning data between model training and model inference. Moreover, the information in AI/ ML is carried by the inter-arrival time (and power if PDP) of the channel samples/paths for each TRP-UE link. This information is thus not subject to the UE/TRP timing changes. Hence, we do not think it is valuable to include TEG information in AI ML measurement reports.
[bookmark: _Toc163236002]For Case 2b/3b measurements reported for input to the LMF-side AI/ML model, do not include TEG information.

To secure consistency between measurements used for model inference and the data collected for model training, it is important that the model input is based on reference signals either identical or very close to reference signals used for model training. We provide our view on the issue in section 6.3.

Impact of AI/ML model location for Case 3a
For Case 3a, the location of the AI/ML model will impact whether there is a need for a new measurement to be introduced. Between the LMF and the gNB, the model output generated by the NG-RAN model can be forwarded using the legacy measurement report format (e.g., RTOA). However, depending on whether the ML model is deployed at the gNB-DU or the gNB-CU, the SRS measurement entity may or may not be the same entity hosting model inference.
· If SRS measurement entity = model inference entity, then model input does not need to be specified. This is similar to Case 1 and 2a. 
· If SRS measurement entity  model inference entity, the input to the model (i.e., SRS measurements) may need to be specified for F1AP. 

[bookmark: _Toc161827825][bookmark: _Toc163235972]For Case 3a, the location of the AI/ML model (e.g., gNB-DU vs gNB-CU) impacts the need to specify new measurements for model input. 
[bookmark: _Toc163236003]Send an LS to RAN3 to request feedback on whether the input to the AI/ML model for Case 3a need to be specified.

Model output of AI/ML assisted positioning
The study of model input is commonly applicable to direct and assisted AI/ML positioning, and the same design choices can be made for model input regardless of the AI/ML approach. This is not the case for model output. While the model output is predefined (i.e., target UE location) for direct AI/ML positioning, the design choices of model output need to be considered carefully.
In this section, we discuss the different aspects specific to AI ML assisted cases (case 2a and 3a). For these cases, the following issues should be addressed:
· What legacy positioning methods should be supported, as this determines the measurement report that need to be generated using model output
· In order to build the training data, what is the model output(s) assumed
· What changes to legacy measurement reporting to the LMF are needed when sending the model output to LMF

Positioning methods that utilize AI/ML model output
AI/ML assisted positioning can in principle be applied to all supported NR positioning methods, e.g. time-based (DL-TDOA, UL-TDOA, multi-RTT), angle based (DL-AOD, UL-AOA), etc. Different legacy positioning methods use different measurements quantities and reports as input. Thus, for the Rel-19 work item, RAN1 should decide on the legacy positioning methods whose input are provided by AI/ML.

[bookmark: _Toc158978330][bookmark: _Toc161827826][bookmark: _Toc163235973]The AI/ML model output for AI/ML assisted positioning is determined by the corresponding legacy positioning methods. 

For this RAN1 should consider the following:
· The Rel-18 study item phase of the AI/ML positioning work focused on time-based methods.  
· Positioning methods and enhancements introduced in Rel-18 study item have not been investigated thoroughly for specification.

Based on the lack of studies on angle-based methods, it is reasonable to focus only on time-based positioning methods that use the reported AI/ML model output as input:
· DL-TDOA, UL-DTOA
· Multi-RTT

In RAN1#116, the agreements are made to support at least LOS/NLOS indicator and/or timing information for Case 3a/2a.
	Agreement
For AI/ML assisted positioning Case 3a, at least LOS/NLOS indicator and/or timing information are supported for reporting. 
· If LOS/NLOS indicator is reported, the indicator can be reported as soft indicator or hard indicator as defined in 38.214.
· If timing information is reported, the timing information at least can be reported via UL RTOA or gNB Rx-Tx time difference as defined in 38.215.
· Note: details of the report are pending further discussion.

Agreement
For AI/ML assisted positioning Case 2a, at least LOS/NLOS indicator and/or timing information are supported for reporting. 
· If LOS/NLOS indicator is reported, the indicator can be reported as soft indicator or hard indicator as defined in 38.214.
· If timing information is reported, the timing information at least can be reported via DL RSTD or UE Rx-Tx time difference as defined in 38.215.
· Note: details of the report are pending further discussion.



In our view, the above agreements are sufficient for defining model output types of assisted positioning. 
RAN1 does not need to consider measurements or designs that were not thoroughly evaluated in Rel-18 SI, for example, angle based methods (DL-AOD, UL-AOA), (non-AI) positioning enhancements introduced in Release 18 work item (e.g., carrier phase based positioning, RedCap UE).  
From the framework perspective, we think the LMF should be able to re-use procedures from the supported methods for Case 2a and 3a. That is, Case 3a and 2a should not be seen as new methods, but instead as AI/ML enhancements to the existing methods. Hence these cases should also re-use the procedures and signaling messages already supported for DL/UL TDOA and multi-RTT.

[bookmark: _Toc163236004]For AI/ML assisted positioning in Rel-19, Case 3a supports UL-TDOA and multi-RTT, Case 2a supports DL-TDOA and multi-RTT. From the RAN1 perspective, the existing framework for the supported methods is reused as much as possible, at least during inference. 

Extensions to the framework with e.g., indications of the use of AI/ML methods for some of the reported quantities is discussed in the next section. 
Details for reporting model output of AI/ML assisted positioning
As discussed, RAN1 has agreed to support two types of model output: (a) LOS/NLOS indicator; (b) timing information. In the following, we investigate in detail how they can be specified in Rel-19. 
LOS/NLOS indicator
In legacy positioning methods, the LOS indicator can take either a binary value (LOS, NLOS) or a soft value that provides a confidence index of the LOS estimate reported by the UE or gNB. The purpose of this LOS indicator is to inform the LMF so that measurements can be grouped according to their LOS status, and measurements which have non-line-of-sight are typically excluded from the location estimation algorithm. The LOS/NLOS indicator and the measurements (e.g., RTOA) are all about the physical, observable propagation path of the radio link.
In contrast, when AI/ML assisted positioning is used, two types of LoS paths are addressed by the AI/ML model considering the two types of model output:
· LOS/NLOS indicator. As in legacy report, this model output provides information on the likelihood of a line-of-sight propagation path, i.e., a physical LoS path. For example, for Figure 13(a), LOS/NLOS indicator='TRUE' (i.e., physical LoS path exists); for Figure 13(b), LOS/NLOS indicator='FALSE' (i.e., no physical LoS path).
· Thus: the meaning of LOS/NLOS indicator is unchanged when AI/ML is introduced to generate it.
· Time information (e.g., RTOA). The timing information generated by the model is for the direct path between TRP and UE, regardless of LOS/NLOS status of the physical link. For example, for Figure 13(a), the timing information is for the physical LoS path (=virtual LoS path); for Figure 13(b), the timing information is for the virtual LoS path. 
· Thus: the meaning of timing information is changed when AI/ML is introduced to generate it. In legacy report, the timing information is for the observed physical path arrival. In AI/ML report, the timing information is always for the direct path (i.e., virtual LoS path).
In summary, it can be understood that the LOS/NLOS indicator address the physical LoS path, while time information (e.g., RTOA) address the virtual LoS path. Here the virtual LoS path is the direct path regardless of LOS/NLOS status.

	[image: ]
	[image: ]

	(a) Physical LoS path exist
	(b) No physical LoS path


[bookmark: _Ref158978805]Figure 13. Two types of LoS paths are addressed by the assisted AI/ML model.

Thus, when AI/ML assisted positioning is applied (Case 2a, 3a), the measurement report needs to clearly indicate to LMF that the timing information should be interpreted in a new way, i.e., LMF should not blindly reuse the meaning in the legacy report. Conversely, if this is not clearly indicated, then the LMF may run the legacy positioning methods the same as before, i.e., exclude links that are marked with LOS/NLOS indicator = 'FALSE'. This would completely defeat the purpose of generating enhanced timing information by AI/ML. 

[bookmark: _Toc158978331][bookmark: _Toc161827827][bookmark: _Toc163235974]The LOS/NLOS indicator in legacy positioning report is a measure of the reliability of the measurement report.
[bookmark: _Toc158978332][bookmark: _Toc161827828][bookmark: _Toc163235975]AI/ML assisted positioning can provide measurement report of the NLOS channel with high confidence.

[bookmark: _Toc163145247][bookmark: _Toc163145476][bookmark: _Toc163148021][bookmark: _Toc163236005]For measurement reports based on AI/ML output, the (optional) LOS/NLOS indicator provides the same information as in legacy IE LOS-NLOS-Indicator, i.e., information on the physical LoS path.  
[bookmark: _Toc163145249][bookmark: _Toc163145478][bookmark: _Toc163148023][bookmark: _Toc163145250][bookmark: _Toc163145479][bookmark: _Toc163148024][bookmark: _Toc163236006][bookmark: _Toc158978388][bookmark: _Toc159073371][bookmark: _Toc159157561][bookmark: _Toc159161192][bookmark: _Toc159172944][bookmark: _Toc158978389][bookmark: _Toc159073372][bookmark: _Toc159157562][bookmark: _Toc159161193][bookmark: _Toc159172945][bookmark: _Toc158978390][bookmark: _Toc159073373][bookmark: _Toc159157563][bookmark: _Toc159161194][bookmark: _Toc159172946][bookmark: _Toc158978391][bookmark: _Toc159073374][bookmark: _Toc159157564][bookmark: _Toc159161195][bookmark: _Toc159172947][bookmark: _Toc158978392][bookmark: _Toc159073375][bookmark: _Toc159157565][bookmark: _Toc159161196][bookmark: _Toc159172948]Provide a mechanism to indicate that the timing information provided by AI/ML assisted model is to be treated like that of LoS link (i.e., virtual LoS path) regardless of the LOS/NLOS indication. 

Timing information 
For AI/ML assisted positioning, RAN1 has agreed that the reported timing information are reported in the format of UL RTOA, DL RSTD, gNB RxTxTimeDiff and UE RxTxTimeDiff. Thus the existing measurement reporting in LPP and NRPPa can be easily reused.

[bookmark: _Toc163236007]Reuse the existing measurement reporting in LPP and NRPPa to report timing information for the model output of AI/ML assisted positioning.

Similar to the timing information for model input, it is desirable to use an absolute time as reference point for the timing information at model output of AI/ML assisting positioning. Similar to model input, an absolute time is needed as reference point for both UL and DL measurements, for both training data collection and model inference, and for different UEs.
For uplink, UL TDOA is already defined relative to the absolute time , see below. Thus, the model output of assisted AI/ML positioning can be UL RTOA, which is fully compatible with the existing measurement report from gNB to LMF for UL-TDOA. If multi-RTT is used, UL RTOA can be easily used to calculate gNB RxTxTimeDiff. 
TS 38.215, 5.2.2	UL Relative Time of Arrival (TUL-RTOA)
	Definition
	The UL Relative Time of Arrival (TUL-RTOA) is the beginning of subframe i containing SRS received in Reception Point (RP) [18] j, relative to the RTOA Reference Time [16]. 

The UL RTOA reference time is defined as , where
-	 is the nominal beginning time of SFN 0 provided by SFN Initialization Time [15, TS 38.455]
-	, where  and  are the system frame number and the subframe number of the SRS, respectively.

…



For downlink, the legacy timing information can be RSTD for DL-TDOA method or UE RxTxTimDiff for multi-RTT method. To have one model supporting both types of positioning methods (i.e., DL-TDOA, multi-RTT), it is necessary to mirror the UL RTOA to DL RTOA for model output at UE's assisted AI/ML positioning. That is, for AI/ML assisted positioning at UE side, the timing information at model output is proposed to be DL RTOA. 
[bookmark: _Toc163236008]The downlink relative time of arrival (TDL-RTOA) is defined as the beginning time of downlink subframe i containing PRS received at the UE, which is relative to DL RTOA Reference Time (TDL-RTOA,ref).

[bookmark: _Toc163236009]Adopt downlink relative time of arrival (TDL-RTOA) as UE-side model output of assisted AI/ML positioning.

It is noted that the DL RTOA Reference Time (TDL-RTOA,ref) is needed for model input for both direct and assisted AI/ML positioning, as explained in section 2.3.1. Here TDL-RTOA,ref is reused for timing information at model output of assisted.
In Figure 14, an example is shown to illustrate the DL RTOA values as generated by the AI/ML model(s), where each DL RTOA value is associated with a different TRP, and also associated with a different DL RTOA reference time TDL-RTOA,ref. Since each of the reference time is pre-defined and known to the UE, the UE can find the RSTD between a given TRP and the reference TRP, if RSTD is requested. The UE can calculate the RSTD and report it to LMF, and make sure that it is fully compliant with the existing RSTD reporting. 

[image: ]
[bookmark: _Ref158752530]Figure 14. Illustration of DL RTOA, which is produced at the AI/ML model output for assisted positioning. With the knowledge of reference time (TDL-RTOA,ref) for each PRS resource, the RSTD between a given TRP and a reference TRP can be calculated and reported.

After model output (UL RTOA or DL RTOA) is generated, post processing can be applied to the model output to generate the timing information for measurement report, where the reported timing information can follow any desired format according to the associated legacy positioning method. This is illustrated in Figure 15.

[image: ]
[bookmark: _Ref163145283]Figure 15. Illustration of postprocessing AI/ML assisted model output to provide measurements for reporting to LMF.

Based on the discussion above, the following are proposed.
[bookmark: _Toc163236010]For AI/ML assisted positioning at gNB (Case 3a), the model output is uplink relative time of arrival (TUL-RTOA).
[bookmark: _Toc163236011]For AI/ML assisted positioning at gNB (Case 3a), postprocessing is applied to generate gNB RxTxTimeDiff for measurement reporting of multi-RTT method.
[bookmark: _Toc163236012]For AI/ML assisted positioning at UE (Case 2a), the model output is downlink relative time of arrival (TDL-RTOA), which is defined relative to DL RTOA Reference Time.
[bookmark: _Toc163236013]For AI/ML assisted positioning at UE (Case 2a), postprocessing is applied to generate DL RSTD (for DL-TDOA method) and UE RxTxTimeDiff (for multi-RTT method) for measurement reporting.

On the need of multipath reporting for Case 2a/3a and power measurements
Rel16-18 legacy positioning methods support multipath reporting for time-based methods. The rational is that the paths detected by the UE and gNB are not corresponding to the true channel propagation, and that inter-path interference exists in each detected path. By getting additional information to the LMF, it is possible to at least mitigate the contribution from each path, and also assess the LOS state of the link. 
In AI ML assisted positioning, the UE and gNB models will have the possibility to detect the ideal time of arrival of the reference signal, i.e. the time-of-flight between the UE and TRP. Model training labels are based on precise coordinates for each training point. Under such condition, multipath reporting is not useful and instead may even provide more error sources. In fact, the AI/ML model is trained to derive timing information on the virtual LoS path (i.e., a single direct path between transmitter and receiver) by digesting measurements that contain the multipath information. Indeed, no evaluations on AI/ML assisted in Rel-18 SI generated measurements for multiple paths as model output. Hence we think that single path reporting is sufficient for AI/ML assisted positioning (case 3a and 2a). Similarly, the first physical path RSRPP may not be the most significant metric, since the model may be able to detect a heavily obstructed first path.

[bookmark: _Toc163235976]For Case 2a/3a first physical path RSRPP is not an indication of quality/reliability for AI/ML generated measurement, since the model may be able to obtain accurate timing information even if the direct physical path is heavily obstructed.

As discussed, the model of AI/ML assisted approach (gNB-side or UE-side) takes multipath information as model input (PDP/DP), while the model output is timing information for the “best” LOS first path (i.e., the virtual LoS path) only. Thus, there is no need to include "additional path" in measurement reports to LMF. For measurements in "first path" IE, there is no need to include RSRPP (UL SRS-RSRPP or DL PRS-RSRPP). Only timing information needs to be reported in "first path" IE. Therefore, power information can be limited to RSRP (Optional), which is computed separately from the AI model, and is thus not part of model output. 
  
[bookmark: _Toc163236014]For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), measurement IEs for "additional path" are removed.
[bookmark: _Toc163236015]For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), the measurement report includes time measurement only for the "first path", which is the virtual LOS path between transmitter and receiver. 
[bookmark: _Toc163236016]For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), power is optionally reported using UL SRS RSRP (Case 3a) or DL-PRS RSRP (Case 2a). Measurement IEs for per-path power are removed.

AI-ML assistance indication in measurement reports
Based on the previous section, it is clear that there is a need to differentiate measurements generated with AIML model assistance from legacy measurements, since the actual interpretation of the timing measurement differs. 
To identify the meaning of the timing information sent to LMF, and more generally what part of the UE/gNB report is produced with assistance from the AI/ML model, we see three possible options:
· Option 1: A new report message specific to AI/ML assisted positioning cases 3a/2a
· Option 2: an indicator in the existing report, indicating that the report was produced using AI/ML assistance.
· Option 3: an indicator is attached to the elements of the reports where AI/ML was used to generate it. 

All options could be discussed by RAN3/RAN2 in terms of signaling optimization, but RAN1 is responsible for answering whether the LMF needs to know exactly what part of the report was using AIML.  In our understanding, Case 3a and Case 2a measurement reports will consist of measurements only produced by AI/ML. For example, line of sight indication, UL-RTOA, DL RSTD measurement will be based on the model output. Hence from our perspective, it is sufficient to indicate to the LMF that the measurement report as a whole is based on AI/ML model output. 

[bookmark: _Toc163236017]For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), the measurement report contains an indicator that AI/ML is used to produce the measurements. The signaling details are up to RAN3/RAN2.

Training data collection
In RAN1 meetings of Rel-18 study item, the following agreements were made on the training data collection of AI/ML based positioning.
	Agreement  (RAN1#114)
Regarding data collection for AI/ML based positioning, at least the following information of data with potential specification impact are identified.
· Ground truth label
· Report from the label data generation entity
· Measurement (corresponding to model input)
· Report from the measurement data generation entity
· Quality indicator
· For and/or associated with ground truth label and/or measurement 
· Report from the label and/or the measurement data generation entity and/or as request from a different (e.g., data collection, etc.) entity
· RS configuration(s)
· At least for deriving measurement
· Request from data generation entity (UE/PRU/TRP) to LMF and/or as LMF assistance signaling to UE/PRU/TRP
· Note1: there may not be any enhancements on top of existing RS configuration(s) or any new RS configuration(s) for positioning measurement
· Time stamp
· At least for and/or associated with collected data 
· Separate time stamp for measurement and ground truth label, when measurement and ground truth label are generated by different entities
· Report from data generation entity together with collected data and/or as LMF assistance signaling
· Note2: there may not be any enhancements on top of time stamp in existing positioning measurement report or any new time stamp report for positioning measurement
· Note3: whether and how the above information can be applied to different aspects of AI/ML LCM (e.g., training, updating, monitoring, etc.) can be discussed
· Note4: transfer of data from the entity generating data to a different entity is not precluded from RAN1 perspective
· Note5: If any specification impact is identified, the impact may be different between positioning use cases (Case 1/2a/2b/3a/3b).
· Note6: the necessity of other information (e.g., scenario identifier. LOS/NLOS condition, timing error, etc.) for data collection can be discussed
Corresponding Working Assumption does not need to be confirmed

Agreement (RAN1#111)
Regarding data collection for AI/ML model training for AI/ML based positioning, 
· The following options of entity and mechanisms to generate ground truth label are identified for further study
· For direct AI/ML positioning, ground truth label is UE location
· PRU with known location
· UE generates location based on non-NR and/or NR RAT-dependent positioning methods
· LMF generates UE location based on positioning methods
· LMF with known PRU location
· Note: user data privacy needs to be preserved
· For AI/ML assisted positioning, ground truth label is one or more of the intermediate parameter(s) corresponding to AI/ML model output
· PRU generates label directly or calculates based on measurement/location 
· UE generates label directly or calculates based on measurement/location
· Network entity generates label directly or calculates based on measurement/location
· The following options of entity to generate other training data at least measurement corresponding to model input are identified for further study
· For UE-based with UE-side model (Case 1) and UE-assisted positioning with UE-side (Case 2a) or LMF-side model (Case 2b)
· PRU 
· UE
· For NG-RAN node assisted positioning with Network-side model (Case 3a and Case 3b)
· TRP
· Note: other options of entity to generate other training data are not precluded
· Note: Existing PRU definition is in 38.305

Agreement  (RAN1#112)
Regarding training data generation for AI/ML based positioning, 
· The following options of entity and mechanisms to generate ground truth label are identified
· At least PRU is identified to generate ground truth label for UE-based positioning with UE-side model (Case 1) and UE-assisted positioning with UE-side model (Case 2a)
· At least LMF with known PRU location is identified to generate ground truth label for UE-assisted/LMF-based positioning with LMF-side model (Case 2b) and NG-RAN node assisted positioning with LMF-side model (Case 3b)
· At least network entity with known PRU location is identified to generate ground truth label for NG-RAN node assisted positioning with gNB-side model (Case 3a)
· FFS whether and if so, applicable conditions and potential specification impact for the following options to generate ground truth label
· UE generates ground truth label based on non-NR and/or NR RAT-dependent positioning methods
· Network entity generates ground truth label based on positioning methods
· The following options of entity to generate other training data (at least measurement corresponding to model input) are identified
· For UE-based with UE-side model (Case 1) and UE-assisted positioning with UE-side (Case 2a) or LMF-side model (Case 2b)
· PRU 
· UE
· For NG-RAN node assisted positioning with Network-side model (Case 3a and Case 3b)
· TRP
· Note: transfer of training data from the entity generating training data to a different entity is not precluded and associated potential specification impact is for further study



Content of training data samples
For supervised learning, ground truth label needs to be collected for each entry of training data. On the other hand, it may be difficult to obtain a large number of accurate ground truth labels. When ground truth label is not available, the measurement data (corresponding to model input) can still be collected and used by semi-supervised learning. Thus both labelled and un-labelled training data samples can be collected.
[bookmark: _Toc163236018]For Rel-19 AI/ML based positioning, support collecting labelled and optionally un-labelled training data samples.

For ground truth label of Case 3a/3b, it is important for NW to ensure the trustworthiness and high accuracy of the labels. Thus the labelled data should only be collected using UEs acting as a PRU. A UE not registered as PRU cannot be used, since (a) the accuracy of UE location is not ensured; (b) the UE may be a security risk and provide malicious data.  For ground truth label of Case 1, likely the training data collection entity only collects data from UEs of the same ownership. Thus, a UE not registered as PRU can be used for training data collection, as long as its location is sufficiently accurate. Thus, both PRU and UE can be a source for training data collection for Case 1.
For un-labelled training data samples, there is no concern on label data. Thus the measurement data can be collected from any UEs for Case 1/3a/3b.

[bookmark: _Toc163236019]For training data collection, for Case 3a/3b, labelled training data samples are collected only with PRUs on the UE-side; for Case 1, labelled training data samples can be collected with either PRUs or normal UEs on the UE-side. 
[bookmark: _Toc163236020]For training data collection of Case 1/3a/3b, un-labelled training data samples can be collected with either PRUs or normal UEs on the UE-side.

[bookmark: _Ref163213782]Metadata of the training dataset
In addition to the list of training data samples, the training dataset also needs to record the context information of the collected data. Such context information is attached to the training dataset as its metadata. The context information should include basic information like:
· Where the training data is collected
· When the training data is collected, for example, year/month/date
· Which nodes provided the measurement data, for example, TRP ID, UE ID.
· Which nodes provided the label data, for example, PRU ID, UE ID, LMF ID.
· What kind of reference signals are used in generating the measurement data, for example, PRS configuration for DL measurement, SRS configuration for UL measurement.
· Type and format of the measurement data, for example, 
· Type (e.g., DP/PDP/CIR) and size (e.g., Nt, N't) of the measurement data
· Quantization granularity used in recording the measurement values 
· Type and format of the label data, for example, 
· Type of information for label data, for example, UE location or information corresponding to model output of AI/ML assisted positioning models;
· Format used to record the location information (for labels), 
· 2D or 3D location coordinates
· Criteria (if any) applied before a data sample can be accepted as part of the training dataset, for example, label quality requirement, SINR requirement, etc.
· Version ID of the training dataset, if the training dataset may be updated over time.

Regarding the criteria applied to collect data samples of adequate quality, it should cover both measurement data (corresponding to model input) and label data (corresponding to model output).
· Collect measurement data with sufficiently good quality. The measurement data quality indicators need to be reported in training data collection.
· Collect data with acceptable label error. The label error (or: uncertainty of ground truth label) need to be reported in training data collection. 
When the training dataset is used for training a model, the model training entity may decide to include only data samples with sufficient quality, where the quality is determined according to the targeted positioning accuracy requirement.

Some of the context information to be recorded for the training dataset requires assistance information to be provided. Considering the model generality issues studied in Rel-18 SI, finger-printing based AI/ML methods are very sensitive to the deployment area. A model trained for one deployment area is unlikely to work for a different deployment area without any change. For the training data collection stage, it is necessary to define a training dataset validity area . This describes the area that training dataset is collected.
Similar to the existing 'AreaID-CellList', the validity area for AI/ML operation can be defined as a list of TRPs, where the TRPs transmits DL PRS and covers the surrounding area to support positioning. Checking the indication of the TRP ID in TS 37.355, it includes dl-PRS-ID-r16 in addition to the fields in NR-Cell-IDs-r17. Nevertheless, this shows that an IE can be easily defined to provide area information using a list of TRP IDs. Exactly how to signal is left up to RAN2 and RAN3 discussion.
TS 37.355:
	–	AreaID-CellList
The IE AreaID-CellList provides the NR Cell-IDs of the TRPs belonging to a particular network area where the associated assistance data are valid. Each cell is included in only one area.
-- ASN1START

AreaID-CellList-r17 ::= SEQUENCE (SIZE(1..maxCellIDsPerArea-r17)) OF NR-Cell-IDs-r17

NR-Cell-IDs-r17 ::= SEQUENCE {
	nr-CellGlobalID-r17				NCGI-r15					OPTIONAL,	-- Need ON
	nr-PhysCellID-r17				NR-PhysCellID-r16			OPTIONAL,	-- Need ON
	nr-ARFCN-r17					ARFCN-ValueNR-r15			OPTIONAL,	-- Need ON
	...
}

-- ASN1STOP



	TRP-LocationInfoElement-r16 ::= SEQUENCE {
	dl-PRS-ID-r16					INTEGER (0..255),
	nr-PhysCellID-r16				NR-PhysCellID-r16			OPTIONAL,	-- Need ON
	nr-CellGlobalID-r16			NCGI-r15					OPTIONAL,	-- Need ON
	nr-ARFCN-r16					ARFCN-ValueNR-r15			OPTIONAL,	-- Need ON
	associated-DL-PRS-ID-r16		INTEGER (0..255)			OPTIONAL,	-- Need OP
	trp-Location-r16				RelativeLocation-r16					OPTIONAL,	-- Need OP
…
}



The training dataset validity area can be recorded as a part of the meta data for the training dataset, where the meta data describes the model training context. With the list of TRPs recorded as a part of the meta data for the training dataset, then the measurements collected for each data sample can be organized with the same hierarchy as for legacy assistance data, i.e. per TRP/frequency layers for the UE, and per TRP for the gNB assistance data.

[bookmark: _Toc163236021]The training dataset is attached with metadata which describes the context information on the set of collected training data samples.
[bookmark: _Toc163236022]The training dataset validity area is recorded as a part of metadata of the training dataset. 
[bookmark: _Toc163236023]For training data collection, a training dataset validity area can be defined as a list of TRPs where data is collected.
[bookmark: _Toc163236024]Training data provided to UE/gNB is organized with the same hierarchy as for legacy assistance data, i.e. per TRP/frequency layers for the UE, and per TRP for the gNB assistance data. 

Additionally, Rel-18 study item evaluations show that other context information also affect the validity of the trained model in the deployment scenario. Thus such context information about the training dataset also needs to be recorded as part of the metadata:
· Range of SNR/SINR
· Range of Channel estimation error
· Range of NW synchronization error 
· Range of UE/gNB RX and TX timing error
· …

[bookmark: _Toc163236025]RAN1 to study what additional metadata to attach to training dataset to provide validity condition of the trained model, including:
d. [bookmark: _Toc163236026]Range of SNR/SINR
e. [bookmark: _Toc163236027]Range of Channel estimation error
f. [bookmark: _Toc163236028]Range of NW synchronization error 
g. [bookmark: _Toc163236029]Range of UE/gNB RX and TX timing error

The metadata of the training dataset is not only necessary for keeping track of the context and versions of the training dataset, it also provides context information of model(s) trained with the given training dataset. During model deployment, the context information of the model is needed to ensure consistency between model training and model inference. Further details are provided in section 6.1 and 6.2.

Furthermore, the AI/ML solution needs to secure a training dataset of adequate quality as a whole.
· Collect a sufficiently large size of training dataset.
· Collect data that fully reflect the UE distribution during operation, e.g., uniformly distributed over the entire floor.
· Collect data from a variety of UEs to generalize over different UE implementations, including different UE vendors, different UE capabilities, different UE orientation, etc. 
While the training data collection procedure needs to pay attention to the above issues, they are expected to be taken care of via engineering effort and not explicit in the standard specification. 

[bookmark: _Toc163235977]Collecting sufficient data in terms of training dataset size, UE distribution, diversity of UE sources, etc is up to implementation.

[bookmark: _Ref163232986]Model performance monitoring
For AI/ML based positioning, model performance monitoring was studied in Rel-18 study item phase. Both label-based methods and label-free methods were explored. If ground truth label can be found, it is preferred to use label-based method and monitor the accuracy of model output directly. For real life deployment, the problem is, ground truth label or its estimation is rarely available during model deployment. For AI/ML assisted positioning, estimation of ground truth label can be calculated with the help from the associated conventional positioning methods, as shown below.

	Observation (RAN1#112bis)
For AI/ML assisted positioning, evaluation results have been provided by sources for label-based model monitoring methods. With TOA and/or LOS/NLOS indicator as model output, the estimated ground truth label (i.e., TOA and/or LOS/NLOS indicator) is provided by the location estimation from the associated conventional positioning method. The associated conventional positioning method refers to the method which utilizes the AI/ML model output to determine target UE location. 
Note: Sources include vivo (R1-2302481), MediaTek (R1-2303340), Ericsson (R1-2302335)



However, for direct AI/ML positioning, there is no associated conventional positioning, and ground truth label (i.e., the location of target UE) is not available --- otherwise (i.e., target UE location is known), there is no need to run the AI/ML model. Thus there was no evaluation for label-based model monitoring method for direct AI/ML positioning in Rel-18 study item. 
While it is infeasible to obtain real-time ground truth label (i.e., target UE location) for direct AI/ML positioning, substitutes can be used to support model monitoring, if the substitute has high quality and can be captured in real time. In the following, we search for such substitutes for model monitoring.
In a cluttered environment, there is often a low probability of line-of-sight for a radio link between a UE and a TRP. For example, for InF-DH environment, Table 11 shows the LoS probabilities of a radio link between TRP and UE when assuming different InF-DH clutter parameter settings. It is observed that the LoS probability of a UE-TRP link ranges from 44.9% in a mildly cluttered environment to only 0.8% in a heavily cluttered environment. For InF-DH with clutter parameter {60%, 6m, 2m}, line-of-sight links are very rare (probability=0.8%) and this is the reason why conventional positioning methods fail. On the other hand, Table 11 shows that LoS link can still be encountered from time to time, even for the most cluttered environment of InF-DH with clutter parameter {60%, 6m, 2m}. 
[bookmark: _Ref156946230]Table 11. LoS probabilities of a radio link between TRP and UE when assuming different InF-DH clutter parameter settings.
	Environment clutter parameter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{50%, 2m, 2m}
	0.352

	{60%, 2m, 2m}
	0.268

	{40%, 6m, 2m}
	0.014

	{50%, 6m, 2m}
	0.025

	[bookmark: _Hlk117081197]{60%, 6m, 2m}
	0.008



If the opportunistic LoS link information can be captured, such links can be leveraged for performance monitoring of AI/ML model for positioning, since even conventional signal processing methods can work well for LoS links. One example is illustrated in Figure 16, where a UE is in a cluttered location, and there is no LoS links to TRP 0-3, and only an LoS path to TRP 4. Clearly it is difficult to locate the UE using conventional methods, e.g., the UE can be anywhere on the circle centered at TRP 4 having radius d4. On the other hand, if an AI/ML model determines a UE location, the accuracy of AI/ML output can be verified by checking it against the knowledge that UE is located with distance d4 from TRP 4. If the AI/ML model output also indicates that the UE has distance d4 from TRP 4, then the AI/ML model output is likely accurate; otherwise, the model output is erroneous.    
[image: ]
[bookmark: _Ref159072276]Figure 16. An example of UE in a cluttered location where there is only one LoS link to TRP4.
 
In the following we investigate the possibility of leveraging LoS links, when available, for model monitoring. Figure 17 shows the cumulative distribution function (CDF) of the difference of (a) the ToA reports generated by the inference model and (b) ToA generated by the monitoring model, where both are for the links classified as LoS by the monitoring model. 
· The inference model is a multi-TRP AI/ML model for assisted positioning, trained using the data collected from the indoor factor scenario with 60% clutter density, and clutter height and width of 6 m and 2 m, respectively (i.e., InF-DH with clutter parameter {60%, 6m, 2m}).  
· The monitoring model is another AI/ML model that works on a single TRP-UE link. This model is trained using the data collected from the indoor factor scenario with 40% clutter density, and clutter height and width of 2m and 2m, respectively (i.e., InF-DH with clutter parameter {40%, 2m, 2m}) [6]. The computational complexity of the monitoring model is less than 1M FLOPs. The model has been tuned to avoid false LoS classification and has a LoS miss probability of 27%. This model is used here since it was found to be effective working on a single TRP-UE link, where it generates LoS/NLoS classification, and ToA estimation if the link is classified as LoS.
Two curves are shown. One curve is for "same environment", which means that the inference environment is the same as the training environment for the inference model. The inference model performs normally in "same environment", i.e., no performance degradation. The other curve is for "new environment", which means that the inference environment is different from the training environment for the inference model, though both environments belong to InF-DH with clutter parameter {60%, 6m, 2m}, i.e., different random seeds were used. The inference model performs poorly in "new environment", i.e., performance degradation has occurred, and model performance monitoring method should detect it.
It can be observed that the CDF of the LoS link ToA difference of "same environment" is much smaller (more than an order of magnitude) and easily distinguishable from the CDF of "new environment". Thus model performance monitoring decision can be made based on the easily distinguishable behavior. 
Since the model inference environment is the heavily NLoS environment of InF-DH with clutter parameter {60%, 6m, 2m}, the LoS probability is low and inadequate for conventional positioning methods, as expected. However, approximately 10% of positioning requests (containing measurement samples for 18 TRP links) can be opportunistically leveraged for performing model monitoring, i.e., at least one link out of the 18 is LoS. This is adequate for the purpose of model performance monitoring.
[image: ]
[bookmark: _Ref158737940][bookmark: _Ref158738011]Figure 17. Cumulative distribution function of the difference of the ToA reports generated by the inference model and the monitoring model for the links classified as LoS by the monitoring model in two different realizations of InF-DH with clutter parameter {60%, 6m, 2m}.

This evaluation result demonstrates that it is effective to monitor AI/ML model performance using opportunistic LoS links even in a heavily NLoS environment like InF-DH with clutter parameter {60%, 6m, 2m}. While an AI/ML method is used to provide substitutes of ground truth label for model monitoring, this is only for convenience of simulation. It serves as a preliminary proof-of-concept. 
In general, the key is to provide reliable LoS link identification to the model inference entity, regardless of how such information is obtained. Non-AI methods (e.g., legacy methods in existing specification) can be used to provide the LoS/NLoS classification as long as false positive (i.e., incorrectly classify a link as LoS) probability is kept low. The LoS identification can be provided by an entity different from the model inference entity to have independent information for model monitoring. Thus, for a model deployed in one node (i.e. gNB, LMF or the UE), the LoS state of a link can be signalled from another node (i.e. another gNB, UE). For example, a UE hosting the AI/ML model and measuring the DL PRS may also be configured to transmit SRS. Hence the LoS state of a given PRS resource may be known to gNB at a given time. To assist the model monitoring of the model hosted by the UE, the LMF could relay to the UE an assistance data, e.g., which PRS resource propagated via a LoS link and at what time.

As shown below, in legacy UE-based positioning methods, LMF can already inform the UE of LoS link state in assistance data, which helps the UE to calculate the location. 
	TS 37.355 v18.0.0
[bookmark: _Toc156478935]–	NR-DL-PRS-ExpectedLOS-NLOS-Assistance
The IE NR-DL-PRS-ExpectedLOS-NLOS-Assistance is used by the location server to provide the expected likelihood of a LOS propagation path from a TRP to the target device, or for all DL-PRS Resources of the TRP to the target device.
-- ASN1START

NR-DL-PRS-ExpectedLOS-NLOS-Assistance-r17 ::= SEQUENCE (SIZE (1..nrMaxFreqLayers-r16)) OF
											NR-DL-PRS-ExpectedLOS-NLOS-AssistancePerFreqLayer-r17

NR-DL-PRS-ExpectedLOS-NLOS-AssistancePerFreqLayer-r17 ::=
												SEQUENCE (SIZE (1..nrMaxTRPsPerFreq-r16)) OF
											NR-DL-PRS-ExpectedLOS-NLOS-AssistancePerTRP-r17

NR-DL-PRS-ExpectedLOS-NLOS-AssistancePerTRP-r17 ::= SEQUENCE {
	dl-PRS-ID-r17				INTEGER (0..255),
	nr-PhysCellID-r17			NR-PhysCellID-r16			OPTIONAL,	-- Need ON
	nr-CellGlobalID-r17			NCGI-r15					OPTIONAL,	-- Need ON
	nr-ARFCN-r17				ARFCN-ValueNR-r15			OPTIONAL,	-- Need ON
	nr-los-nlos-indicator-r17	CHOICE {
				perTrp-r17			LOS-NLOS-Indicator-r17,
				perResource-r17		SEQUENCE (SIZE (1..nrMaxSetsPerTrpPerFreqLayer-r16)) OF
											NR-DL-PRS-ExpectedLOS-NLOS-AssistancePerResource-r17				},
	...
}

NR-DL-PRS-ExpectedLOS-NLOS-AssistancePerResource-r17 ::=
										SEQUENCE (SIZE (1..nrMaxResourcesPerSet-r16)) OF
											LOS-NLOS-Indicator-r17



Thus, similar LoS/NLoS assistance data can be signaled to assist with model monitoring. With the assistance data on LoS links, model output accuracy can be calculated for model performance monitoring of both direct and assisted AI/ML positioning.

[bookmark: _Toc161827829][bookmark: _Toc163235978][bookmark: _Toc159073341][bookmark: _Toc159157531][bookmark: _Toc159161162][bookmark: _Toc159172914]Effective ground truth label can be obtained from line-of-sight links which can be observed opportunistically in parallel to AI/ML model inference.
[bookmark: _Toc158978333][bookmark: _Toc161827830][bookmark: _Toc163235979]Existing IE for line-of-sight (LoS) links in legacy assistance data can be reused to support calculation of model output accuracy of the LoS links, thus enabling label-based model monitoring for AI/ML based positioning. 
[bookmark: _Toc163236030]For both direct and assisted AI/ML positioning, support label-based model monitoring using information on LoS links.
[bookmark: _Toc163236031]As assistance information for model monitoring, support the LMF, UE, and gNB to report the LOS status of an SRS or PRS resource with a time stamp.
 
Signaling to support LCM operations
[bookmark: _Ref163214421]Signaling to support model inference

For the model inference stage of LCM, for an AI/ML model to work properly, the model inference context needs to be consistent with model training context. The model training context need to include all the settings that noticeably affect the model performance and cannot be ignored. A model cannot be activated for inference without checking the model inference context requirement. Specifically,
(a) If the model inference context requirement is satisfied, then the model inference can proceed.
· This is the ideal case where the trained model is fully compatible with the deployment environment.
(b) If the model inference context requirement is not satisfied, then configuration can be updated to satisfy the model inference context requirement. After that, the model inference can proceed. 
· This may happen if the model is trained for the deployment area, but some of the parameters (e.g., PRS) are not configured the same as in the model training.
(c) If the model inference context requirement is not satisfied, and the configuration cannot be updated to satisfy the model inference context requirement, then model inference cannot proceed. A notification message (e.g., an error message) can be sent on the failure of model inference due to mismatched context between model training and model inference.
· This may happen if the deployment area is different from the validity area of the trained model.
The model inference context requirement includes at least the following of an AI/ML model, which are directly related to the model input of the various positioning cases: 
· validity area of the model for inference, e.g., a list of TRPs that transmits PRS (for downlink based cases) or receives SRS (for uplink based bases), 
· configuration of reference signal transmission and measurement, 
· For models using DL PRS (Case 1, 2a, 2b), this refers to DL PRS configuration for transmission (Case 1, 2a, 2b), and measurement report on PRS (Case 2b).
· For models using UL SRS (Case 3a, 3b), this refers to UL SRS configuration for transmission (Case 3a, 3b), and measurement report on SRS (Case 3b).
More context requirements need to be checked for compatibility, e.g., range of SNR/SINR, as mentioned in section 4.2.
Regarding deployment environment identifiers, the model inference validity area  needs to be recorded for an AI/ML model when model training is performed. When the trained model is checked for potential activation, the model inference validity area  can be checked against the deployment environment. 
The model inference validity area  may or may not be different from the training dataset validity area  mentioned in section 4.2. 
(a) [bookmark: _Hlk158808033]Training dataset validity area : this describes the area that training dataset is collected.  is from the perspective of training data collection entity, as explained in section 4.2. For example, in Figure 18, the training data includes measurements associated with 18 TRPs, TRP {0,1,…,17}. Hence the training dataset validity area  = TRP {0,1,…,17} covers the entire factory floor. 
(b) [bookmark: _Hlk158808062]Model inference validity area : this describes the coverage area that the trained model is used to perform inference for.  is from the perspective of model inference entity.  can be the same as , or a subset of . For example, in Figure 18, the model inference entity may use measurements associated with 9 TRPs on the left hand side for inference, = TRP {0,1,…,8}, which is a sub-area of . 
[image: ]
[bookmark: _Ref159169924]Figure 18. An example where the model inference validity area is a sub-area of training dataset validity area. 

Furthermore, the observed fingerprint of a location is the composite picture including transmitter effect, radio channel, and receiver effect. To correctly determine a UE location based on fingerprinting, the features of the composite picture need to stay (approximately) the same for different UEs (e.g., PRU and normal UE) at different times (e.g., training data collection, model inference). Thus it is necessary to ensure consistency in any transmitter behavior (e.g., PRS configuration) and receiver behavior (e.g., measurement type and granularity, at least for Case 2b/3b) that affect the observed fingerprint. For configuration of reference signal transmission and measurement, DL PRS and UL SRS need to be addressed for the relevant positioning cases.
[bookmark: _Toc163236032]The model training entity records the model inference validity area as a part of metadata for the trained model.
[bookmark: _Toc163236033]When preparing for model inference, the model inference validity area is checked for compatibility with the deployment area.
When the AI/ML model takes DL PRS measurement as input, for configuration of PRS transmission and measurement, it is necessary to ensure that the same configuration is used in training data collection stage and model inference stage. Also, the same configuration is used for all PRUs and UEs, for example, the IDs (e.g., TRP ID, dl-PRS-ID, DL PRS Resource Set ID, a DL PRS Resources ID) are assigned the same to all PRUs and UEs, and not varying in a UE-specific manner.
Similarly, when the AI/ML model takes UL SRS measurement as input, for configuration of SRS transmission and measurement, it is necessary to ensure that the same configuration is used in training data collection stage and model inference stage.
[bookmark: _Toc163236034]When preparing for model inference, configurations of reference signal transmission and measurement are checked for compatibility between the trained model and the deployment environment.
In terms of specification impact, for Case 2a/3a the model readiness for inference may be signaled from the model inference node (e.g., UE/gNB) to other nodes requesting the measurements, e.g. the LMF, in order to signal that AI/ML positioning is available. 
[bookmark: _Toc163236035]For Case 2a/3a, support UE/gNB to send an indication to the LMF when the AI/ML model is ready for reporting measurements based on model inference. 
h. [bookmark: _Toc163236036]It is up to RAN2/3 to decide which procedure to use to convey the information.

[bookmark: _Ref163214427]Consistency of reference signals during model inference and model training
Ideally, signals configured for inference are configured exactly the same for the training phase. For example, PRS configuration of bandwidth, comb offset, etc., should remain unchanged between inference and training. To make sure of this, the training data could be generated for all possible signal configurations, but this would lead to a massive training data set.  Thus some misalignment may be unavoidable. For example, the SRS resource used for training the gNB based model used in case 3a may be already assigned to another UE at the time of inference, so that a resource with a different comb offset and or cyclic shift may be chosen to be configured.  It is however important that the measured channel response at inference is consistent with the one measured during training. This means that at least bandwidth, transmitted power and spatial properties of the reference signals stay the same between inference and training. 

For a given set of received training data, the UE/gNB should be able to assume the following to stay unchanged in assistance data:
· PRS:
· Positioning frequency layer configuration (bandwidth, comb size, SCS, starting PRB, CP)
· Muting patterns
· DL PRS spatial properties
· Power over the measured bandwidth
· SRS:
· Bandwidth configuration (starting PRB, bandwidth, comb size, SCS, CP)
· UL SRS for positioning spatial properties
· SRS transmission power
· UL path loss reference

To assess whether additional signaling is required, we think it is necessary to first discuss the general framework to support data collection. We assume that the consistency between the UE used for model training and the UE doing the inference can be managed outside of the specification. 
For the consistency between the RSs used during training and inference, similarly it could be left to network deployment choice at least for cases 1/2a/3a. Although there could be several types of UE deployed in the network and each could be using e.g. a different bandwidth during training, parameters can be controlled by network implementation to remain static during both training and inference. The UE can also ensure the measurement bandwidth is consistent with the bandwidth used for training. For case 3b and 2b, the LMF gather the measurements and the gNB/UE may not have been involved with the model training.  It is thus important that the LMF signals what measurement bandwidth to use to provide model input.
[bookmark: _Toc163235980]For Cases with LMF-side model (case 2b/3b), the measurements reported for model input must be consistent with the ones used with training data.
[bookmark: _Toc163236037]For measurements reported to the LMF in case 2b/3b, support the LMF to indicate the PRS/SRS measurement bandwidth. 

Signaling to support model monitoring

For direct positioning, the model inference entity should act as the core entity that performs model monitoring. This includes calculation of model monitoring metrics and making (preliminary) model monitoring decision. To support the model monitoring procedure, assistance information may be provided between nodes, for example, LMF may send LoS/NLoS assistance information to UE for Case 1. This is much more efficient than UE sends raw information about the model input and/or model output to LMF, and LMF calculates the model monitoring metrics for the UE.
Other than the core part, some additional validation or supervision may be necessary for Case 1 to ensure a reliable system-level performance. Specifically, LMF may need to check from time to time whether the AI/ML model in UE works well or not. For this purpose, the UE can report model monitoring decisions to LMF periodically or when triggered by LMF. This allows the LMF to supervise the UE's AI/ML positioning functionality at a high level.
For Case 2b and 3b, LMF is the model inference entity. Thus there is no need to define signaling for reporting model performance monitoring decisions. There can be, however, additional signaling to support the LMF decision making in model monitoring. One need is assistance information from UE/gNB to LMF to provide LoS link information (see section 5). Also LMF could request support from UE/gNB to validate the AIML model input. 

For assisted positioning, the model inference entity should also act as the core entity that performs model monitoring for itself. To support the calculation of model monitoring metrics, the LMF can help by providing the estimated ground truth to the model inference entity (i.e., UE for Case 2a, gNB for Case 3a), where the estimated ground truth is generated by the LMF using the associated conventional positioning methods.
For additional supervision to ensure reliable system-level performance, the LMF can monitor by checking the model output reported by UE (for Case 2a) or gNB (for Case 3a). There is no need to signal anything extra for the continuous monitoring. 
For both direct and assisted AI/ML positioning, the LMF is responsible for configuring the positioning method for the target UE as in legacy. Thus, the LMF can decide to deactivate the AI/ML based positioning methods, e.g., if the LMF decides that the model is no longer appropriate for the deployment. For example, for Case 1/2a/3a, it can be understood the model inference entity (UE, gNB) performs model monitoring and makes preliminary model monitoring decision, while LMF can make the final decision.

[bookmark: _Toc163236038]For both direct and assisted AI/ML positioning, the model inference entity is the core entity that performs continuous model monitoring itself, including calculation of model monitoring metrics. 
[bookmark: _Toc163236039]For model inference at UE (Case 1, 2a) or gNB (Case 3a), the LMF can provide assistance information to support the calculation of model monitoring metrics.
[bookmark: _Toc163236040]LMF interacts with gNB and UE to make decisions on whether to activate or deactivate AI/ML positioning, and which AI/ML positioning method to use.

Conclusion
In the previous sections we made the following observations: 
Observation 1	For Case 1/2a (UE-side model), channel measurement generation process is collocated in the same node with the AI/ML models. The exact details of the model inputs are implementation issues at least for model inference.
Observation 2	For Case 3b (1st priority) and Case 2b (2nd priority), due to the LMF sided model, there is a need to clarify the target model input formats to be supported for the AI/ML positioning models.
Observation 3	Existing PRS-RSRPP measurement is also a sub-sample of the TD PDP samples except that the sampling time is not restricted to a regular sampling grid ( is not necessarily an integer).
Observation 4	Existing PRS-RSRPP measurement target is in general not the same as the true channel tap powers, even if the UE estimates the true channel tap delays perfectly, especially when the true channel taps are close to each other.
Observation 5	When compared to the total-power PDP input type, the 2-port PDP input type (1) doubles the signal sizes; (2) requires higher computational complexity; and (3) achieves marginal performance improvements.
Observation 6	When compared to the total-power PDP input type, the 1-port PDP input type (1) discards signal power and radio channel information that is readily available, and (2) achieves lower positioning accuracy.
Observation 7	While both PDP sub-samples from regular sampling grid points and RSRPP reports are both sub-samples of the TD PDP samples, there are statistical differences between them that may impact AI/ML model performance. Most notably, the former is obtained via straightforward computation, but the latter depend heavily on the UE’s channel estimation and interpolation capabilities. The Rel-17 path-based reporting impose substantially higher computation complexity loads on the measurement nodes than the sample-based reporting approach.
Observation 8	There has been no systematic study on the use of (off-grid) RSRPP reports as AI/ML model inputs in 3GPP. Without correct modeling of UE channel estimation and interpolation capabilities, the performance of (off-grid) RSRPP reports as AI/ML model inputs can be exaggerated.
Observation 9	If the UE receiver implementation issues are not studied, there will be model input distributional mismatch between training and inference phases, when different UEs with different receiver implementation are used in training vs inference.
Observation 10	Rel-17 path-based reporting requires much higher computational complexity for the measurement node than the sample-based reporting approach, particularly when more capable and accurate channel estimation algorithms are used.
Observation 11	Positioning accuracy of ML models using Rel-17 path-based reports, which are trained and tested with data generated by a specific measurement implementation, depends significantly on the signal processing capabilities of the measurement nodes.
Observation 12	Models trained using Rel-17 path-based reports prepared by one channel estimator do not generalize to reports from different channel estimators.
Observation 13	Given the large dimensions and ranges of possible channel estimation algorithm design tradeoffs and algorithm behaviors, fingerprinting type ML models do not generalize to measurement reports generated from different channel estimation implementations.
Observation 14	Models using path-based PDP and path-based CIR as model input are sensitive to channel estimator mismatch between training and inference phases, with higher sensitivity observed for path-based CIR.
Observation 15	On the basis of a same large RS bandwidth (e.g., 100 MHz), models using Rel-17 path-based measurements on average achieve similar positioning accuracy as models using sample-based measurements.
Observation 16	On the basis of a same small RS bandwidth (e.g., 25 MHz), ML models using Rel-17 path-based reporting on average have 26% higher 90%tile 2D positioning error than ML models using sample-based reporting.
Observation 17	Given the same receiver computational complexity, a measurement node can support a wider RS bandwidth for sample-based reporting than for Rel-17 path-based reporting. The wider RS bandwidth measurement reports enable better positioning accuracy for the ML models using sample-based reporting.
Observation 18	Sample-based signaling can achieve better positioning accuracy and lower signaling sizes than path-based signaling using substantially simpler measurement node processing.
Observation 19	The initial phase values of measured CIR samples may be random and contains no useful spatial dependent information for an AI/ML model to learn the association between measured CIR samples and the target positions. Without addressing such spurious information during training and inference, fingerprinting ML models using the CIR inputs can produce inaccurate position estimates.
Observation 20	CIR samples containing relative phases can be used as inputs to AI/ML models to circumvent the impact of random initial phase values of measured CIR samples.
Observation 21	For the RSCPD measurement PRU assisted phase error compensation requires PRUs to be used during training and inference, further increasing the deployment cost and signaling overhead.
Observation 22	For inter-path phase measurements, the model input at training and inference must know the UE TX or RX antenna phase contribution, either by reporting the antenna phase contribution to the model, removing it, or assuming the same antenna pattern is used during inference and training.
Observation 23	It is unclear how a mobile UE would know the direction of departure / arrival and associated phase offset for each path toward a given TRP.
Observation 24	For small or moderate signaling sizes, PDP and DP samples can achieve better positioning accuracy than CIR samples at the same or smaller signaling size. Multi-port CIR samples can achieve higher positioning accuracy only with very large signaling requirements.
Observation 25	For small or moderate signaling sizes, PDP and DP samples can achieve better positioning accuracy than CIR samples at the same or smaller signaling size as well as with substantially lower AI/ML model complexity.
Observation 26	For most given 90%tile 2D UE positioning error requirements, the DP samples requires the smallest signaling sizes.
Observation 27	Multi-port complex-valued CIR samples for both Case 3b (1st priority) and Case 2b (2nd priority) require very large signaling sizes, which can cause significantly negative impacts on the radio and core networks.
Observation 28	With small to moderate number of samples available to an ML model, the total-power PDP input type is a very helpful induction bias to impose on the ML model based on human domain knowledge that the sample powers contain more important information about the UE positions. It’s only with very large number of samples that the model can start to tease out how to use the additional information in the sample phases on its own.
Observation 29	Dimension reduction techniques can be used to reduce the signal sizes of multi-port CIR samples. But the achievable positioning accuracy is also compromised. The overall accuracy vs overhead tradeoff situation of CIR samples is not improved by the two considered dimension reduction techniques.
Observation 30	For Case 3a, the location of the AI/ML model (e.g., gNB-DU vs gNB-CU) impacts the need to specify new measurements for model input.
Observation 31	The AI/ML model output for AI/ML assisted positioning is determined by the corresponding legacy positioning methods.
Observation 32	The LOS/NLOS indicator in legacy positioning report is a measure of the reliability of the measurement report.
Observation 33	AI/ML assisted positioning can provide measurement report of the NLOS channel with high confidence.
Observation 34	For Case 2a/3a first physical path RSRPP is not an indication of quality/reliability for AI/ML generated measurement, since the model may be able to obtain accurate timing information even if the direct physical path is heavily obstructed.
Observation 35	Collecting sufficient data in terms of training dataset size, UE distribution, diversity of UE sources, etc is up to implementation.
Observation 36	Effective ground truth label can be obtained from line-of-sight links which can be observed opportunistically in parallel to AI/ML model inference.
Observation 37	Existing IE for line-of-sight (LoS) links in legacy assistance data can be reused to support calculation of model output accuracy of the LoS links, thus enabling label-based model monitoring for AI/ML based positioning.
Observation 38	For Cases with LMF-side model (case 2b/3b), the measurements reported for model input must be consistent with the ones used with training data.


Based on the discussion in the previous sections we propose the following:
Proposal 1	Adopt sample-based measurement for all relevant cases and LCM stages in Rel-19 AI/ML positioning.
Proposal 2	Path-based measurement is not standardized for any Rel-19 positioning cases and LCM stages.
Proposal 3	Do not support a mix of sample-based measurement and path-based measurement in Rel-19 AI/ML positioning.
Proposal 4	For the model input types for Case 3b (1st priority) and Case 2b (2nd priority), consider input based on DP or PDP samples containing sample powers summed over all receive antenna ports, i.e., total-power PDP.
Proposal 5	When studying the feasibility of (off-grid) RSRPP reports as AI/ML model inputs, the investigation should be based on at least realistic modeling of UE’s channel estimation capabilities. The reported per-path delays should be from an actual path delay estimator operating at the correct SNR.
Proposal 6	Do not support phase information for determining model input, including CIR and single phase value for first path.
Proposal 7	Before CIR can be adopted as model input, RAN1 need to investigate whether fingerprinting ML models can handle CIR phase measurements, which vary not only with the radio channel environment but also with the transmitter/receiver circuits.
Proposal 8	To decide whether to support phase information to enable CIR as model input, RAN1 should weigh the small positioning accuracy improvement against the standardization effort, the signaling overhead, and the difficulty to align phase information between training and inference.
Proposal 9	If phase information is supported to enable CIR as model input, the phase values are reported in the format of relative phase.
Proposal 10	RAN1 to down-prioritize the signaling approach(es) and/or measurement definitions to support CIR model input types for Case 3b (1st priority) and Case 2b (2nd priority).
Proposal 11	For direct AI/ML positioning Case 3b, for gNB channel measurements reported to LMF,  the timing information of DP and PDP is represented relative to the UL RTOA reference time.
Proposal 12	Introduce DL RTOA reference time as an absolute time to facilitate training data collection and model inference for DL.
Proposal 13	For model input with embedded timing information (e.g., DP, PDP), for training data collection and model inference, the timing information is represented relative to an absolute time.
Proposal 14	For direct AI/ML positioning Case 2b, for UE channel measurements reported to LMF,  the timing information of DP and PDP is represented relative to the DL RTOA reference time.
Proposal 15	For Case 2b/3b, the need for increased RSRP/RSRPP resolution for UE/gNB reporting should be evaluated.
Proposal 16	The assistance data required for PRS/SRS reception is the same across all use cases for both direct and AI/ML assisted positioning.
Proposal 17	The same enhancement(s) for PRS/SRS reception assistance data (if any) apply to model input for direct AI/ML positioning and AI/ML assisted positioning.
Proposal 18	For Case 2b/3b, the measurement reported for input to the AI/ML model inference should include at least the following side information:
a.	Source of the measurement (TRP ID, PRS resource and resource set ID, PFL ID in the downlink, UL SRS resource and resource set ID in the uplink)
b.	Time stamp of the measurement
c.	Measurement quality indicator for the power information (for PDP) and timing information (for PDP, DP), for the reported path/samples.
Proposal 19	For Case 2b/3b measurements reported for input to the LMF-side AI/ML model, do not include TEG information.
Proposal 20	Send an LS to RAN3 to request feedback on whether the input to the AI/ML model for Case 3a need to be specified.
Proposal 21	For AI/ML assisted positioning in Rel-19, Case 3a supports UL-TDOA and multi-RTT, Case 2a supports DL-TDOA and multi-RTT. From the RAN1 perspective, the existing framework for the supported methods is reused as much as possible, at least during inference.
Proposal 22	For measurement reports based on AI/ML output, the (optional) LOS/NLOS indicator provides the same information as in legacy IE LOS-NLOS-Indicator, i.e., information on the physical LoS path.
Proposal 23	Provide a mechanism to indicate that the timing information provided by AI/ML assisted model is to be treated like that of LoS link (i.e., virtual LoS path) regardless of the LOS/NLOS indication.
Proposal 24	Reuse the existing measurement reporting in LPP and NRPPa to report timing information for the model output of AI/ML assisted positioning.
Proposal 25	The downlink relative time of arrival (TDL-RTOA) is defined as the beginning time of downlink subframe i containing PRS received at the UE, which is relative to DL RTOA Reference Time (TDL-RTOA,ref).
Proposal 26	Adopt downlink relative time of arrival (TDL-RTOA) as UE-side model output of assisted AI/ML positioning.
Proposal 27	For AI/ML assisted positioning at gNB (Case 3a), the model output is uplink relative time of arrival (TUL-RTOA).
Proposal 28	For AI/ML assisted positioning at gNB (Case 3a), postprocessing is applied to generate gNB RxTxTimeDiff for measurement reporting of multi-RTT method.
Proposal 29	For AI/ML assisted positioning at UE (Case 2a), the model output is downlink relative time of arrival (TDL-RTOA), which is defined relative to DL RTOA Reference Time.
Proposal 30	For AI/ML assisted positioning at UE (Case 2a), postprocessing is applied to generate DL RSTD (for DL-TDOA method) and UE RxTxTimeDiff (for multi-RTT method) for measurement reporting.
Proposal 31	For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), measurement IEs for "additional path" are removed.
Proposal 32	For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), the measurement report includes time measurement only for the "first path", which is the virtual LOS path between transmitter and receiver.
Proposal 33	For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), power is optionally reported using UL SRS RSRP (Case 3a) or DL-PRS RSRP (Case 2a). Measurement IEs for per-path power are removed.
Proposal 34	For AI/ML assisted positioning at gNB (Case 3a) and UE (Case 2a), the measurement report contains an indicator that AI/ML is used to produce the measurements. The signaling details are up to RAN3/RAN2.
Proposal 35	For Rel-19 AI/ML based positioning, support collecting labelled and optionally un-labelled training data samples.
Proposal 36	For training data collection, for Case 3a/3b, labelled training data samples are collected only with PRUs on the UE-side; for Case 1, labelled training data samples can be collected with either PRUs or normal UEs on the UE-side.
Proposal 37	For training data collection of Case 1/3a/3b, un-labelled training data samples can be collected with either PRUs or normal UEs on the UE-side.
Proposal 38	The training dataset is attached with metadata which describes the context information on the set of collected training data samples.
Proposal 39	The training dataset validity area is recorded as a part of metadata of the training dataset.
Proposal 40	For training data collection, a training dataset validity area can be defined as a list of TRPs where data is collected.
Proposal 41	Training data provided to UE/gNB is organized with the same hierarchy as for legacy assistance data, i.e. per TRP/frequency layers for the UE, and per TRP for the gNB assistance data.
Proposal 42	RAN1 to study what additional metadata to attach to training dataset to provide validity condition of the trained model, including:
a.	Range of SNR/SINR
b.	Range of Channel estimation error
c.	Range of NW synchronization error
d.	Range of UE/gNB RX and TX timing error
Proposal 43	For both direct and assisted AI/ML positioning, support label-based model monitoring using information on LoS links.
Proposal 44	As assistance information for model monitoring, support the LMF, UE, and gNB to report the LOS status of an SRS or PRS resource with a time stamp.
Proposal 45	The model training entity records the model inference validity area as a part of metadata for the trained model.
Proposal 46	When preparing for model inference, the model inference validity area is checked for compatibility with the deployment area.
Proposal 47	When preparing for model inference, configurations of reference signal transmission and measurement are checked for compatibility between the trained model and the deployment environment.
Proposal 48	For Case 2a/3a, support UE/gNB to send an indication to the LMF when the AI/ML model is ready for reporting measurements based on model inference.
a.	It is up to RAN2/3 to decide which procedure to use to convey the information.
Proposal 49	For measurements reported to the LMF in case 2b/3b, support the LMF to indicate the PRS/SRS measurement bandwidth.
Proposal 50	For both direct and assisted AI/ML positioning, the model inference entity is the core entity that performs continuous model monitoring itself, including calculation of model monitoring metrics.
Proposal 51	For model inference at UE (Case 1, 2a) or gNB (Case 3a), the LMF can provide assistance information to support the calculation of model monitoring metrics.
Proposal 52	LMF interacts with gNB and UE to make decisions on whether to activate or deactivate AI/ML positioning, and which AI/ML positioning method to use.
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