

LTE Radio Physical Layer

Sadayuki Abeta NTT DOCOMO

© 3GPP 2011 3GPP Workshop, Bangalore, 30 May 2011

ຈ Introduction

- Downlink Aspects for LTE Release 8
- Uplink Aspects for LTE Release 8
- Enhancements for LTE-Advanced (Release 10 and beyond)

TS 36.201 E-UTRA Physical layer: General description .

- **TS 36.211 E-UTRA Physical channels and modulation** .
- TS 36.212 E-UTRA Multiplexing and channel coding .

N TS 36.213 E-UTRA Physical layer procedures .

- **TS 36.214 E-UTRA Physical layer Measurements**
- The latest version of the specifications can be downloaded from:
 - http://www.3gpp.org/ftp/Specs/

LTE Release 8 Major

Parameters

Access Scheme	DL	OFDMA	
	UL	SC-FDMA	
Bandwidth		1.4, 3, 5, 10, 15, 20 MHz	
Minimum TTI		1 ms	
Sub-carrier spacing		15 kHz	
Cyclic prefix length	Short	4.7 μs	
	Long	16.7 μs	
Modulation		QPSK, 16QAM, 64QAM	
Spatial multiplexing		Single layer for UL per UE	
		Up to 4 layers for DL per UE	
		MU-MIMO supported for UL and DL	

Transmission Resource

structure

- Basic unit of resource is the Physical Resource Block (PRB)
- 12 sub-carriers x 0.5 ms
- Allocated in pairs (in time domain)
- 1 sub-carrier x 1 symbol = 1 resource element (RE)
- Spatial domain measured in "layers"

One radio interface for FDD and TDD

Supports both FDD and TDD

🔊 Introduction

Downlink Aspects for LTE Release 8

- Uplink Aspects for LTE Release 8
- Enhancements for LTE-Advanced (Release 10 and beyond)

Cell acquisition signalling

- Synchronisation signals (SS) in subframes 0 and 5 of each 10 ms radio frame
 - Used in initial cell search
 - Common scheme irrespective to bandwidth simplify the procedure
- Physical broadcast channel (PBCH) in subframe 0 of each radio frame
 - Carries the Master Information Block (MIB)
 - Includes indication of system bandwidth
 - Robust design for cell-wide coverage:
 - Low rate, QPSK, robust channel coding (1/3-rate tail-biting convolutional code with repetition), 40 ms TTI
 - CRC indicates number of transmit antennas (SS and PBCH are transparent to number of antenna)
 1 coded MIB

Reference Signals (RS)

- In Rel-8, cell-specific RS are provided for 1, 2 or 4 antenna ports
 - Pattern designed for effective channel estimation
 - Sparse diamond pattern supports frequency-selective channels and highmobility with low overhead
 - Up to 6 cell-specific frequency shifts are configurable
 - Power-boosting can be applied on the REs used for RS
 - QPSK sequence with low PAPR

 Antenna port 1

 R1
 R1</

Antenna port 3

UE-specific Reference Signals

🔊 In Rel-8:

 UE-specific (precoded) RS may be provided in data transmissions to specific UEs

🔊 In Rel-9:

- UE-specific RS extended to dual-layer transmission
- CDM between RS of the two layers

- Flexible control design to avoid unnecessary overhead
 - Control region is first 1-3 OFDM symbols in each subframe (2-4 in narrow bandwidths)
 - Control region size (CFI: control channel format indicator) is dynamically variable
- Data transmission on Physical Downlink Shared Channel (PDSCH)

Downlink control channel region

Physical Control Format Indicator Channel (PCFICH) indicates the control region size (CFI)

- Located in first OFDM symbol of each subframe
- PCFICH is designed to be robust
 - 16 QPSK symbols transmitted with full frequency diversity

Physical Downlink Control Channel (PDCCH) carries Downlink Control Information (DCI) messages:

- downlink resource assignments
- uplink resource grants
- uplink power control commands

Physical Hybrid ARQ Indicator Channel (PHICH) carries ACK/NACK for UL data transmissions

Downlink data transmission

- PDSCH carries user data, broadcast system information, paging messages
- Transmission resources are assigned dynamically by PDCCH
 - Localised (suitable for frequency domain scheduling) or
 - distributed (suitable for maximising frequency diversity)

In Rel-9, each UE is configured in one of 8 "transmission modes" for PDSCH reception:

- Mode 1: Single antenna port, port 0
- Mode 2: Transmit diversity
- Mode 3: Open-loop spatial multiplexing
- Mode 4: Closed-loop spatial multiplexing
- Mode 5: MU-MIMO
- Mode 6: Closed-loop spatial multiplexing, single layer
- Mode 7: Single antenna port, UE-specific RS (port 5)
- Mode 8 (new in Rel-9): Single or dual-layer transmission with UEspecific RS (ports 7 and/or 8)

(in each case, transmit diversity is also available as a fallback)

จ Introduction

- Downlink Aspects for LTE Release 8
- Oplink Aspects for LTE Release 8
- Enhancements for LTE-Advanced (Release 10 and beyond)

Uplink multiple access: SC-FDMA

Same parameterisation as downlink

DFT precoding to ensure low PAPR / cubic metric
OFT prefix facilitates frequency-domain

equalisation at eNodeB

UL transmission resource allocation

One subframe = 1 ms12 sub-carriers

Same structure of PRBs in frequency domain as downlink

- Contiguous PRB allocation to keep single carrier property
- Possibility to configure frequency hopping to increase frequency diversity
- Number of allocated PRBs for a given user in a given subframe is in multiples of 2, 3 and 5 for lowcomplexity DFT implementation

UL Reference Signals

- Zadoff Chu sequences
 - Excellent cross correlation property
- Demodulation RS (DM RS)
 - Same bandwidth as control / data transmission
- Sounding RS (SRS)
 - Supports:
 - UL frequency-domain scheduling
 - Channel sounding for downlink transmissions, especially for TDD
 - Located In last symbol of a subframe
 - Can be configured by network
 - Uses interleaving in frequency domain (alternate subcarriers) to provide additional support for multiple users transmitting SRS in the same bandwidth

Uplink channel structure

- Data transmissions on Physical Uplink Shared Channel (PUSCH)
 - In centre of uplink bandwidth
 - Minimises out-of-band emissions from wide-bandwidth data transmissions
 - 1 transport block per TTI
 - Same channel coding / rate matching as PDSCH
 - Modulation QPSK, 16QAM, 64QAM
- When PUSCH is transmitted, any control signalling is multiplexed with data to maintain single carrier structure
- When no PUSCH, control signalling is on Physical Uplink Control Channel (PUCCH)
 - Usually at edges of system bandwidth
 - PUCCH hops from one side of the carrier to the other to maximise frequency diversity

–One subframe-

- ACK/NACK for PDSCH transmissions
- Scheduling Request (SR)
- Channel Quality Information feedback can be periodic on PUCCH or aperiodic on PUSCH
 - CQI indicates an index of a Modulation / Coding Scheme (MCS) that could be received on PDSCH with BLER ≤ 0.1
 - PMI indicates preferred precoding matrix for PDSCH
 - RI indicates number of useful transmission layers for PDSCH

Random Access Channel (RACH)

- RACH procedure begins with a preamble (PRACH)
- PRACH resources assigned by eNB within PUSCH region
- PRACH preamble fits into 6 PRBs
 - Sufficient for timing estimation
 - Invariant with bandwidth for low complexity
 - Zadoff Chu sequence
 - Excellent correlation properties
 - Zero correlation zone for different cyclic shifts
 - Flat frequency spectrum
 - Different sequences provided first by different cyclic shifts, then by different root sequences

Multiple PRACH formats suitable for different cell sizes

Timing Advance

- Uplink transmission orthogonality between users is maintained by timing advance
- Set initially during Random Access Procedure
- Updated as necessary subsequently
- Supports at least 100 km cell range
 - Greater ranges are up to the implementation

Downlink radio frame #i

Uplink radio frame #*i*

 $N_{\rm TA} \times T_{\rm S}$ time units

Uplink Power Control

- Controls uplink power spectral density
 - Total uplink transmit power scales linearly with transmitted bandwidth
- Fractional power control can compensate for all or part of path loss
 - Allows trade-off between intra-cell fairness and inter-cell interference
- MCS-specific offsets may be applied
- Closed-loop power control commands can fine-tune the power setting
 - Carried on PDCCH
 - Individual commands in UL resource grants
 - Group commands for groups of UEs
- Separate power control for PUCCH and PUSCH

UL Multi-Antenna transmission

Rel-8/9 supports:

- Switched antenna diversity
 - Closed-loop antenna switching supported by CRC masking on PBCH
- MU-MIMO
 - Different cyclic shifts of DM RS can be allocated to different UEs

จ Introduction

- Downlink Aspects for LTE Release 8
- Uplink Aspects for LTE Release 8

Enhancements for LTE-Advanced (Release 10 and beyond)

General Requirements

- LTE-Advanced is an evolution of LTE
- All relevant requirements of LTE are valid also for LTE-Advanced
- LTE-Advanced shall meet or exceed IMT-Advanced requirements within the ITU-R time plan
 - LTE-Advanced was approved as one of the IMT-Advanced RIT by ITU-R
- Targets of LTE-Advanced are adopted as long term targets

System Performance Requirements for LTE-Advanced

🔊 Peak data rate

- 1 Gbps data rate will be achieved by 4-by-4 MIMO and transmission bandwidth wider than approximately 70 MHz
- Peak spectrum efficiency
 - DL: Rel. 8 LTE satisfies IMT-Advanced requirement
 - UL: Need to double from Release 8 to satisfy IMT-Advanced requirement

		Rel. 8 LTE	LTE-Advanced	IMT-Advanced
Peak data rate	DL	300 Mbps	1 Gbps	1 Gbps ^(*)
	UL	75 Mbps	500 Mbps	
Peak spectrum efficiency [bps/Hz]	DL	15	30	15
	UL	3.75	15	6.75

*"100 Mbps for high mobility and 1 Gbps for low mobility" is one of the key features as written in Circular Letter (CL)

System Performance Requirements for LTE-Advanced (cont'd)

Capacity and cell-edge user throughput

• Target for LTE-Advanced was set considering gain of 1.4 to 1.6 from Release 8 LTE performance

		Ant. Config.	Rel. 8 LTE*1	LTE-Advanced* ²	IMT-Advanced ^{*3}
Capacity [bps/Hz/cell]	DL	2-by-2	1.69	2.4	-
		4-by-2	1.87	2.6	2.2
		4-by-4	2.67	3.7	-
	UL	1-by-2	0.74	1.2	_
		2-by-4	-	2.0	1.4
Cell-edge user throughput [bps/Hz/cell/use r]	DL	2-by-2	0.05	0.07	_
		4-by-2	0.06	0.09	0.06
		4-by-4	0.08	0.12	-
	UL	1-by-2	0.024	0.04	-
		2-by-4	_	0.07	0.03

*1 See TR25.912(Case 1 scenario) *

*2 See TR36.913(Case 1 scenario)

*3 See ITU-R M.2135(Base Coverage Urban scenario)

Deployment scenarios for LTE-Advanced

Target deployment scenarios for LTE-Advanced cover both homogeneous and heterogeneous networks.

Homogeneous network deployment

Heterogeneous network network

Evaluation models for each deployment scenario in 3GPP is shown in TR36.814 ver.9.0.0 (Annex therein)

- Carrier aggregation for LTE
- Enhanced multi-antenna downlink transmission for LTE
- Oplink multiple antenna transmission for LTE
- Relays for LTE
- Enhanced ICIC for non-CA (carrier aggregation) based deployment of heterogeneous networks

Carrier Aggregation (CA)

Nider bandwidth transmission using carrier aggregation for both DL and UL

- Entire system bandwidth up to, e.g., 100 MHz, comprises multiple basic frequency blocks called component carriers (CCs)
 - ➔ Satisfy requirements for peak data rate

Each CC can be configured in a backward compatible way with Rel-8 LTE

➔ Maintain backward compatibility with Rel-8 LTE

- Carrier aggregation supports both contiguous and non-contiguous spectrum, and asymmetric bandwidth for FDD
 - ➔ Achieve flexible spectrum usage

Enhanced Downlink Multiantenna Transmission

Max. 8 streams

- Extension up to 8-layer transmission
 - Increased from 4 layers in Rel-8/9
 - → Satisfy the requirement for peak spectrum efficiency, i.e., 30 bps/Hz
- Additional reference signals (RS) specified:
 - Channel state information RS (CSI-RS)
 - For downlink channel sounding
 - Sparse, low overhead (configurable)
 - ✓ Density: 1 resource element (RE) per antenna port per PRB
 - UE-specific demodulation RS (DM-RS)
 - UE-specific DM-RS can be precoded, supporting non-codebook-based precoding,
 - → applied 1-8-layer transmission, and enhanced multi-user beamforming, such as zero forcing (ZF)
 - DM RS pattern for higher numbers of layers is extended from 2-layer format for transmission mode 8 in Rel-9

DMRS pattern

Enhanced Downlink Multiantenna Transmission (Cont'd)

Enhanced Multi-user (MU) MIMO

- MU-MIMO dimensionality
 - Maximum spatial 4 layers
 - Maximum 2 layers per user

- CSI feedback enhancement using two matrix (W1, W2) feedback frame work is now being studied
 - W1 targets wideband/long-term channel properties
 - W2 targets frequency-selective/short-term time channel properties
 - Matrix multiplication is used.

Enhanced Uplink Multiantenna Transmission

- **OVER USE AND ADDRESS IN CONTRACT OF AND ADDRESS IN CONTRACTOR OF ADDRESS ADDRESS IN CONTRACTOR OF ADDRESS ADD**
 - Orthogonal resource transmit diversity is supported for PUCCH format 1 (Scheduling request) 1a/1b (HARQ-Ack) when UE has two Tx antennas
 - ✓ the same modulation symbol from the uplink channel is transmitted from two antenna ports, on two separate orthogonal resources.
- SU-MIMO up to 4-stream transmission to satisfy the requirement for peak spectrum efficiency, i.e., 15 bps/Hz
 - Closed-loop codebook based precoding supported

SU-MIMO up to 4 streams

Relaying for LTE

Relay design target for Rel-10 is coverage extension

Supports cell deployments in areas where wired backhaul is not available or very expensive

- 🔊 "Type 1" relay
 - Inband relaying: same carrier frequency for backhaul and access links
 - Time division multiplexing of backaul and access links
 - Relay node (RN) creates a separate cell distinct from the donor cell
 - UE receives/transmits control signals for scheduling and HARQ from/to RN
 - RN appears as a Rel-8 LTE eNB to Rel-8 LTE UEs
- 🔊 "Type 1a" relay
 - Outband relaying: different carrier frequency for backhaul from access link

Conclusions

TE Rel.8 is now in commercial service phase.

- 20 commercial LTE NW launched
- 208 operators in 80 countries investing in LTE

LTE-Advanced is a very flexible and advanced system

- Built on the established capabilities of the LTE Rel-8 and Rel-9 physical layer
- Further enhancements to exploit spectrum availability and advanced multi-antenna techniques

Sadayuki Abeta NTT DOCOMO

www.3gpp.org

contact@3gpp.org