

3GPP LTE Radio Access Network

21st June, 2010

Takehiro Nakamura

3GPP TSG-RAN Chairman

Contents

- ₹ 3GPP standardisation activities
- **N**LTE technical overviews
- **♦•**LTE performance
- **NLTE** deployment scenarios
- ♠Possible challenges for LTE deployment

3GPP TSG-RAN Standardization Activities

3GPP Structure

Release of 3GPP RAN specifications

Release 99	Release 4	Release 5	Release 6	Release 7	Release 8	Release 9	Release 10	
25 series								
WCDMA		HSDPA	HSUPA		HSPA+		•••••	
		3	36 series	ШШ	LTE		LTE-A	
				•				

Motivation of LTE Release 8

- Need to ensure the continuity of competitiveness of the 3G system for the future
- User demand for higher data rates and quality of services
- **PS** optimised system
- Continued demand for cost reduction (CAPEX and OPEX)
- **n** Low complexity
- Avoid unnecessary fragmentation of technologies for paired and unpaired band operation

LTE Release 8 Standardisation History

LTE Release 8 Key Features

- High spectral efficiency
 - OFDM in Downlink
 - Robust against multipath interference
 - High affinity to advanced techniques
 - Frequency domain channel-dependent scheduling
 - MIMO
 - DFTS-OFDM("Single-Carrier FDMA") in Uplink
 - Low PAPR
 - User orthogonality in frequency domain
 - Multi-antenna application
- Very low latency
 - Short setup time & Short transfer delay
 - Short HO latency and interruption time
 - Short TTI
 - RRC procedure
 - Simple RRC states
- Support of variable bandwidth
 - 1.4, 3, 5, 10, 15 and 20 MHz

36 P

LTE Release 8 Key Features (Cont'd)

- Simple protocol architecture
 - Shared channel based
 - PS mode only with VoIP capability
- → Simple Architecture
 - eNodeB as the only E-UTRAN node
 - Smaller number of RAN interfaces
 - eNodeB ↔ MME/SAE-Gateway (S1)
 - eNodeB ↔ eNodeB (X2)
- Compatibility and inter-working with earlier 3GPP Releases including CSFB
- 1 Inter-working with other systems, e.g. cdma2000
- FDD and TDD within a single radio access technology
- → Self-Organising Network (SON) operation
- → CSG/HeNB
- PWS/ETWS (Earthquake Tsunami Warning System)

LTE Release 8 Major Parameters

Access Scheme	UL	DFTS-OFDM		
	DL	OFDMA		
Bandwidth		1.4, 3, 5, 10, 15, 20MHz		
Minimum TTI		1msec		
Sub-carrier spacing		15kHz		
Cyclic prefix length	Short	4.7 μsec		
	Long	16.7 μsec		
Modulation		QPSK, 16QAM, 64QAM		
Spatial multiplexing		Single layer for UL per UE		
		Up to 4 layers for DL per UE		
		MU-MIMO supported for UL and DL		

LTE-Release 8 User Equipment Categories

Category		1	2	3	4	5	
Peak rate	DL	10	50	100 150		300	
Mbps	UL	5	25	25 50 50		75	
	Capability for physical functionalities						
RF bandwidtl	h			20MHz			
Modulation	DL	QPSK, 16QAM, 64QAM					
	UL	QPSK, 16QAM				QPSK,	
						16QAM,	
						64QAM	
			Multi-ant	enna			
2 Rx diversity	•	Assumed in performance requirements.					
2x2 MIMO		Not	Mandatory				
		supported	pported				
4x4 MIMO			Not supported Mandator			Mandatory	

35P

LTE Enhancements

Release 9

- Small enhancements from LTF Release 8
 - HeNB (Home eNode B) enhancements
 - SON (self-organizing networks) enhancements
 - E-MBMS (Evolved-Multimedia Broadcast Multicast Service)
 - LCS (Location Services)
 - PWS/CMAS (Commercial Mobile Alert System)
- Specification frozen in March 2010

Release 10 (LTE-Advanced)

- Further evolution of LTE Release 8 and 9 to meet:
 - Requirements for IMT-Advanced of ITU-R
 - Future operator and end-user requirements
- As a candidate of IMT-Advanced in ITU-R, 3GPP proposed LTE Release 10 & beyond (LTE-Advanced)
- Self-evaluation results show LTE-Advanced meet the all requirements of ITU-R and 3GPP
- Specifications of LTE-Advanced will be approved in December 2010 and submit to ITU-R WP 5D in March 2011
- Technologies to be included in Release 10
 - Spectrum/carrier aggregation for wider bandwidth based on component carrier(CC) concept
 - Advanced MIMO techniques up to 8-layers for DL and 4-layers for UL
 - Heterogeneous network
 - Relaying

Further enhancements defined in LTE Release 9, 10 and beyond can be deployed in a backwards compatible manner to LTE Release 8!

Rel. 8 LTE Performance Verification

Results in 3GPP

■ Spectrum efficiency (bps/Hz/cell)

Downlink: Uplink:

(Requirement: 3 - 4 fold from Rel. 6 HSDPA) (Requirement: 2 - 3 fold from Rel. 6 HSUPA)

Cell Distance	500) m	1732 m		
HSPA 1x2	0.53	-	0.52	-	
LTE 2x2 MIMO	1.69	x 3.2	1.56	x 3.0	
LTE 4x2 MIMO	1.87	x 3.5	1.85	x 3.6	
LTE 4x4 MIMO	2.67	x 5.0	2.41	x 4.6	

Cell Distance	500) m	1732 m		
HSPA 2 Rx div	0.33	-	0.32	-	
LTE 2 Rx div	0.74	x 2.2	0.68	x 2.2	
LTE 4 Rx div	1.10	x 3.3	1.04	x 3.3	

■ Voice capacity (users/5 MHz)

Cell Distance	Downlink	Uplink	
500 m	317	241	
1732 m	289	123	

■ U-plane latency (one-way transmission delay in RAN)

(Requirement: 5-msec one-way delay in RAN)

Function	Value (0% HARQ)	Value (30% HARQ)	
Total one-way delay	3.5 ms	5 ms	

Source: 3GPP TR25.912

NTT DOCOMO Field Experiment

Downlink Peak Throughput in the Field Trial

Handover trial in Yokosuka

Throughput distribution

0≦T-put< 10 10≦T-put< 20

20≦T-put< 30

30≦T-put< 40 40≦T-put< 50 50≦T-put< 60 60≦T-put< 70 70≦T-put< 80 80≦T-put< 90 90≦T-put<100

100≦T-put<110 110≦T-put

36 P

Possible LTE Deployment Scenarios

■ Initial stage of LTE

- Overlaid with 2G(e.g.GERAN) and/or 3G(e.g. UTRA, cdma2000) deployment area
- 2G, 3G and LTE multi-mode terminal
- Focus on packet switched (PS) services
 - Circuit switched (CS) services can be provided in 2G/3G cells using CS Fallback(CSFB)
- As LTE terminals become wide spread
 - Expand LTE deployment area
 - CS services will be provided in LTE in PS domain based on IMS

Possible Challenges and activities for LTE Deployment

- Many test cases for interfaces, Radio, X2 and S1
 - ← Less problem compared with WCDMA introduction
 - Simple protocol and architecture
 - Support of PS domain only, i.e. No support of CS domain
 - ← Aggressive industry activities for smooth introduction of LTE
 - Aggressive inter-operability test activities between multi-vendors in e.g. LSTI
 - Reduction of test cases for initial terminal in e.g. NGMN
- Many options/configurations
 - ← Less problem compared with WCDMA introduction but still exist
 - Support of Feature Group Indicator
 - Mandatory UE features, which is not matured for testing, can be informed to RAN
- Support of multiple-RATs and inter-working between RATs
 - Overlaid deployment scenarios of multiple RATs expected
 - ← Prioritization of supporting RAT and interworking functions
- Spectrum band to be supported in the terminal
 - Variety of spectrum band specified in 3GPP specs following regional requirements
 - ← Activities for operator's prioritization of supporting spectrum band in each region, e.g. NGMN
- ♠ Voice strategies
 - ← Thanks to GSMA activities, CSFB was identified as the intermediate solution toward VoLTE and common IMS profile was identified for VoLTE

LTE Operating band in 3GPP latest spec

(extract from 36.101 v9.3.0)

■ E-UTRA Operating Band	Uplink (UL) ope BS rece UE trans	Downlink (DL) operating band↓ BS transmit ↓ UE receive∂			Duplex ,		
	F _{UL_low} –	F _{DL_low}	_	F _{DL_high} ₽	ته		
■ 1₽	1920 MHz →	1980 MHz →	2110 MHz	-0	2170 MHz ₂	FDD₽ ₽	
■ 2₽	1850 MHz →	1910 MHz	1930 MHz	-	1990 MHz	FDD₽₽₽	
■ 3₽	1710 MHz	1785 MHz₄	1805 MHz	-0	1880 MHz	FDD₽	
■ 4.	1710 MHz₄ –₄	1755 MHz ₽	2110 MHz		2155 MHz ₂	FDD₽	
■ 5₽	824 MHz₄ <i>–</i> ₄	849 MHz	869 MHz	-0	894MHz₄	FDD₽	
■ 6 ¹ √	830 MHz₂ <i>-</i> ₽	840 MHz ₂	875 MHz	- 0	885 MHz ₂	FDD₽	
■ 7.	2500 MHz₄ –₄	2570 MHz ₂	2620 MHz		2690 MHz₽	FDD₽	
■ 8₽	880 MHz₄ <i>-</i> ₄	915 MHz ₂	925 MHz	-0	960 MHz ₂	FDD₽ ₽	
■ 9₽	1749.9 MHz₄ –₄	1784.9 MHz ₂	1844.9 MHz	-	1879.9 MHz ₂	FDD₽	
■ 10₽	1710 MHz₄ –₄	1770 MHz _₽	2110 MHz	- 0	2170 MHz	FDD₽	
■ 11₽	1427.9 MHz↓	1447.9 MHz 4	1475.9 MHz	-	1495.9 MHz ₽	FDD₽	
■ 12₽	698 MHz₄ –₄	716 MHz ₂	728 MHz ₂	-	746 MHz ₂	FDD₽	
■ 13₽	777 MHz	787 MHz ₂	746 MHz₄	- 0	756 MHz ₂	FDD₽	
■ 14₽	788 MHz₄ –₄	798 MHz ₂	758 MHz ₂		768 MHz ₂	FDD₽	
■ 15₽	Reserved⊬⊸	ė.	Reserved∂	ت	ته	FDD₽	
■ 16₽	Reserved₄⊸	ė.	Reserved₽	42	ت.	FDD₽	
■ 17₽	704 MHz	716 MHz ₂	734 MHz ₂	-	746 MHz ₂	FDD₽	
■ 18₽	815 MHz₄ –₄	830 MHz _₽	860 MHz ₂	- \varphi	875 MHz ₂	FDD₽	
■ 19₽	830 MHz₄ –₄	845 MHz ₂	875 MHz ₂	-	890 MHz ₂	FDD₽	
■ 20₽	832 MHz₄ -₄	862 MHz ₂	791 MHz ₂	- 0	821 MHz ₂	FDD₽ ₽	
■ 21₽	1447.9 MHz₄ –₄	1462.9 MHz ₂	1495.9 MHz ₂	-	1510.9 MHz ₂	FDD₽ ₽	
■₽	ب ب	ė.	ب	٠	ته	ب ب	
■ 33₽	1900 MHz₄ –₄	1920 MHz ₂	1900 MHz ₂	-0	1920 MHz₽	TDD₽	
■ 34₽	2010 MHz ₂ − ₂	2025 MHz ₽	2010 MHz	- ₽	2025 MHz ₂	TDD₽	
■ 35₽	1850 MHz₽	1910 MHz ₂	1850 MHz	- ₽	1910 MHz₂	TDD₽	
■ 36₽	1930 MHz -₽	1990 MHz ₂	1930 MHz	- .	1990 MHz ₂	TDD₽	
■ 37₽	1910 MHz	1930 MHz ₂	1910 MHz	- 0	1930 MHz₂	TDD₽	
■ 38₽	2570 MHz₽	2620 MHz₄	2570 MHz	- 0	2620 MHz ₂	TDD₽	
■ 39₽	1880 MHz₽	1920 MHz ₂	1880 MHz	- ₽	1920 MHz₂	TDD₽	
■ 40₽	2300 MHz₽	2400 MHz	2300 MHz	- 0	2400 MHz₂	TDD₽	
■Note 1: Band 6 is not applicable。							

